Convergence of ergodic averages for many group rotations

Zoltán Buczolich

Department of Analysis, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: buczo@cs.elte.hu www.cs.elte.hu/~buczo

Suppose that G is a compact Abelian topological group, m is the Haar measure on G and $f: G \to \mathbb{R}$ is a measurable function. Given (n_k) , a strictly monotone increasing sequence of integers we consider the nonconventional ergodic/Birkhoff averages

$$M_N^{\alpha} f(x) = \frac{1}{N+1} \sum_{k=0}^{N} f(x+n_k \alpha).$$

The *f*-rotation set is

 $\Gamma_f = \{ \alpha \in G : M_N^{\alpha} f(x) \text{ converges for } m \text{ a.e. } x \text{ as } N \to \infty. \}$

We prove that if G is a compact locally connected Abelian group and $f: G \to \mathbb{R}$ is a measurable function then from $m(\Gamma_f) > 0$ it follows that $f \in L^1(G)$.

A similar result is established for ordinary Birkhoff averages if $G = Z_p$, the group of *p*-adic integers.

However, if the dual group, \widehat{G} contains "infinitely many multiple torsion" then such results do not hold if one considers non-conventional Birkhoff averages along ergodic sequences.

What really matters in our results is the boundedness of the tail, $f(x + n_k \alpha)/k$, k = 1, ... for a.e. x for many α , hence some of our theorems are stated by using instead of Γ_f slightly larger sets, denoted by $\Gamma_{f,b}$. This is a joint work with G. Keszthelyi.