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Abstract

These notes have grown (and are still growing) out of two graduate courses I gave at the University

of Toronto. The main goal is to give a self-contained introduction to several interrelated topics of

current research interests: the connections between

1) coarse geometric properties of Cayley graphs of infinite groups;

2) the algebraic properties of these groups; and

3) the behaviour of probabilistic processes (most importantly, random walks, harmonic functions,

and percolation) on these Cayley graphs.

I try to be as little abstract as possible, emphasizing examples rather than presenting theorems in their

most general forms. I also try to provide guidance to recent research literature. In particular, there are

presently over 250 exercises and many open problems that might be accessible to PhD students. It is

also hoped that researchers working either in probability or in geometric group theory will find these

notes useful to enter the other field.
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Preface

These notes have grown (and are still growing) out of two graduate courses I gave at the University of

Toronto: Probability and Geometry on Groups in the Fall of 2009, and Percolation in the plane, on Zd, and
beyond in the Spring of 2011. I am still adding material and polishing the existing parts, so at the end I

expect it to be enough for two semesters, or even more. Large portions of the first drafts were written up by

the nine students who took the first course for credit: Eric Hart, Siyu Liu, Kostya Matveev, Jim McGarva,

Ben Rifkind, Andrew Stewart, Kyle Thompson, Llúıs Vena, and Jeremy Voltz — I am very grateful to

them. That first course was completely introductory: some students had not really seen probability before

this, and only few had seen geometric group theory. Here is the course description:

Probability is one of the fastest developing areas of mathematics today, finding new connections to

other branches constantly. One example is the rich interplay between large-scale geometric properties

of a space and the behaviour of stochastic processes (like random walks and percolation) on the space.

The obvious best source of discrete metric spaces are the Cayley graphs of finitely generated groups,

especially that their large-scale geometric (and hence, probabilistic) properties reflect the algebraic

properties. A famous example is the construction of expander graphs using group representations,

another one is Gromov’s theorem on the equivalence between a group being almost nilpotent and the

polynomial volume growth of its Cayley graphs. The course will contain a large variety of interrelated

topics in this area, with an emphasis on open problems.

What I had originally planned to cover turned out to be ridiculously much, so a lot had to be dropped,

which is also visible in the present state of these notes. The main topics that are still missing are Gromov-

hyperbolic groups and their applications to the construction of interesting groups, metric embeddings

of groups in Hilbert spaces, more on the construction and applications of expander graphs, more on

critical spatial processes in the plane and their scaling limits, and a more thorough study of Uniform

Spanning Forests and ℓ2-Betti numbers — I am planning to improve the notes regarding these issues soon.

Besides research papers I like, my primary sources were [DrKa09], [dlHar00] for geometric group theory

and [LyPer16], [Per04], [Woe00] for probability. I did not use more of [HooLW06], [Lub94], [Wil09] only

because of the time constraints. There are proofs or even sections that follow rather closely one of these

books, but there are always differences in the details, and the devil might be in those. Also, since I was a

graduate student of Yuval Peres not too long ago, several parts of these notes are strongly influenced by his

lectures. In particular, Chapter 9 contains paragraphs that are almost just copied from some unpublished

notes of his that I was once editing. There is one more recent book, [Gri10], whose first few chapters have

considerable overlap with the more introductory parts of these notes, although I did not look at that book

before having finished most of these notes. Anyway, the group theoretical point of view is missing from

that book entirely.

With all these books available, what is the point in writing these notes? An obvious reason is that it is

rather uncomfortable for the students to go to several different books and start reading them somewhere

from their middle. Moreover, these books are usually for a bit more specialized audience, so either nilpotent

groups or martingales are not explained carefully. So, I wanted to add my favourite explanations and

examples to everything, and include proofs I have not seen elsewhere in the literature. And there was a

very important goal I had: presenting the material in constant conversation between the probabilistic and

geometric group theoretical ideas. I hope this will help not only students, but also researchers from either

field get interested and enter the other territory.

There are presently over 200 exercises, in several categories of difficulty: the ones without any stars
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should be doable by everyone who follows the notes, though they do not have to be entirely trivial; * means

it should be a challenge for the reader; ** means that I think I would be able to do it, but it would be a

challenge for me; *** means it is an open problem. Part of the grading scheme in the course (adopted from

Yuval Peres) was to submit exercise solutions worth 8 points, where each exercise was worth 2# of stars.

IT IS VERY IMPORTANT THAT YOU AT LEAST READ ALL THE EXERCISES, AND PREFER-

ABLY YOU ALSO TRY TO SOLVE THEM. IF I WRITE DOWN A PROOF AND YOU READ

IT, EVEN IF YOU UNDERSTAND IT, YOU WILL FORGET. IF YOU DO IT YOURSELF, YOU

WILL REMEMBER.

There are also conjectures and questions in the notes — the difference compared to the *** exercises

is that, according to my knowledge or feeling, the *** exercises have not been worked on yet thoroughly

enough, so I want to encourage the reader to try and attack them. Of course, this does not necessarily

mean that all conjectures are hard, neither that any of the *** exercises are doable. . . . Anyway, for a PhD

topic, I would personally suggest starting with the *** exercises.

Besides my students and the books mentioned above, I am grateful to Ági Backhausz, Alex Bloemendal,

Damien Gaboriau, Aranka Hrušková, Gady Kozma, Russ Lyons, Sébastien Martineau, Péter Mester, Yuval

Peres, Mark Sapir, Andreas Thom, Ádám Timár, László Márton Tóth, Todor Tsankov and Bálint Virág

for conversations and comments.

Notation

If {fn}n≥1 and {gn}n≥1 are two sequences of positive numbers, then, as n→∞:

fn ≪ gn ⇐⇒ fn = o(gn) ⇐⇒ fn
gn
→ 0 ,

fn ≍ gn ⇐⇒ fn = O(gn) and gn = O(fn) ⇐⇒ 0 < c <
fn
gn

< C <∞ for all n ,

fn ∼ gn ⇐⇒ fn
gn
→ 1 .
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1 Basic examples of random walks
{s.1}

Random walks on infinite graphs is one of the most classical examples of how the geometry of the underlying

space influences the behavior of stochastic processes on that space. And these mathematical ideas have

wide applicability, since random walks serve as models for a wide range of diffusion processes: heat or

electric conductance in physical materials, genetic or epidemic spreading in biological networks, information

diffusion in social networks, and so on.

1.1 Zd and Td, recurrence and transience, Green’s function and spectral radius
{ss.ZdTd}

Consider a connected, infinite graph G = (V,E) that is locally finite: i.e., each vertex x ∈ V (G) has a

finite number of neighbours, known as the degree deg(x); all the graphs in this book will be locally finite.

In (discrete time) simple random walk (SRW) on G, we take a starting vertex X0 = o ∈ V (G),

and then, given all the locations X0, X1, . . . , Xn ∈ V (G) by time n, the next step is taken to one of the

neighbours of Xn, uniformly at random, independently of all previous steps. Written in a formula,

Po[Xn+1 = y | X0, . . . , Xn ] =
1{(Xn,y)∈E(G)}

deg(Xn)
,

where the subscript o shows where the walk was started.

One of the most basic properties that needs to be studied is the following.

Definition 1.1. A random walk on a graph is called recurrent if the starting vertex is visited again, and

hence visited infinitely often, with probability one. That is, using the positive hitting time τ+x := inf{n ≥
1 : Xn = x}:

Po

[
τ+o <∞] = Po

[
Xn = o infinitely often

]
= 1 .

Otherwise, the walk is called transient, and o is almost surely visited only finitely many times.

Let us remark here that if we want to prove rigorously the intuitively obvious identity in the definition,

namely, that coming back once almost surely implies that we also come back infinitely often, then we

need the so-called strong Markov property for simple random walk: given the present Xτ , the future

Xτ+1, Xτ+2, . . . is conditionally independent of the past X0, X1, . . . , Xτ−1 for any stopping time τ , not just

for deterministic times. This is intuitively obvious, and is easy to prove by conditioning on the countable

number of possibilities τ can take. For complicated continuous time and continuum state space Markov

processes this is less trivial, sometimes even false.
{ex.transfinite}

Exercise▷ 1.1. Show that if G(V,E) is a connected graph, and simple random walk started at some o ∈ V
visits o infinitely often almost surely, then the walk started at any x ∈ V visits any given y ∈ V infinitely

often, almost surely. Consequently, recurrence is a property solely of the graph. In a transient graph, the

walk visits any given finite set only finitely many times.

The result that started the area of random walks on groups is the following:
{t.Polya}

Theorem 1.2 (Pólya 1921). Simple random walk on Zd is recurrent for d = 1, 2 and transient for d ≥ 3.

In fact, the so-called “on-diagonal heat-kernel decay” is p2n(o, o) = Po[X2n = o ] ≍ Cdn−d/2.

Proof. Let us first see how the quantitative second sentence implies the qualitative first sentence. The trick

is that

Eo
[

# of visits to o
]

= Eo

[ ∞∑
n=0

1{Xn=o}

]
=

∞∑
n=0

pn(o, o) ,
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Figure 1.1: A SRW trajectory on Z2 and the distribution of the particle after 100 steps. {f.2dSRW}

where the interchange of the two integrals (the infinite sum and the expectation) was possible by Fubini,

since the indicator variables are non-negative functions. Thus, the quantitative bound says that

Eo
[

# of visits to o
]
<∞ if and only if d > 2.

And why is this equivalent to transience? Well, if the walk is recurrent, then the number of visits to o is

almost surely infinite, hence the expectation is also infinite. On the other hand, if the walk is transient,

Po[ τ
+
o =∞ ] = q > 0, then

Po[ # of visits to o = k ] = (1− q)k−1q for k = 1, 2, . . . ,

a geometric random variable, with expectation Eo[ # of visits to o ] = 1/q, which is finite.

For the proof of the quantitative bound, the key first step is the d = 1 case, which we state as a separate

lemma. It is straightforward to deduce it from Stirling’s formula n! ∼
√

2πn (n/e)n, or alternatively, it is a

consequence of the Bernoulli Local Central Limit Theorem; see [Fel68, Sections II.9 and VII.3] and [Dur10,

Sections 3.1 and 3.5] for these theorems and their relationship with each other.
{l.Stirling}

Lemma 1.3. For the one-dimensional simple random walk 0 = Y0, Y1, Y2, . . . , we have

P[Y2n = 0 ] =
1

22n

(
2n

n

)
∼ 1√

πn
.

On Zd for general d, Pólya used Fourier analysis. Another approach is to use Stirling’s formula to

estimate multinomial coefficients and execute careful summations. However, in this book we prefer more

robust techniques, hence we are proposing the following rather intuitive strategy:

1) being back at the origin is equivalent to being back in all the d coordinates;

2) after 2n steps, the number of steps in any given coordinate, by the Law of Large Numbers, is

(1 + o(1)) 2n/d with high probability, and it should be even with probability ∼ 1/2, hence the return

probability in any given coordinate, by Lemma 1.3, should be ∼ 1
2

√
d

2πn ;

3) the moves in the different coordinates are independent, hence we can just multiply these d probabilities

together to get ∼ cd n−d/2.
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There are several places where this naive strategy needs serious work. Firstly, in step 2), the Law of Large

Numbers has a probability error (whose size depends on the precision in the 1 + o(1) factor), which then

appears in the overall return probability. This probability error certainly has to be o(1/
√
n) in order to

have
√

d
2πn as the main contribution. Similarly, the guess 1/2 + o(1) for the probability of having an even

number of steps is very intuitive, but with what error term o(1) can we prove it? Lastly, in step 3), the

independence is false: once we know how many steps are made in each coordinate, the steps themselves

are indeed independent, but the number of steps in each coordinate are not, since they have to sum up

to 2n. This introduces dependencies: if we know only that we are back at 0 in the first coordinate, that

slightly decreases the likely number of steps in that coordinate (since the fewer steps we have made, the

more likely it is to be back), which increases the number of steps in the other coordinates, making it a bit

less likely to be back at 0 in those.

We will make this strategy rigorous in two different ways. The first approach introduces a new process,

continuous time random walk X(t)t≥0, for which the problem with 3) simply disappears and the problems

with 2) become doable; thus we can easily get Po

[
X(t) = o

]
≍ t−d/2. Unfortunately, this does not auto-

matically yield p2n(o, o) ≍ n−d/2, but is nevertheless enough to decide about recurrence versus transience

even for the original SRW. The second approach uses brute force to deal with all the problems together.

In continuous time random walk (CTRW) on a graph G(V,E), each edge has an independent

exponential clock of rate 1 (i.e., a rate 1 Poisson process of clock rings), and the walker always immediately

takes the edge emanating from its current location whose clock first rings. Note that, after each step, it

does not matter if we restart the clocks emanating from the new vertex or not, due to the memoryless

property of the exponential distribution. This also implies that the sequence of vertices visited by this

random walker follows just discrete time SRW on the graph, since, among k iid exponential variables,

each has probability 1/k to be the smallest. That is, CTRW is just SRW with a random time change:

an independent waiting time at each vertex v ∈ V of distribution Expon(deg(v)), the minimum of deg(v)

many iid Expon(1) variables.

Now, the point of considering CTRW is that the d coordinates of CTRW on Zd are just iid CTRW’s

on Z; i.e., the dependency problem between the coordinates is now gone. The reason for this is a basic

property of Poisson point processes: if we take a PPP of intensity 2d, and label each point by one of the

d coordinates and one of the two directions, ±ei, i = 1, . . . , d, with iid uniform choices, then we get, in

distribution, the union of d independent PPP processes of intensity 2, in each of which the points are

labeled ± in an iid uniform manner.

Therefore, for this CTRW process (X(t))t≥0 =
(
X1(t), . . . , Xd(t)

)
t≥0 on Zd, started at X(0) = o = 0,

we have

Po

[
X(t) = o

]
=

d∏
i=1

P0[Xi(t) = 0 ] = P0[X1(t) = 0 ]
d
. (1.1) {e.prod}{e.prod}

We now want to express the 1-dimensional CTRW return probability P0[X1(t) = 0 ] using the SRW result

we had in Lemma 1.3. For this, we need the random variable N1(t), the number of steps made in the first

coordinate by time t. This has a distribution Poisson(2t), with mean and variance 2t, hence Chebyshev’s

inequality tells us that

P
[
N1(t) ̸∈ (t, 3t)

]
= P

[
|N1(t)−EN1(t)| ≥ t

]
≤ 2t

t2
=

2

t
. (1.2) {e.ChebyN}{e.ChebyN}

Moreover, for any t ≥ 0,

P
[
N1(t) is even

]
= 1/2 + e−4t/2. (1.3) {e.eveN}{e.eveN}
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Convergence to 1/2 is intuitively quite clear, and our exact formula can be verified by a standard continuous

time Markov chain argument, as follows. Let p(t) denote the probability in question. We have

p(t+ ϵ) = (1− 2ϵ) p(t) + 2ϵ (1− p(t)) +O(ϵ2),

for small ϵ > 0, since N1(t+ ϵ) can be even in several ways: either N1(t) was even and there was no jump

in (t, t+ ϵ), which altogether happens with probability p(t) e−2ϵ, or N1(t) was odd and there was a single

jump in (t, t + ϵ), or there were at least two jumps, which has probability O(ϵ2). Letting ϵ → 0, we find

that p(t) satisfies the differential equation

p′(t) = 2− 4p(t) ,

with initial condition p(0) = 1, which gives (1.3).

Combining (1.2) and (1.3), we get that P
[
N1(t) ∈ (t, 3t) ∩ 2N

]
= 1/2 − O(1/t) as t → ∞. The

importance of this, of course, is that by Lemma 1.3 we have P0[X1(t) = 0 | N1(t) ] ≍ 1/
√
N1(t) if N1(t) is

even and larger than 0. Thus, for t > 1,

P0

[
X1(t) = 0

]
= P0

[
X1(t) = 0, N1(t) ∈ (t, 3t) ∩ 2N

]
+ P0

[
X1(t) = 0, N1(t) ̸∈ (t, 3t)

]
= P0

[
X1(t) = 0

∣∣ N1(t) ∈ (t, 3t) ∩ 2N
]

(1/2−O(1/t)) +O(1/t)

≍ 1√
t

+O(1/t) .

Substituting this back to (1.1), we get that Po

[
X(t) = o

]
≍ t−d/2 for t > 1. For t ≤ 1, we obviously have

Po[X(t) = o ] ∈ (0, 1). As in the discrete time case, we can now calculate an expectation: for t > 1,

Eo
[

Lebesgue measure of time in [0, t] spent at o
]

=

∫ t

0

Po[X(s) = o ] ds ≍


√
t if d = 1 ,

log t if d = 2 ,

1 if d > 2 .

(1.4) {e.spent}{e.spent}

We still have to translate these bounds back to the recurrence of the SRW. Let N = N(∞) be the total

number of visits to o. At the ith visit, the time spent at o is a random variable ξi ∼ Expon(2d), independent

from each other and from N . Hence, the total expected time spent at o is

Eo

[ N∑
i=1

ξi

]
= Eo

[
Eo

[ N∑
i=1

ξi

∣∣∣ N ] ] = Eo

[
N

1

2d

]
= Eo[N ]

1

2d
.

Thus, the expected amount of time spent at o is finite if and only if the expected number of visits is finite,

which is equivalent to transience. Hence (1.4) shows that SRW on Zd is transient iff d > 2.

For the second approach, we will use something similar to (1.2), but stronger. The proof of this lemma

will be discussed later, in Section 1.2.
{l.LD}

Lemma 1.4. The following estimate holds for a d-dimensional lattice:

P
[
# of steps among first n that are in the ith coordinate /∈

[
n

2d
,

3n

2d

] ]
< C exp(−cdn) .

As before, we let o = 0 ∈ Zd denote the origin, Xn = (X1
n, . . . , X

d
n) the walk, and n = (n1, . . . , nd) a

multi-index, with |n| := n1 + · · ·+ nd. Furthermore, let N i
n = N i(X1, . . . , Xn) denote the number of steps

taken in the ith coordinate, i = 1, . . . , d. Then

Po[X2n = o ] = Po[X
i
2n = 0 ∀i ] =

∑
n:|n|=n

Po

[
Y i2ni

= 0 ∀i
∣∣ N i

2n = 2ni ∀i
]
P[N i

2n = 2ni ∀i ] ,

9



which we got by using the Law of Total Probability, and where Y i0 , Y
i
1 , . . . is the ith coordinate of the

sequence X0, X1, . . . with the null moves deleted. In other words, Y iNi
n

:= Xi
n, a one-dimensional SRW.

Using the independence of the steps taken and Lemma 1.3, the last formula becomes

Po[X2n = o ] ≍
∑
|n|=n

(n1 · · ·nd)−1/2P[N i
2n = 2ni ∀i ]

≍
∑

∃ni /∈[ n
2d ,

3n
2d ]

ϵ(n) ·P[N i
2n = 2ni ∀i ] +

∑
∀ni∈[ n

2d ,
3n
2d ]

Cd · n−d/2 ·P[N i
2n = 2ni ∀i ] ,

(1.5) {e.twosums}{e.twosums}

where ϵ(n) ∈ [0, 1]. Now, by Lemma 1.4,∑
∃ni /∈[ n

2d ,
3n
2d ]

P[N i
2n = 2ni ∀i ] ≤ C · d · exp(−cdn) ,

hence the first term in (1.5) is exponentially small, while the second term is polynomially large, so we get

Po[X2n = o ] ≍ Cdn−d/2 , (1.6) {e.Zdret}{e.Zdret}

as claimed.

We will now look at SRW on a very different graph: the k-regular tree Tk with k ≥ 3. Also the walk

has a very different behaviour, which can be most easily seen on the rate of escape.

In Z, or any Zd, E[ dist(Xn, X0) ] ≍
√
n; see Exercise 1.2 below.

For the k-regular tree Tk, k ≥ 3, let dist(Xn, X0) = Dn. Then

P
[
Dn+1 = Dn + 1

∣∣ Dn ̸= 0
]

=
k − 1

k

and P
[
Dn+1 = Dn − 1

∣∣ Dn ̸= 0
]

=
1

k
,

hence E
[
Dn+1 −Dn

∣∣ Dn ̸= 0
]

=
k − 1

k
− 1

k
.

On the other hand, E
[
Dn+1 −Dn

∣∣ Dn = 0
]

= 1. Altogether,

E
[
Dn

]
≥ k − 2

k
n .

One can even couple the process (Dn)n≥0 to an asymmetric random walk (Yn)n≥0 on Z, which always goes

to the right neighbour with probability (k− 1)/k and to the left neighbour with probability 1/k, in such a

way that Dn ≥ Yn holds almost surely for all n ≥ 0. Since the Strong Law of Large Numbers tells us that

Yn/n→ (k − 2)/k almost surely, we get that Yn ≤ 0 only finitely many times, hence Dn = 0 only finitely

many times. That is, SRW on Tk, with k ≥ 3, is transient.
{ex.basicspeed}

Exercise▷ 1.2. Let Dn := dist(Xn, X0) be the distance of SRW from the starting point.

(a) On any Zd, using the Central Limit Theorem, prove that E[Dn ] ≍
√
n.

(b) On Tk, k ≥ 3, using the transience of the SRW deduced above, show that Dn/n→ k−2
k almost surely,

and E[Dn ] ∼ k−2
k n, as n→∞.

In summary, the random walk escapes much faster on Tk, k ≥ 3, than on any Zd. This big difference

is also visible in the return probabilities. Using a Large Deviations theorem from Section 1.2 below, one

could easily show that p2n(o, o) is exponentially small in n on Tk. We will now actually compute the exact

exponential rate of decay.
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{d.GU}
Definition 1.5. For simple random walk on a graph G = (V,E), let Green’s function be defined as

G(x, y|z) =

∞∑
n=0

pn(x, y)zn, x, y ∈ V (G) and z ∈ C .

In particular,

G(x, y|1) = Ex
[
# of visits to y

]
.

Let us also define

U(x, y|z) =

∞∑
n=1

Px[τ+y = n]zn,

where, as before, τ+y is the first positive time when the walk hits y.

Since any probability is at most 1, the power series G(x, y|z) and U(x, y|z) certainly converge for |z| < 1.

But one can also think of them as just formal power series, encoding the sequences pn(x, y) and Px[τ+y = n].

Furthermore, for 0 ≤ z ≤ 1 we also have a probabilistic interpretation: G(x, y|z) is the expected number of

visits to y, while U(x, y|z) is the probability of ever reaching y, in the random walk with killing, where

we die during each step with probability 1− z.

Note that, for n ≥ 1, we have pn(x, x) =
∑n
k=1 Px[τ+x = k] pn−k(x, x), from which we get

pn(x, x)zn =

n∑
k=1

Px[τ+x = k] zk pn−k(x, x) zn−k ,

∞∑
n=1

pn(x, x)zn = U(x, x|z)G(x, x|z) ,

G(x, x|z)− 1 = U(x, x|z)G(x, x|z) ,

G(x, x|z) =
1

1− U(x, x|z)
, (1.7) {e.GU}{e.GU}

provided that G(x, x|z) and U(x, x|z) are both finite. For instance, as we proved above, on Zd with d = 1, 2,

we have G(x, x|1) = Ex[ # of visits to x ] = ∞, and also U(x, x|1) = Px[τ+x < ∞] = 1, so, in fact, (1.7)

holds even in this degenerate case.

Let us denote the radius of convergence of G(x, y|z) by rad(x, y). By the Cauchy-Hadamard criterion,

rad(x, y) =
1

lim supn→∞
n
√
pn(x, x)

≥ 1 ,

hence rad(x, y) determines the exponential rate of decay of the sequence pn(x, y). In determining the radius

of convergence, a useful classical theorem is the following:
{t.Pringsheim}

Theorem 1.6 (Pringsheim’s theorem). If f(z) =
∑
n anz

n with an ≥ 0, then the radius rad(f) of conver-

gence is the smallest positive singularity of f(z).

This theorem is not very hard, but we are not going to prove it here. The intuition is that, since∣∣∑
n anz

n
∣∣ ≤∑n an|z|n, one can only make the series “more divergent” by replacing z by |z|. In particular,

for r = rad(f), if we have
∑
n anr

n <∞, then
∑
n anz

n is absolutely convergent for any |z| ≤ r. However,

this does not exclude the possibility that we have a singularity at some |z| = r with z ̸=, hence r still could

be the radius of convergence without r itself being a singularity, so this argument was far from being a

complete proof.

The following is quite similar to Exercise 1.1:

11



{ex.Gxyvw}
Exercise▷ 1.3. Prove that for simple random walk on a connected graph, for real z > 0,

G(x, y|z) <∞ ⇔ G(v, w|z) <∞ .

Therefore, by Theorem 1.6, we have that rad(x, y) is independent of x, y.

By this exercise, we can define

ρ :=
1

rad(x, y)
= lim sup

n→∞

n
√
pn(x, x) ≤ 1 , (1.8) {e.rho}{e.rho}

which is independent of x, y, and is called the spectral radius of the simple random walk on the graph.

We will see in Section 7.1 the reason for this name.

Now, an obvious fundamental question is when ρ is strictly smaller than 1. I.e., on what graphs are the

return probabilities exponentially small? We have seen that they are polynomial on Zd.
{t.treerho}

Theorem 1.7. The spectral radius of the k-regular tree Tk is ρ(Tk) = 2
√
k−1
k .

We first give a proof using the generating functions introduced above, then will sketch a completely

probabilistic proof.

Proof. With the generating function of Definition 1.5, consider U(z) = U(x, y|z), where x is a neighbour

of y (which we will often write as x ∼ y); this is the probability of ever reaching y when started at x. By

taking a step on Tk, we see that either we immediately hit y and survive the killing, with probability 1
kz,

or we move to another neighbour of x and survive, with probability k−1
k z, in which case, in order to hit y,

we have to first return to x and then hit y. So, by the symmetries of Tk,

U(z) =
1

k
z +

k − 1

k
zU(z)2 ,

which gives

U(z) =
k ±

√
k2 − 4(k − 1)z2

2(k − 1)z
.

