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Abstract. We consider the algorithmic problem of computing Levi decomposi-
tions in Lie algebras and Wedderburn—Malcev decompositions in associative
algebras over the field of rational numbers. We propose deterministic polynomial
time algorithms for both problems. The methods are based on the corresponding
classical existence theorems. Computational experiences are discussed at the end
of the paper.
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1 Introduction

Due to abounding applications in physics and mathematics, there is a considerable
interest in Lie algebra computations. This relatively new field of research is
growing rapidly as there is a marked need for efficient Lie algebra algorithms. Yet,
in many cases little is known about the algorithmic complexity of the emerging
problems and mostly only experimental observations are available on the perfor-
mance of the methods used.

One of the major motivations is to describe the isomorphism classes of finite
dimensional Lie algebras of small dimension. This task is complete at this moment
only in the case when the dimension is less than seven in general (see [10]), and up
to dimension seven for nilpotent algebras ([14]).
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To achieve further advances and reveal more of the structure of Lie algebras,
we need algorithms that can be implemented efficiently. In our past work on
the subject (cf. [11], [5]) we have given algorithms to compute Cartan sub-
algebras and the solvable- and nilradicals. The methods run in polynomial time
over ground fields admitting efficient symbolic arithmetic. The algorithms are
implemented in a general library of Lie algebra algorithms, called ELIAS (for
Eindhoven LIe Algebra System) which is built into the computer algebra package
GAP. These activities are part of a bigger project, called ACELA, which aims at an
interactive book on Lie algebras (cf. [3]).

In this paper we show that a Levi decomposition for Lie algebras over the
rational numbers Q can be obtained in polynomial time. As a related result we
solve the analogous problem of computing Wedderburn—Malcev decompositions
in associative algebras. The theorems by Levi and Wedderburn—Malcev that serve
as a theoretical basis for the algorithms are important instances of the so-called
‘lifting theorems’. They establish the existence of a lifting of a certain substructure
from a factor algebra into the original one.

We perform exact (symbolic) computations, therefore we restrict our attention
to ground fields admitting efficient symbolic arithmetic: in most cases we work
over Q, but occasionally some other fields (such as algebraic number fields and
finite fields) are also considered.

First we set some conventions about the input of the algorithmic questions we
address. An algebraA (associative or Lie in the paper) over a fieldF is considered
to be given as a set of structure constants relative to a fixed linear basis over the
ground field (this is called the input basis). If u

1
, u

2
, . . . , u

n
is the input basis, then

for any 16i, j6n we have

u
i
· u

j
"

n
+
k/1

c (k)
ij

u
k
,

where · denotes multiplication in A and the coefficients c (k)
ij
3F are the structure

constants.
We would like to have algorithms with performance guarantees. In computer

science terminology, we are primarily interested in algorithms that run in time
polynomial in terms of the input size (cf. [6], [12]). For our purposes it suffices to
observe that efficient deterministic methods exist for the arithmetical operations
and the basic linear algebraic tasks over the fields F we consider. In most cases
F will be the field of rational numbers Q.

LetA be a finite dimensional algebra over Q, and let u
1
, u

2
, . . . , u

n
be a fixed

basis of A, where n denotes the dimension of A over Q. We denote by c (k)
ij

the
structure constants ofA with respect to the basis Mu

i
N. Every element v3A can be

written uniquely in the form v"+n
i/1

a
i
u
i
. This way we identify the Q-spaces

A and Qn : (a
1
, . . . , a

n
)3Qn will correspond to v3A.

We can assume without loss of generality that the structure constants c (k)
ij

are
rational integers (if not, then we multiply the basis elements with the least common
denominator of the structure constants; this ensures that the new structure con-
stants will all be integers). We put c"max

i, j,k
Dc (k)

ij
D. Via the identification above

we introduce two quantities to measure the size of an element v3A. We put

M (v)"max
i

D a
i
D
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and

D(v)"the least common multiple of the denominators of the a
i
’s,

where the a
i
’s are the coordinates of v in the basis Mu

i
N. We extend this measure of

complexity to subspaces of Qn (orA) as follows: If a subspaceW-Qn is given by
a basis x

1
, x

2
, . . . , x

k
, with k"dimQW, then we set

M (W)"max
i

M (x
i
)

D(W )"<
i

D(x
i
) .

