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1. Introduction

1.1. Basic notions and examples of inverse problems.

The quiery ”inverse problem” gives about 100.000 results in the
browser Scholar Google, among them about 38.000 between 2000 and
2007. The journal Inverse Problems having a continuously growing
scientific reputation publishes many papers. These facts illustrate the
importance of this topic in science and technology and the interest of
the scientific community in further development of the theory.

No precise definition of an inverse problem can be formulated. It
assumes the existence of a direct problem. This means that we have
a (physical, engineering, medical etc.) device with complete mathe-
matical description (e.g. counting the eigenvalues of an operator, the
gravitation generated by given mass distribution, the scattering of a
sound wave by an obstacle in the space etc.). The inverse problem
consists of recovering some (functional or data) characteristics of this
device (reconstruction of the operator from its eigenvalues, of the mass
distribution from part of the gravitational field, determination of the
position and shape of the scatterer from measurements of the scattered
waves). Following Hadamard [17] a problem is called well-posed if its
solution exists, is unique and stable i.e. continuously depending on
the input data. Now the majority of the important inverse problems
proves to be ill-conditioned, while the corresponding direct problem is
well-posed. Thus the instability of the inverse problems have to be
remedied by some stabilization methods. Another common feature of
the typical inverse problems is that the object or phenomenon to be
investigated is not reachable for direct observation. It is too far away or
not visible (radar, sonar technology), it is too small (quantummechan-
ical inverse problems), it is in the inside of the human body (medical
inverse problems, like tomography, magnetic resonance imaging etc.),
or several hundred meters below the surface of the Earth (geological
prospecting). Inverse problems occur e.g. in nondestructive evaluation
of meterials and so on.

In this dissertation two kinds of inverse problems are considered
in details: the inverse Sturm-Liouville problem in Chapter 2 and the
quantummechanical inverse scattering with fixed energy in Chapter 3.
However, just for illustration, some other inverse problems are briefly
mentioned below (see Isakov [31] for more details).
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Example 1. Gravimetry

Suppose we are given a mass distribution f on R3 vanishing outside a
bounded domain Ω ⊂ R3. Then the gravitational field u is the solution
of

−∆u = f in R3, u→ 0 if |x| → ∞.

The solution of this problem (the direct problem) can be expressed by

u(x) =

∫
Ω

f(y)

4π|x− y|
dy.

The gradient ∇u is the gravitational force. The inverse problem con-
sists of recovering the mass density f given the gravitational force ∇u
on the boundary ∂Ω. It is used to recover the density of the Earth
by measuring gravitation and to navigate aircrafts using high precision
gravitational data.

Example 2. Conductivity

The conductivity equation has the form

div (a∇u) = 0 in Ω, u = g in ∂Ω

where u is the electric potential within Ω and a is the conductivity. The
direct problem is to find u given a and g ; using appropriate Soboleff
spaces, this problem is well-defined and we can express

h = a
∂u

∂n
on Γ

where Γ is a subset of the boundary ∂Ω. The inverse conductivity
problem is to reconstruct the conductivity a within Ω given h for one g
(one boundary meaurement), or for many g (many boundary measure-
ments). In the electrical impedance tomography this practically means
that electric current sources are placed on the surface of the human
body and voltage is measured for one or for many positions of these
sources. Once the function a is reconstructed, this gives a portrait of
the inner structure of the body, since the conductivity of different tis-
sues (muscles, liver, lungs etc.) are different constants.

Example 3. Inverse eigenvalue problems

Many problems of this kind aim to reconstruct a mechanical system
from its eigenfrequencies. The most famous question of this kind: ”Can
one hear the shape of a drum?” is due to M. Kac [33]. The problem
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is to determine the domain Ω from the eigenvalues of the Dirichlet
Laplacian on Ω. A value λ is considered an eigenvalue if there exists a
nontrivial solution u of the problem

−∆u = λu on Ω, u = 0 on ∂Ω.

If we consider vibrational modes of a string, we are led to a similar
problem. The well-known wave equation of the string has the form

%Utt − (TUx)x = %F

where U(x, t) is the transversal displacement of the point x at time t,
T (x) is the tension, %(x) is the density of the string and F represents
the external (transversal) force at x. In case of constant tension and
no external forces we get, after a separation of variables, the equation

−u” = λ%u, u = u(x).

If the string is fixed at the endpoints, this means Dirichlet boundary
conditions

u(0) = u(l) = 0.

The inverse problem given this way is to reconstruct % from the eigen-
frequencies λn; it can be paraphrased as ”Can one hear the density of
a string?”.

In quantum mechanics the time-independent, one-dimensional Schrödinger
equation has the form

−u” + q(x)u = λu.

Here q is the potential of the operator. Since this operator is the Hamil-
tonian of the underlying physical system, the eigenvalues λ correspond
to the energy levels of the system. Here

x+∆x∫
x

u2

represents the probability of finding the particle between x and x+∆x.
The inverse problem consists of recovering the system (the potential q)
from the knowledge of the stable energy levels (i.e. the eigenvalues).

The most important category of inverse problems is the collection
of inverse scattering problems; it is presented separately in the next
point.



6 INVERSE PROBLEMS FOR LINEAR DIFFERENTIAL OPERATORS

1.2. Inverse scattering.

Scattering theory has played a central role in the twentieth century
mathematical physics. In a broad sense, scattering theory investigates
the effect caused by an obstacle or by the inhomogenity of the medium
on an incident wave. The total field u describing the wave phenomenon
is considered as the sum

u = ui + us,

ui being the incident field and us the scattered field. The direct scatter-
ing problem is to find us from the knowledge of ui and the differential
equation satisfied by u. That is, the aim is to describe the wave scat-
tered by an obstacle or by going through inhomogenities. Of much more
interest is the inverse scattering problem of determining the properties
of the scatterer from a knowledge of the asymptotic behaviour of us ,
the so-called far field pattern of the scattered wave. In other words,
we aim to reconstruct the shape of the scatterer and the differential
equation by measuring the scattered waves far away from the scat-
terer. This (simplified) presentation covers a huge range of problems
and ideas; further infermation can be found e.g. in the monographs
Chadan and Sabatier [9], Colton and Kress [13], Jones [32], Lax and
Phillips [42], Newton [51], Reed and Simon [59], Isakov [31], Kirsch [36].