From the definition of U(z) as a power series it is clear that U(0) = 0. Furthermore, U(z) is easily seen to

be continuous for |z| < 1, hence we get U(z) =
k−
√
k2−4(k−1)z2
2(k−1)z . Then,

U(x, x|z) = zU(x, y|z) =
k −

√
k2 − 4(k − 1)z2

2(k − 1)
,

and thus, at least for |z| < 1,

G(x, x|z) =
1

1− U(x, x|z)

=
2(k − 1)

k − 2 +
√
k2 − 4(k − 1)z2

.
(1.9) {e.GreenTree}{e.GreenTree}

The smallest positive singularity of the right hand side is z = k
2
√
k−1 , so Pringheim’s Theorem 1.6 gives

that this is its radius of convergence. However, we are not quite done yet. We know only that G(x, x|z),

whenever exists, is given by the right hand side, but maybe its radius of convergence could be even smaller

than that of the right hand side. Nevertheless, this can easily be excluded: the right hand side has a Taylor

series expansion for |z| < k
2
√
k−1 , while we already know that the Taylor series of G(x, x|z) converges

for |z| < 1; the values given by these two series coincide on the open set |z| < 1, hence the coefficients

themselves and the radii of convergence must coincide, too. Therefore, ρ(Tk) = 2
√
k−1
k .
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We have only proved so far that lim supn→∞
n
√
pn(o, o) = ρ(Tk). Of course, p2n+1(o, o) = 0, but is it

true that limn→∞
2n
√
p2n(o, o) = ρ(Tk)? The answer is yes. Note that

p2n+2m(o, o) ≥ p2n(o, o) p2m(o, o) , (1.10) {e.Fekete}{e.Fekete}

since a particular way to be back after 2n + 2m steps is to be back also after 2n steps. Hence an :=

− log p2n(o, o) ∈ [0,∞) is a subadditive sequence: an+m ≤ an + am. Fekete’s lemma (prove it yourself

or look it up in [LyPer16, Exercise 3.9] if you have not seen it) says that limn→∞ an/n exists and equals

infn an/n, hence limn→∞
2n
√
p2n(o, o) = limn→∞ exp(−an/(2n)) also exists, and equals ρ(Tk), of course.

Exercise▷ 1.4. Let k, ℓ ≥ 2. Compute ρ(Tk,ℓ), where Tk,ℓ is a tree such that if vn ∈ Tk,ℓ is a vertex at

distance n from the root, then

deg vn =

{
k, if n is even

ℓ, if n is odd.

(Hint: you can either follow the strategy above, or note that two steps on Tk,ℓ give a lazy random walk on

Tk(ℓ−1), where laziness means that in every step there is a certain probability of staying put. This laziness

changes, of course, the spectral radius, and the final result will be symmetric in k and ℓ.)

The next three exercises provide a probabilistic proof of Theorem 1.7, in a more precise form. (But

note that the correction factor n−3/2 of Exercise 1.7 can also be obtained by analyzing the singularities

of the generating functions.) This probabilistic strategy might be known to a lot of people, but I do not

know any reference — I found it based on my own work [GarPS10a, Section 4] and some conversations

with Bálint Virág.
{ex.nozeros}

Exercise▷ 1.5. Show that for biased SRW on Z, i.e., P[Xn+1 = j + 1 | Xn = j ] = p,

P0

[
Xi > 0 for 0 < i < n

∣∣ Xn = 0
]
≍ 1

n
,

with constants independent of p ∈ (0, 1). (Hint: first show, using the reflection principle [Dur10, Section

4.3], that for symmetric simple random walk, P0[Xi > 0 for all 0 < i ≤ 2n ] = 1
2P0[X2n = 0 ].)

{ex.zeros}
Exercise▷ 1.6. * For biased SRW on Z, show that there is a subexponentially growing function g(m) =

exp(o(m)) such that

P0

[
#{i : Xi = 0 for 0 < i < n} = m

∣∣ Xn = 0
]
≤ g(m)

1

n
.

(Hint: count all possible m-element zero sets, together with a good bound on the occurrence of each.)
{ex.tree3/2}

Exercise▷ 1.7. Note that for SRW on the k-regular tree Tk, the distance process Dn = dist(X0, Xn) is a

biased SRW on Z reflected at 0.

(a) Using this and Exercise 1.5, prove that the return probabilities on Tk satisfy

c1 n
−3/2ρn ≤ pn(x, x) ≤ c2 n−1/2ρn,

for some constants ci depending only on k, where ρ = ρ(Tk) is given by Theorem 1.7.

(b) Using Exercise 1.6, improve this to

pn(x, x) ≍ n−3/2ρn ,

with constants depending only on k.
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1.2 Large deviations: Azuma-Hoeffding and relative entropy
{ss.LD}

We discuss now a result needed for the random walk estimates in the previous section.
{p.Azuma}

Proposition 1.8 (Azuma-Hoeffding inequality). Let X1, X2, . . . be random variables satisfying the follow-

ing criteria:

• E
[
Xi

]
= 0 ∀i.

• More generally, E
[
Xi1 · · ·Xik

]
= 0 for any k ∈ Z+ and i1 < i2 < · · · < ik.

• ∥Xi∥∞ <∞∀i .
Then, for any L > 0,

P
[
X1 + · · ·+Xn > L

]
≤ e−L

2/(2
∑n

i=1∥Xi∥2∞).

By symmetry, the same bound holds for P
[
X1 + · · ·+Xn < −L

]
.

Before starting the proof, note that the simplest setup where the conditions of the proposition are

satisfied is when the {Xi} is an i.i.d. sequence of bounded variables, which was the case also in the

previous section. For an i.i.d. sequence, with E
[
Xi

]
= µ and ∥Xi − µ∥∞ = γ, for any α > µ we get

P
[
Sn > αn

]
≤ exp

(
−
(
α− µ

2γ

)2

n

)
,

which immediately implies Lemma 1.4, where we have µ = 1/d and γ < 1. In fact, for an i.i.d. Bernoulli

sequence, Xi ∼ Ber(p), this exponential bound is among the most basic tools in discrete probability, usually

called Chernoff’s inequality; see, e.g., [AloS00, Appendix A.1].

However, we would not have stated Proposition 1.8 in such a general form if its only use was for i.i.d. se-

quences. Indeed, the uncorrelatedness conditions for the Xi’s are also fulfilled by martingale differences

Xi = Mi−Mi−1, where {Mi}∞i=0 is a martingale sequence. See Section 6.3 for the definition of a martingale

and examples, in case you do not know them already.
{ex.MGdiff}

Exercise▷ 1.8. Show that if {Mi}∞i=0 is a martingale, then the differences Xi = Mi −Mi−1 satisfy the

uncorrelatedness condition E
[
Xi1 · · ·Xik

]
= 0, for any k ∈ Z+ and i1 < i2 < · · · < ik.

Proof of Proposition 1.8. Define Sn := X1 + · · ·+Xn. Choose any t > 0. We have

P
[
X1 + · · ·+Xn > L

]
≤ P

[
etSn > etL

]
≤ e−tLE

[
etSn

]
, by Markov’s inequality.

By the convexity of etx, for |x| ≤ a, we have

etx ≤ eat a+ x

2a
+ e−at

a− x
2a

= cosh(at) +
x

a
sinh(at) .

We now apply this for x := Xi and a = ai := ∥Xi∥∞. The point is that the bound is linear inXi, hence, after

taking the product over all i and taking expectations, we can use our condition that E
[
Xi1 · · ·Xik

]
= 0,

and get

E
[
etSn

]
= E

[ n∏
i=1

etXi

]
≤ E

[ n∏
i=1

(
cosh(ait) +

Xi

ai
sinh(ait)

)]
=

n∏
i=1

cosh(ait) .

Since

cosh(ait) =

∞∑
k=0

(ait)
2k

(2k)!
≤
∞∑
k=0

(ait)
2k

2kk!
= ea

2
i t

2/2 ,
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we see that

P
[
Sn > L

]
≤ e−tLe

∑n
i=1∥Xi∥2∞t2/2.

We optimize the bound by setting t = L/
∑n
i=1 ∥Xi∥2∞, proving the proposition.

Sometimes, the martingale differences are bounded, but not at all symmetric: e.g., in the i.i.d. case,

we might have Xi ∼ Ber(p) − p, with some p close to 0 or 1. A general way of expressing this is that the

conditional variance Var[Mi+1 |Mi] is small. In such cases, the following version is more useful.
{p.AsymmAzuma}

Proposition 1.9 (Azuma-Hoeffding for small variance martingales). Let M0,M1, . . . be a martingale

w.r.t. a filtration (Fi)i≥0, satisfying ∥Mi −Mi−1∥∞ ≤ D < ∞ and σ2
i := Var[Mi+1 |Fi] < ∞ for all

i. Then, for any L > 0,

P
[
Mn −M0 > L

]
≤ e−L

2/
(
2DL/3+2

∑n
i=1 σ

2
i

)
,

and the same for the lower tail.

In particular, if Sn = X1 + · · · + Xn is a sum of independent indicator variables Xi ∼ Ber(pi), with

total mean µ =
∑n
i=1 pi, then for any δ > 0 there exists cδ > 0 such that

P
[
|Sn − µ| > δµ

]
≤ 2e−cδµ . (1.11) {e.iidAA}{e.iidAA}

Sketch of proof. The argument is somewhat similar to the previous one. The extra key trick is to use

|Mi −Mi−1|k ≤ |Mi −Mi−1|2Dk−2 in the Taylor expansion of et(Mi−Mi−1) to obtain that

E[ etMi | Fi−1 ] ≤ et
2g(tD)σ2

i etMi−1 ,

with g(y) :=
∑∞
k=2

yk−2

k! . Proceed inductively to get E[ etMn ] ≤ et
2g(tD)

∑n
i=1 σ

2
i etM0 , then choose t =

L/
(
DL/3 + 2

∑n
i=1 σ

2
i

)
in the exponential Markov’s inequality, and use that g(y) < 1/2

1−y/3 for y < 3. See

[McDi98, Section 3] or [ChuL06, Theorems 18 and 22] for the details. The i.i.d. case is also proved in

[AloS00, Corollary A.1.14].

In Section 6.3, we will see applications of Proposition 1.8 to martingales. An application of Proposi-

tion 1.9 is in Exercise 14.4 part (b), while an application of (1.11) is in the proof of Theorem 12.23. In the

rest of the present section, we will discuss some precise general results for i.i.d. sequences.

First of all, for any i.i.d. sequence and any α ∈ R, the limit

lim
n→∞

logP
[
Sn > αn

]
n

= −γ(α) (1.12) {e.LDiid}{e.LDiid}

exists. The reason is that

P
[
Sn > αn

]
P
[
Sm > αm

]
≤ P

[
Sn+m > α(n+m)

]
,

hence γn := − logP
[
Sn > αn

]
is a subadditive sequence, and limn γn/n = infn γn/n holds by Fekete’s

lemma, as for (1.10) in the previous section. The function γ(α) is called the large deviation rate function

(associated with the distribution of Xi). In order to ensure that γ(α) > 0 holds for α > µ = E
[
Xi

]
, instead

of boundedness, it is enough that the moment generating function E
[
etX

]
is finite for some t > 0. The

rate function can be computed in terms of the moment generating function, and, e.g., for Xi ∼ Ber(p) it is

γp(α) = α log
α

p
+ (1− α) log

1− α
1− p

, for α > p . (1.13) {e.LDBinomial}{e.LDBinomial}
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The proofs of these results involving the moment generating function can be found, e.g., in [Dur10, Section

2.6] and [Bil86, Section 1.9]. We will here sketch a proof of formula (1.13), and give an interpretation of it

in terms of relative entropy.

To start with, note that γp(α) > 0 holds for all α ̸= p. What is its interpretation for α < p? It turns

out that

lim
n→∞

logP
[
Binom(n, p) = αnn

]
n

= −γp(α) (1.14) {e.LDiideq}{e.LDiideq}

holds for any α ∈ R and any sequence αn → α such that αnn ∈ N for every n. This is an easy consequence

of Stirling’s formula (see the next exercise). That is, the main claim in the large deviations bounds is that

for α > p, the exponential rate of P
[
Sn ≥ αnn

]
is kind of comparable to being exactly αnn, which is not

that surprising (see the next exercise again): it is very hard for Binom(n, p) to be so large, so it typically

fulfils this task by going over αnn just a little bit, hence it is not that unlikely that it is exactly αnn.
{ex.StirlingLD}

Exercise▷ 1.9. Using Stirling’s formula, prove first (1.14) then (1.12), with γp(α) given by (1.13).

More generally, consider any probability measure π on a finite set S such that π(x) > 0 for all x ∈ S. For

i.i.d. samples X = (X1, . . . , Xn) from π, let Ln(X) := 1
n

∑n
i=1 δXi

be the associated empirical distribution

(where δx is the unit mass at x). Furthermore, let µn → µ be probability measures on S such that

nµn(x) ∈ N for all n and x ∈ S. Then, we may ask how hard it is for i.i.d. samples from π to behave as if

they were samples from µ, and the answer is the following:

lim
n→∞

1

n
log πn

(
X ∈ Sn : Ln(X) = µn

)
= −D(µ ∥π) , (1.15) {e.pimu}{e.pimu}

where D(µ ∥π) is called the relative entropy of µ with respect to π, which we now define.
{d.entropy}

Definition 1.10. The Shannon entropy H(µ) of a probability measure µ on a countable set S is

H(µ) := −
∑
x∈S

µ(x) logµ(x) .

Similarly, for a random variable X with values in a countable set, H(X) is the entropy of the mea-

sure µ(x) = P[X = x ]. The relative entropy between the random variables X and Y , also called the

Kullback-Leibler divergence, is

D(X ||Y ) =
∑
x∈S

P
[
X = x

]
log

P[X = x ]

P[Y = x ]
.

Note that this depends only on the distributions of X and Y , not on the joint distribution. Of course, when

S is infinite, these quantities might be infinite.

Note that H(µ) ≤ log | suppµ| by the concavity of −x log x on x ∈ [0, 1] and Jensen’s inequality, with

equality for the uniform measure. Here is a certain converse:

Exercise▷ 1.10. If µ(x) < ϵ for all x ∈ S in a finite or countably infinite support S for a probability

measure µ, then H(µ) ≥ log 1
ϵ .

A rough interpretation of H(µ) is the number of bits needed to encode the amount of randomness in µ,

or in other words, the amount of information contained in a random sample from µ. We will see a precise

formulation of this in (1.16) below. (The interpretation with bits works the best, of course, if we are using

log2.) A quote from Claude Shannon (from Wikipedia):
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“My greatest concern was what to call it. I thought of calling it ‘information’, but the word was overly used,

so I decided to call it ‘uncertainty’. When I discussed it with John von Neumann, he had a better idea. Von

Neumann told me, ‘You should call it entropy, for two reasons. In the first place your uncertainty function

has been used in statistical mechanics under that name, so it already has a name. In the second place, and

more important, nobody knows what entropy really is, so in a debate you will always have the advantage.”

Entropy plays an important role in many parts of probability theory and mathematics in general. We

will meet it again in Section 5.4, Chapter 9, and Section 13.2. For a nice summary of several probabilistic

aspects of entropy see [Geo03], which we partly follow here.

In the special case that Y = U is uniform on |S| = k elements:

D(X ∥U) =
∑
x∈S

P
[
X = x

]
logP[X = x ] + log k = H(U)−H(X) .

In this case, using the uniform measure as π and noting that the number of all possible sequences X ∈ Sn

is kn, the limit (1.15) says that

lim
n→∞

1

n
log
∣∣∣{X ∈ Sn : Ln(X) = µn

}∣∣∣ = H(µ) . (1.16) {e.piunifmu}{e.piunifmu}

This gives the nice interpretation to H(µ) that it measures the uncertainty inherent in the measure. (Or

in other words, the new information in a sample from µ.) And now it is actually quite easy to prove (1.15):

Exercise▷ 1.11.

(a) Using multinomial coefficients and Stirling’s formula, prove (1.16).

(b) Show that, for any probability measure π on a finite set S, and any X ∈ Sn,

− 1

n
log πn(X) = D

(
Ln(X)

∥∥π)+H
(
Ln(X)

)
.

(c) From parts (a) and (b), deduce (1.15).

Now, given formula (1.15), it is not surprising that the following large deviations result holds. For a

proof, see [DemZ98, Theorem 2.1.10]:

Theorem 1.11 (Sanov’s large deviations theorem). Let π be a probability measure and G a set of probability

measures on a finite set S, and let G◦ and G denote its interior and closure, respectively, as subsets of R|S|.
Then,

− inf
µ∈G◦

D(µ ∥π) ≤ lim inf
n→∞

1

n
log πn

(
X ∈ Sn : Ln(X) ∈ G

)
≤ lim sup

n→∞

1

n
log πn

(
X ∈ Sn : Ln(X) ∈ G

)
≤ − inf

µ∈G
D(µ ∥π) .

In many natural examples (e.g., the set of Ber(q) measures with q > α), the infima over G◦ and G are

equal, hence this theorem gives an exact answer. Also, there are several extensions beyond the case of a

finite S, but then it starts to matter what topology we use on the set of probability measures on S, and

there are different versions depending on that. See [DemZ98] for more information.

We close this section with the following nice exercise from [GácsL09, Chapter 6]:
{ex.ApproxAlgo}

Exercise▷ 1.12. We want to compute a real quantity a. Suppose that we have a randomized algorithm that

computes an approximation A (which is a random variable) such that the probability that |A− a| > 1 is at

most 1/20.

(a) Show that by calling the algorithm t times, you can compute an approximation B such that the

probability that |B − a| > 1 is at most 1/2t.
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(b) Show by examples that the 1/2 versus 1/20 above is not a typo: if both numbers are 1/2 or both are

1/20, then the claim can fail, e.g., for t = 2.

2 Free groups and presentations
{s.groups}

The group structure of Rd and Zd is familiar to everyone from high school, even if it was not defined what

a group is. In this chapter, we study free groups, the grandmothers of all groups.

2.1 Introduction
{ss.groupintro}

Definition 2.1 (Fk, the free group on k generators). Let a1, a2, . . . , ak, a
−1
1 , a−12 , . . . , a−1k be symbols. The

elements of the free group generated by {a1, . . . , ak} are the finite reduced words: remove any aia
−1
i or

a−1i ai repeatedly until there is none. Group multiplication is concatenation of words, followed by reduction

if needed. The unit element is the empty word.

The associativity of this multiplication follows from the next lemma:

Lemma 2.2. Every word has a unique reduced word.

Proof. We use induction on the length of the word w to be reduced. If there is at most one immediate

reduction to make in w, the induction is obvious. If there are two different reductions, resulting in w1 and

w2, note that the reduction leading from w to wi is still available in w3−i, and after making this second

reduction we get the same word w12 both from w1 and w2. The induction hypothesis for w1, w2, w12 now

gives that the unique final reduced words from w1 and w2 both must be equal to the final reduced word

from w12, proving uniqueness for w.

Proposition 2.3. If S is a set and FS is the free group generated by S, and Γ is any group, then for any

map f : S −→ Γ there is a group homomorphism f̂ : FS −→ Γ extending f .

Proof. Define f̂(si11 · · · s
ik
k ) = f(s1)i1 · · · f(sk)ik , then check that this is a homomorphism.

Corollary 2.4. Every group is a quotient of a free group.

Proof. Lazy solution: take S = Γ, then there is an onto map FS −→ Γ. A less lazy solution is to take a

generating set, Γ = ⟨S⟩. Then, by the proposition, there is a surjective map f̂ : FS −→ Γ with ker(f̂) ◁FS ,

hence FS/ ker(f̂) ≃ Γ.

Definition 2.5. Given a generating set S and a set of relations R of elements of S, a presentation of

Γ is given by ⟨S⟩ mod the relations in R. This is written Γ = ⟨S|R⟩. More formally, Γ ≃ ⟨S⟩/⟨⟨R⟩⟩ where
R ⊂ FS and ⟨⟨R⟩⟩ is the smallest normal subgroup containing R. A group is called finitely presented if

both R and S can be chosen to be finite sets. The minimal number of generators is called the rank of the

group.

Example: Consider the group Γ = ⟨a1, . . . , ad | [ai, aj ] ∀i, j⟩, where [ai, aj ] = aiaja
−1
i a−1j . We wish to

show that this is isomorphic to the group Zd. It is clear that Γ is commutitive — if we have aiaj in a word,

we can insert the commutator [aiaj ] to reverse the order — so every word in Γ can be written in the form

v = an1
1 an2

2 · · · a
nk

k .

Define ϕ : G −→ Zd by ϕ(v) = (n1, n2, . . . , nk). It is now obvious that ϕ is an isomorphism.
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{d.Cayley}
Definition 2.6. Let Γ be a finitely generated group, ⟨S⟩ = Γ. Then the right Cayley graph G(Γ, S) is

the graph with vertex set V (G) = Γ and edge set E(G) = {(g, gs) : g ∈ Γ, s ∈ S}. The left Cayley graph

is defined using left multiplications by the generators. These graphs are often considered to have directed

edges, labeled with the generators, and then they are sometimes called Cayley diagrams. However, if S

is symmetric (∀s ∈ S, s−1 ∈ S), then G is naturally undirected and |S|-regular (even if S has order 2

elements).

Example: The Zd lattice is the Cayley graph of Zd with the 2d generators {ei,−ei}di=1.

Example: The Cayley graph of F2 with generators {a, b, a−1, b−1} is a 4-regular tree, see Figure 2.1.

Figure 2.1: The Cayley graph of F2. {f.F2}

Let Γ be a group with right Cayley graph G = G(Γ, S). Then Γ acts on G by multiplication from

the left as follows: for h ∈ Γ, an element g ∈ V (G) maps to hg, and an element (g, gs) ∈ E(G) maps to

(hg, hgs). This shows that every Cayley graph is transitive.

Finitely presentedness has important consequences for the geometry of the Cayley graphs, see Sec-

tions 2.4 and 3.1, and the discussion around Proposition 12.8. Classical examples of finitely generated

non-finitely presented groups are the lamplighter groups Z2 ≀ Zd, which will be defined in Section 5.1, and

studied in Chapter 9 from a random walk point of view. The non-finitely presentedness of Z2 ≀Z is proved

in Exercise 12.22.

We have seen two effects of Tk being much more “spacious” than Zd on the behaviour of simple

random walk: the escape speed is much larger, and the return probabilities are much smaller. It looks

intuitively clear that Z and Tk should be the extremes, and that there should be a large variety of possible

behaviours in between. It is indeed relatively easy to show that Tk is one extreme among 2k-regular

Cayley-graphs, but, from the other end, it is only a recent theorem that the expected rate of escape is at

least E
[

dist(X0, Xn)
]
≥ c
√
n on any group: see Section 10.2. One reason for this not being obvious is

that not every infinite group contains Z as a subgroup: there are finitely generated infinite groups with a

finite exponent n: the nth power of any element is the identity. Groups with such strange properties are

called Tarksi monsters. But even on groups with a Z subgroup, there does not seem to be an easy proof.

We will also see that constructing groups with intermediate behaviours is not always easy. One reason

for this is that the only general way that we have seen so far to construct groups is via presentations, but

there are famous undecidability results here: there is no general algorithm to decide whether a word can

be reduced in a given presentation to the empty word, and there is no general algorithm to decide if a
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group given by a presentation is isomorphic to another group, even to the trivial group. So, we will need

other means of constructing groups.

2.2 Digression to topology: the fundamental group and covering spaces
{ss.topology}

Several results on free groups and presentations become much simpler in a topological language. The

present section discusses the necessary background.

We will need the concept of a CW-complex. The simplest way to define an n-dimensional CW-

complex is to do it recursively:

• A 0-complex is a countable (finite or infinite) union of points, with the discrete topology.

• To get an n-complex, we can glue n-cells to an n− 1-complex, i.e., we add homeomorphic images of

the n-balls such that each boundary is mapped continuously onto a union of n− 1-cells.

We will always assume that our topological spaces are connected CW-complexes.

Consider a space X and a fixed point x ∈ X. Consider two loops α : [0, 1] −→ X and β : [0, 1] −→ X

starting at x. I.e., α(0) = α(1) = x = β(0) = β(1). We say that α and β are homotopic, denoted by

α ∼ β, if there is a continuous function f : [0, 1]× [0, 1] −→ X satisfying

f(t, 0) = α(t), f(t, 1) = β(t), f(0, s) = f(1, s) = x ∀s ∈ [0, 1].

We are ready to define the fundamental group of X. Let π1(X,x) be the set of equivalence classes

of paths starting and ending at x. The group operation on π1 is induced by concatenation of paths:

αβ(t) =

α(2t) t ∈ [0, 12 ]

β(2t− 1) t ∈ [ 12 , 1]
.

While it seems from the definition that the fundamental group would depend on the point x, this is

not true. To find an isomorphism between π1(X,x) and π1(X, y), map any loop γ starting at x to a path

from y to x concatenated with γ and the same path from x back to y.

The spaces X and Y are homotopy equivalent, denoted by X ∼ Y , if there exist continuous functions

f : X −→ Y and g : Y −→ X such that

f ◦ g ∼ idY , g ◦ f ∼ idX .

A basic result (with a simple proof that we omit) is the following:
{t.fundhomotop}

Theorem 2.7. If X ∼ Y then π1(X) ∼= π1(Y ).
{t.fundRose}

Theorem 2.8. Consider the CW-complex with a single point and k loops from this point. Denote this

CW-complex by Rosek, a rose with k petals. Then π1(Rosek) = Fk.

The proof of this theorem uses the Seifert-van Kampen Theorem 3.2. We do not discuss this here, but

we believe the statement is intuitively obvious.
{c.fundgraph}

Corollary 2.9. The fundamental group of any (connected) graph is free.
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Proof. For any finite connected graph with n vertices and l edges, consider a spanning tree T . Then T has

n−1 edges. Contract T to a point x. There are k = l−n+1 edges left over, and after the contraction each

begins and ends at x. Contraction of a spanning tree to a point is a homotopy equivalence, so the graph

is homotopy equivalent to Rosek. Hence, the fundamental group is free by Theorems 2.7 and 2.8.

Exercise▷ 2.1. If Γ is a topological group then π1(Γ) is commutative. (Recall that a group Γ is a topological

group if it is also a topological space such that the functions Γ×Γ −→ Γ : (x, y) 7→ xy and Γ −→ Γ : x 7→ x−1

are continuous.)

We now introduce another basic notion of geometry:
{d.covering}

Definition 2.10. We say that X ′
p
↠ X is a covering map if for every x ∈ X, there is an open neigh-

bourhood U ∋ x such that each connected component of p−1(U) is homeomorphic to U by p.
{p.uniquelift}

Proposition 2.11. Let γ ⊂ X be any path starting at x. Then for every x∗ ∈ p−1(x) there is a unique γ∗

starting at x∗ with p(γ∗) = γ.

Sketch of proof. Because of the local homeomorphisms, there is always a unique way to continue the lifted

path.
{t.monodromy}

Theorem 2.12 (Monodromy Theorem). If γ and δ are homotopic with fixed endpoints x and y, then the

lifts γ∗ and δ∗ starting from the same x∗ have the same endpoints and γ∗ ∼ δ∗.

Sketch of proof. The homotopies can be lifted through the local homeomorphisms.

The following results can be easily proved using Proposition 2.11 and Theorem 2.12:
{l.graphcover}

Lemma 2.13. Any covering space of a graph is a graph.
{l.k-fold}

Lemma 2.14. Let x ∈ X and U ∋ x a neighbourhood as in Definition 2.10. Then the number k of

connected components of p−1(U) is independent of x and U , and the covering is called k-fold. (In fact, the

lifts of any path γ between x, y ∈ X give a pairing between the preimages of x and y.)