Note that this is a slight abuse of language because the quantities M and
D depend on the basis x

1
, x

2
, . . . , x

k
rather than just the subspaceW. As the basis

we work with will always be clear from the context, this causes no ambiguity. In
this setting a statement saying that a substructureW-A is small means that we
can efficiently compute a basis of W which yields small values of M (W) and
D(W).

In complexity theory it is customary to measure the size of an object in the
number of bits used for a standard description of the object. To clarify the relation
between the bit-size above and our measures M and D, we note that an element
x3A has bit-size O(n(1#logvM(x)w#logvD(x)w )). Similarly, a subspace
K can be described in O(n · dimK(1#logM (K) )#logD(K) ) bits.

When working with a Lie algebra L, it is often important to understand the
way it is built up from the solvable radical and the semisimple part. A beautiful
theorem by Levi states that the latter can actually be identified as a subalgebra
of L :

Theorem 1.1 (Levi) ¸et L be a finite dimensional ¸ie algebra over a field of
characteristic zero, R be its solvable radical. ¹hen there exists a semisimple subal-
gebra S of L for which L"R=S. In particular, S is isomorphic to L/R.

The semisimple complement S is not unique, but it is determined in a very
strong sense: according to the Malcev—Harish—Chandra theorem, ifS

1
andS

2
are

two Levi-complements, then there exists an automorphism a of L for which
a(S

1
)"S

2
(cf. [8]).

There is a decomposition theorem for associative algebras which is very similar
in nature. This is due to Wedderburn and Malcev and is a significant result in the
theory of associative algebras. We state here a version for finite dimensional
algebras. We denote by R"Rad (A) the Jacobson radical of A. Then the
Wedderburn—Malcev theorem reads as follows (see [9]):

Theorem 1.2 ¸et A be a finite dimensional associative F-algebra for which
A/Rad(A) is separable.

¹hen there is a subalgebraB ofA such thatA"B= Rad(A) asF-spaces and
B:A/Rad(A) as F-algebras. Moreover, for every two such complements B, B@
there exists an element x3Rad(A) for which B@"(1!x)~1B (1!x).

The objective of this paper is to give deterministic polynomial time algorithms
for finding decompositions whose existence is stated in the preceding theorems.
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More precisely we give algorithms for following two problems:

f Computing a Levi decomposition of a Lie algebra over Q ;
f Determining a Wedderburn—Malcev decomposition for an associative alge-

bra over a finite field or over Q.

Our algorithms rely heavily on the corresponding existence theorems above.
The lifting of the semisimple factor will be carried out along a suitable chain of
ideals in the radical.

In the second section of the paper we give an algorithm for computing a Levi
decomposition in a Lie algebra. The third section describes the algorithm that
produces a Wedderburn—Malcev decomposition in an associative algebra. In the
last section we discuss computational experiences.

2 Computing a Levi Decomposition

2.1 The Algorithm

We describe here a polynomial time algorithm that finds a Levi decomposition in
a finite dimensional Lie algebra L given by structure constants over Q. We note
here that the method can be extended very easily to the case when the ground field
F is an algebraic number field. Indeed,L can be considered as an algebra over Q,
and a Levi decomposition over Q will serve as a Levi decomposition overF. The
algorithm still runs in polynomial time, provided thatF is given in the usual way
by an irreducible polynomial f3Z[x] such that F"Q(a), where f (a)"0.

Rand, Winternitz and Zassenhaus [10] have given an elegant method to
compute Levi decompositions. Their iterative approach, however, does not seem
to provide satisfactory bounds for the size of the coefficients obtained during the
computation. We propose here a modified and simplified approach; instead of the
derived series we work with the lower central series of the radical. This change
renders the algorithm simpler and, at the same time, allows us to obtain poly-
nomial bounds on the size of the resulting decomposition as well as the intermedi-
ate objects. This way we obtain a deterministic polynomial time algorithm.

We assume that a Lie algebra L is given as a collection of structure constants
c (k)
ij
3Z with respect to the input basis u

1
, u

2
, . . . , u

n
over Q.