In what follows a short list of typical inverse scattering problems will
be presented; the last one is the topic of Section 3.

Example 1 Scattering by an obstacle

We are given a bounded domain

D ⊂ R3.

The phenomenon of the scattering of acoustic plane waves by the ob-
stacle D is described by the Helmholtz equation

−∆u = k2u in R3 \D

where k = ω/c0 is the wave number, ω is the frequency, c0 is the speed
of sound in the homogeneous medium. We apply Dirichlet boundary
condition

u = 0 on ∂D

for soft obstacle and Neumann-type boundary condition

∂u

∂n
+ iλn = 0 on ∂D
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for hard obstacle. The solution u has the decomposition

(1.1) u = ui + us

where

(1.2) ui = eikξ·x

represents the planar wave coming from the direction ξ, |ξ| = 1 and the
scattered field us satisfies the Sommerfeld radiation condition

(1.3) lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0.

Any solution us satisfying the above conditions admits the representa-
tion

(1.4) us(x) = A(x̂, ξ, k)
eikr

r
+O

(
1

r2

)
, r = |x| → ∞

where x̂ = x/r. Thus the scattered wave is asymptotically spherical
with scattering amplitude A (called also the far field pattern) at the
direction x̂.

The inverse obstacle scattering problem is the recovery of the shape
of the obstacle D from the scattering amplitude.

Example 2 Inverse scattering by an inhomogeneous medium

In this case the medium where the sound propagates is homogeneous
at large distances but has inhomogenities in a bounded domain of R3.
This yields the Helmholtz equation

−∆u = k2nu on R3

where n(x), the index of refraction is inversely proportional to the
square of the speed of sound at x. Since the medium is homogeneous
far away, n(x) = 1 for large |x|. As above, we consider solutions of the
form u = ui + us , where ui is of the form (1.2) and us satisfies the
condition (1.3). We get again the representation (1.4) for us and we
aim to recover the function n(x) from the far field pattern.

Example 3 Inverse scattering in two-particle interactions

The Schrödinger operator

H = H0 + V (x), H0 = −∆

describes two interacting particles. As above, there are solutions u of

Hu = k2u
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satisfying

u(x) = eikξ·x + A(x̂, ξ, k)
eikr

r
+O

(
1

r2

)
, r = |x| → ∞

and the inverse problem aims to reconstruct the interaction potential
V (x) from the scattering amplitude A(x̂, ξ, k).
In a real experiment the plane wave ui = eikξ·x represents an incident
beam of particles arriving from direction ξ against the target, and the
outgoing spherical wave us corresponds to scattered particles. The ratio
of the flux density of the scattered particles in the solid angle dx̂ to
that of the incident beam is |A(x̂, ξ, k)|2 dx̂. The function |A(x̂, ξ, k)|2 is
called the cross section; it can easily be measured by a detector counting
the number of outgoing particles in the solid angle dx̂ . However, the
scattering amplitude A can be recovered (at least numerically) from its
modulus through an integral equation for its phase, see Chadan and
Sabatier [9], Chapter X. So we suppose A to be known in the inverse
scattering problem and we are looking for the potential V through the
knowledge of the scattering amplitude A.
In most cases of particle interactions the potential V proves to be
spherically symmetrical:

V (x) = q(r) r = |x|.

In this case the scattering is symmetrical around the axis of the
incident beam, that is A(x̂, ξ, k) depends only on x̂ · ξ:

A(x̂, ξ, k) = F (x̂ · ξ, k).

Expanding the scattering amplitude F by Legendre polynomials Pn

gives

F (t, k) =
1

k

∞∑
n=0

(2n+ 1)eiδn sin(δn)Pn(t).

The constants δn = δn(k) are called phase shifts.

There is an alternative way to get the phase shifts. Looking for
solutions of −∆u+ V u = k2u in the form

u(x) =
ψn(r)√

r
Y n

m(θ, ϕ)

with spherical harmonics Y n
m gives in the radial variable r the equations

ψn” +
1

r
ψ′n −

(n+ 1/2)2

r2
ψn + (k2 − q(r))ψn = 0, n = 0, 1, . . .



INVERSE PROBLEMS FOR LINEAR DIFFERENTIAL OPERATORS 9

Now the phase shifts δn(k) can be recovered from the asymptotical
behaviour of ψn:

ψn(r) = cn(k)rn+1/2(1 + o(1)) r → 0+
√
rψn(r) = cn(k) sin[kr − πn/2 + δn(k)] + o(1) r →∞.

Since the phase shifts and the scattering amplitude determine each
other, the inverse problem can be reformulated as to recover the po-
tential from a set of phase shifts. Two special cases are of interest:

a) inversion with fixed impulse moment n = n0 where we know δn0(k)
for all real k > 0,

b) inversion with fixed energy k = k0 where the phase shifts δn(k0), n ≥
0 are known.

Both problems are studied e.g. in Levitan [45] and in Chadan and
Sabatier [9]. The second problem is the subject of Chapter 3. of this
dissertation.

2. Inverse Sturm- Liouville problems

The general Sturm-Liouville eigenvalue problem is defined as follows.
We are given the equation

(2.1) −(pw′)′ + lw = λrw

on a finite or infinite interval, p, l, r are coefficient functions, p >
0, r > 0. We give some boundary conditions at the endpoints. It
turns out that (under some regularity conditions on p, l, r) a nontrivial
solution w 6= 0 exists only for some special values λ; these are called
eigenvalues.
If p and r are sufficiently smooth, we can apply Liouville transform to
obtain a reduced form of (2.1):

(2.2) −y” + q(x)y = λy.

In what follows we prefer this simplified form of the problem, closely
related to the quantummechanical problem of a particle moving along
a line segment. Suppose that (2.2) holds on a finite segment, say, on
[0, π]. We will restrict ourselves to separated boundary conditions of
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the form

y(0) cosα+ y′(0) sinα = 0,(2.3)

y(π) cos β + y′(π) sin β = 0.(2.4)

We will assume throughout that the operator is regular in the sense
that

(2.5) q ∈ L1(0, π).

