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MIKLÓS HORVÁTH

Abstract. Consider the fixed-energy inverse scattering problem
with spherically symmetrical, compactly supported potentials q(r).
We give infinitely many inequalities between the phase shifts if
q(r) ≤ 1.

1. Introduction

The fixed-energy inverse scattering problem with spherically sym-
metrical potential q(r) can be described by the system

ϕ′′
n(r)− n(n + 1)

r2
ϕn(r) + (1− q(r))ϕn(r) = 0 r ≥ 0,(1.1)

ϕn(r) = γnr
n+1(1 + o(1)) r → 0+,(1.2)

ϕn(r) = sin(r − nπ/2 + δn) + o(1) r → +∞.(1.3)

The definition of phase shifts can be naturally extended: for <λ > 0
let

ϕ”(r, λ)− λ2 − 1/4

r2
ϕ(r, λ) + (1− q(r))ϕ(r, λ) = 0 λ ≤ 0,(1.4)

ϕ(r, λ) = γ(λ)rλ+1/2(1 + o(1)) r → 0+,(1.5)

ϕ(r, λ) = sin(r − π/2(λ− 1/2) + δ(λ)) + o(1) r → +∞.(1.6)

Then δn = δ(n + 1/2). Throughout the paper we will assume that

rq(r) ∈ L1(0,∞).

Concerning the distribution of the phase shifts δn very little is known
and these are mostly connected with some derivatives of the phase
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shifts. Mention first the formula of Regge [12]

dδ(λ)

dλ
=

π

2
− 2λ

∞∫
0

ϕ2(r, λ)

r2
dr = 2λ

∞∫
0

ϕ2
0(r, λ)− ϕ2(r, λ)

r2
dr(1.7)

(where ϕ0 is the function ϕ of the zero potential q = 0) and its trivial
corollary

δn+1 − δn <
π

2
.(1.8)

The functional derivative of δ(λ) with respect to the potential can be
given by

δ̇ = −
∞∫

0

q̇ϕ2.(1.9)

It is proved in [6], for the physical phase shifts δn it appeared first in
[2] and [3]. Consequently q1 ≤ (≥)q2 implies δ(λ; q1) ≥ (≤)δ(λ, q2);
in particular nonnegative potentials have nonpositive phase shifts. We
know that if λ > 0 andπ

∞∫
0

r|q(r)| dr

4

+
1

16
< λ2.(1.10)

then for all r ≥ 0

|ϕ(r, λ)| ≤
√

2πr, |ϕ(r, λ)| ≤ 2
√

2π

2λΓ(λ + 1)
rλ+1/2,(1.11)

see [4]. Consequently if (1.10) holds for q1 and q2 then

|δ(λ; q1)− δ(λ, q2)| ≤ 2π

∞∫
0

r|q1(r)− q2(r)| dr,(1.12)

|δ(λ; q1)− δ(λ, q2)| ≤ c

1

λ
+

∞∫
2λ/e

r|q1(r)− q2(r)| dr

 .(1.13)

In [6] the following exact bounds are given: if rq(r) ∈ L1(0, a) and
q = 0 for r > a then

arctan
Jλ(a)

Yλ(a)
− kπ < δ(λ) < ∞
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where Jλ and Yλ are the usual Bessel functions and k is the number of
zeros of Yλ on (0, a). In particular this means that

−a < δ0 < ∞, −a + arctan a < δ1 < ∞.(1.14)

Finally remark that Loeffel [9] found a rather complicated description
of the sequences of phase shifts with compactly supported potentials.

In the present paper a sequence of inequalities on the phase shifts is
proved for compactly supported potentials. Introduce the function

f(λ) = λ− a
J ′

λ(a)− tan δ(λ)Y ′
λ(a)

Jλ(a)− tan δ(λ)Yλ(a)
(1.15)

and its divided differences defined inductively by

f(λ0, . . . , λk) =
f(λ1, . . . , λk)− f(λ0, . . . , λk−1)

λk − λ0

.(1.16)

Then we have the following exact inequalities:

Theorem 1.1. Let rq(r) ∈ L1(0, a) and q = 0 for r > a. If

q(r) ≤ 1 a.e. and
1

2

a∫
0

r(1− q(r)) dr < λ0 < · · · < λk(1.17)

then

(−1)kf(λ0, . . . , λk) ≥ 0 ∀n ≥ 0.(1.18)

If in (1.18) equality occurs for some k and λ0, . . . , λk then q = 1 a.e.
on (0, a).

One might think that the converse is also true, namely that all the
inequalities (1.18) imply q ≤ 1, but this is not the case. The details
are given below in the remark after the proof of Theorem 1.1.