We intend to compute a new basis r
1
, . . . , r

m
, v

1
, . . . , v

k
ofL such that the r

i
’s

form a basis of the radicalR and the elements v
j
constitute a basis of a semisimple

complementS inL. In particular, we have m#k"n. The first part of this task is
easy: one can identify the solvable radical in polynomial time (cf. [11]).

The problem of finding a Levi complement can be reduced to the case when
L possesses a nilpotent radical. This is a consequence of the statement below (see
[8], Section 9, Chapter III for a proof ).

Lemma 2.1 ¸etS
1

be the inverse image of a ¸evi complement ofL/Rad(L)2 inL,
and let a ¸evi decomposition of S

1
be S

1
"Rad(S

1
)=S. ¹hen a ¸evi decomposi-

tion of L is L"Rad(L) =S. K

Indeed, to obtain a Levi complement in L amounts to finding a Levi comp-
lement in L/Rad(L)2 and then in S

1
. Moreover, the solvable radicals of these

algebras are clearly nilpotent.
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From now on we assume that R"Rad (L) is a nilpotent ideal inL. As noted
before, R and the lower central series R.R2.2.Rl"0 of R can be
computed efficiently.

Our approach to finding a Levi complement in L is as follows. We start up
with the (semisimple) algebraL/R and then proceed to obtain a Levi complement
S

i
in L/Ri for i"2, . . . , l. The algebra S

l
obtained at the end of this procedure

will be a Levi complement inL/Rl"L. Our method follows the general pattern
of lifting procedures. We refine a basis ofS

i
into a basis ofS

i`1
by working in the

factor space Ri/Ri`1.
After possibly renumbering the input basis u

1
, . . . , u

n
we can suppose that the

images uN
1
, uN

2
, . . . , uN

k
of u

1
, . . . , u

k
under the natural mapLPL/R form a basis

of L/R.
We can also find (bases of) subspaces »

i
in Ri complementary to Ri`1 (i.e. we

have Ri"Ri`1=»
i
). We write dim»

i
"d

i
and dimL/Rt"n

t
. We denote by

w(i)
j

, j"1, . . . , d
i
the basis of »

i
, we work with. To lighten notation, we assume

also, that the vectors w(i)
j

all belong to the set Mu
1
, u

2
, . . . , u

n
N. (This can be

achieved after possibly computing structure constants with respect to a new basis,
a task clearly feasible in polynomial time.)

Now we describe an iteration that stops in l6n rounds (here n"dimL)
which transforms the u

i
’s into a set of elements v

1
, v

2
, . . . , v

k
for which

S"Span(v
1
, v

2
, . . . , v

k
) is a Lie subalgebra ofL isomorphic toL/R. ThenS is

obviously a Levi complement in L.
Let v (t)

i
denote the temporary basis obtained in the tth round. Initially we have

v(1)
i
"u

i
, and upon termination v

i
"v(l)

i
. As a loop-invariant, we assume that after

the tth round we have

[v(t)
i

, v(t)
j

],
k
+
s/1

c (s)
ij

v(t)
s

(modRt ) . (1)

Condition (1) is equivalent to saying that the elements v (t)
i

span a Levi complement
moduloRt. This is clearly true for t"1.

To proceed from t to t#1 we look for elements d(t)
i
3»

t
such that if we choose

v(t`1)
i

"v(t)
i
#d(t)

i
(where d(t)

i
"+dt

s/1
a(s)
i

w(t)
s

with a(s)
i
3Q) then we obtain

[v(t`1)
i

, v(t`1)
j

],
k
+
s/1

c (s)
ij

v(t`1)
s

(modRt`1) . (2)

Let us expand this formula a bit:

[v(t)
i

, d(t)
j

]#[d(t)
i

, v(t)
j

]#[d(t)
i

, d(t)
j

],

k
+
s/1

c (s)
ij

v(t)
s
#

k
+
s/1

c (s)
ij

d(t)
s
![v(t)

i
, v(t)

j
] (modRt`1) .