Let X be a topological space. We say that X̂ is a universal cover of X if:

• X̂ is a cover.

• X̂ is connected.

• X̂ is simply connected, i.e., π1(X̂) = 1.

The existence of a universal cover is guaranteed by the following theorem:
{t.univcover}

Theorem 2.15. Every connected CW complex X has a universal cover X̂.

Sketch of proof. Let the set of points of X̂ be the fixed endpoint homotopy classes of paths starting from

a fixed x ∈ X. The topology on X̂ is defined by thinking of a class of paths [γ] to be close to [δ] if there

are representatives γ, δ such that δ is just γ concatenated with a short piece of path.

Exercise▷ 2.2. Write down the above definition of the topology on X̂ properly and the proof that, with this

topology, π1(X̂) = 1.
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The fundamental group π1(X) acts on X̂ with continuous maps, as follows.

Let γ ∈ π1(X,x) be a loop, p the surjective map defined by the covering X̂, and x∗ ∈ p−1(x) a point

above x. Using Proposition 2.11 and Theorem 2.12, there exists a unique homeomorphic curve γ∗ (not

depending on the representative for γ) with starting point x∗ and some ending point x∗ , which also belongs

to p−1(x). The action fγ on x∗ is now defined by fγ(x∗) = x∗. As we mentioned above, this action does

not depend on the representative for γ, and it is clear that fδ ◦ fγ = fγδ for γ, δ ∈ π1(X,x), so we indeed

have an action of π1(X,x) on the fibre p−1(x).

We need to define the action also on any y∗ ∈ p−1(y), y ∈ X. We take a path δ∗ in X̂ from y∗ to x∗,

then δ = p(δ∗) is a path from y to x, and δγδ−1 is a path from y to itself. Since π1(X̂) = 1, all possible

choices of δ∗ are homotopic to each other, hence all resulting δ and all δγδ−1 curves are homotopic. By

Proposition 2.11 and Theorem 2.12, there is a unique lift of δγδ−1 starting from y∗, and its endpoint

y∗ ∈ p−1(y) does not depend on the choice of δ∗. Hence we indeed get an action of π1(X,x) on the entire

X̂.

This action permutes points inside each fibre, and it is easy to see that the action is free (i.e., only the

identity has fixed points). If we make the quotient space of X̂ by this group action (i.e., each point of

X̂ is mapped to its orbit under the group action), we will obtain X, and the quotient map is exactly the

covering map p:

X̂/π1(X,x) = X . (2.1) {e.pi1factor}{e.pi1factor}

Example: The fundamental group of the torus T2 is Z2. We have R2/Z2 = T2, where R2 is the usual

covering made out of copies of the square [0, 1)× [0, 1).

{ex.qtransTree}
Exercise▷ 2.3.

(a) Show that the universal covering tree of any finite graph is quasi-transitive.

(b) Give an example of a quasi-transitive infinite tree that is not the universal covering tree of any finite

graph. (Hint: specify that there are k orbits in the tree, and for 1 ≤ i, j ≤ k, each vertex of type i

has n(i, j) neighbours of type j.)

For each subgroup H ≤ π1(X), we can consider XH = X̂/H, which is still a covering space of X: there

is a natural surjective map from XH to X, by taking the π1(X)-orbit containing any given H-orbit. On

the other hand, X̂ is the universal cover of XH , too, and we have π1(XH) ∼= H.

2.3 The main results on free groups
{ss.freemain}

A probably unsurprising result is the following:
{t.freeisom}

Theorem 2.16. Fk ∼= Fl only if k = l .

Exercise▷ 2.4. Prove Theorem 2.16. (Hint 1: how many index 2 subgroups are there? Or, hint 2: What

is Fk/[Fk, Fk]?)

The next two results can be proved also with combinatorial arguments, but the topological language of

the previous section makes things much more transparent.
{t.NieSch}

Theorem 2.17 (Nielsen-Schreier). Every subgroup of a free group is free.
{t.Schind}

Theorem 2.18 (Schreier’s index formula). If Fk is free and Fl ≤ Fk such that [Fk : Fl] = r <∞, then

l − 1 = (k − 1)r.
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Proof of Theorem 2.17. Let the free group be Fk. By Theorem 2.8, we have Fk ∼= π1(Rosek). Let G be

the universal cover of Rosek. By Lemma 2.13, it is a graph; in fact, it is the 2k-regular tree T2k.

Now take H ≤ Fk. As discussed at the end of the previous section, GH = G/H is a covering of Rosek

and is covered by T2k. Again by Lemma 2.13, it is a graph, and π1(GH) = H. By Corollary 2.9, the

fundamental group of a graph is free, hence H is free, proving Theorem 2.17.

Proof of Theorem 2.18. The Euler characteristic of a graph is the difference between the number of vertices

and the number of edges:

χ(G) = |V (G)| − |E(G)| .

Homotopies of graphs increase or decrease the vertex and the edge sets by the same amount, hence χ is a

homotopy invariant of graphs. Furthermore, if G′ is an r-fold covering of G, then rχ(G) = χ(G′).

Since the graph Rosek has one vertex and k edges, χ(Rosek) = 1− k. As the index of H = Fl in Fk is

r, we see that T2k/H is an r-fold covering of Rosek. Thus, χ(T2k/H) = rχ(Rosek) = r(1− k).

On the other hand, T2k/H is a graph with π1(T2k/H) = H = Fl. Since any graph is homotopic to a rose,

and, by Theorems 2.8 and 2.16, different roses have non-isomorphic fundamental groups, π1(Rosel) = Fl,

we get that T2k/H must be homotopic to Rosel, and thus χ(T2k/H) = 1 − l. Therefore, we obtain

r(1− k) = 1− l.

Notice that, if 2 ≤ r <∞ then r(1− k) ̸= 1− k.

Exercise▷ 2.5. Prove that Fk has itself as a subgroup of infinite index.

Exercise▷ 2.6. * A finitely generated group acts on a tree freely if and only if the group is free. (The

action is by graph automorphisms of the tree T , and a free action means that StabG(x) = {1} for any

x ∈ V (T ) ∪ E(T ).)

Hint: separate the cases where there is an element of order 2 in Γ, and where there are no such elements

(in which case there is a fixed vertex, as it turns out).

We will now show that a finitely generated free group is linear. For instance, F2 ≤ SL2(Z) (integer 2×2

matrices with determinant 1). Indeed:
{l.pingpong}

Lemma 2.19 (Ping-Pong Lemma). Let Γ be a group acting on some set X. Let Γ1, Γ2 be subgroups of Γ,

with |Γ1| ≥ 3, and let Γ∗ = ⟨Γ1,Γ2⟩. Assume that there exist non-empty sets X1, X2 ⊆ X with X2 ⊈ X1

and
γ(X2) ⊆ X1 ∀γ ∈ Γ1 \ {1} ,

γ(X1) ⊆ X2 ∀γ ∈ Γ2 \ {1} .

Then Γ1 ∗ Γ2 = Γ∗.

The product ∗ denotes the free product. If Γ1 = ⟨S1|R1⟩ and Γ2 = ⟨S2|R2⟩, then Γ1 ∗ Γ2 =

⟨S1, S2|R1, R2⟩. In particular, Fk = Z ∗ Z ∗ · · · ∗ Z, k times.

Exercise▷ 2.7. Prove the Ping-Pong Lemma.

Now let

Γ1 =

{(
1 2n

0 1

)
, n ∈ Z

}
, Γ2 =

{(
1 0

2n 1

)
, n ∈ Z

}
,

with

X1 =

{(
x

y

)
∈ R2, |x| > |y|

}
, X2 =

{(
x

y

)
∈ R2, |x| < |y|

}
,
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with the usual (linear) action of matrices in SL2(Z) on R2. Observe that the hypotheses of the Ping-Pong

Lemma are fulfilled. Therefore, the matrices

(
1 2

0 1

)
and

(
1 0

2 1

)
generate a free group.

{ex.resfin}
Exercise▷ 2.8. Show that the following properties of a group Γ are equivalent.

(i) For every γ ̸= 1 ∈ Γ there is a homomorphism π onto a finite group F such that π(γ) ̸= 1.

(ii) The intersection of all its subgroups of finite index is trivial.

(iii) The intersection of all its normal subgroups of finite index is trivial.

Such groups are called residually finite.

For instance, Zn, SLn(Z) and GLn(Z) are residually finite, because of the natural (mod p) homomor-

phisms onto (Z/pZ)n, SLn(Z/pZ) and GLn(Z/pZ).
{ex.Fresfin}

Exercise▷ 2.9. Show that any subgroup of a residually finite group is also residually finite. Conclude that

the free groups Fk are residually finite.

Exercise▷ 2.10.

(i) Show that if Γ is residually finite and ϕ : Γ −→ Γ is a surjective homomorphism, then it is a bijection.

(Hint: assume that kerϕ is non-trivial, show that the number of index k subgroups of Γ ≃ Γ/ kerϕ

is finite, then arrive at a contradiction. Alternatively, show that any homomorphism π onto a finite

group F must annihilate kerϕ.)

(ii) Conclude that if k distinct elements generate the free group Fk, then they generate it freely.

2.4 Presentations and Cayley graphs
{ss.presentations}

Fix some subset of (oriented) loops in a directed Cayley graph G(Γ, S) of a group Γ = ⟨S|R⟩, which will

be called the basic loops. A geometric conjugate of a loop can be:

• “rotate” the loop, i.e., choose another starting point in the same loop;

• translate the loop in G by a group element.

A combination of basic loops is a loop made of a sequence of loops (ℓi), where the i-th is a geometric

conjugate of a basic loop, and starts in a vertex contained in some ℓj , j ∈ [1, i− 1].

To any loop ℓ = (g, gs1, gs1s2, . . . , gs1s2 · · · sk = g), with each si ∈ S, we can associate the word

w(ℓ) = s1s2 · · · sk. So, translated copies of the same loop have the same word associated to them.
{p.loops}

Proposition 2.20. Any loop in G(Γ, S) is homotopy equivalent to a combination of basic loops if and only

if the words given by the basic loops generate ⟨⟨R⟩⟩ as a normal subgroup.

Recall that ⟨⟨R⟩⟩ denotes the normal subgroup of the relations, and Γ = FS/⟨⟨R⟩⟩.

Proof. Let the set of all loops in G be L, the set of basic loops B, and the set of loops produced from B by

combining them and applying homotopies C. The statement of the proposition is that C = L if and only if

⟨⟨w(B)⟩⟩ = ⟨⟨R⟩⟩.
We first show that ⟨⟨w(B)⟩⟩ = w(C). Let us start with the direction ⊇.

What happens to the associated word when we rotate a loop? From the word s1s2 · · · sk ∈ w(B), rotating

by one edge, say, we get s2 · · · sks1. This new word is in fact a conjugate of the old word: s−11 (s1s2 · · · sk)s1,

hence it is an element of ⟨⟨w(B)⟩⟩.
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Next, when we combine two loops, (g, gs1, . . . , gs1 · · · sn = g) and (h, ht1, . . . , ht1 · · · tm = h) into

(g, . . . , gS1, gS1t1, . . . , gS1T, gS1Tsk+1, gS1TS2 = g),

where S1 = s1 · · · sk, S2 = sk+1 · · · sn and T = t1 · · · tm, then the new associated word S1TS2 equals

SS−12 TS2. Thus, combining loops does not take us out from ⟨⟨w(B)⟩⟩. See Figure 2.2 (a).

Finally, if two loops are homotopic to each other in G, then we can get one from the other by combining

in a sequence of contractible loops, which are just “contour paths” of subtrees in G, i.e., themselves are

combinations of trivial sis
−1
i loops for some generators si ∈ S. See Figure 2.2 (b). The effect of these

geometric combinations on the corresponding word is just plugging in trivially reducible words, wich again

does not take us out from ⟨⟨w(B)⟩⟩.

Figure 2.2: (a) Combining two loops. (b) Homotopic loops inside Z2. {f.loops}

So, we have proved ⟨⟨w(B)⟩⟩ ⊇ w(C). But ⊆ is now also clear: we have encountered the geometric

counterpart of all the operations on the words in w(B) that together produce ⟨⟨w(B)⟩⟩.
On the other hand, we obviously have w(L) = ⟨⟨R⟩⟩, since a word on S is a loop in G iff the word

represents 1 in Γ iff the word is in the kernel ⟨⟨R⟩⟩ of the factorization from the free group FS .

So, the last step we need is that L = C if and only if w(L) = w(C). Since both L and C are closed under

translations, this is clear.

We now state an elegant topological definition of the Cayley graph G(Γ, S):
{d.CayleyCW}

Definition 2.21. Take the 1-dimensional CW-complex Rose|S|, and for any word in R, glue a 2-cell on

it with boundary given by the word. Let X(S,R) denote the resulting 2-dimensional CW complex. Now

take the universal cover X̂(S,R). This is called the Cayley complex corresponding to S and R. The

1-skeleton of X̂(S,R) is the 2|S|-regular Cayley graph G(Γ, S) of Γ = ⟨S|R⟩.

For instance, when S = {a, b} and R = {aba−1b−1}, we glue a single 2-cell, resulting in a torus, whose

universal cover will be homeomorphic to R2, with a Z2 lattice as its 1-skeleton.

The proof that this definition of the Cayley graph coincides with the usual one has roughly the same

math content as our previous proposition. But here is a sketch of the story told in the language of

covering surfaces: It is intuitively clear, and can be proved using the Seifert – van Kampen theorem, that

π1(X(S,R)) = ⟨S|R⟩. Then, as we observed in (2.1), X̂(S,R)/Γ = X(S,R). We can now consider the

right Schreier graph G(Γ, X̂, S) of the action of Γ on X̂ = X̂(S,R) with generating set S: the vertices

are the vertices of the CW complex X̂ (this is just one Γ-orbit), and the edges are (x∗, x∗s), where x∗ runs

through the vertices and s runs through S. Clearly, this is exactly the 1-skeleton of X̂. On the other hand,

since the action is free, this Schreier graph is just the Cayley graph G(Γ, S), and we are done.
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So, if we factorize Fk by normal subgroups, we get all possible groups Γ, and the Schreier graph of the

action by Γ on the Cayley complex will be a 2k-regular Cayley graph. Besides the Schreier graph of a

group action, there is another usual meaning of a Schreier graph, which is just a special case: if H ≤ Γ,

and S is a generating set of Γ, then the set H\Γ of right cosets {Hg} supports a natural graph structure,

Hg ∼ Hgs for s ∈ S. This graph is denoted by G(Γ, H, S).
{ex.Schreier}

Exercise▷ 2.11.* Show that any 2k-regular graph is the Schreier graph of Fk with respect to some subgroup

H. On the other hand, the 3-regular Petersen graph is not a Schreier graph.

The above results show that being finitely presented is a property with a strong topological flavour.

Indeed, it is clearly equivalent to the existence of some r < ∞ such that the Ripsr(G(Γ, S)) complex is

simply connected, with the following definition:
{d.Rips}

Definition 2.22. If X is a CW-complex and r > 0, then the Rips complex Ripsr(X) is given by adding

all simplices (of arbitrary dimension) of diameter at most r.

3 The asymptotic geometry of groups
{s.asymptotic}

3.1 Quasi-isometries. Ends. The fundamental observation of geometric group

theory
{ss.qisom}

We now define what we mean by two metric spaces having the same geometry on the large scale. It is a

weakening of bi-Lipschitz equivalence:
{d.Quasi-isometry}

Definition 3.1. Suppose (X1, d1) and (X2, d2) are metric spaces. A map f : X1 −→ X2 is called a

quasi-isometry if ∃C > 0 such that the following two conditions are met:

1. For all p, q ∈ X1, we have d1(p,q)
C − C ≤ d2(f(p), f(q)) ≤ C d1(p, q) + C.

2. For each x2 ∈ X2, there is some x1 ∈ X1 with d2(x2, f(x1)) < C.

Informally speaking, the first condition means that f does not distort the metric too much (it is coarsely

bi-Lipschitz), while the second states that f(X1) is relatively dense in the target space X2.

We also say that X1 is quasi-isometric to X2, denoted by X1 ≃q X2, if there exists a quasi-isometry

f : X1 −→ X2. The notation suggests that this is an equivalence relation — this is shown in the next

exercise. {ex.Qisom-equivalence}
Exercise▷ 3.1. Verify that being quasi-isometric is an equivalence relation. (Hint: given f : X1 −→ X2,

construct a quasi-inverse g : X2 −→ X1, a quasi-isometry with the property that both g ◦ f and f ◦ g are at

a bounded distance from the identity, i.e., supx∈X1
d1(x, g(f(x))) and supy∈X2

d2(y, f(g(y))) are finite.)

For example, Z2 with the graph metric (the ℓ1 or taxi-cab metric) is quasi-isometric to R2 with the

Euclidean metric. Also, Z×Z2 with the graph metric is quasi-isometric to Z: (n, i) 7→ n for n ∈ Z, i ∈ {0, 1}
is a non-injective quasi-isometry that is “almost an isometry on the large scale”, while (n, i) 7→ 2n + i is

an injective quasi-isometry with Lipschitz constant 2. Finally, and maybe most importantly to us, if Γ is

a finitely-generated group, its Cayley graph depends on choosing the symmetric finite generating set, but

the good thing is that any two such graphs are quasi-isometric: each generator si in the first generating

set is a product of some finite number ki of generators from the second generating set, hence any path of

length ℓ in the first Cayley graph can be replaced by a path of length at most ℓmax{ki : si ∈ S} in the

second Cayley graph.
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Exercise▷ 3.2. Show that the regular trees Tk and Tℓ for k, ℓ ≥ 3 are quasi-isometric to each other, by

giving explicit quasi-isometries.

For a transitive connected graph G with finite degrees of vertices, we can define the volume growth

function vG(n) = |Bn(o)|, where o is some vertex of G and Bn(o) is the closed ball of radius n (in the

graph metric on G) with center o. We will sometimes call two functions v1, v2 from N to N equivalent if

∃C > 0 such that

v1

( r
C

)
/C < v2(r) < Cv1(Cr) for all r > 0. (3.1) {e.growthequiv}{e.growthequiv}

It is almost obvious that quasi-isometric transitive graphs have equivalent volume growth functions. (For

this, note that for any quasi-isometry of locally finite graphs, the number of preimages of any point in the

target space is bounded from above by some constant.)

Another quasi-isometry invariant of groups is the property of being finitely presented, as it follows easily

from our earlier remark on Rips complexes just before Definition 2.22.

Our next quasi-isometry invariant will be the number and topological structure of the different ways one

can disappear into infinity. To start with, call a sequence {xn}n≥1 ⊆ V (G) of vertices end-convergent if,

for every finite K ⊂ V , all but finitely many xn’s are in the same connected component of G \K.
{ex.MysteriousEnds}

Exercise▷ 3.3. Define in a reasonable way the space of ends of a graph as a topological space, knowing

that Z has two ends, Zd has one end for d ≥ 2, while the k-regular tree Tk has a continuum of ends. (In par-

ticular, for every end-convergent sequence of vertices defined above, there should exist exactly one end where

the sequence converges to.) Prove that any quasi-isometry of graphs induces naturally a homeomorphism

of their spaces of ends. Thus, the number of ends is a quasi-isometry invariant of the graph.

By invariance under quasi-isometries, we can define the space of ends of a finitely generated group to

be the space of ends of any of its Cayley graphs.

Exercise▷ 3.4 (Hopf 1944).* {ex.2and3ends}
(a) Show that a group has two ends iff it has Z as a finite index subgroup.

(b) Show that if a f.g. group has at least 3 ends, then it has continuum many.
{ex.EndsExamples}

Exercise▷ 3.5.

(a) Show that if G1, G2 are two infinite graphs, then the direct product graph G1 ×G2 has one end.

(b) Show that if |Γ1| ≥ 2 and |Γ2| ≥ 3 are two finitely generated groups, then the free product Γ1 ∗Γ2 has

a continuum number of ends.

An extension of the notion of free product is the amalgamated free product: if Γi = ⟨Si | Ri⟩,
i = 1, 2, are finitely generated groups, each with a subgroup isomorphic to some H, with an embedding

φi : H −→ Γi, then

Γ1 ∗H Γ2 = Γ1 ∗H,φ1,φ2
Γ2 :=

〈
S1 ∪ S2 | R1 ∪R2 ∪ {φ1(h)φ2(h)−1 : h ∈ H}

〉
.

If both Γi are finitely presented, then Γ1 ∗H Γ2 is of course also finitely presentable. There is an important

topological way of how such products arise:
{t.SvK}

Theorem 3.2 (Seifert-van Kampen). If X = X1 ∪X2 is a decomposition of a CW-complex into connected

subcomplexes with Y = X1 ∩X2 connected, and y ∈ Y , then

π1(X, y) = π1(X1, y) ∗π1(Y,y) π1(X2, y) ,

with the natural embeddings of π1(Y, y) into π1(Xi, x).
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{ex.amalgamsemi}
Exercise▷ 3.6.

(a) What is the Cayley graph of Z ∗2Z Z (with the obvious embedding 2Z < Z), with one generator for

each Z factor? Identify the group as a semidirect product Z2 ⋊ Z4, see Section 4.2.

(b) Do there exist CW-complexes realizing this amalgamated free product as an application of Seifert-van

Kampen?

The reason for talking about amalgamated free products here is the following theorem. See the references

in [DrKa09, Section 2.2] for proofs. (There is one using harmonic functions [Kap14]; I might say something

about that in a later version of these notes.)
{t.Stallings}

Theorem 3.3 (Stallings [Sta68], [Bergm68]). Recall from Exercise 3.4 that a group has 0, 1, 2 or a

continuum of ends. The last case occurs iff the group is a free product amalgamated over a finite subgroup.

The following result is sometimes called “the fundamental observation of geometric group theory”.

For instance, it connects two usual “definitions” of geometric group theory: 1. it is the study of group

theoretical properties that are invariant under quasi-isometries; 2. it is the study of groups using their

actions on geometric spaces. We start with some definitions:
{d.spaces}

Definition 3.4. A metric space X is called geodesic if for all p, q ∈ X there exists a, b ∈ R and an

isometry g : [a, b] −→ X with g(a) = p, g(b) = q.

A metric space is called proper if all closed balls of finite radius are compact.
{d.actions}

Definition 3.5. An action of a group Γ on a metric space X by isometries is called properly discon-

tinuous if for every compact K ⊂ X, |{g ∈ Γ : g(K) ∩K ̸= ∅}| is finite.

Any group action defines an equivalence relation on X: the decomposition into orbits. The set of

equivalence classes, equipped with the factor topology coming from X, is denoted by X/Γ. The action is

called co-compact if X/Γ is compact.
{l.Milnor-Schwarz}

Lemma 3.6 (Milnor-Schwarz). Let X be a proper geodesic metric space, and suppose that a group Γ acts

on it by isometries properly discontinuously and co-compactly. Then Γ is finitely generated, and for any

fixed x ∈ X, the map Jx : Γ −→ X defined by Jx(g) = g(x) is a quasi-isometry (on each Cayley graph).

Proof. Pick an arbitrary point x ∈ X, and consider the projection π : X −→ X/Γ. By compactness

of X/Γ, there is an R < ∞ such that the Γ-translates of the closed ball B = BR(x) cover X, or in

other words, π(B) = X/Γ. (Why exactly? Since each element of Γ is invertible, its action on X is a

bijective isometry, hence a homeomorphism. So, for any open U ⊂ X and g ∈ Γ, we have that g(U) and

π−1(π(U)) =
⋃
g∈Γ g(U) are open in X, and therefore π(U) is open in X/Γ. In particular, the images

π(B◦r (x)) of open balls are open. Since B◦r ↗ X as r → ∞, we also have π(B◦r (x)) ↗ X/Γ, and, by

compactness, there exists an R <∞ such that X/Γ = π(B◦R(x)).)

Since the action of Γ is properly discontinuous, there are only finitely many elements si ∈ Γ \ {1} such

that B ∩ si(B) ̸= ∅. Let S be the subset of Γ consisting of these elements si. Since each si is an isometry,

s−1i belongs to S iff si does. Let

r := inf
{
d(B, g(B)) : g ∈ Γ \ (S ∪ {1})

}
.

Observe that r > 0. Indeed, if we denote by B′ closed ball with center x0 and radius R + 1, then for all

but finitely many g ∈ Γ we will have B′ ∩ g(B) = ∅, hence d(B, g(B)) ≥ 1, therefore the infimum above is
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a minimum of finitely many positive numbers, so is positive. The claim now is that S generates Γ, and for

each g ∈ Γ,
d(x, g(x))

2R
≤ ∥g∥S ≤

d(x, g(x))

r
+ 1 , (3.2) {e.Jqisom}{e.Jqisom}

where ∥g∥S = dS(1, g) is the word norm on Γ with respect to the generating set S. Since, in the right Cayley

graph w.r.t. S, we have dS(h, hg) = dS(1, g) for any g, h ∈ Γ, this will mean that Jx(g) := g(x) is coarsely

bi-Lipschitz. Furthermore, since π(B) = X/Γ, for each y ∈ X there is some g ∈ Γ with d(y, g(x)) ≤ R,

hence Jx will indeed be a quasi-isometry from Γ to X.

Let g ∈ Γ, and connect x to g(x) by a geodesic γ. Let m be the unique nonnegative integer with

(m− 1)r +R ≤ d(x, g(x)) < mr +R .

Choose points x0 = x, x1, . . . , xm+1 = g(x) ∈ γ such that x1 ∈ B and d(xj , xj+1) < r for 1 ≤ j ≤ m. Each

xj belongs to some gj(B) for some gj ∈ Γ (and take gm+1 = g and g0 = 1). Observe that

d(B, g−1j (gj+1(B))) = d(gj(B), gj+1(B)) ≤ d(xj , xj+1) < r ,

hence the balls B and g−1j (gj+1(B)) intersect, and gj+1 = gjsi(j) for some si(j) ∈ S ∪ {1}. Therefore,

g = si(1)si(2) · · · si(m) ,

and S is a generating set for Γ. Moreover,

∥g∥S ≤ m ≤
d(x, g(x))−R

r
+ 1 <

d(x), g(x))

r
+ 1 .

On the other hand, the triangle inequality implies that

d(x, g(x)) ≤ 2R ∥g∥S ,

because, for any y ∈ X and s ∈ S, we have BR(y)∩BR(s(y)) ̸= ∅ and hence d(y, s(y)) ≤ 2R. This finishes

the proof of (3.2).

This lemma implies that if Γ1 and Γ2 both act nicely (cocompactly, etc.) on a nice metric space, then

they are quasi-isometric. A small generalization and a converse are provided by the following characteri-

zation noted in [Gro93]:
{p.qisomcomm}

Proposition 3.7. Two f.g. groups Γ1 and Γ2 are quasi-isometric iff there is a locally compact topological

space X where they both act properly discontinuously and cocompactly, moreover, the two actions commute

with each other. {ex.qisomcomm}
Exercise▷ 3.7. Prove the above proposition. (Hint: given the quasi-isometric groups, the space X can be

constructed using the set of all quasi-isometries between Γ1 and Γ2.)