It is known that in this case there exists a real sequence of values
λn tending to +∞ such that the system (2.2)-(2.4) has a nontrivial
solution only for λ = λn and the corresponding eigenfunctions yn form
an orthonormal basis in L2(0, π). Consequently the spectrum of the
operators consists only of eigenvalues. To indicate the dependence on
the boundary conditions we will use the notation

σ(α, β) = {λn : n ≥ 1}(2.6)

for the set of eigenvalues. This chapter is devoted to the problem of
unique recovery of the potential q from a set of eigenvalues.

2.1. Ambarzumian-type theorems.

The spectrum σ(π/2, π/2) in (2.2)-(2.4) gives the sequence of eigen-
values under Neumann boundary conditions. In case q = 0 the Neu-
mann spectrum has the form

λn = n2 n ≥ 0(2.7)

and the corresponding eigenfunctions are cos(nx). The following state-
ment, considered as the starting point of inverse spectral theory, says
that the converse is also true:

Theorem Ambarzumian [2]
If the Neumann eigenvalues of a potential q ∈ L1 are {n2 : n ≥ 0}

then q = 0 a.e.

Later it turned out that a sharper version also holds (see e.g. Levitan
and Gasymov [46]): if the first Neumann eigenvalue is λ0 = 0 and
if λn = n2 for infinitely many n then q = 0 a.e. Indeed, from the
asymptotical distribution

λn = n2 +
1

π

π∫
0

q + o(1) n→∞(2.8)
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of the Neumann eigenvalues it follows that

π∫
0

q = 0.(2.9)

The first eigenvalue λ0 = 0 is the minimum of the quadratic form

(Hy, y) =

π∫
0

(y′2 + q(x)y2) dx,(2.10)

the minimizer being const·y0. Since for y = 1 (Hy, y) = 0 , hence y is
parallel to y0 , hence 0 = −y0” + qy0 = q a.e.

Several generalizations of the Ambarzumian theorem have been found.
Chakravarty and Acharyya [10] considered the case of 2x2 real sym-
metrical matrix potentials, Chern and Shen [9] then gave the extension
for n × n potentials. More precisely let y(x) ∈ Rn, q(x) ∈ Rn×n be
symmetrical and y′(0) = y′(π) = 0. Now if λ0 = 0 and there are infin-
itely many eigenvalues of the form k2 then q = 0 a.e.

We do not know whether there is a nonzero potential that can
be uniquely recovered from its Neumann spectrum or any potential
uniquely defined by one (non-Neumann) spectrum. To find such an
example or to disprove its existence is a challenging open problem.
However, if we allow an additional integral condition for q, uniqueness
can be established from the knowledge of a non-Neumann spectrum.
This is given by Chern, Law and Wang in 2001, [12]. They proved that
if σ(α, α) = {n2 : n ≥ 1} and if

π∫
0

q(x) cos 2(x− α) dx = 0(2.11)

then q = 0 a.e. They also presented a generalization for matrix-valued
potentials. Yang [60] 2006 found an extension for general (separated
or coupled) boundary conditions. Finally let me mention the work of
Pivovartschik [53] 2005, where an Ambarzumian theorem is obtained
on a graph with Schrödinger operators on its edges.

The proof of the above statements relies upon the extremal properties
of the first eigenvalue and its eigenfunction. If we consider the one-
dimensional Dirac-operator, however, there is no first eigenvalue. The
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Dirac operator looks like

Lu =

(
V (x) +m d/dx
−d/dx V (x)−m

) (
u1

u2

)
, x ∈ [0, π](2.12)

where V is the potential and m is the mass of the particle.
The Neumann boundary conditions are defined by

u1(0) = u1(π) = 0.(2.13)

It is known that in this case the eigenvalues come from −∞ and go to
∞:

lim
n→−∞

λn = −∞, lim
n→∞

λn = ∞.(2.14)

Theorem 2.1. Horváth [21]
Let 0 < m ≤ 1/2. If V ∈ C[0, π] produces the same spectrum as

V = 0 (but with the same m), then V = 0.

In the proof I used the following lemma of moments with alternating
signs.

Lemma 2.2. Let 0 ≤ f ∈ C[a, b] and g ∈ L1[a, b]. If the generalized
moments

µk =

b∫
a

fkg k = 0, 1, . . .(2.15)

have alternating signs i.e. (−1)kµk ≥ 0 then actually µk = 0 for k ≥ 1.

In 2004 Márton Kiss [37] removed the condition m ≤ 1/2 from the
above theorem and gave a generalization for selfadjoint n× n matrix-
valued operators.
Concerning the multidimensional case recall the following result of
Kuznetsov [39]. Let Ω be a two- or three-dimensional bounded do-
main with smooth boudary. Denote by λn, n ≥ 0 the eigenvalues of
the Schrödinger operator with Neumann boundary conditions:

−∆u+ q(x)u = λu on Ω,
∂u

∂n

∣∣
Γ

= 0(2.16)

and let λn,0 be the same set of eigenvalues with q = 0. Now we have

λ0 = λ0,0,
∑

(λn − λn,0) convergent ⇒ q = 0 a.e.(2.17)

Once
∫

Ω
q = 0 is obtained, q = 0 easily follows from the minimiza-

tion of the quadratic form (−∆u + qu, u) as we have seen in the one-
dimensional case. So the key point is how to deduce

∫
Ω
q = 0 from the

convergence of
∑

(λn − λn,0).
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Finally we mention the paper [19] of Harrell, where Schrödinger op-
erators on spheres of dimension m ≥ 1 is considered. It is proved that if
the real potential belongs to L∞ and if λn−λn,0 → 0 then the potential
vanishes a.e.

2.2. Uniqueness theorems using several spectra.

The Ambarzumian theorem states that the zero potential can be
identified by its Neumann spectrum. Is it true that any potential can
be recovered from one single spectrum? The answer is clearly negative,
since the potential reflected to the midpoint gives the same eigenvalues.
More precisely the substitution x 7→ π − x gives that

σ(α, β; q) = σ(−β,−α; q(π − x))(2.18)

and consequently σ(α, π−α) is the same for q(x) and q(π−x) (in par-
ticular the Dirichlet spectrum and the Neumann spectrum is invariant
to this reflexion of the potential to the midpoint). On the other hand
for symmetrical potentials the knowledge of σ(α, π − α) is enough for
uniqueness of the potential. It is proved for the Dirichlet and Neumann
spectrum in Borg [8], the general case is given in Levinson [44].

