Contents
 
Preface 3
Overview 5
1 Probability Laws and Noncommutative Random Variables 23
1.1 Distribution measure of normal operators 24
1.2 Noncommutative random variables 35
2. The Free Relation 43
2.1 The free product 44
2.2 The free relation 46
2.3 The free central limit theorem 52
2.4 Free convolution of measures 56
2.5 Moments and cumulants 64
2.6 Multivariables 75
3. Analytic Function Theory and Infinitely Divisible Laws 95
3.1 Cauchy transform, Poisson integral, and Hilbert transform  96
3.2 Relation between Cauchy transform and R-series 99
3.3 Infinitely divisible laws  102
4. Random Matrices and Asymptotically Free Relation 117
4.1 Random matrices and their eigenvalues 118
4.2 Random unitary matrices and asymptotic freeness 139
4.3 Asymptotic freeness of some random matirces 150
4.4 Random matrix models of noncommutative random variables 165
5. Large Deviations for Random Matrices 179
5.1 Boltzmann entropy and large deviations 1801
5.2 Entropy and random matrices 185
5.3 Logarithmic energy and free entropy 193
5.4 Gaussian and unitary random matrices 213
5.5 The Wishart matrix 229
5.6 Entropy and large diviations revisited 242
6. Free Entropy of Noncommutative Random Variables 249
6.1 Definition and basic properties 250
6.2 Calculus for power series of noncommutative variables 257
6.3 Change of variable formulas for free entropy 263
6.4 Additivity of free entropy  273
6.5 Free entropies of unitary and non-selfadjoint random variables 279
6.6 Relation between different free entropies 284
7 Relation to Operator Algebras 305
7.1 Free Group factors and semicircular systems 306
7.2 Interpolar free group factors 314
7.3 Free entropy dimension 328
7.4 Applications of free entropy 338
Bibliography 347
Index 359