An important consequence of Lemma 3.6 is the following:
{cor.FiniteIndex}

Corollary 3.8. A finite index subgroup H of a finitely generated group Γ is itself finitely generated and

quasi-isometric to Γ. The same conclusions hold if H is a factor of Γ with a finite kernel.
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Proof. For the case H ≤ Γ, we consider an “extended” Cayley graph of Γ with respect to some generating

set. This is a metric space which contains not only vertices of the Cayley graph but also points on edges,

so that each edge is a geodesic of length 1. H naturally acts on it by isometries and clearly this action

satisfies all properties in the statement of the Milnor-Schwarz lemma ⇒ we can just apply it.

For the case when H is a factor of Γ, the image of any generating set of Γ generates H, so it is finitely

generated, and the action of Γ on the Cayley graph of H satisfies the conditions of the Milnor-Schwarz

lemma.

Based on this corollary, we will usually be interested in group properties that hold up to moving to a

finite index subgroup or factor group or group extension. In particular, we say that two groups, Γ1 and

Γ2, are virtually or almost isomorphic, if there are finite index subgroups Hi ≤ Γi and finite normal

subgroups Fi ◁ Hi such that H1/F1 ≃ H2/F2. Correspondingly, if a group Γ is virtually isomorphic to a

group that has some property P, we will say that Γ almost or virtually has P.

Proposition 3.7 above is the geometric analogue of the following characterization of virtual isomor-

phisms:
{ex.isomcomm}

Exercise▷ 3.8. Show that two f.g. groups, Γ1 and Γ2, are virtually isomorphic iff they admit commuting

actions on a set X such that the factors X/Γi and all the stabilizers StΓi
(x), x ∈ X, are finite.

A key example of geometric group theory is the action of SL2(R) on the hyperbolic plane H2 = {z ∈
C : ℑz > 0} by Möbius transformations:(

a b

c d

)
: z 7→ az + b

cz + d
. (3.3) {e.Moebius}{e.Moebius}

It is immediate to check that this is indeed a group action, and that these are isometries of H2. In fact,

these are all the isometries of H2; more precisely, the kernel of this map is {±I}, and the isometry group

of H2 is PSL2(R) = SL2(R)/{±I}. The stabilizer of i ∈ H2 in SL2(R) is SO(2), a compact subgroup, and

we get H2 as a quotient of Lie groups, SL2(R)/SO(2). An analogue of the Milnor-Schwarz Lemma 3.6 says

that the Lie group SL2(R) is quasi-isometric to H2.

An important discrete subgroup is the modular group PSL2(Z) = SL2(Z)/{±I}. It is generated, for

instance, by an inversion and a translation:

S =

(
0 −1

1 0

)
: z 7→ −1/z and T =

(
1 1

0 1

)
: z 7→ z + 1 .

{ex.modular}
Exercise▷ 3.9 (Alperin 1993). Using the Ping-Pong Lemma 2.19, show that PSL2(Z) = Z2 ∗ Z3, with Z2

generated by S and Z3 by ST .

A fundamental domain for the action of PSL2(Z) is D = {z ∈ H2 : |z| > 1, |ℜz| < 1/2}; see Figure 3.1.

This domain has finite volume in the volume measure generated by the Riemannian hyperbolic metric, but

it is not compact. Thus, the Milnor-Schwarz Lemma 3.6 does not apply, and indeed, PSL2(Z) and SL2(Z)

are not quasi-isometric to PSL2(R) and H2. A simple way to see this is that a version Exercise 3.3 implies

that any group quasi-isometric to H2 has one end, while Exercise 3.9 implies that SL2(Z) is quasi-isometric

to the free group F2, with continuum many ends.

The discrete subgroups of PSL2(R) are called Fuchsian groups; these are the crystallographic groups

of the hyperbolic plane. For an introduction in hyperbolic geometry and Fuchsian groups, see [Bea83].
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Figure 3.1: A fundamental domain of the action of the modular group PSL2(Z) on H2. Picture by Fropuff,

via Wikimedia Commons. {f.Modular}

Gromov proposed in [Gro93] the long-term project of quasi-isometric classification of all f.g. groups.

This is a huge research area, with connections to a lot of parts of mathematics, including probability theory,

as we will see.

Here is one more instance of realizing a group theoretical notion via geometric properties of group

actions. Recall the notion of residually finite groups from Exercise 2.8.

Exercise▷ 3.10 ([dlHar00]).*

(a) Show that a group Γ is residually finite iff it has a faithful chaotic action on a Hausdorff topological

space X by homeomorphisms, meaning the following two properties:

(i) the union of all finite orbits is dense in X;
(ii) the action is topologically transitive: for any nonempty open U, V ⊆ X there is γ ∈ Γ such that

γ(U) ∩ V ̸= ∅.
(A rather obvious hint: start by looking at finite groups.)

(b) Construct such a chaotic action of SL(n,Z) on the torus Tn.

3.2 Gromov-hyperbolic spaces and groups
{ss.hyperbolic}

3.3 Asymptotic cones
{ss.cones}

4 Nilpotent and solvable groups
{s.nilpsolv}

We have studied the free groups, which are the “largest groups” from most points of view. We have also

seen that it is relatively hard to produce new groups from them: their subgroups are all free, as well, while

taking quotients, i.e., defining groups using presentations, has the disadvantage that we might not know

what the group is that we have just defined. On the other hand, the “smallest” infinite group is certainly

Z, and it is more than natural to start building new groups from it. Recall that a finitely generated group

is Abelian if and only if it is a direct product of cyclic groups, and the number of (free) cyclic factors is

called the (free) rank of the group. We understand these examples very well, so we should now go beyond

commutativity.
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4.1 The basics
{ss.nilpsolvbasics}

Recall that the commutator is defined by [g, h] = ghg−1h−1.
{d.nilpsolv}

Definition 4.1. A group Γ is called nilpotent if the lower central series Γ0 = Γ, Γn+1 = [Γn,Γ]

terminates at Γs = {1} in finite steps. If s is the smallest such index, Γ is called s-step nilpotent.

A group Γ is called solvable if the derived series Γ(0) = Γ, Γ(n+1) = [Γ(n),Γ(n)] terminates at Γ(s) = {1}
in finite steps. If s is the smallest such index, Γ is called s-step solvable.

Clearly, nilpotent implies solvable. Before discussing any further properties of such groups, let us give

the simplest non-Abelian nilpotent example.

The 3-dimensional discrete Heisenberg group is the matrix group

Γ =


1 x z

0 1 y

0 0 1

 : x, y, z ∈ Z

 .

If we denote by X,Y, Z the matrices given by the three permutations of the entries 1, 0, 0 for x, y, z, then

Γ is given by the presentation 〈
X,Y, Z

∣∣ [X,Z] = 1, [Y,Z] = 1, [X,Y ] = Z
〉
.

z

y

x

Figure 4.1: The Cayley graph of the Heisenberg group with generators X,Y, Z. {f.Heisenberg}

Clearly, it is also generated by just X and Y . Note that [Xm, Y n] = Zmn. Furthermore, [Γ,Γ] = ⟨Z⟩,
and the center (the subgroup of elements that commute with everything) is Z(Γ) = ⟨Z⟩, hence Γ is 2-step

nilpotent.
{ex.HeisenGrowth}

Exercise▷ 4.1. Show that the Heisenberg group has 4-dimensional volume growth.

Whenever Γ∗ ◁ Γ, we have that [Γ∗,Γ] is a subgroup of Γ∗ that is normal in Γ: if g, h ∈ Γ and γ ∈ Γ∗,

then [γ, g] = γ(gγ−1g−1) ∈ Γ∗ and h−1[γ, g]h = (h−1γh)(h−1gh)(h−1γ−1h)(h−1g−1h) ∈ [Γ∗,Γ]. Therefore,

in the nilpotent case, by induction, Γn+1 ≤ Γn ◁ Γ, while in the solvable case, Γ(n+1) ◁ Γ(n) ◁ Γ. The factor

ΓAb := Γ/[Γ,Γ] is called the Abelianization of Γ, the largest Abelian factor of Γ:
{ex.solvable}

Exercise▷ 4.2.

(a) Prove that if f : Γ −→ A is a surjective homomorphism with A being Abelian, then f can be written

as a composition of factor maps Γ −→ ΓAb −→ A.
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(b) A group Γ is solvable iff there is a finite sequence of subgroups Γ = H0 ▷H1 ▷ · · · ▷Hk = {1} such that

each factor Hi/Hi+1 is Abelian.

It is not true that, for any finitely generated group Γ, the subgroup [Γ,Γ] is generated by the commu-

tators of the generators of Γ. For instance, we will define in Section 5.1 the lamplighter group Γ = Z2 ≀ Z,

a finitely generated solvable group, for which [Γ,Γ] = ⊕ZZ2 is not finitely generated. However, if Γ is

nilpotent, then, by simple word manipulations one can show that each Γn is finitely generated by iterated

commutators of the generators of Γ, as follows. In any commutator of two words on the generators of Γ,

there is an equal number of x and x−1 letters for each generator x. By introducing commutators, we can

move such pairs of letters towards each other until they become neighbours and annihilate each other. So,

at the end, we are left with a product of iterated commutators. For instance,

[a, bc] = abca−1c−1b−1 = ab[c, a−1]a−1cc−1b−1 = [a, b]ba[c, a−1]a−1b−1

= [a, b]b
[
a, [c, a−1]

]
[c, a−1]aa−1b−1 = [a, b]

[
b,
[
a, [c, a−1]

]][
a, [c, a−1]

]
bb−1[c, a−1]

[
[c, a−1]−1, b

]
= [a, b]

[
b,
[
a, [c, a−1]

]][
a, [c, a−1]

]
[c, a−1]

[
[a−1, c], b

]
.

In the resulting word, the iteration depths of the commutators depend on the two words we started with,

but since Γ is s-step nilpotent, we can just delete from the word any iteration of depth larger than s. This

way we get a finite set of generators for [Γ,Γ], and then for each Γn, as well.

The fact that for any finitely generated nilpotent group Γ, each Γn is finitely generated, together with

the next lemma, implies that Γ is polycyclic, i.e., there is a subgroup sequence Γ = H0▷H1▷ · · ·▷Hk = {1}
such that each factor Hi/Hi+1 is cyclic:

{l.polycyc}
Lemma 4.2. A solvable group is polycyclic iff all subgroups are finitely generated.

Proof. If a group Γ is polycyclic, then it is solvable by Exercise 4.2 (b) above, and finitely generated

by Exercise 4.3 below. Furthermore, any subgroup Γ′ ≤ Γ is also polycyclic: just consider the chain

H ′i := Γ′ ∩Hi. Thus Γ′ is also finitely generated, and we are done with the forward direction.

If Γ is finitely generated, then the factor Γ/[Γ,Γ] is finitely generated and Abelian, hence is a finite

direct product of cyclic groups, A1 ⊕ · · · ⊕ Ak. By projecting further to the first coordinate, we get a

factor map Γ −→ A1, whose kernel H1,1 projects onto A2 ⊕ · · · ⊕Ak. By iterating this, we obtain a chain

Γ ▷ H1,1 ▷ · · · ▷ H1,k = Γ(1), with H1,i/H1,i+1 being cyclic. By hypothesis, Γ(1) is also finitely generated,

hence we can now do the same for Γ(2) = [Γ(1),Γ(1)], and so on. Since Γ is solvable, in a finite number of

steps we get to Hs,ks = {1}, showing that Γ is polycyclic.

For future reference, note that the above proof also shows that if Γ is a finitely generated group and

the factor Γ/[Γ,Γ] is infinite, then in its decomposition into a finite direct product of cyclic groups one of

the factors must be infinite, and hence we obtain a surjection of Γ onto Z.
{ex.finpres}

Exercise▷ 4.3.

(a) Assume that for some H ◁ Γ, both H and Γ/H are finitely generated. Show that Γ is also finitely

generated. Same for finitely presented.

(b) Show that any finitely generated almost-nilpotent group is finitely presented.
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4.2 Semidirect products
{ss.semidirect}

We do not yet have any general procedure to build non-commutative nilpotent and solvable groups. Such

a procedure is given by the semidirect product.

For any group N , let Aut(N) be the group of its group-automorphisms, acting on the right, i.e., f

acts by af = f(a) and fg acts by afg = (af )g = g(f(a)). Further, let φ : H −→ Aut(N) be some group

homomorphism. Then define the semidirect product N ⋊φH by having the elements of N ×H, and group

multiplication

(a, g) (b, h) = (aφ(h)b, gh) , a, b ∈ N and g, h ∈ H .

It is easy to check that this is indeed a group; in particular, (a, f)−1 = (f−1(a−1), f−1). Furthermore,

N ◁ Γ := N ⋊φ H, with the inclusion a 7→ (a, id), and H ≤ Γ with the inclusion f 7→ (1, f). Then

fa = (1, f)(a, id) = (a, f), so one might prefer writing Γ = H φ⋉ N = {(h, a) : h ∈ H, a ∈ N}. Anyway,

we have HN = Γ and H ∩N = {1G}. Conversely, whenever we have a group Γ with subgroups N ◁ Γ and

H ≤ Γ satisfying HN = Γ and H ∩N = {1}, then H acts on N by conjugations, aφ(h) := h−1ah, and it is

easy to check that Γ = H φ⋉N .

Of course, for the trivial homomorphism φ : H −→ {id} ⊂ Aut(N) we get the direct product of N

and H. The archetypical non-trivial examples are the affine group Rd ⋊ GLd(R) = {v 7→ vA + b : A ∈
GLd(R), b ∈ Rd} and the group of Euclidean isometries Rd⋊O(d), with the product being just composition,

v 7→ vA1 + b1 7→ vA1A2 + b1A2 + b2. Similar examples are possible with Zd instead of Rd, but note that

Aut(Zd) = GLd(Z) is just ±SLd(Z). One more small example of a semidirect product is in Exercise 3.6.
{ex.cyclicsemi}

Exercise▷ 4.4. For what primes p, q is there a semidirect product Zp ⋊ Zq that is not a direct product?

(Hint: you do not have to know what exactly the group Aut(Zp) is; it is enough to use Cauchy’s theorem

on having an element of order q in any group of size n, for any prime q|n. But, in fact, Aut(Zp) is always

cyclic, because there exist primitive roots modulo any prime.)

A fancy way of saying that N ◁ Γ and Γ/N ≃ F is to write down the short exact sequence

1 −→ N
α−→ Γ

β−→ F −→ 1 ,

which just means that the image of each map indicated by an arrow is exactly the kernel of the next map.

(When I was a Part III student in Cambridge, UK, a famous number theory professor, Sir Swinnerton-Dyer,

wrote down short exact sequences just to prove he was not hopelessly old and old-fashioned, he said.) If,

in addition, there is an injective homomorphism γ : F −→ Γ with β ◦ γ = idF , then we say that the

short exact sequence splits. In this case, γ(F ) ∩ α(N) = {1} and γ(F )α(N) = Γ, hence Γ ≃ N ⋊φ F is

a semidirect product with φ : F −→ Aut(N) given by conjugation: aφ(f) := α−1
(
γ(f)−1α(a)γ(f)

)
. This

splitting does not always happen; for instance, the exact sequence

1 −→ Z2 −→ Z4 −→ Z2 −→ 1

defined by {0, 2} ◁ {0, 1, 2, 3} does not split, since Aut(Z2) = {id} means that all semidirect products

are actually direct products, but Z2 × Z2 ̸≃ Z4. (Or, the only Z2 subgroup of Z4 does not have trivial

intersection with the given normal subgroup {0, 2}, hence there is no good γ.) Similarly,

1 −→ [Γ,Γ] −→ Γ −→ ΓAb −→ 1

does not always split. Nevertheless, a lot of solvable and nilpotent groups can be produced using semidirect

products, as we will see in a second. It will also be important to us that any sequence

1 −→ N −→ Γ
π−→ Z −→ 1 (4.1) {e.NGZ}{e.NGZ}
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does split. This is because if x ∈ π−1(1), then π(xk) = k ̸= 0 for all k ∈ Z \ {0}, while ker(π) = N , hence

for H := ⟨x⟩ ≃ Z we have H ∩N = {1} and HN = Γ.
{ex.semidirect}

Exercise▷ 4.5.

(a) Show that

(a, g)(b, h)(a, g)−1(b, h)−1 =
(
aφ(hg

−1h−1)bφ(g
−1h−1)(a−1)φ(g

−1h−1)(b−1)φ(h
−1), ghg−1h−1

)
,

and using this, show that if N and H are solvable, then N ⋊φ H is also.

(b) Given N ⋊ ⟨g⟩, g ∈ Aut(N), show that

N ⋊ ⟨gk⟩ k ∈ Z \ {0}

is a finite index subgroup of N ⋊ ⟨g⟩.
{ex.almostnilp}

Exercise▷ 4.6. Show that if Γ/K ≃ N with K a finite normal subgroup and N nilpotent, then Γ has a

finite index nilpotent subgroup. Also, obviously, any subgroup or factor group of a nilpotent group is also

nilpotent. Therefore, an almost nilpotent group in the sense given at the end of Section 3.1 has a finite index

nilpotent subgroup. (Hint: use the Z factor from the remark after Lemma 4.2 and the splitting in (4.1).)

Now, given Γ = Zd ⋊M Z, M ∈ GLd(Z), we will prove the following:
{p.NilpOrExp}

Proposition 4.3. If M has only absolute value 1 eigenvalues, then Γ is almost nilpotent. If not, then Γ

has exponential volume growth.

In fact, this is true in larger generality. The proof of the following theorem will be given in the next

section (with a few details omitted):
{t.MilnorWolf}

Theorem 4.4 (Milnor-Wolf [Mil68a, Wol68, Mil68b]). A finitely generated almost-solvable group is of

polynomial growth if and only if it is almost-nilpotent, and is of exponential growth otherwise.

Moreover, the Bass-Guivarch formula (which we will not prove) states that if di+1 := free-rank(Γi/Γi+1)

for the lower central series, then the volume growth of a nilpotent Γ is

d(Γ) =
∑
i

idi .

For example, for the Heisenberg group we have d1 = 2 and d2 = 1, hence d(Γ) = 4, agreeing with

Exercise 4.1.

To prove Proposition 4.3, we shall first show the following lemma. I learnt it from [DrKa09], with its

nice elementary proof coming from [Ros74].
{l.rootsofunity}

Lemma 4.5. If M ∈ GLd(Z) has only eigenvalues with absolute value 1, then all of them are roots of unity.

Proof. Let λ1, . . . λd be the set of eigenvalues of M . Then we have

Tr(Mk) =

d∑
i=1

λki ∈ Z.

Now consider the sequence vk = (λk1 , . . . , λ
k
d) ∈ (S1)d as k = 0, 1, 2, . . . . Since (S1)d is a compact group,

there exists a convergent subsequence {vkℓ} of {vk}, and hence vkℓ+1
v−1kℓ → 1 as ℓ→∞. Let mℓ = kℓ+1−kℓ,

then (λmℓ
1 , . . . , λmℓ

d )→ 1 and
∑d
i=1 λ

mℓ
i → d as ℓ→∞. But

∑d
i=1 λ

mℓ
i ∈ Z. This implies that there exists

mℓ such that
∑d
i=1 λ

mℓ
i = d. But |λmℓ

i | = 1∀i. Thus, λmℓ
i = 1∀i.
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Definition 4.6. A matrix M is unipotent if all eigenvalues are equal to 1 and quasi-unipotent if all

eigenvalues are roots of unity.

Note that a matrix M is quasi-unipotent if and only if there exists m <∞ such that Mm is unipotent.

Thus, by Exercise 4.5 part (b), for the first part of Proposition 4.3 it is enough to show that if M is

unipotent, then Γ = Zd ⋊M Z is nilpotent.
{ex.unipotent}

Exercise▷ 4.7. If M ∈ GLd(Z) is unipotent, then

M = I + S−1NS = S−1(I +N)S

for some strictly upper-triangular integer matrix N .

Note that Nd = 0 in the exercise. Then, for any m ∈ Z+,

Mm = S−1(Nm +

(
m

1

)
Nm−1 + . . .+ I)S

Mm − I = S−1(Nm +

(
m

1

)
Nm−1 + . . .+N)S,

which implies that (Mm − I)d = 0. Since the inverse of a unipotent matrix is again unipotent, the last

result holds, in fact, for any m ∈ Z.

What is now Γ1 = [Γ,Γ]? By Exercise 4.5 part (a),

(v,M i)(w,M j)(v,M i)−1(w,M j)−1 = (vM−i + wM−i−j − vM−i−j − wM−j , I)

=
(
vM−i−j(M j − I) + wM−i−j(I −M i), I

)
.

So, the matrix part has got annihilated, while, since M i − I lowers dimension for any i ∈ Z, the “vector

part” has a smaller and smaller support:

Γ1 ⊂ (d− 1) dim subspace

Γ2 = [Γ1,Γ1] ⊂ (d− 2) dim subspace

...

Γd = {1} ,

hence Γ is at most d-step nilpotent, proving the first half of Proposition 4.3.
{ex.HeisenSemi}

Exercise▷ 4.8. Show that Z2 ⋊M Z with M =

(
1 1

0 1

)
is isomorphic to the Heisenberg group.

For the second half of Proposition 4.3, the key step is the following (again learnt from [DrKa09]):
{l.alldifferent}

Lemma 4.7. If M ∈ GLd(Z) has an eigenvalue |λ| > 2, then ∃v ∈ Zd such that for any k ∈ N and

ϵi ∈ {0, 1}, the 2k+1 vectors

ϵ0v + ϵ1vM + . . .+ ϵkvM
k

are all different.
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Proof. Note that MT also has the eigenvalue λ. Let b ∈ Cd a corresponding eigenvector, bMT = λb, or

MbT = λbT . Define the linear form β(v) = vbT . Then we have:

β(vMk) = vMkbT = vλkbT = λkβ(v)

Since β : Cd −→ C is linear and non-zero, its kernel is (d− 1)-dimensional, hence there exists v ∈ Zd such

that β(v) ̸= 0. Now suppose that

k∑
i=0

δiλ
iβ(v) = β

( k∑
i=0

δivM
i
)

= β
( k∑
i=0

ϵivM
i
)

=

k∑
i=0

ϵiλ
iβ(v)

with ϵm − δm ̸= 0 for some m ≤ k, but ϵi = δi for all m < i ≤ k. Let ηi = ϵi − δi. Then

m∑
i=0

ηiλ
iβ(v) = 0 .

Now consider
∣∣∑m−1

i=0 ηiλ
i
∣∣. On one hand, we have

∣∣∣m−1∑
i=0

ηiλ
i
∣∣∣ = |ηmλm| = |λ|m .

On the other hand, ∣∣∣m−1∑
i=0

ηiλ
i
∣∣∣ ≤ |λ|m − 1

|λ| − 1
≤ |λ|m − 1 ,

since |λ| > 2. This is a contradiction, hence we have found the desired v.

Now, to finish the proof of Proposition 4.3, assume that M has an eigenvalue with absolute value not

1. Since |det(M)| = 1, there is an eigenvalue |λ| > 1. Then, there is an m < ∞ such that Mm has the

eigenvalue |λm| > 2. Consider the products

(ϵkv,M
m)(ϵk−1v,M

m) · · · (ϵ0v,Mm) = (ϵkvM
mk + ϵk−1vM

m(k−1) + · · ·+ ϵ0v,M
m(k+1)),

with ϵi ∈ {0, 1} and the vector v ∈ Zd given by Lemma 4.7. By that lemma, for a fixed k these elements

are all different. But, in the Cayley graph given by any generating set containing (v, I) and (0,Mm), these

elements are inside the ball of radius 2(k + 1), hence Γ has exponential growth.

The proposition has the following generalization:
{e.nore}

Exercise▷ 4.9.* Let N be a finitely generated almost nilpotent group. Then N ⋊φ Z is almost nilpotent or

of exponential growth (and this can be easily detected from φ).

4.3 The volume growth of nilpotent and solvable groups
{ss.volnilpsolv}

As promised in the previous section, we want to go beyond semidirect products, and prove the Milnor-Wolf

Theorem 4.4. The exposition is mostly based on [DrKa09], with some differences in organization and in

using Exercise 4.11 that I was somehow missing from [DrKa09].

The first step is for free: we have seen that an exact sequence (4.1) always splits, hence Exercise 4.9

can be reformulated as follows:
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{p.gnore}
Proposition 4.8. Assume that

1 −→ N −→ Γ −→ Z −→ 1

is a short exact sequence with N being a finitely generated almost nilpotent group. Then, if Γ is not almost

nilpotent, then it has exponential growth.

We will need two more ingredients, Propositions 4.9 and 4.11. We will prove the first one, but not the

second, although that is not hard, either: the key idea is just to analyze carefully the procedure we used in

Section 4.1 to prove that the subgroups Γn in the lower central series are finitely generated. See [DrKa09]

for the details. {p.subtfg}
Proposition 4.9. Assume we have a short exact sequence

1 −→ N −→ Γ
π−→ Z −→ 1 .

(i) If Γ has sub-exponential growth, then N is finitely generated and also has sub-exponential growth.

(ii) Moreover, if Γ has growth O(Rd), then N has growth O(Rd−1).
{d.polydist}

Definition 4.10. Let H ≤ Γ, and SH and SΓ finite generating sets of H and Γ respectively, with SΓ ⊃ SH .

Note that for the distance in the corresponding Cayley graphs, dH(e, h) =: ∥h∥H ≥ ∥h∥Γ ∀h ∈ H. We say

that H has polynomial distortion if there is a polynomial p(x) so that p(∥h∥G) ≥ ∥h∥H ∀h ∈ H.
{p.polydist}

Proposition 4.11. If Γ is a finitely generated nilpotent group, then [Γ,Γ] has polynomial distortion.

In fact, any subgroup has polynomial distortion, but we will not need that result.

Exercise▷ 4.10.* Without looking into [DrKa09], but using the hint given in the paragraph before Propo-

sition 4.9, prove the last proposition.

Anti-example: Consider the solvable Baumslag-Solitar group,

BS(1,m) := ⟨ a, b | a−1ba = bm ⟩ .

A concrete realization of this presentation is to take the additive group H of the rationals of the form

x/my, x, y ∈ Z, and then BS ≃ H ⋊ Z, where t ∈ Z acts on H by multiplication by mt. Indeed, we can

take the generators a : u 7→ um and b : u 7→ u + 1. One can check that [BS,BS] = ⟨b⟩, hence the group

is two-step solvable. Furthermore, a−nban = bm
n

. So ∥bmn∥⟨b⟩ = mn but ∥bmn∥BS = 2n + 1. So ⟨b⟩ as a

subgroup of BS(1,m) does not have polynomial distortion.
{t.nilpoly}

Theorem 4.12. Finitely generated almost nilpotent groups have polynomial growth.