The above mentioned paper of Borg is of fundamental importance.
His main discovery is the statement that in most cases two spectra are
needed for the unique identification of a (non-symmetric) potential.
In other words, the Ambarzumian theorem describes an exceptional
case. In what follows by the knowledge of λ ∈ σ(α, β) we mean the
knowledge of the value λ and the parameters α, β.

It is worth mentioning that the asymptotic distribution of the eigen-
values gives some (not complete) information about the boundary con-
ditions. It is known that for 0 < α, β < π

λn = n2 +
2

π
(cot β − cotα) +

1

π

π∫
0

q + o(1), n ≥ 0, n→∞;(2.19)

for α = 0, 0 < β < π we have

λn = (n+ 1/2)2 +
2

π
cot β +

1

π

π∫
0

q + o(1), n ≥ 0, n→∞;(2.20)
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and for α = β = 0

λn = n2 +
1

π

π∫
0

q + o(1), n ≥ 0, n→∞.(2.21)

So we can decide from the knowledge of a whole spectrum whether
Dirichlet boundary condition is applied in both ends, in one of the end-
points or in none of the endpoints.

Theorem Borg [8]
a. If 0 < α < π then σ(0, 0)∪σ(α, 0) uniquely identifies the potential

q ∈ L1(0, π) and no proper subset has the same property.
b. We call reduced spectrum σR(α, β) the set after deleting the first
eigenvalue of σ(α, β) Now if 0 < α, β < π , then σ(0, β) ∪ σR(α, β)
uniquely identifies q ∈ L1 and no proper subset has the same property.

The non-uniqueness means that if we apply a small perturbation on
one of the eigenvalues from the union, having the other eigenvalues
unchanged, this corresponds to another L1-potential. The uniqueness
part has been extended in

Theorem Levinson [43]
If sin(α2 − α1) 6= 0 then σ(α1, β) ∪ σ(α2, β) uniquely determines

q ∈ L1.

As we see from point b) of the above cited Theorem of Borg, the
knowledge of the first eigenvalue is crucial in the Ambarzumian theo-
rem. Indeed, if λ0 = 0 is known then any infinite subset of the Neu-
mann spectrum σ(π/2, π/2) is enough to identify the zero potential; if
λ0 is unknown, then we need σ(0, π/2) ∪ σR(π/2, π/2) and less is not
enough. Thus, the first Neumann eigenvalue carries the same amount
of information as almost two spectra!

The statement that two spectra are needed to define the potential
suggests that one spectrum defines ”half” of the potential. For exam-
ple, if half of the potential is known, one spectrum defines the other
half of q. This is indeed true:

Theorem Hochstadt and Lieberman [20]
The potential q on [0, π/2] and σ(α, β) uniquely determines q ∈

L1(0, π).
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Later on, Hald [18] observed that if the left half of q is given then
the right boundary condition can depend on q:

Theorem Hald [18]
σ(α, β1; q1) = σ(α, β2; q2) and q1 = q2 on [0, π/2] implies q1 = q2 a.e.

on [0, π].

The left boundary condition, however, must be independent of q:

Theorem del Rio [14]
Let 0 < ε < π. Then there are different potentials q1, q2 ∈ L1(0, π)

such that σ(α1, 0; q1) = σ(α2, 0; q2) and q1 = q2 on [0, π − ε].

So in this context one spectrum determines much less than one half
of the potential. On the other hand two spectra with potential depen-
dent boundary conditions can be enough for uniqueness:

Theorem Marchenko [48]
Let sin(α1 − α′1) 6= 0, sin(α2 − α′2) 6= 0. Now if σ(α1, β1; q1) =

σ(α2, β2; q2) and σ(α′1, β1; q1) = σ(α′2, β2; q2) then q1 = q2 a.e. (and
β1 = β2, α1 = α2, α

′
1 = α′2).

We see that in every uniqueness result mentioned the boundary con-
dition in one of the endpoints if fixed. And indeed, the knowledge of
σ(α1, β1) and σ(α2, β2) does not imply uniqueness in general. It is ob-
served in Pierce [52] that in many cases there is an uncountable family
of potentials q having the same Dirichlet and Neumann spectra.

Return to the original concept, where the knowledge of eigenvalues
includes the knlowledge of the corresponding boundary parameters.
Some recent results are obtained in Gesztesy and Simon 2000 [16] and
del Rio, Gesztesy and Simon 1997 [15], along the philosophy of the
Hochstadt-Lieberman theorem:

Theorem [16], [15]
a) The knowledge of more that one half of the potential requires pro-

portionally less information from one spectrum: if q ∈ L1(0, π) is
known on (0, a) with some π/2 < a < π and if S ⊂ σ = σ(α, β)
contains 2(1− a/π)-th part of σ in the sense that

#{λ ∈ S : λ ≤ t} ≥ 2(1− a/π)#{λ ∈ σ : λ ≤ t}+ a/π − 1/2

for large t then q on (0, a) and S determine q on (0, π).
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b)Two third of three spectra implies uniqueness: let σi = σ(αi, β) ; if
S ⊂ σ1 ∪ σ2 ∪ σ3 satisfies #{λ ∈ S : λ ≤ t} ≥ 2/3#{λ ∈ σ1 ∪ σ2 ∪ σ3 :
λ ≤ t} for large t then the set S and the knowledge of β uniquely
determine q.

c) Let σN = σ(π/2, β), σD = σ(0, β), S ⊂ σN ∪σD. Suppose that the
relative densitiy of S σN ∪ σD is at least 1 − a/π i.e. #{λ ∈ S : λ ≤
t} ≥ (1 − a/π)#{λ ∈ σN ∪ σD : λ ≤ t} for large t. Then S and q on
(0, a) uniquely determine q a.e. on (0, π).

d) σ(α1, β), half of σ(α2, β) and q on (0, π/4) determines q.

