An upper bound for Hilbert cubes

Csaba Sándor

Department of Stochastics, Budapest University of Technology and Economics, Hungary

csandor@math.bme.hu

Abstract

In this note we give a new upper bound for the largest size of subset of \{1, 2, \ldots, n\} not containing a \(k\)-cube.

1. Introduction

We call a set \(H\) a Hilbert cube of dimension \(k\) or simply a \(k\)-cube if there are positive integers \(a_0, a_1, \ldots, a_k\) such that

\[H = \{a_0 + \sum_{i=1}^{k} \epsilon_i a_i : \epsilon_i \in \{0, 1\}\}\]

The positive integer \(k\) is the dimension of the Hilbert cube. Hilbert originally proved that if the positive integers are colored with finitely many colors then one color class contains a \(k\)-cube. The density version of theorem was proved by Szemerédi and has since become known as "Szemerédi's cube lemma" (see e.g. [3]):

Theorem. Let \(k \geq 2\) be a positive integer. If the sequence \(S_n\) satisfies \(|S_n| \geq (4n)^{1-\frac{1}{2k-1}}\) then \(S_n\) contains a \(k\)-cube.

Denote by \(H_k(n)\) be the largest size of subset of \{1, 2, \ldots, n\} not containing a \(k\)-cube. Gunderson and Rödl improved the above result to \(H_k(n) < 2^{1-\frac{1}{2k-1}}(\sqrt{n} + 1)^{2-\frac{1}{2k-2}}\) (see [2]).

A sequence \(S\) is called Sidon sequence if the sums \(s_1 + s_2, s_1, s_2 \in S, s_1 \leq s_2\) are distinct. Obviously a sequence is Sidon if and only if it does not contain any 2-cubes. It is well known that the maximal size of Sidon sequences can be selected from \{1, 2, \ldots, n\} is at most \(n^{1/2} + O(n^{1/4})\) (see [1]), that is \(H_2(n) < n^{1/2} + O(n^{1/4})\). A very short proof of this fact was given by Lindström (see [4]). Using his method we get the following result

\[\text{\footnote{Supported by Hungarian National Foundation for scientific Research, Gant No T 38396 and 049693}}\]
Theorem For every \(k \geq 3 \) we have \(H_k(n) < n^{1 - \frac{1}{2k-1}} + O(n^{1 - \frac{1}{2k-2}}) \), where the constant depends on \(k \).

2. **Proof**

We will argue by induction. Let us suppose that either \(k = 3 \) or \(k > 3 \) and we have verified the statement for \(k - 1 \), that is \(H_{k-1}(n) < n^{1 - \frac{1}{2k-2}} + O(n^{1 - \frac{1}{2k-3}}) \) and we prove the theorem for \(k \). Let us suppose that the sequence \(1 \leq a_1 < a_2 < \ldots < a_s \leq n \) does not contain any \(k \)-cubes. We have to prove that \(s < n^{1 - \frac{1}{2k-2}} + O(n^{1 - \frac{1}{2k-3}}) \). Let \(r = H_{k-1}(n) \). We will give lower and upper bound for the sum

\[
K = \sum_{1 \leq i-j \leq r} a_i - a_j.
\]

First we give a lower bound for \(K \). Since the above sequence does not contain any \(k \)-cubes, therefore a difference \(d \) occurs at most \(r \)-times in this sum. This sum contains \(rs - \frac{r(r+1)}{2} = rw \) \((w = s - \frac{r+1}{2}) \) terms, hence \(K \) is at least \(r \)-times of the sum of the first \(\left[\frac{rw}{r} \right] = [w] \) positive integers. Hence

\[
K \geq r \left(\left[\frac{w}{r} \right] + 1 \right) \geq r \frac{w^2 - 0.25}{2}.
\]

In the following we give an upper bound for \(K \). The differences in the sum \(K \) can be arranged in sequences of type

\[
(a_{u+t} - a_t) + (a_{2u+t} - a_{u+t}) + \cdots + (a_{[\frac{n-t}{u}]u+t} - a_{[\frac{n-t}{u}]u+t+1}) \leq n,
\]

where \(1 \leq u \leq r, 1 \leq t \leq u \). Hence

\[
K \leq n \frac{r(r+1)}{2}.
\]

Comparing the bounds we have \(r \frac{w^2 - 0.25}{2} \leq n \frac{r(r+1)}{2} \), that is \(w^2 \leq nr + n + 0.25 \). Hence

\[
s = w + \frac{r+1}{2} \leq \sqrt{nr + n + 0.25} + \frac{r+1}{2}
\]

For \(k = 3 \) we have \(r < n^{1/2} + O(n^{1/4}) \) which implies

\[
s < n^{0.75} + O(n^{0.5}).
\]

For \(k > 3 \) we have \(r < n^{1 - \frac{1}{2k-2}} + O(n^{1 - \frac{1}{2k-3}}) \), thus

\[
s \leq \sqrt{n^2 - \frac{1}{2k-2}} + O(n^{2 - \frac{1}{2k-3}}) + O(n^{1 - \frac{1}{2k-2}}) = n^{1 - \frac{1}{2k-1}} + O(n^{1 - \frac{1}{2k-2}}),
\]

which proves the theorem. ■
References