Proof. The proof will use induction on the nilpotent rank. First of all, by Corollary 3.8, we can assume

that Γ is nilpotent. So, we have the short exact sequence

1 −→ [Γ,Γ] −→ Γ
π−→ ΓAb −→ 1 ,

where Γ1 = [Γ,Γ] is nilpotent of strictly smaller rank. Moreover, as we showed in Section 4.1, it is finitely

generated. Take a finite generating set S of it. Let the Abelian rank of ΓAb be r′ and its free-rank be r ≤ r′.
Take a generating set e1, . . . er′ for ΓAb, with r free generators, and let the π-preimages be T = {t1, . . . , tr′}.
Then Γ is generated by S ∪ T .
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Consider any word w of length at most R in S ∪T . Move all letters of T to the front of w: since Γ1 ◁Γ,

for any g ∈ Γ1 and t ∈ T there is some g′ ∈ Γ1 with gt = tg′. We get a word w′ representing the same

group element, but of the form wTwS , where wT is a word on T of length equal to the number of T -letters

in the original w, while wS is a word on S, but its length might be much longer than the original number

of S-letters in w. Now, since π(wT ) in ΓAb can be written in the form ek11 · · · e
kr′
r′ , there is some element

h ∈ [Γ,Γ] such that wTwS = tk11 · · · t
kr′
r′ h in Γ.

Since ∥w∥S∪T ≤ R, we also have ∥tk11 · · · t
kr′
r′ ∥S∪T ≤ k1 + · · · + kr′ ≤ R, and hence, by the triangle

inequality, ∥h∥S∪T ≤ 2R. But, by Proposition 4.11, Γ1 has polynomial distortion, so, if D is the degree of

this polynomial for the generating sets S and S ∪T , then ∥h∥S ≤ O(RD). By the induction hypothesis, Γ1

has polynomial growth of some degree d, hence |{h ∈ Γ1 : ∥h∥S∪T ≤ 2R}| = O(RDd). Since the number of

different possible words tk11 · · · t
kr′
r′ is O(Rr), we altogether have |BS∪TR | = O(RdD+r), so Γ has polynomial

growth.
{t.solvnilorexp}

Theorem 4.13.

(i) Any finitely generated almost solvable group of polynomial growth is almost nilpotent.

(ii) The statement remains true if only subexponential growth is assumed.

Proof. The beginning and the overall strategy of the proof of the two cases are the same. By Corollary 3.8,

we may assume that Γ is infinite and solvable. Then, there is a first index j ≥ 0 in its derived series

such that Γ(j)/[Γ(j),Γ(j)] is infinite. Since [Γ : Γ(j)] < ∞, we can further assume that j = 0. So, by the

argument at the end of Section 4.1, there is a short exact sequence

1 −→ N −→ Γ −→ Z −→ 1 . (4.2) {e.1KGZ1}{e.1KGZ1}

It is also clear from that argument that [N,N ] = [Γ,Γ], so N is solvable. By Proposition 4.9, it is also

finitely generated. Furthermore, we know from the argument at (4.1) that this exact sequence splits.

We now prove (i) by induction on the degree of the polynomial growth of Γ. For degree 0, i.e., when

Γ is finite the statement is trivial. Now, if Γ has volume growth O(Rd), then Proposition 4.9 says that N

has growth O(Rd−1), so, by induction, it is almost nilpotent, and then Proposition 4.8 says that Γ is also

almost nilpotent, and we are done.

In case (ii), we know only that Γ has subexponential growth. By Proposition 4.9, also N does. So, we

can iterate (4.2), with N in place of Γ. If this procedure stops after finitely many steps, then in the last

step N is a finite group, which is trivially almost nilpotent, hence we can apply Proposition 4.8 iteratively

to the short exact sequences we got, and find that Γ at the top was also almost nilpotent.

However, it is not obvious that the splitting procedure (4.2) terminates. For instance, for the finitely

generated solvable lamplighter group Γ = Z ≀ Z that we mentioned earlier, in the first step we can have

N = [Γ,Γ] = ⊕ZZ, then we can continue splitting off a Z factor ad infinitum. Of course, this Γ has

exponential growth and N = [Γ,Γ] is not finitely generated, which suggests that subexponential growth

should crucially be used. This is done in the next exercise, finishing the proof.
{ex.inftysplit}

Exercise▷ 4.11. * Assume that Γ is finitely generated and has infinitely many subgroups Γ1,Γ2, . . . with

the properties that for each i ≥ 1, Γi ≃ Z, and Γi ∩ ⟨Γi+1,Γi+2, . . . ⟩ = {1}. Show that Γ has exponential

growth.

Proof of Proposition 4.9. Let Γ = ⟨f1, f2, . . . , fk⟩. Take γ ∈ Γ so that π(γ) = 1 ∈ Z. Now, for each fi pick

si ∈ Z so that π(fiγ
si) = 0. Let gi = fiγ

si ∈ N . Then Γ = ⟨g1, . . . , gk, γ⟩. If we let

S =
{
γm,i := γmgiγ

−m ∣∣m ∈ Z, i = 1, . . . , k
}
,
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then ⟨S⟩ = N , since for any f ∈ ker(π),

f = fi1 · · · fil = gi1γ
−si1 · · · gilγ−sil

= (gi1) · (γ−si1 gi2γsi1 ) · (γ−si1−si2 gi3γsi1+si2 ) · · · (γ−
∑l−1

k=1 sik gilγ
−sil ) ,

where the last factor is actually also a conjugated gil , since
∑l
k=1 sik = 0, due to f ∈ ker(π). So indeed

f ∈ ⟨S⟩.
Now consider a fixed i and the collection of 2m words (for m > 0){

γgϵ1i γg
ϵ2
i · · · γg

ϵm
m

∣∣ ϵj ∈ {0, 1}} ,
each of length at most m on the generators gi and γgi. So, the subexponential growth of Γ implies that

there must exist some m and ϵm ̸= δm such that

γgϵ1i · · · γg
ϵm
i = γgδ1i · · · γg

δm
i .

Now notice that, somewhat miraculously,

γgϵ1i · · · γg
ϵm
i = γϵ11,i · · · γ

ϵm
m,iγ

m .

Thus our relation becomes

γϵ11,i · · · γ
ϵm
m,i = γδ11,i · · · γ

δm
m,i .

By ϵm − δm ̸= 0, this yields γm,i ∈ ⟨γ0,i, . . . , γm−1,i⟩. Since γm+1,i = γ · γm,i · γ−1, we also get

γm+1,i ∈ ⟨γ1,i, . . . , γm,i⟩ ⊂ ⟨γ0,i, . . . , γm−1,i⟩.

We can do the same argument for m < 0, and so get that ⟨γn,i | n ∈ Z⟩ is finitely generated, and doing

this for every i gives that N is finitely generated.

Let Y be this particular finite generating set of N . Then Γ = ⟨Y ∪ {γ}⟩. Let BYR be the ball of radius

R in N with this generating set. Suppose |BYR | = {h1, . . . , hK}, and consider the elements

{hiγk | −R ≤ k ≤ R} .

If hiγ
k = hjγ

l, then γl−k = h−1j hi, but γ /∈ N , so l = k and i = j. That is, these elements are distinct and

belong to B
Y ∪{γ}
R+1 . There are K(2R+ 1) of them. So

|BYR | = K ≤
|BY ∪{γ}R+1 |
2R+ 1

.

This shows both parts (i) and (ii) of the proposition.

4.4 Expanding maps. Polynomial and intermediate volume growth
{ss.franks}

Let us start with some definitions. {d.expanding}
Definition 4.14. Let X and Y be metric spaces. Then φ : X −→ Y is an expanding map if ∃ λ > 1

such that λdX(x, y) ≤ dY (φ(x), φ(y)) ∀ x, y ∈ X.

Recall the definition of virtually isomorphic groups from the end of Section 3.1. In particular, a group

homomorphism φ : Γ1 −→ Γ2 is an expanding virtual isomorphism if it is expanding (hence injective),

and [Γ2 : φ(Γ1)] <∞.

Our reason for considering expanding virtual isomorphisms is the following result. We will come back

to its proof after looking at some examples.
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{l.franks}
Lemma 4.15 (Franks’ lemma 1970). If a finitely generated group has an expanding virtual automorphism,

then it has polynomial growth.

Exercise▷ 4.12.

(a) Given two different generating sets S1 and S2 for Γ, prove that if φ is expanding in G(Γ, S1) then φk

is expanding in G(Γ, S2) for some k.

(b) Give an injective virtual automorphism of Z2 that is not expanding but whose square is.

The standard examples of expanding virtual automorphisms are the following:

1. In Zd, the map x 7→ k · x is an expanding virtual isomorphism, since [Zd : kZd] = kd.

2. For the Heisenberg group H3(Z), the map1 x z

0 1 y

0 0 1

 φm,n7−→

1 mx mnz

0 1 ny

0 0 1


is an expanding virtual automorphism, with index [H3(Z) : φm,n(H3(Z))] = m2n2.

Exercise▷ 4.13.** If Zd ⋊M Z is nilpotent, does it have an expanding virtual automorphism?

There exist nilpotent groups with no isomorphic subgroup of finite index greater than one [Bel03].

Groups with this property are called co-Hopfian. (And groups having no isomorphic factors with non-

trivial kernel are called Hopfian.)

Instead of proving Franks’ Lemma 4.15, let us explore a geometric analogue:
{l.franks2}

Lemma 4.16. LetM be a Riemannian manifold. Assume v(r) := supx∈M vol(Br(x)) <∞. If φ : M →M

is an expanding homeomorphism with Jacobian Det(Dφ) < K, then M has polynomial volume growth.

Proof. From Definition 4.14 of expanding, we have φ(Br(x)) ⊇ Bλr(φ(x)), which gives

vol(φ(Br(x))) ≥ vol(Bλr(φ(x))).

By the bound on the Jacobian of φ, we have that Kv(r) ≥ vol(φ(Br(x)) ≥ vol(Bλr(φ(x))), and taking the

supremum over x on both sides gives Kv(r) ≥ v(λr). This implies polynomial growth by the following:

For a given r, set j = logλ r. Then

v(r) = v(λj) ≤ v(λ⌈j⌉) ≤ Kv(λ⌈j⌉−1) ≤ · · · ≤ K⌈j⌉v(1).

Since K⌈j⌉ ≤ Kj max(1,K) and Kj = K logλ r = rlogλK , we finally have v(r) ≤ Crd, where d = logλK

and C = v(1) max(1,K).

Exercise▷ 4.14. Prove the group version of Franks’ Lemma. (Hint: Emulate the ideas of the proof of the

geometric version, but in a discrete setting, where the bounded Jacobian is analogous to the finite index of

the subgroup.)

Exercise▷ 4.15.*** Assume Γ is a finitely generated group and has a virtual isomorphism φ such that⋂
n≥1

φn(Γ) = {1}.

(This is the case, e.g., when φ is expanding.) Does this imply that Γ has polynomial growth?
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A condition weaker than in the last exercise is the following: a group Γ is called scale-invariant if it

has a chain of subgroups Γ = Γ0 ≥ Γ1 ≥ Γ2 ≥ · · · such that each Γn is isomorphic to Γ, [Γ : Γn] < ∞,

and
⋂

Γn = {1}. This notion was introduced by Itai Benjamini, and he had conjectured that it implies

polynomial growth of Γ. However, this was disproved in [NekP09], by the following examples. The proofs

use the self-similar actions of these groups on rooted trees, see Section 15.1.
{t.scaleinv}

Theorem 4.17. The following groups of exponential growth are scale-invariant:

• the lamplighter group Z2 ≀ Z, described below in Section 5.1;

• the affine group Zd ⋊ GL(d,Z);

• the solvable Baumslag-Solitar group BS(1,m), defined in Section 4.3.

On the other hand, torsion-free Gromov-hyperbolic groups are not scale-invariant, a result that can be

a little bit motivated by the well-known fact that hyperbolic spaces do not have homotheties.

Benjamini’s question was motivated by the “renormalization method” of percolation theory. In [NekP09],

we formulated a more geometric version of this question, on “scale-invariant tilings” in transitive graphs,

which is still relevant to percolation renormalization and is still open; see Question 12.33.

Going back to volume growth, here are some big theorems:

Theorem 4.18 (Tits’ alternative [Tit72]). A linear group (subgroup of a matrix group) Γ either has F2 ≤ Γ

or it is solvable. In particular, Γ has either exponential growth or polynomial growth.

Theorem 4.19 (Grigorchuk [Gri83]). There exist finitely generated groups with intermediate growth.

Conjecture 4.20. There are no groups with superpolynomial growth but with growth of order exp(o(
√
n)).

For an introduction to groups of intermediate growth, see [GriP08], and for more details, see [dlHar00,

BartGN03]. The proof of Grigorchuk’s group being of intermediate growth relies on the following observa-

tion: {l.highfranks}
Lemma 4.21 (Higher order Franks’ lemma). If Γ is a group with growth function vΓ(n) and there exists

an expanding virtual isomorphism

Γ× Γ× · · · × Γ︸ ︷︷ ︸
m≥2

−→ Γ,

then exp(nα1) ⪯ vΓ(n) ⪯ exp(nα2) for some 0 < α1 ≤ α2 < 1.

Exercise▷ 4.16. Prove the higher order Franks’ lemma. (Hint: Γm ↪→ Γ implies the existence of α1, since

v(n)m ≤ C v(kn) for all n implies that v(n) has some stretched exponential growth. The expanding virtual

isomorphism gives the existence of α2.)

5 Isoperimetric inequalities
{s.isop}

5.1 Basic definitions and examples
{ss.isopbasic}

We start with a coarse geometric definition that is even more important than volume growth.
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{d.isoperimetric}
Definition 5.1. Let ψ be an increasing, positive function and let G be a graph of bounded degree. Then

we say that G satisfies the ψ-isoperimetric inequality IPψ if ∃ κ > 0 such that |∂ES| ≥ κψ(|S|) for

any finite subset of vertices S ⊆ V (G), where the boundary ∂ES is defined to be the set of edges which are

adjacent to a vertex in S and a vertex outside of S. The supremum of all κ’s with this property is usually

called the ψ-isoperimetric constant, denoted by ιψ,E.

Besides the edge boundary ∂E defined above, we can also consider the outer vertex boundary ∂outV S,

the set of vertices outside of S with at least one neighbour in S, and the inner vertex boundary ∂inV S, the

set of vertices inside S with at least one neighbour outside S. Since G has bounded degrees, any of these

could have been used in the definition. If the degrees are unbounded, or we are interested in the optimal

constant factor κ, then we need to distinguish between edge- and vertex-isoperimetric inequalities, and in

the edge-version it is natural to replace the size of S by
∑
x∈S deg(x).

Exercise▷ 5.1. Show that the satisfaction of an isoperimetric inequality is a quasi-isometry invariant among

bounded degree graphs, but not among graphs with unbounded degrees.

Zd satisfies IPn1−1/d , often denoted IPd. (This is so well-known that one might forget that it needs a

proof. See Sections 5.3 and 5.4.) If a group satisfies IP∞, i.e., a linear isoperimetric inequality, then it is

called nonamenable, as described in the next definition. The isoperimetric constant ι∞,E in this case is

usually called the Cheeger constant.
{d.amenable}

Definition 5.2. A bounded degree graph G is amenable if there exists a sequence {Sn} of connected

subsets of vertices, Sn ⊆ V (G), such that
|∂Sn|
|Sn|

→ 0.

Such an {Sn} is called a Følner sequence. We say that a group is Følner amenable if any of its finitely

generated Cayley graphs is. A finite set S with |∂S|/|S| < δ|S| will sometimes be called a δ-Følner set.

If, in addition to connectedness, the Sn’s also satisfy Sn ↗ V (G), i.e., Sn ⊆ Sn+1 ∀n and
⋃
n Sn = V (G),

then the sequence {Sn} is called a Følner exhaustion. Not every amenable graph has a Følner exhaustion,

as the example after the next exercise shows.

Exercise▷ 5.2.

(a) Find the edge Cheeger constant ι∞,E of the infinite binary tree.

(b) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of

“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, IP1+ϵ implies

IP∞.)

Consider now the following tree. Take a bi-infinite path Z, and, for each even integer 2k, root an

infinite binary tree at every vertex of Z whose distance from the origin is between 22k and 22k+1. This

tree has unbounded hanging chains and is thus amenable; however, it is clear that you cannot both have

Sn connected and Sn ⊆ Sn+1 in a Følner sequence, because then the Sn’s would contain larger and larger

portions of binary trees, causing the Sn’s to have a large boundary.

Lemma 5.3. In Definition 5.2, you can achieve Sn ↗ V (G) in the case of amenable Cayley graphs.

43



Proof. Given a Følner sequence Sn, set Srn :=
⋃
g∈Br

gSn, where Br is the ball in G of radius r centered at

the origin. Without loss of generality we can assume e ∈ Sn, since Γ acts on G by graph automorphisms,

and thus choosing any gn ∈ Sn we can consider g−1n Sn. Now, since e ∈ Br, Sn ⊆ Srn, hence |Sn| ≤ |Srn|.
Also, ∣∣∂Srn∣∣ ≤ ∑

g∈Br

|∂(gSn)| ≤ |B(r)| |∂Sn|.

Thus we have
|∂Srn|
|Srn|

≤ |Br|
|∂Sn|
|Sn|

.

Now, for each r ∈ N, choose nr such that |∂Snr
|/|Snr

| ≤ 1
r |Br| , and set S∗r := Srnr

. Then {S∗r} is a Følner

sequence, and e ∈ Sn implies that Br ⊆ S∗r . If we take now a rapidly growing sequence {r(i)}i such that

S∗r(i) ⊆ Br(i+1), then {S∗r(i)}i ↗ G is a Følner exhaustion.

The archetypical examples for the difference between amenable and non-amenable graphs are the Eu-

clidean versus hyperbolic lattices, e.g., tilings in the Euclidean versus hyperbolic plane. The notions

“non-amenable”, “hyperbolic”, “negative curvature” are very much related to each other, but there are

also important differences. Here is a down-to-earth exercise to practice these notions; it might not be

obvious at first sight, but part (a) is a special case of part (b).

Figure 5.1: Trying to create at least 7 neighbours for each country. It works fine for a while, but then we

seem to run out of space. {f.hexsept}

Exercise▷ 5.3.

(a) Consider the standard hexagonal lattice. Show that if you are given a bound B <∞, and can group

the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible

to have at least 7 neighbours for each country.

(b) In a locally finite planar graph G, define the combinatorial curvature at a vertex x by

curvG(x) := 2π −
∑
i

(Li − 2)π

Li
,

where the sum runs over the faces adjacent to x, and Li is the number of sides of the ith face. Show

that if there exists some δ > 0 such that curvature is less than −δπ at each vertex, then it is not

possible that both G and its planar dual G∗ are edge-amenable.
{ex.endsnonamen}

Exercise▷ 5.4. Show that a group with a continuum number of ends (see Exercises 3.3 and 3.4) must be

non-amenable.
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We now look at an important example of a Følner amenable group with exponential growth.

The lamplighter group is defined to be the wreath product Z2 ≀ Z, which is defined to be(⊕
Z

Z2

)
⋊σ Z ,

where the left group consists of all bi-infinite binary sequences with only finitely many nonzero terms, and

σ is the left shift automorphism on this group. Thus a general element of the lamplighter group looks like

(f,m), where f : Z −→ Z2 has |supp(f)| < ∞, interpreted as a configuration of Z2-lamps on a Z-street,

and m ∈ Z is the lamplighter or marker. Such pairs multiply according to the semidirect product rules,

see Section 4.2. The most transparent description is just to describe the Cayley graph w.r.t. some simple

generating set:

Let ek ∈ ⊕ZZ2 denote the function that has a 1 in the kth place and zeroes everwhere else. Then the

group is generated by the following three elements:

s := (e0, 0); R := (0, 1); and L := (0,−1).

Multiplication by these generators gives s·(f,m) = (e0, 0)·(f,m) = (em+f,m), while R·(f,m) = (f,m+1)

and L ·(f,m) = (f,m−1), and so they can be interpreted as “switch”, “Right” and “Left”. (Unfortunately,

because of the way we defined semidirect multiplication, we need to multiply from the left with these nice

generators to get the above nice interpretation, even if we generally prefer taking right Cayley graphs in

these notes.)

The volume of a ball in this generating set has the bound |Bn(id)| ≥ 2n/2, therefore the Cayley graph

has exponential growth. This bound is clear because at each step you can either “switch” (apply s), or

not. On the other hand, it is not hard to see that this left Cayley graph is amenable: set

Sn = {(f,m) : −n ≤ m ≤ n and supp(f) ⊆ [−n, n]}

and observe that |Sn| = 22n+1(2n+1) and |∂inV Sn| = 22n+1 ·2, since the points on the boundary correspond

to m = −n or m = n.

One may consider generalizations F ≀ Γ = (
⊕

Γ F) ⋊ Γ, with Γ being any base group as a “city”, and F

being any “lamp group”. Moreover, one can even define the lamplighter graph F ≀G built from any two

graphs F and G: the lamplighter can adjust the status of the current lamp according to F , or can move

on the base graph G.

The lamplighter groups Zp ≀Z have some surprising Cayley graphs. The Diestel-Leader graph DL(k, ℓ)

is the so-called horocyclic product of Tk+1 and Tℓ+1: pick an end of each tree, organize all the vertices

into layers labeled by Z with labels tending to +∞ towards that end (with the location of the zero level

being arbitrary), then let V (G) consist of all the pairs (v, w) ∈ Tk+1 × Tℓ+1 with labels (n,−n) for some

n ∈ Z, with an edge from (v, w) to (v′, w′) if (v, v′) ∈ E(Tk+1) and (w,w′) ∈ E(Tℓ+1). See Figure 5.2.
{ex.DLamen}

Exercise▷ 5.5. Show that DL(k, ℓ) is amenable iff k = ℓ.
{ex.LLDL}

Exercise▷ 5.6. Show that the Cayley graph of the lamplighter group Γ = Z2 ≀ Z with generating set S =

{R,Rs, L, sL} is the Diestel-Leader graph DL(2, 2). How can we obtain DL(p, p) from Zp ≀ Z?

5.2 Amenability, invariant means, wobbling paradoxical decompositions
{ss.amen}

The algebraic counterpart of amenability is the following.
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Figure 5.2: The Diestel-Leader graph DL(3, 2). A sample path: (u, a), (v, b), (w, c), (v, b′), (u, a′), (t, z),

(u′, a′). {f.43}

{d.vNamenable}
Definition 5.4 (von Neumann 1929). A finitely generated group Γ is von Neumann amenable if it

has an invariant mean on L∞(Γ), i.e., there exists a linear map m : L∞(Γ) −→ R with the following two

properties for every bounded f : Γ −→ R:
1. m(f) ∈ [inf(f), sup(f)]

2. For all γ ∈ Γ, m(fγ) = m(f), where fγ(x) := f(γx).
{p.measurevN}

Proposition 5.5. A finitely generated group Γ is von Neumann amenable if and only if there exists a

finitely additive invariant (with respect to translation by group elements) probability measure on all subsets

of Γ.

To prove the proposition, identify µ(A) and m(1A) and approximate general bounded functions by step

functions.

Example: Z is amenable, but the obvious candidate

µ(A) = lim sup
n→∞

|[−n, n] ∩A|
2n+ 1

is not good enough, as it fails finite additivity. But there is some sort of limit argument to find an

appropriate measure, which requires the Axiom of Choice.

Exercise▷ 5.7.

(a) Prove that subgroups of amenable groups are amenable.

(b) Given a short exact sequence 1 −→ A1 −→ Γ −→ A2 −→ 1, show that if A1 and A2 are amenable,

then Γ is as well.

From the amenability of Z, this exercise gives that Zd is amenable. Moreover, it can be proved that an

infinite direct sum of amenable groups is also amenable, hence the lamplighter group Γ is also amenable:

it is two-step solvable, with [Γ,Γ] = ⊕ZZ2. More generally, a group is amenable if and only if all finitely

generated subgroups of it are amenable, and hence the exercise implies that any solvable group is amenable.
{t.folner}

Theorem 5.6 (Følner [Føl55]). If Γ is a finitely generated group, it is von Neumann amenable if and only

if any of its Cayley graphs is Følner amenable.
{t.kestenorig}

Theorem 5.7 (Kesten [Kes59]). A finitely generated group Γ is amenable if and only if the spectral radius

ρ of any of its Cayley graphs, as defined in (1.8), equals 1.

We will sketch a proof of Følner’s theorem below, and prove Kesten’s theorem in a future lecture,

Section 7.2.
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{pr.F2vN}
Proposition 5.8. F2 is nonamenable in the von Neumann sense.

Proof. Denote F2 as ⟨a, b⟩, and let A+ denote the set of words in F2 beginning with a. Let A− denote the

set of words beginning with a−1, and let A = A+ ∪ A−. Define B+, B−, and B similarly. Notice that

F2 = A ∪B ∪ {e}, and that F2 also equals A+ ⊔ aA−, as well as B+ ⊔ bB−.

Now, suppose that we have µ as in Proposition 5.5. Certainly µ({e}) = 0, and so we have

µ(F2) = µ(A) + µ(B) + µ({e})

= µ(A+) + µ(A−) + µ(B+) + µ(B−)

= µ(A+) + µ(aA−) + µ(B+) + µ(bB−)

= µ(A+ ⊔ aA−) + µ(B+ ⊔ bB−)

= 2µ(F2).

This is a contradiction, and thus no such measure exists.

Exercise▷ 5.8.* SO(3) ≥ F2 (Use the Ping Pong Lemma, Lemma 2.19).

This exercise and Proposition 5.8 form the basis of the Banach-Tarski paradox: the 3-dimensional

solid ball can be decomposed into finitely many pieces that can be rearranged (using rigid motions of R3)

to give two copies of the original ball (same size!). See [Lub94] or [Wag93] for more on this.

The following theorem was proved by Olshanski in 1980, Adian in 1982, Gromov in 1987, and again by

Olshanski and Sapir in 2002, this time for finitely presented groups.
{t.olshanski}

Theorem 5.9 (Olshanski 1980). There exist nonamenable groups without F2 as a subgroup.

An example of this is the Burnside group B(m,n) = ⟨g1, ..., gm | gn = 1∀g⟩ for m ≥ 2 and n ≥ 665 and

odd.

Now we sketch the proof of the Følner theorem, but first we define some notions and state an exercise

we will use. I learned about this approach, using wobbling paradoxicity, from Gábor Elek; see [ElTS05]

and the references there, although I am not sure that this proof has appeared anywhere before.
{d.wobbling}

Definition 5.10. Let X be a metric space. As in Exercise 3.1, a map φ : X −→ X is at a bounded distance

from the identity, or wobbling, if supx d(x, φ(x)) < ∞. Further, the maps α and β form a wobbling

paradoxical decomposition of X if they are wobbling injections such that α(X) ⊔ β(X) = X.
{ex.wobbling}

Exercise▷ 5.9. * A bounded degree graph is nonamenable if and only if it has a wobbling paradoxical

decomposition. (Hint: State, prove and use the locally finite infinite bipartite graph version of the Hall

marriage theorem [Die00, Theorem 2.1.2], called the Hall-Rado theorem.)