A similar recent statement of Ramm, formulated to the segment [0, 1]
rather than [0, π]:

Theorem Ramm [58]
λm(n) ∈ σ(0, 0) and q on (b, 1) implies uniqueness of q on (0, 1) if

m(n)

n
=

1

2b
+ γn,

∑
|γn| <∞.

Two results on eigenvalues of infinitely many spectra:

Theorem McLaughlin and Rundell [49]
The first (or k-th) eigenvalues from infinitely many spectra σ(αi, 0)

determine the potential q ∈ L2(0, π)

Theorem del Rio, Gesztesy, Simon [15]
Denote x+ = max(x, 0). If q, q∗ ∈ L1(0, π) and there are common

eigenvalues λn ∈ σ(αn, β; q) ∩ σ(αn, β; q∗) such that∑ (λn − n2/4)+

1 + n2
<∞

then the potential can uniquely recovered by the eigenvalues λn.

The above list of statements consists mainly of various sufficient
conditions on some sets of eigenvalues which imply the unique recovery
of the operator. The following necessary and sufficient condition gives
a unified treatment of the problem and most of the above-listed results
appear as a special case of this statement.
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Theorem 2.3 ( Horváth [23]). Let 1 ≤ p ≤ ∞, q ∈ Lp(0, π) , 0 ≤ a <
π and λn : n ≥ 1 be arbitrary real numbers with λn 6→ −∞. Then the
following statements are equivalent:

a) There are no different potentials q1, q2 ∈ Lp(0, π) for which q1 = q2
on (0, a) and

λn ∈ σ(αn, 0; q1) ∩ σ(αn, 0; q2) ∀n ≥ 1

holds with some αn ∈ R
b) The exponential system

e(Λ) =
{
e±2iµx, e±2i

√
λnx : n ≥ 1

}
is closed in Lp(a− π, π − a), where µ 6= ±

√
λn is arbitrary.

Remarks
a) A system {ϕn : n ≥ 0} ⊂ Lp′ , 1/p + 1/p′ = 1 is called closed in

Lp, if h ∈ Lp,
∫ π

0
hϕn = 0 implies h = 0. If p > 1, it is equivalent to

the completeness of the ϕn in Lp′

b) Every value λn ∈ R can be considered as an eigenvalue from some
spectra σ(αn, 0). Indeed, the initial conditions v(π) = 0, v′(π) = −1
uniquely define a solution v(x) of −v” + qv = λnv; now let

αn = −arc ctg
v′(0)

v(0)
(αn = 0 if v(0) = 0).

Then λn ∈ σ(αn, 0; q).
c) The knowledge of the boundary parameter β = 0 is essential in

the above theorem; however there is no need to fix the parameters αn.
If the αn are unknown, every value λn can be an eigenvalue for any
q ∈ Lp; but the statement that λn is a common eigenvalue of q1 and
q2 carries real information, namely that the parameter αn must be the
same for q1 and q2.

d) There are two quite easy ways to check closedness of e(Λ). A
sufficient condition of Levinson says that if

N(r) =

r∫
1

n(t)

t
dt, n(r) =

∑
|µn|≤r

1

then for p <∞
lim
r→∞

[N(r)− 2d/πr + 1/p′ ln r] > −∞

implies the closedness of {eiµnx} in Lp(−d, d). A necessary and suffi-
cient condition for the closedness checks the basis property of a sub-
set of e(Λ). For example, if the λn run over σ(0, 0) ∪ σ(α, 0) then
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√
λn = n/2 + o(1) n ≥ 1, thus

{
e±2iµx, e±2i

√
λnx : n ≥ 1

}
is Riesz-basis

in L2(−π, π); for more details see [23].
e) The non-uniqueness part is proved in the following stronger form:

if e(Λ) is not closed, then for every q1 ∈ Lp there is a different q2 ∈ Lp

such that q1 = q2 on (0, a) and λn ∈ σ(αn, 0; q1) ∩ σ(αn, 0; q2) for some
values αn.

f) The closedness of e(Λ) in Lp(a − π, π − a) is equivalent to the
closedness of

C(Λ) = {cos 2µx, cos 2
√
λnx : n ≥ 1}

in Lp(0, π − a), see in [23].

Heuristic proof of Theorem 2.3 (in case a = 0)

Let the λn be common eigenvalues of q and q∗. This means that

−yn” + qyn = λnyn, −y∗n” + q∗y∗ = λny
∗
n.

Multiply the first equation by y∗n, the second one by yn, substract and
integrate over [0, π]:

π∫
0

(q − q∗)yny
∗
n =

π∫
0

(yn”y∗n − yny
∗
n”) = 0(2.22)

since yn and y∗n satisfy the same boundary conditions. It is known that
for large n both yn and y∗n behave asymptotically like sin

√
λnx/

√
λn.

If we substitute in (2.22) yn and y∗n by sin
√
λnx/

√
λn, we obtain

0 =

π∫
0

(q∗(x)−q(x))2 sin2
√
λnx dx =

π∫
0

(q∗(x)−q(x))(1−cos 2
√
λnx) dx.

Supposing λn → +∞ we get from the Riemann-lemma that

0 =

π∫
0

(q∗ − q), 0 =

π∫
0

(q∗(x)− q(x)) cos 2
√
λnx dx.

Thus the uniqueness (i.e. that q∗ − q must be zero) means that the
system {1, cos 2

√
λnx : n ≥ 1} is closed in Lp(0, π).

The rigorous proof starts with the Povzner-Levitan representation

yn(x) =
sin

√
λnx√
λn

+

x∫
0

K(x, t)
sin

√
λnt√
λn

dt
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The main tool in proving the uniqueness part is the Weyl-Titchmarsh
m-function. In the non-uniqueness part the existence of different po-
tentials having some common eigenvalues is based on the following

Lemma 2.4. Let B1 and B2 be Banach spaces. For every q ∈ B1 a
continuous linear operator

Aq : B1 → B2

be defined so that for some q0 ∈ B1

(2.23) Aq0 : B1 → B2 is an (onto) isomorphism,

and the mapping q → Aq be Lipschitzian in the sense that
(2.24)
‖(Aq∗ − Aq)h‖ ≤ c(q0)‖q∗ − q‖‖q‖∀h, q, q∗ ∈ B1, ‖q‖, ‖q∗‖ ≤ 2‖q0‖,

the constant c(q0) being independent of q, q∗ and h. Then the set
{Aq(q − q0) : q ∈ B1} contains a ball in B2 with center at the origin.

