1. In a box there are 2 red and 3 blue balls. You pick balls, one after the other with replacement. You stop picking when the first time a blue is drawn. Let X mean the number of draws you make.
Question (a): Set up the formula of the weight function of the distribution of X.
Answer:
X follows the optimistic geometric distribution with parameter $p=\frac{3}{5}$:

$$
\begin{gathered}
p(x)=\mathrm{P}(X=x)=\mathrm{P}(\text { first }(x-1) \text { red and then } 1 \text { blue })= \\
=\mathrm{P}((x-1) \text { red }) \cdot \mathrm{P}(1 \text { blue })=\left(\frac{2}{5}\right)^{x-1} \cdot \frac{3}{5} \quad(x=1,2, \ldots)
\end{gathered}
$$

This is the optimistic geometric distribution with parameter $p=\frac{3}{5}$.
Question (b): If you made 1000 experiments, approximately how much would be the average of the number of draws?
Answer:
The average of the number of draws is approximately equal to the expected value, which - for the optimistic geometric distribution - is equal to the reciprocal of the parameter:

$$
\mathrm{E}(X)=\frac{1}{p}=\frac{5}{3}
$$

2. The number of mobile phones ringing during a theatre performance is a random variable.

Question (a): Explain why this random variable follows Poisson distribution.

Answer:

The number of people with mobile phones is large. Each mobile phone may ring during a theatre performance with a small probability. They ring or do not independently of each other.
Question (b): Assume that the probability that no mobile phones ring during a theatre performance is 0.6. What is the average number of mobile phones ringing during a theatre performance?

Answer:

The weight function of the Poisson distribution is

$$
p(x)=\frac{\lambda^{x}}{x!} e^{-\lambda} \quad(x=0,1,2, \ldots)
$$

Since the probability that no mobile phones ring during a theatre performance is 0.6 , we get that

$$
p(0)=e^{-\lambda}=0.6
$$

Solving this equation for λ, we get:

$$
\lambda=-\ln (0.6)=0.51
$$

The average number - in other words - the expected value of the Poisson distribution is equal to the parameter $\lambda=0.51 \approx 0.5$.
3. Assume that the amount of milk in a bottle sold in a supermarket has a normal distribution with expectation 1 liter and standard deviation 0.01 liter.

Question (a): Out of 1000 bottles approximately how many contain more than 1.02 liter of milk?
Answer:
$\mathrm{P}(\mathrm{a}$ bottle contains more than 1.02 liter of milk $)=1-$ NORM.DIST $(1.02 ; 1 ; 0.01 ;$ TRUE $)=0.023$
Out of 1000 bottles approximately 23 contain more than 1.02 liter of milk.
Question (b): Determine the probability that out of 5 such bottles more than 2 contain less than 0.99 liter of milk.

Answer:

$\mathrm{P}($ a bottle contains less than 0.99 liter of milk $)=\operatorname{NORM.DIST}(0.99 ; 1 ; 0.01 ;$ TRUE $)=0.16$
$\mathrm{P}($ out of 5 bottles more than 2 contain less than 0.99 liter of milk $)=$ $=1-$ BINOM.DIST $(2 ; 5 ; 0.16 ;$ TRUE $)=0.032$
4. X is a random variable with values between $-\infty$ and ∞. The density function of X is $f(x)=\mathrm{e}^{-2|x|}$.

Question (a): What is the probability that $-1<X<1$?
Answer:

$$
\mathrm{P}(-1<X<1)=\int_{-1}^{1} f(x) d x=\int_{-1}^{1} \mathrm{e}^{-2|x|} d x=2 \cdot \int_{0}^{1} \mathrm{e}^{-2 x} d x \quad(=0.86)
$$

Question (b): Determine the expected value of of X^{2}.

Answer:

$$
\mathrm{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} \cdot \mathrm{e}^{-2|x|} d x=2 \int_{0}^{\infty} x^{2} \cdot \mathrm{e}^{-2 x} d x \quad\left(=\ldots \text { integration by parts } \ldots=\frac{1}{2}\right)
$$

5. The weight and the height of a randomly chosen woman - as a two-dimensional random variable - follows a normal distribution. The standard deviation of the weight of women with a height of 175 centimeters is 4 kgs. The correlation coefficient is 0.8 .
Question (a): How much is the standard deviation of the weight of women?

Answer:

Using the rule

$$
\text { conditional standard deviation }=\text { unconditional standard deviation } \cdot \sqrt{1-r^{2}}
$$

we get that

$$
\text { unconditional standard deviation }=\frac{4}{\sqrt{1-0.8^{2}}}=\frac{20}{3}=6.67
$$

Question (b): How much is the standard deviation of the weight of women who are 165 centimeters tall?
Answer:
Since the conditional standard deviation does not depend on the condition, the answer is simply 4 kgs .

6. Question (a):

Give the meaning of the standard deviation of the data set $\{1 ; 3 ; 7 ; 8 ; 11\}$ by making simple calculations (without using calculator). (Show the details of your calculations.)
Answer:
The average of the numbers $1,3,7,8,11$ is obviously 6 . Taking the average of the squared differences $(1-6)^{2},(3-6)^{2},(7-6)^{2},(8-6)^{2},(11-6)^{2}$, we get the variance. Then, taking the square root, we get the standard deviation:

$$
\sqrt{\frac{(1-6)^{2}+(3-6)^{2}+(7-6)^{2}+(8-6)^{2}+(11-6)^{2}}{5}} \quad(=3.58)
$$

Question (b):

Give the meaning of the standard deviation of a continuous random variable by a correct mathematical formula.

Answer:

Expected value:

$$
\mathrm{E}(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

Variance

$$
\operatorname{VAR}(X)=\int_{-\infty}^{\infty}(x-\mathrm{E}(X))^{2} \cdot f(x) d x
$$

Standard deviation:

$$
\mathrm{SD}(X)=\sqrt{\operatorname{VAR}(X)}
$$