Sketch of proof of Theorem 5.6. For the reverse direction, if there exists a Følner sequence {Sn}, define

µn(A) := |A∩Sn|
|Sn| , and show that some sort of limit exists. Now, because {Sn} is a Følner sequence,

|Sng−1 △ Sn| < ϵ|Sn| for g a generator. So µn(Ag) = |Ag∩Sn|
|Sn| = |(A∩Sng

−1)g|
|Sn| will have the same limit as

µn(A), giving invariance of µ.
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For the forward direction, we prove the contrapositive, so assume that G is nonamenable. Then by

Exercise 5.9, it has a paradoxical decomposition α and β. Suppose that both of these maps move a vertex

a distance of at most r. Then we can decompose

V = A1 ⊔A2 ⊔ · · · ⊔Ak = B1 ⊔B2 ⊔ · · · ⊔Bℓ,

where α|Ai
is translation by some gi ∈ Br, β|Bi

is a translation by some hi ∈ Br, and k, ℓ ≤ |Br|. If we let

Ci,j := Ai ∩Bj , and if we assume for contradiction that there exists some invariant probability measure µ

on Γ as in Definition 5.5, then since µ(α(Ci,j)) = µ(Ci,j) = µ(β(Ci,j)), we have

µ(V ) = µ(α(V ) ⊔ β(V )) =
∑
i,j

µ(α(Ci,j)) + µ(β(Ci,j)) = 2µ(V ) .

Hence Γ is von Neumann nonamenable.

5.3 From growth to isoperimetry in groups
{ss.growthisop}

The following theorem was proved by Gromov for groups, and generalized by Coulhon and Saloff-Coste in

1993 for any transitive graph.
{t.CSC}

Theorem 5.11 ([CouSC93]). Let Γ be a finitely generated group, with a right Cayley graph G(Γ, S). Define

the inverse growth rate by

ρ(n) := min{r : |Br(o)| ≥ n} .

Let K be any finite subset of Γ. Recall the definition ∂inV K = {v ∈ K : ∃γ ∈ S vγ /∈ K}. Then we have∣∣∂inV K∣∣
|K|

≥ 1

2ρ(2|K|)
.

Proof. Take any s ∈ S. It is clear that x ∈ K \Ks−1, i.e., x 7→ xs moves x out of K, only if x ∈ ∂inV K. Thus

|K \Ks−1| ≤
∣∣∂inV K∣∣. More generally, if g = s1 · · · sr ∈ Γ is a product of r generators, then, by iterating

the above argument, we see that |K \ Kg−1| ≤ r
∣∣∂inV K∣∣. In more detail: writing K \ Kg−1 =

⋃r
j=1Hj ,

where Hj := {x ∈ K : xs1 · · · si ∈ K for i = 1, . . . , j − 1, but xs1 · · · sj ̸∈ K}, the map x 7→ xs1 · · · sj−1
from Hj to ∂inV K is injective.

On the other hand, let ρ = ρ(2|K|), and observe that for any x ∈ K,∣∣{xg : g ∈ Bρ(o)
}
\K

∣∣ ≥ |Bρ(o)|/2 ,
since the size of {xg : g ∈ Bρ(o)} is at least 2|K|. Therefore, if we pick g ∈ Bρ(o) uniformly at random,

then

P
[
g moves x out of K

]
≥ 1/2,

which implies E
[

number of x’s moved out of K
]
≥ |K|/2. Hence, there is a g that moves at least |K|/2

elements out of K. Combining our upper and lower bounds on the number of elements of K moved out of

K by g, we have

ρ
∣∣∂inV K∣∣ ≥ ∥g∥S ∣∣∂inV K∣∣ ≥ |K|/2 ,

and we are done.

Examples: For Γ = Zd, ρ(n) = n1/d, hence we get that it satisfies IPd. (We will see another proof

strategy in the next section.) It obviously does not satisfy anything stronger, hence Zd shows that the

above inequality is sharp (up to constant factors), at least in the regime of polynomial growth. The

lamplighter group shows that the inequality is also sharp for groups of exponential growth.
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{ex.Timar}
Exercise▷ 5.10 (Ádám Timár).*** For any f.g. group Γ, does ∃?C1 s.t. ∀A ⊂ Γ finite ∃g ∈ Γ with

0 < d(A, gA) ≤ C1 ,

and does ∃?C2 s.t. ∀A,B ⊂ Γ finite, ∃g ∈ Γ with

0 < d(A, gB) ≤ C2?

Exercise▷ 5.11 (Iva Kozáková-Špakulová). Give an example of a group Γ where C2 > 1 is needed.

One reason for these exercises to appear here is the important role translations played also in The-

orem 5.11. A simple application of an affirmative answer to Exercise 5.10 would be that the boundary-

to-volume ratio would get worse for larger sets, since we could glue translated copies of any small set to

get larger sets with worse boundary-to-volume ratio. In other words, the isoperimetric profile ϕ(r) :=

{|∂S|/|S| : |S| ≤ r} would be roughly decreasing. An actual result using the same idea is [LyPer16,

Theorem 6.2]: for any finite set, the boundary-to-volume ratio is strictly larger than the Cheeger constant.

Related isoperimetric inequalities were proved in [BabSz92] and [Żuk00].

5.4 Isoperimetry in Zd and {0, 1}n
{ss.Zdisop}

On Zd, the following sharp result is known:
{t.integerIP}

Theorem 5.12. For any S in Zd, |∂ES| ≥ 2d|S|1− 1
d , where ∂ES is the set of edges with one vertex in S

and one in Sc.

One proof of Theorem 5.12, using some very natural compression methods, was done by Bollobás and

Leader [BolL91]. The basic idea is that one can apply “gravity” (acting in any coordinate direction) to

any subset S of vertices, which compresses S, reducing its boundary without changing its volume. Subsets

with minimal boundary are more-or-less stable under this compression, and one can describe such stable

sets quite well. A beautiful alternative method can be seen in [LyPer16, Section 6.7]: it goes through

the following theorem, which is proved using conditional entropy inequalities. See [BaliBo12] for a concise

treatment and a mixture of both the entropy and compression methods, with applications to combinatorial

number theory.
{t.LoomisWhitney}

Theorem 5.13 (Discrete Loomis-Whitney Inequality).

∀S ⊆ Zd, |S|d−1 ≤
d∏
i=1

|Pi(S)|,

where Pi(S) is the projection of S in the direction of the ith coordinate (that is, we simply delete the ith

coordinate).

The Loomis-Whitney inequality gives:

|S|
d−1
d ≤

( d∏
i=1

|Pi(S)|
) 1

d

≤ 1

d

d∑
i=1

|Pi(S)| ≤ |∂ES|
2d

,

where the last inequality holds because each line in the ith coordinate direction must leave the set S

through at least two edges. And this is exactly Theorem 5.12.
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{ex.HyperIsopE}
Exercise▷ 5.12 ([Hart76]). The classical edge-isoperimetric inequality for the hypercube says that for sets

of size |S| = 2k, 0 ≤ k ≤ n, the edge-boundary is minimized by the k-dimensional subcubes, hence |∂ES| ≥
2k(n− k). Also more generally, |∂ES| ≥ |S| log2

(
2n/|S|

)
. Prove this.

Let me give my personal endorsement for the conditional entropy proof of Theorem 5.13 in [LyPer16,

Section 6.7]. In [Pet08], I needed to prove an isoperimetric inequality in the wedge Wh ⊂ Z3, the subgraph

of the lattice induced by the vertices V (Wh) = {(x, y, z) : x ≥ 0 and |z| ≤ h(x)}, where h(x) is some

increasing function. Namely, using the flow criterion of transience, Theorem 6.9 below, it was shown in

[Lyo83] that Wh is transient iff
∞∑
j=1

1

jh(j)
<∞ . (5.1) {e.tlyons}{e.tlyons}

For example, h(j) = logr j gives transience iff r > 1. I wanted to show that this implies Thomassen’s

condition for transience [Ths92], which is basically an isoperimetric inequality IPψ with

∞∑
k=1

ψ(k)−2 <∞ . (5.2) {e.thomassen}{e.thomassen}

(The reason for this goal will be clear in Section 12.5.) In such a subgraph Wh, the Bollobás-Leader

compression methods seem completely useless, but I managed to prove the result using conditional entropy

inequalities for projections. What I proved was that Wh satisfies IPψ with

ψ(v) :=

√
vh
(√

v/h(
√
v)
)
.

As can be guessed from its peculiar form, this is not likely to be sharp, but is good enough to deduce (5.2)

from (5.1). E.g., for h(v) = vα, we get ψ(v) = v
1
2+

α
4−

α2

8 , which is not close to the easily conjectured

isoperimetric function v
1+α
2+α , except for α close to 0, but that is exactly the interesting regime here, hence

this strange ψ(v) suffices.

Exercise▷ 5.13.

(a) Show that the wedge Wh with h(v) = vα, α > 0, does not satisfy IPψ whenever ψ(v)/v
1+α
2+α →∞.

(b)*** Is it true that Wh with h(v) = vα does satisfy IPψ with ψ(v) = v
1+α
2+α ?

6 Random walks, discrete potential theory, martingales
{s.potential}

Probability theory began with the study of sums of i.i.d. random variables: LLN, CLT, large deviations.

One can look at this as the theory of 1-dimensional random walks. One obvious generalization is to consider

random walks on graphs with more interesting geometries, or on arbitrary graphs in general. The first

two sections here will introduce a basic and very useful technic for this: electric networks and discrete

potential theory. Another obvious direction of generalization is to study stochastic processes that still take

values in R, resemble random walks in some sense, but whose increments are not i.i.d. any more: these

will be the so-called martingales, the subject of the third section. Discrete harmonic functions will connect

martingales to the first two sections.
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6.1 Markov chains, electric networks and the discrete Laplacian
{ss.networks}

Simple random walks on groups (for which we saw examples in Section 1.1), are special cases of reversible

Markov chains, which we now define.

A Markov chain is a sequence of random variables X1, X2, X3, . . . ∈ V such that

P
[
Xn+1 = y | X1 = x1, X2 = x2, . . . , Xn = xn

]
= P

[
Xn+1 = y | Xn = xn

]
= p(xn, y).

That is, the behaviour of the future states is governed only by the current state. The values p(x, y) are

called the transition probabilities, where it is usually assumed that
∑
y∈V p(x, y) = 1 for all x ∈ V . We

will also use the notation pn(x, y) = P
[
Xn = y | X0 = x

]
, just as in Section 1.1.

Given any measure π (finite or infinite) on the state-space V , the Markov chain tells us how it evolves

in time: after one step, we get the measure πP (y) =
∑
x∈V π(x)p(x, y). A measure π is called stationary

if the chain leaves it invariant: πP = π. An important basic theorem is that any finite Markov chain has

a stationary distribution, which is unique if the chain is irreducible (which means that for any x, y ∈ V
there is some n with pn(x, y) > 0). These facts follow from the Perron-Frobenius theorem for the matrix

of transition probabilities, which we will not state here. There is also a probabilistic proof, constructing a

stationary measure using the expected number of returns to any given vertex. See, for instance, [Dur10,

Section 6.5]. For an infinite state space, there could be no stationary measure, or several. We will not

discuss these matters in this generality, but see the example below.

We say that a Markov chain is reversible if there exists a reversible measure, i.e., non-negative function

π(x), not identically zero, that satisfies

π(x)p(x, y) = π(y)p(y, x) ∀x, y.

Note that this reversible measure is unique up to a global factor, since π(x)/π(y) is given by the Markov

chain. Note also that reversible measures are also stationary. But not every stationary measure is reversible:

it is good to keep in mind the following simple examples.

Example. Consider the n-cycle Z (mod n) with transition probabilities p(i, i+1) = 1−p(i+1, i) = p > 1/2

for all i. It is easy to see that this is a non-reversible chain; intuitively, a movie of the evolving chain looks

different from the reversed movie: it moves more in the + direction. But the uniform distribution is a

stationary measure.

On the other hand, the chain with the same formula for the transition probabilities on Z is already

reversible. Although the uniform measure π(i) = 1 ∀ i ∈ Z is still stationary but non-reversible, the measure

π′(i) =
(
p/(1− p)

)i
is reversible. The above intuition with reversing the movie goes wrong now because π′

is not a finite measure, hence looking at a typical realization of the movie is simply meaningless. A simple

real-life example of an infinite chain having some unexpected stationary measures is the following joking

complaint of my former advisor Yuval Peres: “Each day is of average busyness: busier than yesterday but

less busy than tomorrow.”

Exercise▷ 6.1. Show that a Markov chain (V, P ) has a reversible measure if and only if for all oriented

cycles x0, x1, . . . , xn = x0, we have
∏n−1
i=0 p(xi, xi+1) =

∏n−1
i=0 p(xi+1, xi).

Now, all Markov chains on a countable state space are in fact random walks on weighted graphs:
{d.network}

Definition 6.1. Consider a directed graph with weights on the directed edges: for any two vertices x and

y, let c(x, y) be any non-negative number such that c(x, y) > 0 only if x and y are neighbours.
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Let Cx =
∑
y c(x, y), and define the weighted random walk to be the Markov chain with transition

probabilities

p(x, y) =
c(x, y)

Cx
.

An important special case is when c(x, y) = c(y, x) for every x and y, i.e., we have weights on the

undirected edges. Such weighted graphs are usually called electric networks, and the edge weights c(e)

are called conductances. The inverses r(e) = 1/c(e) ∈ (0,∞] are called resistances. The associated

weighted random walk is sometimes called the network walk.

The walk associated to an electric network is always reversible: Cx is a reversible measure. On the

other hand, any reversible Markov chain on a countable state space comes from an electric network, since

we can define c(x, y) := π(x)p(x, y) = π(y)p(y, x) = c(y, x).

Exercise▷ 6.2. Show by examples that, in directed weighted graphs, the measure (Cx)x∈V might be non-

stationary, and might be stationary but non-reversible. Can the walk associated to a finite directed weighted

graph have a reversible measure?

An electric network is like a discrete geometric space: we clearly have some notion of closeness coming

from the neighbouring relation, where a large resistance should mean a larger distance. Indeed, we will

define discrete versions of some of the notions of multidimensional calculus (or more generally, differential

and Riemannian geometry), like gradient, divergence, and harmonicity, which will turn out to be very

relevant for studying the random walk associated to the network.

Let us start with the following problem. We are given a network G(V,E, c), with two subsets A,Z ⊂ V ,

we start the random walk at some x ∈ V , and want to compute

f(x) := Px[ τA < τZ ] , (6.1) {e.hitP}{e.hitP}

where τA is the first time we hit A. In order for (6.1) to be well-defined, we assume that τA ∧ τZ is almost

surely finite. A simple example to keep in mind is SRW on the interval V = {0, 1, . . . , n}, with A = {0}
and Z = {n}. We can solve this problem by writing a recursion, or a discrete differential equation, or a

dynamic program, call it according to your taste. Namely, for any inner vertex x ̸∈ A ∪ Z, condition on

what the first step X1 of the walk could be:

f(x) =
∑
y∈V

Px[X1 = y ]Px[ τA < τZ | X1 = y ] =
∑
y∈V

Px[X1 = y ]Py[ τA < τZ ] =
∑
y∈V

p(x, y)f(y) ,

or more concisely,

f(x) = Ex
[
Px[ τA < τZ | X1 ]

]
= Ex

[
PX1

[ τA < τZ ]
]

= Ex[ f(X1) ] .

The boundary values are of course f |A = 1 and f |Z = 0. In the example of the interval, f(x) = (f(x−1)+

f(x+ 1))/2 for all 1 ≤ x ≤ n− 1, and one can easily see that the unique solution is the linear extension of

the boundary values: f(x) = (n− x)/n.

More generally, let W be any subset of V , and let f : W −→ R be any real-valued function. Then, for

x ∈ V \W , define

f(x) := E
[
f(Xτ ) | X0 = x

]
, (6.2) {e.hitE}{e.hitE}

where τ is the first time we visit W , and we assume that τ <∞ almost surely. We get back the previous

example by W = A ∪ Z, f |A = 0, f |Z = 1. And, by the exact same argument as above, we have

f(x) = Ex[ f(X1) ] again. It is now time to make the following fundamental definitions:

52



{d.markovop}
Definition 6.2. The Markov operator P of a Markov chain on V is defined by

(Pf)(x) =
∑
y∈V

p(x, y)f(y) = Ex[ f(X1) ] ,

acting on functions f : V −→ R: taking the one-step average by the Markov chain. The Laplacian

operator is ∆ := I − P . A function f : V −→ R is harmonic at some x ∈ V if ∆f(x) = 0; that is, if the

mean value property holds:

Ex[ f(X1) ] = f(x) ,

the average of the function values after one step of the chain equals the value at the starting point x. A

function is harmonic if it is harmonic at every vertex.

Examples (6.1) and (6.2) are harmonic in V \ (A ∪ Z) and V \W , respectively. One justification for

calling this property harmonicity is the mean value property, which is a direct analogue of the continuous

property

f(x) =
1

Vold−1(∂Br(x))

∫
∂Br(x)

f(y) dy =
1

Vold(Br(x))

∫
Br(x)

f(y) dy .

And, just like in the case of continuous harmonic functions, an immediate consequence of the mean value

property is the maximum principle: if f : V −→ R is harmonic for all x ∈ V \W , then there are no

strict local maxima in V \W , and if there is a global maximum over V , then it must be achieved also at

some point of W .
{l.harmext}

Lemma 6.3. Given a finite network G(V,E, c), a subset W ⊂ V , and any real-valued function f on W ,

there exists a unique extension of f to V that is harmonic on V \W .

Proof. Existence: use the extension (6.2) above.

Uniqueness: Suppose that f1 and f2 are two extensions of f . Let g = f1−f2, again harmonic on V \W .

Since V is finite, the global maximum and minimum of g is attained, and by the maximum principle, it

must also be attained on W , where g ≡ 0. Hence g ≡ 0 on V .

In the continuous world, the Laplacian is the second order differential operator
∑d
i=1 ∂xixi

. Then we

should also have first order operators in the discrete world! Here they are.

Consider an electric network on the graph G = (V,E). If e is an edge with vertices e+ and e−,

decompose it into two directed edges e and ê such that e runs from e− to e+, while ê runs from e+ to e−.

Denote by
←→
E the set of directed edges formed.

Take f, g : V −→ R. Define

∇f(e) = [f(e+)− f(e−)] c(e)

to be the gradient of f . The weight c(e) = 1/r(e) is natural since the resistance r(e) of a physical link is

proportional to the length of e. In a cohomological language, this is a coboundary operator, since, from

functions on zero-dimensional objects (the vertices), it produces functions on one-dimensional objects (the

edges). Also define the inner product

(f, g) = (f, g)C =
∑
x∈V

f(x) g(x)Cx.

This is again natural from the point of view that imposing a large potential at a vertex that has larger

total conductance has a larger effect on the network. Also mathematically, it is natural to consider the
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Hilbert space L2(V, π) based on any stationary measure π, and (Cx)x∈V is a reversible stationary measure

for the network walk; see, e.g., Exercise 6.3 below.

Take θ, η :
←→
E −→ R such that θ(ê) = −θ(e). Define the boundary operator

∇∗θ(x) =
∑

e:e+=x

θ(e)
1

Cx
.

Also define another inner product,

(θ, η) = (θ, η)r =
1

2

∑
e∈
←→
E

θ(e) η(e) r(e).

Some works, e.g. [LyPer16], omit the “vertex conductances” Cx from the inner product on V and the

boundary operator ∇∗, while our definition agrees with [Woe00]. This is an inessential difference, but one

needs to watch out for it. {p.adjoint}
Proposition 6.4. (∇f, θ)r = (f,∇∗θ)C , i.e., ∇ and ∇∗ are the adjoints of each other (hence the notation).

Proof. The right hand side is ∑
x∈V

(
∑
e+=x

θ(e)
1

Cx
)f(x)Cx =

∑
x∈V

∑
e+=x

θ(e)f(x).

The left hand side is

1

2

∑
e∈
←→
E

[(
f(e+)− f(e−)

)
c(e)

]
θ(e)

1

c(e)
=

1

2

∑
e∈
←→
E

[
f(e+)− f(e−)

]
θ(e).

In this sum, for each x and e such that e+ = x, the term f(x)θ(e) is counted twice: once when y = e+ and

once when y = ê+ = e−. Since θ(ê) = −θ(e), the two sums are equal.

A very important exercise is the following:
{ex.selfadj}

Exercise▷ 6.3. Show that the Markov operator P is self-adjoint with respect to the inner product (·, ·)π,
with some π : V −→ R≥0, if and only if π is a reversible measure for the Markov chain.

Now, how is the Laplacian related to the boundary and coboundary operators? For any f : V −→ R,

we have

∇∗∇f(x) =
∑
e+=x

∇f(e)
1

Cx

=
∑
e+=x

[
f(e+)− f(e−)

] c(e)
Cx

= f(x)
∑
e+=x

c(e)

Cx
−
∑
y

f(y)
c(x, y)

Cx

= f(x)−
∑
y

f(y)p(x, y)

= f(x)− (Pf)(x) = ∆f(x) .

{d.flow}
Definition 6.5. Let A and Z be disjoint subsets of V (G).

54



• A voltage between A and Z is a function f : V −→ R that is harmonic at every x ∈ V \ (A ∪ Z),

while ∆f |A ≥ 0 and ∆f |Z ≤ 0.

• A flow from A to Z is a function θ :
←→
E −→ R with θ(ê) = −θ(e) such that ∇∗θ(x) = 0 for every

x ∈ V \ (A∪Z), while ∇∗θ|A ≥ 0 and ∇∗θ|Z ≤ 0. In words, it satisfies Kirchhoff’s node law: the

inflow equals the outflow at every inner vertex.

• The strength of a flow is

∥|θ∥| :=
∑

e:e+∈A

θ(e) =
∑

e:e−∈Z

θ(e) =
∑
a∈A
∇∗θ(a)Ca = −

∑
z∈Z
∇∗θ(z)Cz ,

the total net amount flowing from A to Z. (Or maybe from Z to A — it is unclear what the best

terminology is. Electricity flows from higher to lower voltage, but the gradient vector field is pointing

towards higher values.)

• A main example of a flow is the current flow θ := ∇f associated to a voltage function f between A

and Z. (It is a flow precisely because of the harmonicity of f .)

Example 1. The hitting probability function f(x) = Px[ τA < τZ ] defined in (6.1) is harmonic on V \
(A ∪ Z), satisfies f |A = 1 and f |Z = 0, while f(x) ∈ [0, 1] for all x ∈ V , hence ∆f |A ≥ 0 and ∆f |Z ≤ 0.

Therefore, f is a voltage function from A to Z.

Example 2. More generally, consider the function f(x) = Ex
[
f(Xτ )

]
defined in (6.2). If we now define

W0 = {u ∈ W | ∆f(u) < 0} and W1 = {u ∈ W | ∆f(u) > 0}, then f is a voltage from W1 to W0, and

θ = ∇f is the associated current flow from W1 to W0.

Example 3. Flows are the discrete analogue of divergence-free vector fields. Current flows are the

gradient vector fields of harmonic functions. Of course, not every flow is a current flow. E.g., on the

cycle C4 = {0, 1, 2, 3} with unit conductances, define θ(0, 1) = θ(1, 2) = −1, θ(0, 3) = θ(3, 2) = 0. Then

∇∗θ(0) = 1 = −∇∗θ(2) and ∇∗θ(1) = ∇∗θ(3) = 0, hence θ is a flow from 0 to 2 of strength 1. However,

any current flow from 0 to 2 assigns equal amounts to the four edges (0, 1), (1, 2), (0, 3), (3, 2).

Example 4. Let Z ⊂ V be such that V \ Z is finite, and let x /∈ Z. Then

GZ(x, y) := Ex
[

number of times the walk goes through y before reaching Z
]
,

is called Green’s function killed at Z. It is almost the standard Green’s function corresponding to the

Markov chain killed at Z, i.e., with transition probabilities pZ(x, y) = p(x, y)1x ̸∈Z . (This is a sub-Markovian

chain, i.e., the sum of transition probabilities from certain vertices is less than 1: once in Z, the particle

is killed instead of moving.) The only difference between GZ(x, y) and
∑
n≥0 p

Z
n (x, y) is at x ̸∈ Z, y ∈ Z,

where the former is zero, the latter is not.

55



Quite similarly to the previous examples, GZ is harmonic in its first coordinate outside of Z ∪ {y}:

GZ(x, y) =
∑
n≥1

pZn (x, y) (since x /∈ Z ∪ {y})

=
∑
n≥1

∑
x′

pZ(x, x′)pZn−1(x′, y)

=
∑
x′

pZ(x, x′)
∑
n≥1

pZn−1(x′, y)

=
∑
x′

pZ(x, x′)
∑
n≥0

pZn (x′, y)

=
∑
x′

pZ(x, x′)GZ(x′, y) .

To get harmonicity in the second coordinate, we need to change GZ a little bit. Notice that CxG
Z(x, y) =

Cy G
Z(y, x), by reversibility when x, y ̸∈ Z, and by definition when x or y is in Z. Therefore, f(x) :=

GZ(o, x)/Cx = GZ(x, o)/Co is now harmonic in x /∈ Z ∪ {o}. It is clear that f |Z = 0 and f(o) > 0, so, by

the maximum principle, ∆f(o) > 0 and ∆f |Z ≤ 0. So, f is a voltage function from o to Z.

Using Lemma 6.3, we can define a certain electrical distance between disjoint nonempty subsets A and

Z of V (G). Namely, consider the unique voltage function v from A to Z with v|A ≡ α and v|Z ≡ β, where

α > β. The associated current flow i = ∇v has strength ∥|i∥| > 0. It is easy to see that

R(A↔ Z) :=
α− β
∥|i∥|

(6.3) {e.Reff}{e.Reff}

is independent of the values α > β. It is called the effective resistance between A and Z. Its inverse

C(A↔ Z) := 1/R(A↔ Z) is the effective conductance.

Exercise▷ 6.4. Show that effective resistances add up when combining networks in series, while effective

conductances add up when combining networks in parallel.
{ex.Ceff}

Exercise▷ 6.5.

(a) Show that for the voltage function f(x) = GZ(o, x)/Cx of Example 4 above, the associated current

flow has unit strength, hence R(o ↔ Z) = GZ(o, o)/Co. (Hint: show that ∇f(y, z) for z ∈ Z and

y ̸∈ Z is exactly the probability that the random walk hits Z through the edge (y, z).)