So far we supposed β = 0 i.e. at x = 0 we imposed Dirichlet bound-
ary condition. If sin β 6= 0 then the situation is more complicated. I
was not able to find a necessary and sufficient condition for the unique
recovery of the potential. The following statement is a sufficient condi-
tion (which implies most of the formerly known results of this type and
which is best possible in some sense) and a weaker necessary condition.
The gap between the two is the topic of further study.

Theorem 2.5. Let 1 ≤ p ≤ ∞, q ∈ Lp(0, π), sin β 6= 0, λn ∈
σ(q, αn; β), λn 6→ −∞ and 0 ≤ a < π. If the set

e0(Λ) =
{
e±2i

√
λnx : n ≥ 1

}
(2.25)

is closed in Lp(a − π, π − a) then q on (0, a) and the eigenvalues λn

determine q in Lp.

Theorem 2.6. Let sin β 6= 0, 0 ≤ a < π, 1 ≤ p ≤ ∞ and λn, n ≥ 1
be different real numbers with λn 6→ −∞. Suppose that there exists
h ∈ Lp(a, π) such that∫ π

a

h 6= 0 but

∫ π

a

h(x)[v2(x, λn)− 1/2 sin2 β] dx = 0 ∀n.

and that the system

e(Λ) =
{
e±2iµx, e±2i

√
λnx

}
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is not closed in Lp(a − π, π − a), where µ 6= ±
√
λn. Then for every

q1 ∈ Lp(0, π) there exists a different q2 ∈ Lp(0, π) such that q1 = q2 on
(0, a) and λn ∈ σ(αn, β; q1) ∩ σ(αn, β; q2).

Remark
The sufficient condition given above can not be weakened. Indeed,

if q1 and q2 are the characteristic function of the left and right half-
interval, then for the set of all common eigenvalues of q1 and q2, the
system e0(Λ) has deficiency 1 in Lp(−π, π), 1 ≤ p < ∞. In other

words, the system e1(Λ) =
{
e2iµx, e±2i

√
λnx : n ≥ 1

}
with µ 6= ±

√
λn is

closed in Lp(−π, π). On the other hand, in the standard situation of
the classical Borg theorem i.e. if {λn : n ≥ 1} = σ(0, β) ∪ σR(α, β)
the system e0(Λ) is not closed, it has codimension 1. Thus the Borg
theorem can not be proved within this general framework.

2.3. The case of infinite interval.

The eigenvalues are defined by the system

−y” + qy = λy, y(0) cosα+ y′(0) sinα = 0, y ∈ L2(0,∞).(2.26)

The set of eigenvalues is denoted by

σp(α) = σp(α; q)

and is called the point spectrum of the operator. As the notation
suggests, σp is not the whole spectrum in general (in contrast with the
finite interval case). For example q ≥ −K, q(x) → +∞ yields discrete
spectrum while for integrable potentials the spectrum is never purely
discrete. The second difference compared with the finite interval case is
that for the operator on a finite interval, there is a simple asymptotical
distribution for the eigenvalues and eigenfunctions: they behave for
large λ as the eigenvalues and eigenfunctions of the free operator (q =
0). If the spectrum is discrete, such a reference potential does not
exists in the half-line case and it is hard to describe the distribution
of the eigenvalues. Due to these difficulties the inverse Sturm-Liouville
theory is much less elaborated on infinite intervals. The fact that two
spectra implies uniqueness on the half-line is given in

Theorem Marchenko [48]
Let q1, q2 ∈ Lloc

1 (0,∞), q1 ≥ −K q2 ≥ −K for some K > 0,
q1(x) → +∞, q2(x) → +∞ as x → +∞. If σ(α1; q1) = σ(α2; q2)
and σ(β1; q1) = σ(β2; q2) for some α1, α2, β1, β2 with sin(α1 − β1) 6= 0,
sin(α2 − β2) 6= 0 then q1 = q2 a.e. (and α1 = α2, β1 = β2).
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On the whole line e.g. q ≥ −K, q(x) → +∞ if |x| → +∞ implies the
discreteness of the spectrum. Since q(x) and q(−x) generate the same
spectrum, we have no uniqueness from the knowledge of the eigenval-
ues. The idea that the eigenvalues determine half of the potential is
neither correct since in R the midpoint can not be defined. For exam-
ple let q(x) = q(−2−x) for x > 0 and q be arbitrary (nonsymmetrical)
in (−2, 0). Now the different potentials q(x) and q(−2−x) are identical
for x > 0 and generate the same spectrum. On the other hand we have

Theorem Khodakovsky [35]
Let q ∈ Lloc

1 (R) be given such that the operator Ly = −y” + qy is
bounded from below and

q(−x) ≥ q(x) x ≥ 0.

Then q on (0,∞) and the spectrum of L uniquely determine q on R.

For a former version see Gesztesy and Simon [16].

Now consider operators on the half-line with not purely discrete spec-
trum. Suppose that the potential is decaying at infinity in the sense
that

∞∫
0

x|q(x)| dx <∞.

It is known that in this case the operator defined by

−y” + qy = λy, y(0) cosα+ y′(0) sinα = 0

has only finitely many eigenvalues (if any) and they are all negative. If
only q ∈ L1(0,∞) is known then the eigenvalues are still negative and
can accumulate only at zero, see e.g. Neumark [50].

Concerning the inverse eigenvalue problem we have the following
statements:

Theorem 2.7 (Horváth [24]). Let q ∈ L1(0,∞) and consider different
numbers λn = −k2

n, inf kn > 0. If∑
n

1

kn

= ∞(2.27)

then the eigenvalues uniquely determine q a.e. on (0,∞) i.e. there are
no different potentials q1 6= q2 in L1(0,∞) such that λn ∈ σ(αn; q1) ∩
σ(αn; q2) ∀n with some parameters αn.
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It is not known whether the condition (2.27) is necessary. However,
if we require a small exponential decay in the potential, this condition
becomes necessary and sufficient:

Theorem 2.8 (Horváth [24]). For δ > 0 define

Cδ = {q :

∞∫
0

|q(x)|eδxdx <∞}.