Concerning the physically relevant phase shifts the following special
case can be formulated. Introduce the quantities

µn = f(n + 1/2).(1.19)

The backward differences are defined by ∆0µn = µn, ∆k+1µn = ∆kµn−
∆kµn+1.

Corollary 1.2. Let rq(r) ∈ L1(0, a) and q = 0 for r > a. If

q(r) ≤ 1 a.e. and

a∫
0

r(1− q(r)) dr < 2n0 + 1(1.20)
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then

∆kµn ≥ 0 ∀n ≥ n0, ∀k ≥ 0.(1.21)

If equality occurs for some k and n then q = 1 a.e. on (0, a).

Another series of inequalities are given in

Theorem 1.3. Define g(z) = f(
√
−z) −

√
−z. If q(r) = 0 for r > a

and

z0 < · · · < zk < −1

4

 a∫
0

r|1− q(r)| dr

2

(1.22)

then

g(z0, . . . , zk) > 0 ∀k ≥ 1.(1.23)

Analogous statements are valid for the distribution of the values of
the Weyl-Titchmarsh m-function. Consider the Schrödinger equation
on the half-line

−y” + Q(x)y = zy, 0 ≤ x < ∞ with Q ∈ L1(0,∞).(1.24)

The operator is in the limit point case at infinity, so the solution 0 6=
y(x, z), y ∈ L2(0,∞) of (1.24) is unique up to a constant factor. The
m-function is defined by

m(z) =
y′(0, z)

y(0, z)
.(1.25)

Now we have the following analogies of Theorems 1.1 and 1.3

Theorem 1.4. Let h(τ) = τ + m(−τ 2). Now if

Q ≤ 0 and
1

2

∞∫
0

|Q| < τ0 < · · · < τk(1.26)

then

(−1)kh(τ0, . . . , τk) ≥ 0.(1.27)

If equality occurs for some k and τ0, . . . , τk then Q = 0 a.e.

Theorem 1.5. If Q ∈ L1(0,∞) and

z0 < · · · < zk < −1

4
‖Q‖2

1(1.28)

then

m(z0, . . . , zk) > 0 n ≥ 1.(1.29)
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Some simple special cases of the above inequalities:
a. If ‖Q‖1 < τ0 < τ1 then m(−τ 2

0 ) > m(−τ 2
1 ); if moreover Q ≤ 0 then

the stronger inequality m(−τ 2
0 ) ≥ τ1− τ0 +m(−τ 2

1 ) holds with equality
if and only if Q = 0;
b. if

∫ a

0
|1− q(r)| dr < 1 and q = 0 for r > a then

a2

1− a cot(δ1 + a)
> 1 + a cot(δ0 + a),(1.30)

if, moreover, q ≤ 1 then

a2

1− a cot(δ1 + a)
≥ 2 + a cot(δ0 + a)(1.31)

with equality if and only if q = 1 a.e. on (0, a).
Finally we provide some improvements of the inequalities (1.14).

Proposition 1.6. Let q ≤ 1 on (0, a), q = 0 on (a,∞). Then

a∫
0

r(1− q(r)) dr < 1 ⇒ arctan a− a ≤ δ0 < π − a,(1.32)

a∫
0

r(1− q(r)) dr < 3 ⇒ π

2
− a + arctan

a2 − 3

3a
≤ δ1(1.33)

< π − a + arctan a.

The proof of the main results are based on the notion of the A-
function, introduced in Simon [11]. Remling [10] found a (local) de-
scription of the A-function. In the last Remark of this paper we discuss
the close connection between Remling’s results and a classical charac-
terization of the spectral function given by Levitan and Gasymov [7].

2. Proofs

Proof of Theorems 1.3 and 1.5
Consider the spectral function %(λ) of the potential Q ∈ L1(0,∞)
subject to the boundary condition y(0) = 0. It is connected with
the m-function by the known formula

m(z) =

∞∫
−∞

(
1

λ− z
− λ

λ2 + 1

)
d%(λ) + c, c = <m(i).(2.1)

for nonreal z. Since d%(λ) = 0 for λ < −1/4‖Q‖2
1, (2.1) extends to z <

−1/4‖Q‖2
1. It is known that for smooth functions F (z), F (z0, . . . , zk) =
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F (k)(z∗)/k! with some z∗ between z0 and zk. Now if z0 < · · · < zk <
−1/4‖Q‖2

1 then

m(z0, . . . , zk) =

∞∫
−1/4‖Q‖21

1

(λ− z∗(λ))k+1
d%(λ) > 0 k ≥ 1(2.2)

which is (1.29). To prove Theorem 1.3, apply the variable substitution
x = log(a/r), it transforms r ∈ (0, a] onto x ∈ [0,∞). It is not
hard to check that the functions y(x,−λ2) = r−1/2ϕ(r, λ), 0 < r ≤ a
satisfy y ∈ L2(0,∞) and −y” + Q(x)y = −λ2y with the new potential
Q(x) = r2(q(r) − 1), Q ∈ L1(0,∞), see [5]. Since y ∈ L2, we can
express the Weyl-Titchmarsh m-fuction by

m(−λ2) =
y′(0,−λ2)

y(0,−λ2)
=

1

2
− a

ϕ′(a, λ)

ϕ(a, λ)
(2.3)

= −a
J ′

λ(a)− tan δ(λ)Y ′
λ(a)

Jλ(a)− tan δ(λ)Yλ(a)
= f(λ)− λ = g(−λ2).