(b) Using (a), show that C(o ↔ Z) = CoPo[ τZ < τ+o ], where τ+o is the first positive hitting time on o.

(Hint: we have seen the connection between the probability of return and the expected number of visits

in Section 1.1.)

The last exercise provides a great electric interpretation for recurrence of infinite networks G(V,E, c).

Consider a sequence of finite cutsets Zn ⊂ V between the starting vertex o and infinity, such that each Zn

is also a cutset between o and Zn+1. Then the sequence of events {τZn
< τ+o } is decreasing in n, hence

limn→∞Po[ τZn < τ+o ] exists. Moreover, this limit is independent of the sequence {Zn}. Indeed, given two

such sequences {Zn} and {Z ′n}, for any Zn there exists a Z ′m such that Zn is a cutset between o and Z ′m,

and vice versa, giving two interlacing subsequences of probabilities, which then must have the same limit.

Therefore, Exercise 6.5 (b) says that limn→∞ C(o ↔ Zn) also exists and is independent of the sequence

{Zn}, and hence may be called the effective conductance between o and infinity, denoted by C(o↔∞). It

is equal to CoPo[ τZn
< τ+o for all n ]. We claim that this can be written more simply as

C(o↔∞) = CoPo[ τ
+
o =∞ ] . (6.4) {e.CeffEsc}{e.CeffEsc}
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In particular, the effective conductance to infinity is positive iff the network is transient. To verify (6.4),

if the right hand side is 0, then Po[ τZn
< τ+o for all n ] = 0, as well, since the latter is a smaller event. On

the other hand, if the right hand side is positive, then the network is transient, and Exercise 1.1 says that

the walk spends in any finite set only finite time. Thus every Zn will be eventually reached almost surely,

and hence {τ+o =∞} actually implies {τZn < τ+o for all n}.
{e.hitsym}

Exercise▷ 6.6. Let G(V,E, c) be a transitive network (i.e., the group of graph automorphisms preserving

the edge weights have a single orbit on V ). Show that, for any u, v ∈ V ,

Pu[ τv <∞ ] = Pv[ τu <∞ ] .

Exercise▷ 6.7 (“Green’s function is the inverse of the Laplacian”). Let (V, P ) be a transient Markov chain

with a stationary measure π and associated Laplacian ∆ = I−P . Assume that the function y 7→ G(x, y)/πy

is in L2(V, π). Let f : V −→ R be an arbitrary function in L2(V, π). Solve the equation ∆u = f .

6.2 Dirichlet energy and transience
{ss.Dirichlet}

In PDE theory, the Laplace equation arises as the Euler-Lagrange variational PDE for minimizing the L2

norm of the gradient. The same phenomenon holds in the discrete setting.
{d.dirichlet}

Definition 6.6. For any f : V (G) −→ R, define the Dirichlet energy by

E(f) := (∇f,∇f)r =
1

2

∑
e∈
←→
E (G)

|f(e+)− f(e−)|2c(e) .

With a slight abuse of notation, for any antisymmetric θ :
←→
E −→ R we can define E(θ) := (θ, θ)r.

{l.harmmin}
Lemma 6.7. The unique harmonic extension in Lemma 6.3 is the unique minimizer of Dirichlet energy.

{ex.harmmin}
Exercise▷ 6.8. Prove this lemma. (Hint: for a quadratic function f(x) =

∑
i(x−ai)2, what is the solution

of f ′(x) = 0?)

Note that an antisymmetric function θ :
←→
E (G) −→ R is the gradient θ = ∇f of some f : V (G) −→ R

if and only it satisfies Kirchhoff’s cycle law, i.e., is circulation-free:∑
e∈C

θ(e) r(e) = 0 for all directed cycles C ⊂
←→
E .

Thus, Lemma 6.7 can be reformulated as follows: among all antisymmetric θ satisfying Kirchhoff’s cycle

law, with a given flux along the boundary (the values ∇∗θ(u), u ∈W ), the one that minimizes the Dirichlet

energy E(θ) also satisfies Kirchhoff’s node law in V \W (i.e., it is a flow). There is a dual statement:
{l.Thomson}

Lemma 6.8 (Thomson’s principle). If A and Z are disjoint subsets of V (G), then among all the flows θ

with given values ∇∗θ|A∪Z , the current flow has the smallest energy (i.e., the one that satisfies Kirchhoff’s

cycle law).

Proof. The strategy is the same as in Exercise 6.8, just need to perturb flows instead of functions: if θ is

a flow with minimal energy E(θ), and C is an oriented cycle, then consider the flow γ that is constant 1

on C, and a simple quadratic computation shows that E(θ + ϵγ) ≥ E(θ) can hold for all ϵ ∈ R only if θ

satisfies the cycle law along C.
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Let us compute this minimum Dirichlet energy for the unique harmonic extension (the voltage v) of

v|A = α and v|Z = β, where α > β. Here E(v) = (v,∇∗∇v) = α
∑
a∈A Ca∇∗∇v(a)+β

∑
z∈Z Cz∇∗∇v(z) =

α∥|∇v∥| − β∥|∇v∥|. So, if the voltage difference α− β is adjusted so that we have a unit flow from A to Z,

i.e., ∥|∇v∥| = 1, then, by the definition (6.3),

E(v) = α− β = R(A↔ Z) . (6.5) {e.DReff}{e.DReff}
{t.transientflow}

Theorem 6.9 (Terry Lyons [Lyo83]). A graph G is transient if and only if there exists a non-zero flow of

finite energy from some vertex o ∈ V (G) to infinity (i.e., a flow with A = {o} and Z = ∅).

Proof. If G is transient, then Green’s function G(o, x) is finite for all o, x, hence we can consider f(x) :=

G(o, x)/Cx, as in Example 4 after Definition 6.5. Then ∇f is a non-zero flow to infinity from o ∈ G, and,

by Exercise 6.5 (a), it has unit strength. Its energy, by the above calculation, is E(f) = (f,∇∗∇f) =

f(o)∥|∇f∥| = f(o) = G(o, o)/Co <∞, which is indeed finite.

For the other direction, assuming recurrence, take an exhaustion of G by subgraphs Fn. As discussed

around (6.4), recurrence of G implies that C(o↔ G \Fn)→ 0 as n→∞. So, the effective resistance blows

up. By Thomson’s principle (Lemma 6.8) and (6.5), this means that there are no unit strength flows from

o to G\Fn whose energies remain bounded as n→∞. On the other hand, if there was a finite energy flow

on G from o to infinity, then there would also be one with unit strength, and from that we could produce

a unit strength flow of smaller energy from o to each G \ Fn, contradicting the previous sentence.

Exercise▷ 6.9. Without consulting Lyons (Terry or Russ), find an explicit flow of finite energy on Z3.

(Hint: what would a lot of water or electrons do in R3 when pumped into the origin? Mimic this in Z3,

and hope that it will have finite energy.)

Finding a flow of finite energy is a good possible way to prove transience. Unsurprisingly (especially in

view of the Max Flow Min Cut theorem), in order to prove recurrence, it is useful to find small cutsets:
{pr.NW}

Proposition 6.10 (Nash-Williams criterion [NasW61]). If {Πn}n≥1 is a sequence of pairwise disjoint

finite cutsets in a locally finite graph G(V,E), each separating o from ∞, then

R(o↔∞) ≥
∞∑
n=1

1∑
e∈Πn

c(e)
.

Sketch of proof. Instead of proving this in detail (which can be found, e.g., in [LyPer16, Section 2.5]), let

us just discuss a natural special case, in which the intuitive meaning of the formula becomes transparent.

Assume that each Πn separates Πn−1 from Πn+1. Then we can collapse all vertices between Πn and Πn+1

into a single vertex vn (including the collapse of all vertices inside Π1 into a v0). By this, we can only

decrease the effective resistance, and we obtain a chain of vertices, where vn−1 and vn are joined by parallel

edges of total conductance
∑
e∈Πn

c(e). To get the effective resistance to infinity, we sum up the reciprocals

of these conductances, and get the result.

Exercise▷ 6.10. Use the Nash-Williams criterion to prove the recurrence of Z2.

In Section 1.1, we computed return probabilities and concluded about recurrence and transience by

rather explicit calculations, relying heavily on the structure of Zd and Td. Flows of finite energy provide

us with a much more robust tool, as shown by the following result.
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Any network G(V,E, c) is naturally a metric space, with

d(x, y) := inf

{∑
e∈γ

r(e) : γ is a path connecting x and y

}
.

We say that G is uniformly locally finite if supx∈V |BR(x)| <∞ for any radius R > 0.
{t.Kanai}

Theorem 6.11 (Kanai, 1986). If ϕ : (G1, d1) −→ (G2, d2) is a quasi-isometric embedding between uni-

formly locally finite networks, then ∃C <∞ such that

E1(f ◦ ϕ) ≤ C E2(f) .

Furthermore, if G1 is transient, then so is G2.

Thus, if G1 ≃q G2, then the Gi’s are transient at the same time and E1 ≍ E2 (in the obvious sense that

can be read off from the above inequality).

Proof. We will prove only the transience statement, the other being very similar. Suppose θ1 is a flow of

finite energy on G1, say, from a to infinity. For any e in G1, we choose one of the shortest paths in G2

going from the vertex ϕ(e−) to ϕ(e+), in an arbitrary way, and we call this the image of e under ϕ. Define

θ2 as follows:

θ2(e2) =
∑

e1:e2∈ϕ(e1)

±θ1(e1) ,

where the sign of θ1(e1) depends on the orientation of the path ϕ(e1) with respect to the orientation of e2.

Now θ2 is a flow from ϕ(a) to ∞, since the contribution of each path ϕ(e) to each ∇∗θ2(x) is zero unless

x ∈ ϕ(e±). Define

α := sup
e∈G1

d2(ϕ(e+), ϕ(e−))/d1(e+, e−)

and

β := sup
e2∈G2

#{e1 ∈ G1 : e2 ∈ ϕ(e1)} .

Note that α is finite, since ϕ cannot increase distances by a lot. Then β is finite, as well: since α <∞ and

ϕ cannot decrease distances by a lot, all edges e1 counted here must come from within some distance α′ of

the set ϕ−1(e2) of uniformly bounded diameter, which is altogether a finite set of uniformly bounded size,

because of the uniform local finiteness of G1. Finally, the energy of θ2 is finite, since:

|θ2(e2)|2 ≤ β
∑

e1:e2∈ϕ(e1)

θ1(e1)2

by the convexity of x 7→ x2, and then

E(θ2) =
∑

e2∈E(G2)

|θ2(e2)|2r(e2) ≤ β
∑
e2

∑
e1:e2∈ϕ(e1)

θ1(e1)2r(e2) ≤ αβ
∑

e1∈E(G1)

θ1(e1)2r(e1) <∞ ,

and we are done.

6.3 Martingales
{ss.MG}

We now define one of the most fundamental notions of probability theory: martingales. We will use them

in the evolving sets method of Chapter 8, in the study of bounded harmonic functions in Chapter 9, and

in several other results related to random walks. We will also use them in static models where there is
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no a priori time: to prove Kolmogorov’s 0-1 law Theorem 9.20, to prove concentration results for the

Erdős-Rényi random graph later in this section, and in the study of the appearance of the giant cluster in

the evolution of the Erdős-Rényi random graph in Section 12.3.

Definition 6.12. A sequence M1,M2, . . . of R-valued random variables (or in any value set where av-

eraging makes sense) is called a martingale if E[Mn+1 |M1, . . . ,Mn ] = Mn. More generally, given an

increasing sequence of σ-algebras, F1 ⊆ F2 ⊆ . . . (called a filtration), and Mn is measurable w.r.t. Fn

for each n, we want that E[Mn+1 | Fn ] = Mn.

Example 1: We start with a trivial example: if Mn =
∑n
k=1Xk with E[Xk ] = 0 for all k, with the Xk’s

being independent, then E[Mn+1 |M1, . . . ,Mn ] = E[Xn+1 ] +Mn = Mn.

Example 2: A classical source of martingales is gambling. In a completely fair casino, if a gambler chooses

based on her history of winnings what game to play next and in what value, then the increments in her

fortune will not be i.i.d., but her fortune will be a martingale: she cannot make and cannot lose money in

expectation, whatever she does. In particular, for any martingale,

E
[
Mk

∣∣M0

]
= E

[
E
[
Mk

∣∣Mk−1,Mk−2, . . . ,M0

] ∣∣∣M0

]
, by Fubini

= E
[
Mk−1

∣∣M0

]
, by being a martingale

= · · · = M0 , by iterating ,

(6.6) {e.MGE1}{e.MGE1}

and

E[Mk ] = E[Mk−1 ] = · · · = E[M0 ] . (6.7) {e.MGE2}{e.MGE2}

A famous gambling example is the “double the stake until you win” strategy: 0. start with fortune

M0 = 0; 1. borrow one dollar, double or lose it with probability 1/2 each, arriving at a fortune M1 =

2− 1 = 1 or M1 = 0− 1 = −1; 2. if the first round is lost, then borrow two more dollars, double or lose it

with probability 1/2 each; 3. if the second round is also lost, then borrow four more dollars, and so on, until

first winning a round, and then pay back all the debts. This will eventually happen almost surely, in the

random τth round, and then the net payoff is −1−2−· · ·−2τ−1 + 2τ = 1, so this is an almost certain way

to make money in a fair game — assuming one has a friend with infinite fortune to borrow from! Now, it is

easy to see that the fortune Mk (set to be constant from time τ on) is a martingale: on the event {Mk = 1},
we have Mk+1 = 1 = Mk a.s., while E

[
Mk+1

∣∣Mk = −1− 2− · · · − 2k−1
]

= Mk+1/2 ·2k−1/2 ·2k = Mk.

But then, how does EMk = EM0 = 0 square with EMτ = 1? Well, τ is a random time, so why would (6.7)

apply? We will further discuss this issue a few paragraphs below, under Optional Stopping Theorems.

Example 3: G = (V,E, c) is a network, W ⊆ V is given (thought of as some sort of boundary), and

f : V −→ R is harmonic on V \W ; see Definition 6.2. Define Mn = f(Xn), where Xn is the random walk

on the network, and let τ ∈ N be the time of hitting W . It may be that τ =∞ with positive probability.

On the event τ < ∞, we set Xτ+i = Xτ for all i ∈ N. Now, by the Markov property of Xn and the

harmonicity of f , we have

E[Mn+1 | X1, . . . , Xn, n < τ ] = E
[
f(Xn+1)

∣∣ Xn

]
= f(Xn) = Mn ,

and the same holds trivially also on the event {n ≥ τ} instead of {n < τ}, thus Mn is a martingale

w.r.t. Fn = σ(X0, . . . , Xn). It is also a martingale in the more restricted sense: given the sequence
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(Mn)∞n=0 only,

E[Mn+1 |Mn, . . . ,M0 ] =
∑

x0,...,xn:

f(xi)=Mi ∀i

E[ f(Xn+1) | Xi = xi ∀i ≤ n ]P[Xi = xi ∀i ≤ n |Mn, . . . ,M0 ]

=
∑

x0,...,xn:

f(xi)=Mi ∀i

f(x)P[Xi = xi ∀i ≤ n |Mn, . . . ,M0 ]

= f(xn) = Mn .

This averaging argument can be used in general to show that it is easier to be a martingale w.r.t. to a

filtration of smaller (coarser) σ-algebras.

Exercise▷ 6.11. Give an example of a random sequence (Mn)∞n=0 such that E[Mn+1 |Mn ] = Mn for all

n ≥ 0, but which is not a martingale w.r.t. the filtration Fn = σ(M0, . . . ,Mn).

Example 4: If we have a filtration Fn ↑ F∞, possibly F∞ = FN for some finite N , and Y is an integrable

variable in F∞, then Mn := E[Y | Fn ] is a martingale:

E[Mn+1 | Fn ] = E
[
E[Y | Fn+1 ]

∣∣ Fn

]
= E[Y | Fn ] = Mn .

In words: our best guesses about a random variable Y , as we learn more and more information about it,

form a martingale. As we will see, this is a far-reaching idea.

It might not be obvious at first sight, but Example 3 is a special case of Example 4, at least in the

case when τ < ∞ almost surely. As we saw in Section 6.1, given f : W −→ R, one harmonic extension

to V \W is given by f(x) = Ex[ f(Xτ ) ]. So, taking Fn = σ(X0, . . . , Xn) and F∞ = σ(X0, X1, . . . ), we

have that Y = f(Xτ ) is F∞-measurable, and Mn = E[Y | Fn ] equals f(Xn). A generalization of this

correspondence between harmonic functions and limiting values of random walk martingales, for the case

when τ =∞ is a possibility, will be Theorem 9.25.

Another instance of Example 4, very different from random walks, but typical in probabilistic com-

binatorics, is the edge- and vertex-exposure martingales for the Erdős-Rényi random graph model

G(n, p). An instance G of this random graph is generated by having each edge of the complete graph

Kn on n vertices be present with probability p and missing with probability 1 − p, independently from

each other. In other words, the probability space is all subgraphs of Kn, with measure P[G = H ] =

p|E(H)|(1− p)(
n
2)−|E(H)| for any H. Now, given a variable Y on this probability space, e.g., the chromatic

number χ(G), we can associate to it two martingales, as follows. Fix an ordering e1, . . . , em of the edges

of Kn, where m =
(
n
2

)
. Let G[e1, . . . , ei] ∈ {0, 1}{e1,...,ei} be the states of the edges e1, . . . , ei in G, and let

ME
i (G) := E

[
Y
∣∣ G[e1, . . . , ei]

]
for i = 0, 1, . . . ,m. This is the edge exposure martingale associated to

Y , a random sequence determined by G, with ME
0 = E[Y ] and ME

m = Y . Similarly, one can fix an order-

ing v1, . . . , vn of the vertices, let G[v1, . . . , vi] be the states of the
(
i
2

)
edges spanned by v1, . . . , vi, and let

MV
i (G) := E

[
Y
∣∣ G[v1, . . . , vi]

]
for i = 0, 1, . . . , n. This is the vertex exposure martingale. One reason

for the interest in these martingales is that the Azuma-Hoeffding inequalities, Propositions 1.8 and 1.9, can

be applied to prove the concentration of certain variables Y around their mean (even if the value of the

mean is unknown). For instance, when Y = χ(G), then we have the Lipschitz property |MV
i+1 −MV

i | ≤ 1

almost surely, hence, for MV
n = χ(G), Proposition 1.8 and Exercise 1.8 give

P
[
|χ(G)−Eχ(G)| > λ

√
n
]
≤ 2 exp(−λ2/2) . (6.8) {e.chromcont}{e.chromcont}
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The reason for the Lipschitz property is that we clearly have |χ(H) − χ(H ′)| ≤ 1 if H and H ′ are two

graphs on the same vertex set whose symmetric difference is a set of edges incident to a single ver-

tex. Now, when we reveal the states of the edges between vi+1 and {v1, . . . , vi}, we can write MV
i =

E
[
MV
i+1

∣∣ G[v1, . . . , vi]
]
, and think of the right hand side as a double averaging: first over the edges not

spanned by {v1, . . . , vi, vi+1}, then over the edges between vi+1 and {v1, . . . , vi}. Fixing the states of the

edges not spanned by {v1, . . . , vi, vi+1} and varying the states of the edges between vi+1 and {v1, . . . , vi},
we get a set of possible outcomes whose Y -values differ by at most 1. Hence the MV

i+1-values, given MV
i ,

all differ by at most 1. But their average is MV
i , hence they can all be at distance at most 1 from MV

i , as

claimed.

We give here two more examples of this kind. Yet another one can be found in Exercise 14.4 part (b).
{ex.chromcont2}

Exercise▷ 6.12. Let G = (V,E) be an arbitrary finite graph, 1 ≤ k ≤ |V | an integer, and K a uniform

random k-element subset of V (G). Then the chromatic number χ(G[K]) of the subgraph of G spanned by

K is concentrated: for the number c(G, k) := E[χ(G[K]) ], we have

P
[ ∣∣χ(G[K])− c(G, k)

∣∣ > ϵk
]
≤ exp(−ϵ2k/2) .

The concentration of measure phenomenon shown by the next exercise is strongly related to isoperi-

metric inequalities in high-dimensional spaces. (See Exercise 5.12 and the discussion around Exercises 12.49

and 12.50.) For a subset A of the hypercube {0, 1}n, let B(A, t) :=
{
x ∈ {0, 1}n : dist(x,A) ≤ t

}
.

{ex.hypcubeincrease}
Exercise▷ 6.13. Let ϵ, λ > 0 be constants satisfying exp(−λ2/2) = ϵ. Then, for A ⊂ {0, 1}n,

|A| ≥ ϵ 2n =⇒
∣∣B(A, 2λ

√
n)
∣∣ ≥ (1− ϵ) 2n .

That is, even small sets become huge if we enlarge them a little.

There are two basic and very useful groups of results regarding martingales. One is known as Mar-

tingale Convergence Theorems: e.g., any bounded martingale Mn converges to some limiting variable

M∞, almost surely and in L1. An example of this was Example 3, in the case when f is bounded and τ <∞
almost surely. More generally, in Example 4, we have a natural candidate for the limit: Mn → Y . This

convergence follows from Fn ↑ F∞, but in a non-trivial way, known as Lévy’s 0-1 law (see Theorem 9.19

in Section 9.4). We will state but not prove a general version of the Martingale Convergence Theorem as

Theorem 9.8 in Section 9.2; a thorough source is [Dur10, Chapter 5].

One version of the Martingale Convergence Theorem implies that Example 4 is not at all that special:

the class of martingales arising there coincides with the uniformly integrable ones:

lim
K→∞

sup
n≥0

E
[
Mn1{|Mn|>K}

]
= 0 , (6.9) {e.UI}{e.UI}

where the corresponding Y is the a.s. and L1-limit of Mn, as n→∞; see [Dur10, Theorem 5.5.6].

The second important group of results about martingales is the Optional Stopping Theorems (OST):

given a stopping time τ for a martingale (i.e., an integer-valued random variable τ such that the event

{τ > k} is Fk-measurable for all k ∈ N), when do we have E[Mτ ] = E[M0 ]? In Example 3, assuming

that τ <∞ a.s., we had Ex[Mτ ] = Ex[Y ] = f(x) = M0 almost by definition. More generally, if Mn is a

uniformly integrable martingale, as defined in (6.9), and τ <∞ a.s., then E[Mτ ] = E[M0 ] does hold, see

[Dur10, Section 5.7]. On the other hand, in Example 2, we had E[Mτ ] = 1 ̸= 0 = M0. An even simpler

counterexample is SRW on Z, started from 1, viewed as a martingale {Mn}∞n=0, with τ being the first

hitting time on 0. By recurrence, τ <∞ a.s., but E[Mτ ] = 0 ̸= 1 = M0.

62



Let us sketch the proof of the Optional Stopping Theorem for bounded martingales. M̃n := Mn∧τ

is a martingale again, hence E[ M̃n ] = E[ M̃0 ] = E[M0 ] for any n ∈ N. On the other hand, τ < ∞
(a.s.) implies that limn→∞ M̃n = Mτ almost surely. Hence the Dominated Convergence Theorem says

that E[Mτ ] = limn→∞E[ M̃n ] = limn→∞E[M0 ] = E[M0 ], as desired.

We have already seen applications of martingales to concentration results and to harmonic functions

defined on general graphs, and we will see more later, but let us demonstrate now that martingale techniques

are useful even in the simplest example, random walk on Z.

Start a symmetric simple random walk X0, X1, . . . at k ∈ {0, 1, . . . , n}, and stop it when first hitting

0 or n, at time τ = τ0 ∧ τn. What is h(k) := Pk[ τ0 > τn ]? Since (Xi) is a bounded martingale, we have

Ek[Xτ ] = k by the Optional Stopping Theorem. On the other hand, Ek[Xτ ] = h(k) · n + (1 − h(k)) · 0,

thus h(k) = k/n. This is of course the harmonic extension of h(0) = 0 and h(n) = 1, which one could also

get by solving a system of linear equations, which can probably be considered less elegant than using the

OST. Finer information on τ can also be obtained from the Optional Stopping Theorem:
{ex.HittingTime}

Exercise▷ 6.14. Let (Xi)i≥0 be a random walk on Z, with i.i.d. increments ξi that have zero mean and a

bounded support. Let the moments of ξ be denoted by E[ ξi ] = µi. Starting from X0 = ℓ ∈ {1, 2, . . . , k−1},
let τ0 be the first time the walk is at most 0, and let τk be the first time the walk is at least k.

(a) For any 0 < ℓ < k, prove Pℓ[ τk < τ0 ] ≍ ℓ/k, with constants in ≍ that are close to 1 if both k and ℓ

are large compared to the support of the jump distribution.

(b) Show that X2
n − µ2n is a martingale. Proving an exponential tail for τk ∧ τ0 (which depends on k),

prove that it is uniformly integrable (6.9). Using the OST, deduce that Eℓ[ τk ∧ τ0 ] ≍ ℓ(k − ℓ)/µ2.

(c) Deduce from part (b) that Eℓ[ τk ∧ τ0 | τk < τ0 ] ≤ Ck(k− ℓ), with a constant C that depends only on

the jump distribution.

(d) Find a martingale of the form X4
n+AnX2

n+BnXn+Cn2 +Dn with some constants A,B,C,D ∈ R.
(Solution: A = −6µ2

1/2, B = −4µ3, C = 3µ
3/2
2 , D = 3µ

3/2
2 − µ4.) Use this and the previous parts

to prove the second moment bound Eℓ[ (τk ∧ τ0)2 ] ≤ O(ℓk3).

(e) Using the expectation result of part (b), improve the tail bound on τk∧τ0: show for some c = c(µ2) > 0,

uniformly for all ℓ, that Pℓ[ τk ∧ τ0 > n ] < exp(−c n/k2).

(f) Using part (d) and the Second Moment Method (see (12.15) in case you do not know what that is),

prove that Pck[ τ0 ∧ τk > k2 ] > δ(c) > 0 for any c ∈ (0, 1), uniformly for all large enough k.

In summary, starting from X0 = ck with c ∈ (0, 1) fixed, the sequence of random variables (τ0 ∧ τk)/k2 is

tight and non-vanishing. In fact, Donsker’s functional limit theorem [Dur10, Theorem 8.6.5] implies that

there is a limit distribution, given by the hitting time of a Brownian motion. Note here that the hitting

time is not a continuous functional on the space of continuous functions, hence Donsker’s theorem cannot

be applied automatically. Nevertheless, Brownian trajectories are almost surely continuity points of the

functional (which needs a proof), hence the natural extension [Dur10, Theorem 8.6.6] applies.