We observe that

[d(t)
i

, d(t)
j

],0 (modRt`1)

and

[v(t)
i

, d(t)
j

],[u
i
, d(t)

j
] (modRt`1)
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which follow immediately from the relations [d(s)
i

, d(r)
j

]3Rt`1 for all t#16r#s
(16r, s). We infer that

[u
i
, d(t)

j
]#[d(t)

i
, u

j
]!

k
+
s/1

c (s)
ij

d(t)
s
,

k
+
s/1

c (s)
ij

v (t)
s
![v(t)

i
, v(t)

j
] (modRt`1) . (3)

This is a system of linear equations for the unknown elements d(t)
j
3»

t
. More

precisely we have equations for the unknown coefficients a(s)
i

. We have d
t
k un-

knowns and a linear equation for every triplet (i, j, r) such that 16i(j6k and
16r6d

t
. Here r corresponds to the d

t
coordinates in »

t
. To verify this latter

point, we observe that the elements on both sides of (3) are in »
t
moduloRt`1.

This is immediate by inspection of the left-hand side. For the right hand side the
loop-invariant (1) gives the same conclusion. The number of equations is therefore
(k
2
)d

t
. A system with these parameters is in general overdetermined and has

no solution. In our case however, Levi’s theorem applied forL/Rt`1 ensures that
the system has a solution. Conversely, a solution of (3) leads to a solution of (2)
and hence to a Levi complement in L/Rt`1. These considerations imply that in
round t we can complete the task by solving a system of linear equations, hence the
whole iteration can be carried out at the expense of a polynomial number of
arithmetical operations in Q. To obtain a polynomial time algorithm, we have to
establish bounds on the numbers encountered in the course of the computation.
This will be done in the next subsection. For later use we record here an equivalent
version of (3). By substituting v(t)

i
"u

i
#+ t~1

p/1
d(p)
i

into (3) we obtain

[u
i
, d(t)

j
]#[d(t)

i
, u

j
]!

k
+
s/1

c (s)
ij

d(t)
s
,

k
+
s/1

c (s)
ij Aus#

t~1
+
r/1

d(r)
s B

!Cui#
t~1
+

p/1

d(p)
i

, u
j
#

t~1
+
q/1

d(q)
j D (modRt`1) .

(4)

Remarks.

1. We note here the interesting fact that in round t only the coordinates in
»

t
impose nontrivial conditions on d(t)

j
3»

t
.

2. Our procedure can be described in a slightly more transparent way. Starting
from the Lie algebra L/R, we are actually looking for a set of representatives
x
1
, . . . , x

k
of the cosets uN

1
, . . . , uN

k
of L/R (recall that the elements uN

i
are a basis

for L/R) such that Span(x
1
, . . . , x

k
) is a subalgebra in L.

More formally we seek a Q-linear injective map p : L/RPL for which

(a) p (xN )"xN for any x3L, and
(b) the subspace p (L/R) is a subalgebra.

We start out with p
0

given by p
0
(uN

i
)"u

i
. This obviously satisfies (a) above.

Next we look for a linear correction map D : L/RPR such that p
0
#D maps

L/R bijectively onto a subalgebra ofL which is then bound to be semisimple and
isomorphic toL/R. The existence of such a correction map (for any choice of coset
representatives) is the actual content of Levi’s theorem.

In the tth step of the algorithm we construct a correction map D(t) that works
(modRt`1). The procedure stops with a correction map D"D(l) such that
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p"p
0
#D satisfies conditions (a) and (b). We can describe the correction map D(t)

quite explicitly. If xN "+k
s/1

a
s
uN
s
with a

s
3Q then

D(t)(xN )"
t
+
l/1

k
+
s/1

a
s
d(l)
s

. (5)

3. The algorithm that is given in [10] can be rephrased in our language as
follows. Let R.R

2
.· · · .R

m
"0 be the derived series of the radicalR. Then

as before we have R
i
"R

i`1
=»

i
. In a similar way we construct a sequence of

elements v(t)
i

such that the v(t)
i

span a Levi subalgebra modulo R
t
. Then by

analogous arguments we arrive at the equations

[v(t)
i
, d(t)

j
]#[d(t)

i
, v(t)

j
]#

k
+
s/1

c (s)
ij

d(t)
s
,

k
+
s/1

c (s)
ij

v(t)
s
![v(t)

i
, v(t)

j
] (modR

t`1
) .

We think that this is a more transparent way of formulating the method.
Furthermore it leads to a faster implementation than the formulation in [10].