Consider the numbers λn = −k2
n, inf kn > 0. If∑

n

1

kn

<∞

then there is no uniqueness: for every q1 ∈ Cδ there is a different
q2 ∈ Cδ such that λn ∈ σ(αn; q1) ∩ σ(αn; q2) ∀n with some parameters
αn.

Remark The condition (2.27) holds if and only if the system

{ei
√

λnx} = {e−knx}
is closed in L1(0,∞). Thus there is a close analogy with the finite
interval case: uniqueness is again described in terms of closedness of
exponential systems.

2.4. Extremal properties of the eigenvalues.

Consider the Dirichlet eigenvalue problem on the interval [0, π]:

−y” + q(x)y = λy on [0, π], y(0) = y(π) = 0.

As it has already been remarked, the eigenvalues satisfy

λn = n2 +
1

π

π∫
0

q + o(1) n ≥ 1, n→∞

whenever q ∈ L1(0, π).
This means that we know pretty well the position of the large eigen-

values. The question considered here is the distribution of the first few
eigenvalues. For general potentials no restrictions can be true about
the first N eigenvalues, N being arbitrarily large. Indeed, the Dirichlet
spectra of all potentials q ∈ L2(0, π) run over the set of all strictly
increasing sequences λ1 < λ2 < . . . having the representation

λn = n2 + c+ γn, c ∈ R fixed ,
∑

γ2
n <∞,
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see in Pöschel and Trubowitz [54]. Consequently for every strictly in-
creasing sequence of N real numbers λ1, . . . , λN there are L2-potentials
for which λ1, . . . , λN are the first N Dirichlet eigenvalues. On the other
hand, under some conditions on the potential we find interesting rela-
tions between the eigenvalues.

The first eigenvalue gap

A function f : [0, π] → R is called single-well if there exists a point
0 ≤ a ≤ π such that f is decreasing in [0, a] and increasing in [a, π].
The function f is single-barrier if it is first increasing, then decreasing.
The point a is the transition point.

Concerning the first eigenvalue gap λ2 − λ1 a lower bound is proved
in

Theorem Ashbaugh and Benguria [4]
If the potential q is symmetric single-well then for the first Dirichlet

eigenvalue gap

λ2 − λ1 ≥ 3.(2.28)

If single-well is substituted by single-barrier then

λ2 − λ1 ≤ 3.(2.29)

In both cases equality occurs if and only if the potential is constant.

They conjectured that the symmetry requirement can be removed,
e.g. convexity of the potential would imply (2.28). Later this conjec-
ture has been verified by Lavine [41], who also proved the estimate
µ2 − µ1 ≥ 1 for the first two Neumann-eigenvalues, if the potential is
convex. Another extension is given in Horváth [22]: for nonsymmet-
ric single-well potentials (2.28) remains true if the transition point is
the midpoint, a = π/2. Abramovich [1] proved (2.29) (resp. (2.28))
provided that the potential is symmetric on [0, π] and symmetric single-
well (resp. single-barrier) on [0, π/2]. Equality occurs only for constant
potentials. For another results of this type see Huang and Tsai [28].

Remark that if Ω ⊂ Rn is a bounded convex domain and V is a
convex potential then for the first gap of the problem

−∆u+ V u = λu on Ω, u = 0 on ∂Ω

the inequalities

λ2 − λ1 ≥
π2

d2
d = diameter of Ω

is proved in Yu and Zhong [61].
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Eigenvalue ratios

Consider again the Dirichlet eigenvalue problem

−y” + q(x)y = λy on [0, π], y(0) = y(π) = 0.

If q ≥ 0 then λ1 ≥ 1 and it turns out that λ2/λ1 ≤ 4, λn/λ1 ≤ n2 and,
in the most general form

Theorem Ashbaugh and Benguria [5]
If q ≥ 0 then the Dirichlet eigenvalues satisfy

λn

λm

≤
⌈ n
m

⌉2

n ≥ m ≥ 1(2.30)

where dxe is the ceiling function: the smallest integer not smaller than
x. If m|n, equality occurs only for the zero potential; if n is not a
multiple of m, we have strict inequalities in (2.30) but the upper bounds
are best possible.

Concerning extensions of this result to general Sturm-Liouville op-
erators −(py′)′ + qy = λwy and/or to general boundary conditions see
Huang and Law [29], Huang [27], Chen [11], Ashbaugh and Benguria
[7], Huang and Law [30] and Kiss [38]. For other estimates of eigenvalue
ratios see e.g. Keller [34] and Mahar and Willner [47].

In connection with the above theorem Ashbaugh and Benguria for-
mulated the conjecture that if the potential is nonnegative and convex
then the upper bounds in (2.30) can be substituted by (n/m)2. The
following statement verifies this conjecture (and more):

Theorem 2.9 (Horváth and Kiss [26]). If q ≥ 0 is single-well then

λn

λm

≤
( n
m

)2

n ≥ m ≥ 1(2.31)

For any pair n > m equality occurs only for the zero potential.

The starting point of the proof, as in many papers about eigenvalue
inequalities, is the use of the Prüfer variables r and ϕ defined by

y =
r

z
sinϕ, y′ = r cosϕ

where y is the solution of −y” + qy = z2y, z > 0, y(0) = 0, y′(0) = 1.
The key point in proving (2.31) is the discovery of new monotonicity
properties of the Prüfer variables: if q ≥ 0 is decreasing then

a. x 7→ ϕ(x, z) is strictly increasing
b. x 7→ r(x, z) is increasing between ϕ−1(kπ) and ϕ−1(kπ + π/2),
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decreasing between ϕ−1(kπ+π/2) and ϕ−1(kπ+π) and the consecutive
local maxima r(ϕ−1(kπ + π/2)) are decreasing
c. z 7→ ϕ(x, z)/z is increasing.

Remark that (2.31) follows directly from property c.