On the other hand,
∞∫

0

|Q(x)| dx =

a∫
0

1

r
|Q(ln

a

r
)| dr =

a∫
0

r|1− q(r)| dr < ∞.

Thus (1.28) is transformed into (1.22) and (1.29) into (1.23). �

Proof of Theorems 1.1 and 1.4 We need the notion of the A-function
introduced in Simon [11] where, among others, the following properties
are verified: A−Q is continuous, |A(α)−Q(α)| ≤ c exp(α‖Q‖1) and

m(−τ 2) = −τ −
∞∫

0

A(α)e−2ταdα, τ >
1

2

∞∫
0

|Q|.

In [1] it is proved that |Q1| ≤ −Q2 implies |A1| ≤ −A2. In particular
this means that Q ≤ 0 implies A ≤ 0. Consequently

h(τ) =

∞∫
0

|A(α)|e−2ταdα, τ >
1

2

∞∫
0

|Q|.(2.4)

Thus

(−1)kh(τ0, . . . , τk) =
1

k!

∞∫
0

|A(α)|(2α)ke−2τ∗(α)αdα ≥ 0,(2.5)

the convergence of the integral follows from the estimate |A(α)| ≤
|Q(α)|+ c exp(α‖Q‖1). If equality holds in (2.5) then A = 0 and then
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Q = 0. This proves Theorem 1.4. Now Theorem 1.1 follows just like
in the previous proof, taking into account that q ≤ 1 is equivalent to
Q ≤ 0 and that h = f . Finally, using the formulae

J1/2(r) =

√
2

πr
sin r, Y1/2(r) = −

√
2

πr
cos r

J3/2(r) =

√
2

πr

(
sin r

r
− cos r

)
, Y3/2(r) =

√
2

πr

(
−cos r

r
− sin r

)
we see from (2.3) that

m(−1/4) =
1

2
− a

cos a− tan δ0 sin a

sin a + tan δ0 cos a
=

1

2
− a

1− tan δ0 tan a

tan a + tan δ0

=
1

2
− a cot(δ0 + a),

and

m(−9/4) =
1

2
− a

cos a
a
− sin a

a2 + sin a− tan δ1(
sin a

a
+ cos a

a2 − cos a)
sin a

a
− cos a + tan δ1(

cos a
a

+ sin a)

=
1

2
+ 1− a

tan a + tan δ1

(tan a + tan δ1)/a + tan a tan δ1 − 1

=
3

2
− a

1/a− cot(δ1 + a)
=

3

2
− a2

1− a cot(δ1 + a)

and this verifies (1.30) and (1.31). �

Remark The converse of Theorem 1.1 is not true i.e. all the in-
equalities (1.18) are not enough to ensure q ≤ 1. Indeed, (1.18) for all
λ0, . . . , λk implies A ≤ 0 (the backward differences of the exponential
moments of the measure −A(α)exp(−(2n0+1)α)dα are nonnegative so
the measure is nonnegative by classical Hausdorff moment theorems)
but A ≤ 0 does not imply Q ≤ 0 i.e. q ≤ 1. This is illustrated by a
Bargmann-type potential. We borrow from [1] the following example:
if c, κ > 0 then the potential

Q(x) = −2
d2

dx2
ln

1 +
c

κ2

x∫
0

sinh2(κy) dy


gives the A-function

A(α) = −2c

κ
sinh(2ακ) < 0.

A straightforward calculation shows that Q ∈ L1(0,∞) but Q(x) > 0
for large x.
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Proof of Proposition 1.6 Consider the box potentials q(r) = q0, r ∈
(0, a), q(r) = 0, r > a. We know that for q0 = 1

λ

a
=

J ′
λ(a)− tan δ(λ; q0 = 1)Y ′

λ(a)

Jλ(a)− tan δ(λ; q0 = 1)Yλ(a)
,(2.6)

see [6]. From here we infer

tan δ(λ; q0 = 1) =
λJλ(a)− aJ ′

λ(a)

λYλ(a)− aY ′
λ(a)

=
Jλ+1(a)

Yλ+1(a)
.(2.7)