2.2 Bounding the Size

We have seen that a Levi complement can be obtained by solving at most
n systems of linear equations over Q. A system has at most n2 variables and at most
n3 equations. Such systems can be solved by using a polynomial number of
arithmetical operations. To conclude that the algorithm runs in deterministic
polynomial time we prove bounds on the coefficients a(s)

i
. More precisely we show

that we can efficiently find a solution of (4) (and hence of (2)) where the numbers
a(s)
i

have moderate size. The difficulty is that the system we consider in round
t depends on the solutions we calculated earlier. We overcome this by a careful
analysis of (4).

We write M
t
"M(Span (v(t)

1
, v(t)

2
, . . . , v(t)

k
) ) and D

t
"D(Span(v(t)

1
, v(t)

2
, . . . , v(t)

k
) ).

We intend to prove that the quantities logM
t
and log D

t
are bounded by a poly-

nomial of the input size n and log c. The following lemma is a direct consequence of
Cramer’s rule.

Lemma 2.2 ¸et Ax"b be a system of linear equations where A is a k]m matrix
with integer entries, b is a rational vector from the column space of A, rank(A)"d,
a"max

i,j
D(A)

ij
D. ¹hen we can always find a solution x in polynomial time for which

M(x)6d !adM (b) ,

and

D (x)6d !adD(b) . h

We intend to apply this to the linear system below (see (4)) which describes
a Levi complement in L/Rt`1. Let us consider (4) again:

[u
i
, d(t)

j
]#[d(t)

i
, u

j
]!

k
+
s/1

c (s)
ij

d(t)
s
,

k
+
s/1

c (s)
ij Aus#

t~1
+
r/1

d(r)
s B

!Cui#
t~1
+

p/1

d(p)
i

, u
j
#

t~1
+
q/1

d(q)
j D (modRt`1) .

(6)
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As noted earlier, this is a system of linear equations for the unknown coeffi-
cients a(s)

i
of d(t)

j
3»

t
. We have kd

t
6n2 unknowns and a linear equation for every

triplet (i, j, r) such that 16i(j6k and 16r6d
t
. Here r corresponds to the

d
t
coordinates in »

t
. We have thus ( k

2
)d

t
6n3 equations. Thus, the matrix A of the

system has at most n3 rows and n2 columns. In particular we have rank(A)6n2.
Next we observe the coefficients of the unknowns in the terms of the left-hand

side of (6) are actually structure constants:

a"max
l,m

D(A)
lm

D63 max
i, j, l

Dc (l)
ij

D"3c . (7)

To apply the Lemma, we bound the vector b on the right-hand side of (6). (We
need bounds for the coordinates with respect to the basis Mu

i
N ). We write this

inhomogeneous part into a form that makes it easier to estimate.

k
+
s/1

c (s)
ij

u
s
#

k
+
s/1

t~1
+
r/1

c (s)
ij

d(r)
s
#[u

i
, u

j
]#

t~1
+
q/1

[u
i
, d(q)

j
]

#

t~1
+

p/1

[d(p)
i

, u
j
]#

t~1
+

p/1

t~1
+
q/1

[d(p)
i

, d(q)
j

] (8)

As before, let M (x) stand for the maximal coefficient of the vector x3L, and
let M

r
denote the maximum among 1 and the coefficients occurring up until the rth

step (that is, among the coefficients of the d(p)
i

’s, where 16p6r and 16i6k).
Obviously, we have M

r
6M

q
for r6q and 16M

1
. One easily computes that if

x, y3L then M([x, y])6cn2M(x)M(y). We use also the congruences
[d(p)

i
, d(q)

j
],0 (modRt`1) for p#q't. For n'1 the greatest coefficient MI

t
of

b in the tth system of linear equations can be bounded as

MI
t
6c#kc

t~1
+
r/1

M
r
#c#cn2

t~1
+
q/1

M
q
#cn2

t~1
+

p/1

M
p
#cn2

t
+
l/1

l
+
r/1

M
r
M

l~r

63cn2
t~1
+

p/1

M
p
#cn3

t
+
l/1

M
l
M

t~l

64cn3
t
+
l/0

M
l
M

t~l
. (9)

We infer that M (b)"MI
t
64cn3+ t

l/0
M

l
M

t~l
. Using also rank(A)6n2 and

substituting X"4(n2) !(3c)n2cn3, the Lemma gives

M
t`1

6M(x)64(n2) !(3c)n2cn3
t
+
l/0

M
l
M

t~l
"X

t
+
l/0

M
l
M

t~l
.