The counterpart of Theorem 2.9 in case of the real line is given in

Theorem 2.10. Horváth and Kiss [25]
Consider the Schrödinger operator on the real line. If the potential

q is nonnegative, single-well and

lim
|x|→∞

q(x) = +∞

then the spectrum is discrete and the eigenvalues satisfy

λn

λm

<
( n
m

)2

n ≥ m ≥ 1.(2.32)

So the inequalities are always strict; it is not known whether these
estimates are exact.

In the multidimensional case much less is known. Let Ω ⊂ Rn be a
bounded domain and consider the eigenvalues of the Dirichlet Laplacian
on Ω:

−∆u = λ on Ω, u = 0 on ∂Ω.

In [40] Payne, Pólya and Weinberger formulated (among others) the
famous conjecture that the first eigenvalue ratio λ2/λ1 is maximal if
and only if Ω is a ball. The conjecture has been proved in Ashbaugh
and Benguria [6]. In case n = 2 this is related to the famous question
of Kac [33], namely that one can hear whether the shape of a drum is
a circle. Another developments in this direction can be found e.g. in
Ashbaugh [3]
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3. Inverse scattering with fixed energy

In this section the fundamental notations and ideas described in
Example 3, Subsection 1.2 of Section 1 are used. We suppose that the
spherically symmetrical potential

V (x) = q(r), r = |x|
satisfies

∞∫
0

r|q(r)| dr <∞.

This means that the potential decays at infinity, hence for sufficiently
large a > 0 the effect of q(r), r > a to the sequence of phase shifts
is negligible, much less than the effect of noise in the input data. In
other words, it is hopeless to get information about the ”tail” of the
potential if the phase shifts are taken from real measurements. Thus
we suppose that the potential is of compact support,

q(r) = 0 if r > a.

Using the notation ϕn(r) =
√
rψn(r) (see Section 1), we get for k = 1:

ϕn”− (n+ 1)n

r2
ϕn + (1− q(r))ϕn = 0,(3.1)

ϕn(r) = cnr
n+1(1 + o(1)), r → 0+(3.2)

ϕn(r) = dn sin(r − nπ/2 + δn) + o(1), r →∞.(3.3)

Concerning the inverse problem of identifying the operator from the
phase shifts, Ramm [56] realized that a subset {δn : n ∈ L} is enough
for the unique recovery of q with rq(r) ∈ L2(0, a) and q(r) = 0 for
r > a if ∑

n∈L, n6=0

1

n
= ∞.(3.4)

This statement has been extended in

Theorem 3.1. Horváth [24]
Let q(r) = 0 for r > a.

a. If rq(r) ∈ L1(0, a) then (3.4) implies the unique recovery of q.
b. If r1−%q(r) ∈ L1(0, a) for some % > 0 then (3.4) is necessary and
sufficient for uniqueness.

The method of the proof is essentially new: it is based on a con-
nection found between this inverse scattering problem and an inverse
eigenvalue problem. Consider the variable substitution
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x = ln
a

r
.(3.5)

This transforms the segment r ∈ (0, a] onto the half-line x ∈ [0,∞).
The differential equation (3.1) (for r ≤ a) is transformed into the form

−yn”(x) +Q(x)yn(x) = −(n+ 1/2)2yn(x) x ∈ [0,∞)(3.6)

with

yn(x) = r−1/2ϕn(r), Q(x) = r2(q(r)− 1).(3.7)

Now rq(r) ∈ L1(0, a) means that Q(x) ∈ L1(0,∞). Since ϕn behaves
like rn+1 at r → 0+, this gives an exponential decay e−(n+1/2)x for
yn(x) at infinity. This means by (3.6) that yn is an eigenfunction of
Ly = −y” +Qy with eigenvalue −(n+ 1/2)2 i.e.

λn = −(n+ 1/2)2 ∈ σp(αn;Q), αn = −arc ctg
y′n(0)

yn(0)
.(3.8)

Finally, αn can be explicitly expressed by the phase shift δn. Indeed,
for r > a the potential is zero, thus ϕn is a linear combination of√
rJn+1/2(r) and

√
rYn+1/2(r) where J and Y are Bessel functions. Tak-

ing into account the asymptotical expressions

Jν(r) =

√
2

πr
cos(r − νπ/2− π/4) + O(r−3/2) r →∞,(3.9)

Yν(r) =

√
2

πr
sin(r − νπ/2− π/4) + O(r−3/2) r →∞(3.10)

we get

ϕn(r) = cn
√
r
[
cos δn · Jn+1/2(r)− sin δn · Yn+1/2(r)

]
, r ≥ a.(3.11)

By this representation we are able to express ϕ′n(a)/ϕn(a) and hence
y′n(0)/yn(0) from δn. So knowledge of the phase shift δn means the
knowledge of the boundary parameter αn in (3.8). Thus, reconstructing
q from the δn, n ∈ L and reconstructing Q from the eigenvalues λn =
−(n + 1/2)2 ∈ σp(αn;Q) are the same problem. In this context the
Müntz-type condition (3.4) appears as the closedness of the exponential
system

{ei
√

λnx : n ∈ L} = {e−(n+1/2)x : n ∈ L}
in L1(0,∞), so Theorems 2.7 and 2.8 are simply transformed into The-
orem 3.1.
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Remark Various procedures are known for the retrieval of the po-
tential from the phase shifts. These methods are based on some a priori
constraints (called Ansatz in the literature) on the potential or on the
so-called input kernel in a Gelfand-Levitan type integral equation; see
for example in the monography of Chadan and Sabatier [9]. No recon-
struction procedure is available if only an arbitrary subset δn, n ∈ L
is known.

Remark The fixed-energy inverse scattering problem is quite un-
stable. There are constructions for different stepfunction potentials
having almost the same phase shifts, see e.g. Airapetyan, Ramm and
Smirnova [55]. If the scattering amplitude has a perturbation < ε then
an estimate of order |log ε|−1 for the Fourier transform of the poten-
tial perturbation is given in Ramm [57], see also [58]. This logarithmic
bound tends to zero very slowly, which is another illustration of the dif-
ficulties in stability issues. However, under special a priori conditions
e.g. on the potential the problem may become stable; these phenomena
are not yet thoroughly investigated.
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