In particular,

tan δ0(q0 = 1) =
J3/2(a)

Y3/2(a)
= − tan a− a

1 + a tan a
= − tan(a− arctan a)(2.8)

Since δ0 is a continuous function of a and tends to zero if a → 0, we
get

δ0(q0 = 1) = arctan a− a.(2.9)

We analogously find that

tan δ1(q0 = 1) =
J5/2(a)

Y5/2(a)
= − tan

(
a +

π

2
− arctan

a2 − 3

3a

)
(2.10)

and hence

δ1(q0 = 1) =
π

2
− a + arctan

a2 − 3

3a
.(2.11)

This verifies the lower estimates of Proposition 1.6. If q diminishes
from 1 on the segment (0, a), δ0 + a increases from arctan a and then
1 − a cot(δ0 + a) is increasing, too. It can not reach infinity because
m(−1/4) must be finite. Thus, δ0 + a < π. Analogously δ1 + a and
hence 3− a2/(1− a cot(δ1 + a)) is increasing. The denominator can be
infinite but can not take the value 0 since m(−9/4) is finite; therefore
we have 1/a 6= cot(δ1 + a). Taking (1.14) into account, we see that
δ1 + a < π + arctan a. �

Remark Remling [10] found a property which characterizes the A-
functions, see below. In what follows we give a simple verification of
the fact that this property holds for every A-functions. Recall first that
the A-function is defined formally in [1] by

A(α) = −2

∞∫
−∞

sin 2α
√

λ√
λ

d%(λ).(2.12)
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Here % is the spectral function corresponding to the boundary condi-
tion y(0) = 0. Since the integral may be divergent, the distributional
interpretation

b∫
0

A(α)f(α) dα = −2

∞∫
−∞

b∫
0

f(α)
sin 2α

√
λ√

λ
dαd%(λ), f ∈ C∞

0 (0, b)

(2.13)

can be used; here b > 0 is an arbitrary finite value. If Q = 0 then
A = 0, thus here d% can be substituted by dσ = d% − d%0, where
%0(λ) = 2λ3/2/(3π) for λ ≥ 0 and zero for λ < 0. Remling [10] gave
the following description: the function A ∈ L1(0, b) is an A-function of
a locally integrable potential if and only if

I + KA > 0 in L2(0, b)(2.14)

where KA is the integral operator on L2(0, b) with the kernel

K(x, t) = −1

2

(x+t)/2∫
|x−t|/2

A.(2.15)

The fact that an A-function satisfies (2.14), follows easily from classical
results on the spectral function; this will be verified below. Levitan and
Gasymov [7] (see also [8]) proved that an increasing function %(λ) is the
spectral function of some Q ∈ Lloc

1 [0,∞) under the boundary condition
y(0) = 0 if and only if

N∫
−∞

cos
√

λx− 1

λ
dσ(λ) → Φ(x) =

∞∫
−∞

cos
√

λx− 1

λ
dσ(λ)(2.16)

with bounded convergence, where the bounds are locally uniform in x,
and if

∞∫
−∞

E2 d% = 0 ⇒ f = 0 a.e.(2.17)

for every f ∈ L2(0,∞) with compact support, where

E(λ) =

∞∫
0

f(x)
sin
√

λx√
λ

dx.(2.18)

A formal differentiation in (2.16) suggests that

A(α) = 2Φ′(2α).(2.19)
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The true verification uses (2.13). The bounded convergence of (2.16)
gives after an integration by parts that for f ∈ C∞

0 (0, b)

b∫
0

Af = 2 lim
N→∞

N∫
−∞

b∫
0

f ′(α)
1− cos 2α

√
λ

2λ
dαd%(λ)

= −
b∫

0

Φ(2α)f ′(α) dα

thus (2.19) holds in the distributional sense. From A ∈ L1(0, b) we
infer that Φ is locally absolutely continuous and that (2.19) holds a.e.
and then from (2.15)

K(x, t) =
Φ(x− t)− Φ(x + t)

2
.(2.20)

Now again by the bounded convergence
∞∫

−∞

E2dσ =

= lim
N→∞

N∫
−∞

b∫
0

b∫
0

f(x)f(t)
cos

√
λ(x− t)− cos

√
λ(x + t)

2λ
dx dt dσ(λ)

=

b∫
0

b∫
0

f(x)f(t)
Φ(x− t)− Φ(x + t)

2
dx dt = (KAf, f)L2(0,b).

Since %0 is the spectral function of the zero potential,
∫ ∞
−∞ E2d%0 =

(f, f), so we finally find that
∞∫

−∞

E2d% = ((I + KA)f, f).(2.21)

This proves that the condition (2.14) follows at once from (2.17) and
hence (2.14) holds for the A-functions. The other implication of the
Remling theorem will not be discussed here.
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