For the common denominator D
t
one can readily prove the following upper

bound by induction:

D
t
6(D

1
D
2

. . . D
t
)t , (10)

where D
l
is the determinant of a maximal minor of the matrix A"A

l
of the lth

system. Clearly we have D
l
6(d

l
) !cdl6n !cn.
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We know that D
0
"1 and M

0
"c. An easy induction on t shows that

M
t
6t !(Xc)t .

Expanding the above expression and writing out D
t
explicitly we obtain the

following estimates:

M
t
6t !(4(n2) ! (3c)n2`2n3)t (11)

D
t
6(n !)t2cnt2 . (12)

Taking into consideration t6n, we have

M
t
6M

n
6n! (4(n2) ! (3c)n2`2n3)n (13)

D
t
6D

n
6(n !)n2cn3 . (14)

This means that the size measures logM
t
, logD

t
of the intermediate results as

well as of the ultimate solution logM
n
and logD

n
are bounded by a polynomial in

n and log c. The number of arithmetical operations is polynomial in n, therefore we
have the following:

Theorem 2.3 ¸et L be a ¸ie algebra over Q given by structure constants. ¹hen we
can compute a ¸evi decomposition for L in deterministic polynomial time.

3 The Wedderburn–Malcev Decomposition for Associative Algebras

Here we outline a deterministic polynomial time procedure for computing
Wedderburn—Malcev complements in finite dimensional associative algebras. The
method works over finite fields and over Q. Note that the separability-assumption
holds in these cases.

As in the Lie case, we assume that the associative algebra A is given by
a collection of structure constants c (s)

ij
3F relative to a fixed basis. HereF is either

a finite field, or F"Q. We intend to compute a new basis r
1
, r

2
, . . . , r

k
,

s
1
, s

2
, . . . , s

m
ofA overF, where the s

i
’s are a basis of the Jacobson radicalR and

the r
j
’s form a basis of a semisimple complement B6A.

We start with a collection of elements a
1
, a

2
, . . . , a

k
3A such that the images

aN
1
, aN

2
, . . . , aN

k
of a

1
, a

2
, . . . , a

k
under the natural map APA/R form a basis of

A/R.
As in the Lie case, we work with subspaces »

i
inRi complementary toRi`1 (i.e.

we have Ri"Ri`1=»
i
). We transform the elements a

i
into a set of elements

b
1
, b

2
, . . . , b

k
such that B"Span(b

1
, b

2
, . . . , b

k
) is a subalgebra in A and

B:A/R. This means that B is a Wedderburn—Malcev complement in A. We
apply the iterative method that proved to be successful for Lie algebras.

Let b(t)
i

denote the temporary result obtained in the tth step, b(0)
i
"a

i
and

b
i
"b(last)

i
. Our assumption is that

b(t)
i

b(t)
j
,

k
+
s/1

c (s)
ij

b(t)
s

(modRt) (15)

holds after the tth round of the iteration for 16i, j6k.
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Then we look for elements d(t)
i
3»

t
such that with b(t`1)

i
"b(t)

i
#d(t)

i
we have

b(t`1)
i

b(t`1)
j

,

k
+
s/1

c (s)
ij

b(t`1)
s

(modRt`1) (16)

for 16i, j6k. After expanding (16) and using the relations d(t)
i

d(t)
j
,0 (modRt),

we obtain

b
i
d(t)
j
#d(t)

i
b
j
!

k
+
s/1

c (s)
ij

d(t)
s
,

k
+
s/1

c (s)
ij

b(t)
s
!b(t)

i
b(t)
j

(modRt`1) . (17)

The Wedderburn—Malcev theorem applied to A/Rt`1 implies that there
always exist such elements d(t)

i
; and conversely, a solution to this linear system

gives a Wedderburn—Malcev complement in A/Rt`1.
Just like in the Lie case, we infer immediately that a Wedderburn—Malcev

complement can be found by using a polynomial (in dimA) number of arithmeti-
cal operations overF. This gives a polynomial bound on the running time at once
if F is finite. Over Q one has to establish polynomial bounds on the size of the
coefficients of the elements b(t`1)

i
. This can be done using essentially the same

argument as with the Levi decomposition. This is possible because (17) has the
same transparent structure as (3). We have the following:

Theorem 3.1 ¸etA be a finite dimensional associative algebra over the fieldF (F is
either finite or F"Q), given by structure constants. ¹hen we can compute a
¼edderburn—Malcev decomposition of A in deterministic polynomial time.

4 Computational Experiences

We considered the following two methods:

1. (nil-levi) a method that uses the upper central series of the radical,
2. (solv-levi) a method that proceeds along the derived series of the radical.

As test problems we worked with the Lie algebras described below. Let n be an
even positive integer and consider n]n matrices (over Q) that are composed of
two by two blocks satisfying the following conditions:

1. all blocks under the main diagonal are 0,
2. all blocks on a line parallel to the main diagonal are identical,
3. the blocks on the diagonal are elements from sl

2
,

4. the blocks on the other diagonals are from gl
2
.

Let ¸
n
be the Lie algebra determined by these matrices. Then the dimension of

¸
n
is 2n!1. It has a basis of the following form:

Mh, x, y, z
1
, . . . , z

2n~4
N .

Here Mh, x, yN is the standard basis of sl
2

and for i"1, . . . , n/2!1 the elements
z
4i~3

, z
4i~2

, z
4i~1

, z
4i

are from gl
2
. Since the above basis already contains a Levi
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Fig. 1. Running times (in seconds) of the calculation of a Levi complement in ¸

n
for

n"20, 22, . . . , 34

subalgebra, we use a different input basis, namely

Gz1 , . . . , z
2n~4

, h#
n@2~1
+
i/1

z
4i~3

, x#
n@2~1
+
i/1

z
4i~2

, y#
n@2~1
+
i/1

z
4i~1H .

For n"20, 22, . . . , 34 we computed a Levi subalgebra of ¸
n
. The results are

summarized in Figure 1.
Since the scale in Figure 1 is logarithmic, the points should lie on a straight line

with slope equal to the order of the method. From this we conclude that the order
of nil-levi is about 3.9 whereas the order of solv-levi is about 3.25.

The figure shows that on these inputs solv-levi is faster than nil-levi. This is (for
the greater part) explained by the fact that the derived series turns out to be easier
to calculate than the lower central series, as is seen from Table 1.

From this table it is apparent that the time taken for solving the systems of
linear equations (i.e., the ‘‘difference’’) is comparable for the methods. This was to
be expected since the total number of equations to be processed is essentially the
same (namely ( k

2
)dim¸

n
).

In this first example the input was ‘‘nice’’ (i.e., the structure constants of the Lie
algebra were all small numbers and many of them were 0). In the next, more
realistic, example we select a basis of ¸ with random coefficients. The results are
displayed in Table 2.

This table supports the claim that the two methods are comparable in speed on
more complex inputs (nil-levi is even somewhat faster). It is also clear that the
calculation of the series still dominates the running times. Our experiences show
that there is no significant difference in the practical performance of nil-levi and
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Table 1. Running times (in seconds) of the calculation of the lower
central series and the derived series of the radical of ¸

n
. The third

and fifth columns display the difference of the total computing time
and the time consumed by the computation of these chains of
ideals

n Lower central Difference Derived series Difference
series

26 282 102 95 91
28 395 128 123 115
30 535 154 158 136
32 714 191 206 164
34 925 231 257 221

Table 2. Running times (in seconds) of the methods nil-levi and solv-
levi on a random input basis

n nil-levi Lower central solv-levi Derived series
series

6 18 12 18 10
8 126 98 120 85

10 2126 1847 2210 1832

solv-levi. For nil-levi, however, we have a theoretical guarantee of good perfor-
mance, even on numerically complex inputs. The experimental results give some
evidence that a suitable version of solv-levi may also provide a polynomial time
method. We have not been able to prove this as yet.

Remark. In all cases the output basis provided by both methods turned out to be
the same. This fact seems also to support our conjecture on solv-levi.
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