One can use similar ideas also in the asymmetric case:
{ex.asymMG}

Exercise▷ 6.15. Consider asymmetric simple random walk (Xi) on Z, with probability p > 1/2 for a

right step and 1 − p for a left step. Find a martingale of the form rXi for some 0 < r ̸= 1, and calculate

Pk[ τ0 > τn ]. Then find a martingale of the form Xi−µ i for some µ > 0, and calculate Ek[ τ0 ∧ τn ]. (Hint:

to prove that the second martingale is uniformly integrable, first show that τ0 ∧ τn has an exponential tail.)
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Now, condition the symmetric simple random walk (Xi) to reach n before 0. This conditioning concerns

the entire trajectory, hence it might happen, a priori, that we get a complicated non-Markovian process.

A simple but beautiful result is that, in fact, we get a nice Markov process. This construction is a version

of Doob’s h-transform [Doo59], with h being the harmonic function h(k) := Pk[A ] below:
{l.condMC}

Lemma 6.13. Let (Xi)
∞
i=0 be any time-homogeneous Markov chain on the state space N, and A := {τA <

τZ} for some A,Z ⊂ N (more generally, it could be any event in the invariant σ-field of the chain, see

Definition 9.21 in Section 9.4). Then (Xi) conditioned on A is again a Markov chain, with transition

probabilities

P[Xi+1 = ℓ | Xi = k,A ] =
Pℓ[A ]

Pk[A ]
P[Xi+1 = ℓ | Xi = k ] ,

where Pk[A ] = P[A | X0 = k ] is supposed to be positive.

Proof. Note that P[A | Xi+1 = ℓ,Xi = k ] = P[A | Xi+1 = ℓ ] = Pℓ[A ]. Then,

P[Xi+1 = ℓ | Xi = k,A ] =
P[Xi+1 = ℓ,Xi = k,A ]

P[Xi = k,A ]

=
P[A | Xi+1 = ℓ,Xi = k ]P[Xi+1 = ℓ,Xi = k ]

P[A | Xi = k ]P[Xi = k ]

=
Pℓ[A ]

Pk[A ]
P[Xi+1 = ℓ | Xi = k ] ,

as claimed.

Back to our example, if (Xi) is simple random walk withX0 = k, stopped at 0 and n, andA = {τn < τ0},
then Pk[A ] = k/n. Therefore, the new transition probabilities are

p(k, k − 1) =
k − 1

2k
, p(k, k + 1) =

k + 1

2k
, (6.10) {e.Bessel3}{e.Bessel3}

for k = 1, . . . , n − 1. Note the consistency property that these values do not depend on n. In particular,

the conditional measures have a weak limit as n → ∞: the Markov chain with transition probabilities

given in (6.10) for all k = 1, 2, . . . . This chain can naturally be called SRW on Z conditioned not to

ever hit zero. Since the drift at level k is +1/k, this is the discrete analogue of the Bessel(3) process

dXt = 1
Xt
dt+dBt, for those who have or will see stochastic differential equations. The reason for the index

3 is that the Bessel(n) process, given by dXt = n−1
2Xt

dt+dBt, is the Euclidean distance of an n-dimensional

Brownian motion from the origin. (But I do not think that anyone knows a direct combinatorial link

between Brownian motion in R3 and the conditioned one in R.)

Exercise▷ 6.16. Show that the conditioned random walk (6.10) is transient. (Hint: construct an electric

network on N that gives rise to this random walk, then use Sections 6.1 and/or 6.2. Or is the statement

obvious from the construction?)

Exercise▷ 6.17. Show that the Doob h-transform of any reversible Markov chain w.r.t. any discrete har-

monic function h is again reversible.

The following result on random walks on Z will be used in our proof of the Erdős-Rényi giant cluster

phase transition, Theorem 12.23.
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{ex.returntail}
Exercise▷ 6.18. Let (Xi)i≥0 be a random walk on Z, with i.i.d. increments ξi that have zero mean and an

exponential tail: there exist K ∈ N and 0 < q < 1 such that P[ ξ ≥ k + 1 ] ≤ qP[ ξ ≥ k ] for all k ≥ K.

Starting from X0 = ℓ ∈ {1, 2, . . . , n− 1}, let τ0 be the first time the walk is at most 0, and let τn be the

first time the walk is at least n. Show that, for X0 = 1,

P1[ τ0 > n ] ≍ P1[ τ√n < τ0 ] ≍ 1/
√
n.

In more detail:

(a) For any 0 < ℓ < n, prove Pℓ[ τn < τ0 ] ≍ ℓ/n. For this, first prove that Xτn − n, conditioned on

τn < τ0, has an exponential tail, independently of n. This proves the second equality.

For the first equality, we need some basic understanding of Mn = max0≤i≤nXi, with X0 = 0.

(b) From Donsker’s theorem on {Xtn/(σ
√
n) : t ≥ 0} converging to Brownian motion, show that Mn/

√
n

has a continuous limit distribution.

(c) Now notice that P1[ τ0 > n | τ√n < τ0 ] > P0[Mn <
√
n ] > c1 > 0.

(d) Show that Xi | {τ0 > n} stochastically dominates the unconditioned Xi, hence P1[ τ√n < τ0 | τ0 > n ] >

P1[Mn >
√
n ] > c2 > 0.

The above ingredients together give the result.

One can give a proof using only martingale arguments, avoiding the use of the Brownian limit, as

follows:

(d) Extend Exercise 6.14 from bounded jump distributions to the exponential tail considered here.

(e) Consider the following decomposition, according to how big max0≤i≤τ0 Xi roughly is:

P1[ τ0 > n ] = P1

[
τ0 > n

∣∣ τ√n < τ0
]
P1[ τ√n < τ0 ]

+

⌊log2

√
n⌋∑

k=0

P1

[
τ0 > n

∣∣∣ τ√n/2k+1 < τ0 < τ√n/2k
]
P1

[
τ√n/2k+1 < τ0 < τ√n/2k

]
.

Using parts (a), (e) from the extended Exercise 6.14, show that the first line on the RHS is ≍ 1/
√
n.

Using a Doob transform argument and parts (a), (d), show that the second line is at most O(1/
√
n).

7 Cheeger constant and spectral gap
{s.Cheeger}

The previous chapter introduced a certain geometric view on reversible Markov chains: many natural

dynamically defined objects (hitting probabilities, Green’s functions) turned out to have good encodings

as harmonic functions over the associated electric network, and a basic probabilistic property (recurrence

versus transience) turned out to have a useful reformulation via the Dirichlet energy of flows (the usefulness

having been demonstrated by Kanai’s quasi-isometry invariance Theorem 6.11).

We will now make these connections even richer: isoperimetric inequalities satisfied by the underlying

graph (the electric network) will be expressed as linear algebraic or functional analytic properties of the

Markov operator acting on functions over the state space, which can then be translated into probabilistic

behaviour of the Markov chain itself.
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7.1 Spectral radius and the Markov operator norm
{ss.specrad}

Consider some Markov chain P on the graph (V,E). We will assume in this section that P is reversible.

Given any reversible measure π, we can consider the associated electric network c(x, y) = π(x)p(x, y) =

c(y, x), Cx =
∑
y c(x, y), and the usual inner products (·, ·)C on ℓ0(V ) and (·, ·)r on ℓ0(

←→
E ), where ℓ0 stands

for functions with finite support. Note that Cx = π(x) now.

The Markov operator P : ℓ0(V ) −→ ℓ0(V ), introduced in Definition 6.2, satisfies

∥P∥ = sup
f∈ℓ0(V )

∥Pf∥
∥f∥

≤ 1 ,

with ∥ · ∥ denoting ℓ2-norm w.r.t. π. The reason for this bound is that P is an averaging operator, while

f 7→ ∥f∥2 is a convex function of the variables f(x), x ∈ V , hence we can use Jensen’s inequality, plus the

stationarity of π:

∥Pf∥2 =
∑
x

π(x)

∣∣∣∣∣∑
y

p(x, y)f(y)

∣∣∣∣∣
2

≤
∑
x

π(x)
∑
y

p(x, y)|f(y)|2

=
∑
y

|f(y)|2
∑
x

π(x)p(x, y) =
∑
y

|f(y)|2π(y) = ∥f∥2 .

Now, since ℓ0(V ) is dense in ℓ2(V, π), we can extend P to an operator ℓ2(V, π) −→ ℓ2(V, π) without

increasing the operator norm, and Exercise 6.3 implies that this extension is self-adjoint:

(Pf, g)π = (f, Pg)π .

Observe furthermore that the Dirichlet energy can be written as

E(f) = EP,π(f) = (∇f,∇f) = (f,∇∗∇f) = (f, (I − P )f) = ∥f∥2 − (f, Pf) . (7.1) {e.DIP}{e.DIP}

Recall the definition of the spectral radius from (1.8),

ρ(P ) = lim sup
n→∞

pn(o, o)1/n .

Now here is the reason for calling ρ(P ) the spectral radius:
{p.specrad}

Proposition 7.1. ∥P∥ = ρ(P ).

Proof. Using self-adjointness,(
π(o)p2n(o, o)

) 1
2n = (P 2nδo, δo)

1
2n = (Pnδo, P

nδo)
1
2n = ∥Pnδo∥1/n

≤
(
∥P∥n ∥δo∥

)1/n
= ∥P∥π(o)1/n .

Letting n→∞, we almost find that ρ(P ) ≤ ∥P∥; the missing step is the following exercise:

Exercise▷ 7.1. Show that in any reversible chain, lim supn→∞ pn(o, o)1/n = lim supn→∞ p2n(o, o)
1
2n . (Hint:

you may want to use Lemma 9.1 from the beginning of Section 9.1.)

To prove the direction ∥P∥ ≤ ρ(P ), we want to show that the behavior of ∥Pδo∥ detects the behavior

of ∥Pf∥ for any function f ∈ ℓ0(V ). To this end, start with

∥Pn+1f∥2 = (Pn+1f, Pn+1f)

= (Pnf, Pn+2f)

≤ ∥Pnf∥ · ∥Pn+2f∥ .
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The second equality holds since P is self-adjoint, and the final step is by the Cauchy-Schwarz inequality.

So, we get
∥Pn+1f∥
∥Pnf∥

≤ ∥P
n+2f∥

∥Pn+1f∥
. (7.2) {e.ratioineq}{e.ratioineq}

For any non-negative sequence (an)∞n=1 we know that:

lim inf
n→∞

an+1

an
≤ lim inf

n→∞
a1/nn ≤ lim sup

n→∞
a1/nn ≤ lim sup

n→∞

an+1

an
.

By (7.2), the sequence ∥P
n+1f∥
∥Pnf∥ has a limit, and hence

∥Pf∥
∥f∥

≤ lim
n→∞

∥Pn+1f∥
∥Pnf∥

= lim
n→∞

∥Pnf∥1/n .

So, it is enough to show that lim supn→∞ ∥Pnf∥1/n ≤ ρ(P ). We have

∥Pnf∥2 = (f, P 2nf)

=
∑
x

f(x)P 2nf(x)π(x)

=
∑
x,y

f(x)f(y)p2n(x, y)π(x)

≤
∑
x,y

f(x)f(y)1{f(x)f(y)>0} p2n(x, y)π(x) . (7.3) {e.xyfxfy}{e.xyfxfy}

This is a finite sum since f has finite support. By Exercise 1.3, the radius of convergence of G(x, y|z) does

not depend on x and y. So, for every ϵ > 0 there is some N > 0 such that for all n > N and for every pair

x, y appearing in this finite sum, p2n(x, y)
1
2n < ρ+ ϵ. Thus, by (7.3),

∥Pnf∥2 <
∑
x,y

f(x)f(y)1{f(x)f(y)>0} (ρ+ ϵ)2nπ(x)

< C(ρ+ ϵ)2n

for some constant C < ∞, since f is finitely supported. Taking 2nth roots yields limn→∞ ∥Pnf∥1/n ≤ ρ,

and we are done.
{l.hilbertnorm}

Lemma 7.2. For a self-adjoint operator P on a Hilbert space H = ℓ2(V ), ∥P∥ := supf∈H
∥Pf∥
∥f∥ =

supf∈ℓ0(V )
(Pf,f)
∥f∥2 .

Proof. We give two proofs. The first uses “theory”, the second uses a “trick”. (Grothendieck had the

program of doing all of math without tricks: the right abstract definitions should lead to solutions auto-

matically. I think the problem with this is that, without understanding the tricks first, people would not

find or even recognize the right definitions.)

In the finite-dimensional case (i.e., when V is finite, hence ℓ2(V ) = ℓ0(V )), since P is self-adjoint,

its eigenvalues are real, and then both supf∈H
∥Pf∥
∥f∥ and supf∈ℓ0(V )

(Pf,f)
∥f∥2 are expressions for the largest

eigenvalue of P . For the infinite dimensional case, one has to use the spectral theorem, and note that it is

enough to consider the supremum over the dense subset ℓ0(V ). For the details, see, e.g., [Rud73, Theorem

12.25].

For the tricky proof, which I learnt from [LyPer16, Exercise 6.6], first notice that

sup
f∈ℓ0(V )

∥Pf∥
∥f∥

≥ sup
f∈ℓ0(V )

|(Pf, f)|
∥f∥2

≥ sup
f∈ℓ0(V )

(Pf, f)

∥f∥2
,
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where the first inequality follows from (Pf, Pf)(f, f) ≥ |(Pf, f)|2, which is just Cauchy-Schwarz.

For the other direction, if the rightmost supremum is C, then, using that P is self-adjoint,

(Pf, g) =
(P (f + g), f + g)− (P (f − g), f − g)

4

≤ C (f + g, f + g) + (f − g, f − g)

4
= C

(f, f) + (g, g)

2
.

Taking g := Pf∥f∥/∥Pf∥ yields ∥Pf∥ ≤ C∥f∥. Again by the denseness of ℓ0(V ) in H, this finishes the

proof.

WAIT. THIS WAS NOT A COMPLETE PROOF AT ALL.

7.2 The infinite case: the Kesten-Cheeger-Dodziuk-Mohar theorem
{ss.kesten}

In this section, we are going to prove Kesten’s characterization of the amenability of a group through the

spectral radius of the simple random walk, Theorem 5.7. However, we want to do this in larger generality.

The isoperimetric inequalities of Chapter 5 were defined not only for groups but also for locally finite

graphs, moreover, we can naturally define them for electric networks, as follows. Satisfying the (edge)

isoperimetric inequality IP∞ will mean that there exists a κ > 0 such that C(∂ES) ≥ κπ(S) for any finite

connected subset S, where π(S) =
∑
x∈S Cx is the natural stationary measure for the associated random

walk, and C(∂ES) =
∑
x∈S
y/∈S

c(x, y). The largest possible κ, i.e., ι∞,E,c := infS C(∂ES)/π(S), is the Cheeger

constant of the network. Note that if we are given a reversible Markov chain (V, P ), then the Cheeger

contant of the associated electric network does not depend on which reversible measure π we take, so we

can talk about ι∞,E(P ) = κ(P ), the Cheeger constant of the chain.

The following theorem was proved for groups by Kesten in his PhD thesis [Kes59]. A differential

geometric version was proved in [Che70]. Then [Dod84] and [Moh88] proved generalizations for graphs

and reversible Markov chains, respectively. We will be proving Mohar’s generalization, following [Woe00,

Sections 4.A and 10.A].
{t.kesten}

Theorem 7.3 (Kesten, Cheeger, Dodziuk, Mohar). Let (V, P ) be an infinite reversible Markov chain on

the state space V , with Markov operator P . The following are equivalent:

(1) (V, P ) satisfies IP∞ with κ > 0;

(2) For all f ∈ ℓ0(V ) the Dirichlet inequality κ̄∥f∥22 ≤ EP,π(f) is satisfied for some κ̄ > 0, where

EP,π(f) = (∇f,∇f) = 1
2

∑
x,y |f(x)− f(y)|2c(x, y) and (f, f) =

∑
x f

2(x)Cx;

(3) ρ(P ) ≤ 1− κ̄, where the spectral radius satisfies ρ(P ) = ∥P∥, shown in the previous section.

In fact, κ and κ̄ are related by κ(P )2/2 ≤ 1− ρ(P ) ≤ κ(P ).

Proof of (2) ⇔ (3). Recall from (7.1) that EP,π(f) = ∥f∥22−(f, Pf). Now rearrange the Dirichlet inequality

κ̄∥f∥22 ≤ ∥f∥22 − (f, Pf) into (f, Pf) ≤ (1− κ̄)∥f∥22 for all f ∈ ℓ0(V ). By Lemma 7.2, this is true precisely

when ∥P∥ ≤ 1− κ̄.

Proof of (2) ⇒ (1). Take any finite connected set S. Then π(S) =
∑
x∈S Cx = ∥1S∥22, and

EP,π(1S) =
1

2

∑
x,y

|1S(x)− 1S(y)|2c(x, y) = C(∂S).

Now apply the Dirichlet inequality to 1S to get C(∂S) = EP,π(1S) ≥ κ̄∥1S∥22 = κ̄π(S), and so (V, P )

satisfies IP∞ with κ = κ̄.
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To show that the first statement implies the second, we want to show that the existence of “almost

invariant” functions, or functions f such that (Pf, f) is close to ∥f∥2, gives the existence of “almost

invariant” sets, i.e., sets S with P1S close to 1S , which are exactly the Følner sets.
{d.sobolev}

Definition 7.4. The Sobolev norm of f is SP,π(f) := 1
2

∑
x,y |f(x)− f(y)|c(x, y) = ∥∇f∥count,1, where,

by ∥ · ∥count,1, we mean the L1-norm w.r.t. counting measure on the edge set, as opposed to weighting by

the resistances. {p.sobolevIP}
Proposition 7.5. For any d ∈ [1,∞], a reversible chain (V, P ) satisfies IPd(κ) if and only if the Sobolev

inequality κ∥f∥ d
d−1
≤ SP,π(f) holds for all f ∈ ℓ0(V ), where IPd(κ) means C(∂ES) ≥ κπ(S)

d−1
d for any

finite connected subset S, and ∥f∥p = (
∑
x |f(x)|pCx)

1
p .

Proof. To prove that the Sobolev inequality implies good isoperimetry, note that ∥1S∥ d
d−1

= π(S)
d−1
d and

SP,π(1S) = C(∂ES).

To prove the other direction, first note that SP,π(f) ≥ SP,π(|f |) by the triangle inequality, so we may

assume f ≥ 0. For t > 0, we are going to look at the super-level sets St = {f > t}, which will be finite

since f ∈ ℓ0. Now,

SP,π(f) =
∑
x

∑
y:f(y)>f(x)

(f(y)− f(x))c(x, y)

=
∑
x

∑
y:f(y)>f(x)

c(x, y)

∫ ∞
0

1[f(x),f(y))(t)dt

=

∫ ∞
0

∑
x

∑
y:f(y)>f(x)

c(x, y)1[f(x),f(y))(t)dt

=

∫ ∞
0

∑
x,y s.t.

f(x)≤t<f(y)

c(x, y)dt

=

∫ ∞
0

C(∂E{f > t})dt.

For d =∞ ( d
d−1 = 1), we get

SP,π(f) =

∫ ∞
0

C(∂E{f > t})dt

≥ κ
∫ ∞
0

π({f > t})dt

= κE[f ] = κ ∥f∥1.

For d = 1, since ∂({f > t}) ̸= 0⇔ 0 < t ≤ ∥f∥∞, we get that SP,π(f) ≥
∫ ∥f∥∞
0

κ dt = κ ∥f∥∞.

The case 1 < d <∞ is just slightly more complicated than the d =∞ case, and is left as an exercise.

Exercise▷ 7.2. Let d ∈ (1,∞), and let p = d
d−1 .

(a) Show that
∫∞
0
ptp−1F (t)pdt ≤ (

∫∞
0
F (t)dt)p for F ≥ 0 decreasing.

(b) Using part (a), finish the proof of the proposition, i.e., the 1 < d <∞ case.

We now use the proposition to complete the proof of the Kesten theorem.
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Proof of (1) ⇒ (2) of Theorem 7.3.

∥f∥22 = ∥f2∥1

≤ 1

κ
SP,π(f2) by the proposition

=
1

κ

1

2

∑
x,y

|f2(x)− f2(y)| c(x, y)

≤ 1

κ

1

2

∑
x,y

∣∣f(x)− f(y)
∣∣ (|f(x)|+ |f(y)|

)
c(x, y)

≤ 1

κ

(
1

2

∑
x,y

|f(x)− f(y)|2c(x, y)

)1/2(
1

2

∑
x,y

(
|f(x)|+ |f(y)|

)2
c(x, y)

)1/2

,

where the last inequality follows by Cauchy-Schwarz.

The first sum above is precisely EP,π(f)1/2. The second sum can be upper bounded by
√

2∥f∥2, using the

inequality 1
2 (|x|+ |y|)2 ≤ x2 + y2. So, after squaring the entire inequality, we have ∥f∥42 ≤ 2

κ2 EP,π(f)∥f∥22,

which gives

∥f∥22 ≤
2

κ2
EP,π(f).

Therefore, the first statement in the Kesten theorem implies the second, with κ̄ = κ2

2 .

7.3 The finite case: expanders and mixing
{ss.mixing}

The decay of the return probabilities has a very important analogue for finite state Markov chains: con-

vergence to the stationary distribution. In most chains, the random walk will gradually forget its starting

distribution, i.e., it gets mixed, and the speed of this mixing is a central topic in probability theory and

theoretical computer science, with applications to almost all branches of sciences and technology. (As I

heard once from László Lovász, when I was still in high school: “With the right glasses, everything is a

Markov chain.”) A great introductory textbook to Markov chain mixing is [LevPW17]. The main topic

in this section will be to understand mixing times from a spectral point of view; in the next chapter,

isoperimetry will be the main tool.

Let (V, P ) be a finite state Markov chain, with its Markov operator Pf(x) =
∑
y p(x, y)f(y) =

E
[
f(X1)

∣∣ X0 = x
]

acting on ℓ0(V ). The constant 1 function is obviously an eigenfunction with eigenvalue

1, i.e., P1 = 1. On the other hand, recall that a probability measure π on V is called stationary if πP = π,

i.e., if πP (y) =
∑
x p(x, y)π(x) = π(y), i.e., if it is a left eigenfunction with eigenvalue 1. The existence of

such a π is much less obvious than the case of the above constant eigenfunction, but we are dealing in this

section only with reversible chains, for which the reversible distribution is also stationary.
{ex.genspec}

Exercise▷ 7.3. Let (V, P ) be a reversible, finite Markov chain, with stationary distribution π(x). Recall

that P is self-adjoint with respect to (f, g) =
∑
x∈V f(x)g(x)π(x). Show:

(a) If f : V −→ R is a right eigenfunction of P , then x 7→ g(x) = f(x)π(x) is a left eigenfunction, with

the same eigenvalue.

(b) All eigenvalues λi satisfy −1 ≤ λi ≤ 1;

(c) If we write −1 ≤ λn ≤ · · · ≤ λ1 = 1, then λ2 < 1 if and only if (V, P ) is connected (the chain is

irreducible);

(d) λn > −1 if and only if (V, P ) is not bipartite. (Recall here the easy lemma that a graph is bipartite

if and only if all cycles are even.)
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Recall from the Kesten Theorem 7.3 that κ2

2 ≤ 1 − ρ ≤ κ for infinite reversible Markov chains. For

finite chains, we have the following analogue, where 1− λ2 is usually called the spectral gap.
{t.AlonMilman}

Theorem 7.6 (Alon, Milman, Dodziuk [Alo86, AloM85, Dod84]). For a finite reversible Markov chain

(V, P ) with stationary distribution π and conductances c(x, y) = π(x)p(x, y), set

h(V, P ) = inf
S⊆V

C(∂ES)

π(S) ∧ π(Sc)
,

the Cheeger constant of the finite chain. Then h2

2 ≤ 1− λ2 ≤ 2h.

Sketch of proof. The proof is almost identical to the infinite case, with two differences. One, the definition

of the Cheeger constant is slightly different now, with the complement of the set also appearing in the

denominator. Two, we have to deal with the fact that 1 is an eigenvalue, so we are interested in the

spectral gap, not in the spectral radius. For this, recall that λ2 = sup{∥Pf∥∥f∥ :
∑
x f(x)π(x) = 0} (Raleigh,

Ritz, Courant, Fisher), since this is the subspace orthogonal to the constant functions, the eigenspace

corresponding to the eigenvalue 1. By an obvious modification of Lemma 7.2 and by (7.1), this says that

1− λ2 = inf

{
E(f)

∥f∥2
:
∑
x

f(x)π(x) = 0

}
. (7.4) {e.gapDir}{e.gapDir}

Now, what are the effects of these modifications on the proofs?

When we have some isoperimetric constant h(V, P ) and want to bound the spectral gap from below,

start with a function f attaining the infimum in (7.4), and consider its super-level sets {x : f(x) > t}.
From the argument of Proposition 7.5, for f+ := f ∨ 0, we get

SP,π(f+) ≥ h
∫ ∞
0

π({f > t}) ∧ π({f ≤ t}) dt .

By symmetry, we may assume that π({f > 0}) ≤ 1/2, hence π({f > t}) ≤ π({f ≤ t}) for all t ≥ 0, and

we get S(f+) ≥ h ∥f+∥1. Similarly, we get S(f2+) ≥ h ∥f2+∥1 = h ∥f+∥22. Now, just as in the proof of (1) ⇒
(2) of Theorem 7.3, we have S(f2+) ≤

√
2E(f+)1/2∥f+∥2. These two inequalities combined,

h2

2
≤ E(f+)

∥f+∥2
≤ E(f)

∥f∥2
= 1− λ2 ,

where the second inequality is left as a simple exercise.

For the other direction, if we have a subset A with small boundary, then take f = 1A − β1Ac instead

of f = 1A, with a β chosen to make the average 0, and compute the Dirichlet norm.

Exercise▷ 7.4. Fill in the missing details of the above proof.

The main reason for the interest in the spectral gap of a chain is the following result, saying that

if the gap is large, then the chain has a small mixing time: starting from any vertex or any initial

distribution, after not very many steps, the distribution will be close to the stationary measure. The speed

of convergence to stationarity is basically the finite analogue of the heat kernel decay in the infinite case,

and the theorem is the finite analogue of the result that a spectral radius smaller than 1 implies exponential

heat kernel decay (i.e., the quite obvious inequality ρ(P ) ≤ ∥P∥ in Proposition 7.1). The converse direction

(does fast mixing require a uniformly positive spectral gap?) has some subtleties (pointed out to me by

Ádám Timár), which will be discussed after the proof of the theorem, together with proper definitions of

the different notions of mixing time.

71



{t.gapmix}
Theorem 7.7. Let (V, P, π) be a reversible, finite Markov chain. Set gabs := 1 −maxi≥2 |λi|, and π∗ :=

minx∈V π(x). Then for all x and y, |pt(x,y)−π(y)π(y) | ≤ (1−gabs)t
π∗

, where pt(x, y) is the probability of being at y

after t steps starting from x.

The result is empty for a chain that is not irreducible: there gabs = 0, and the upper bound 1/π∗ is

trivial. Note also that we use gabs, called the absolute spectral gap, instead of 1 − λ2. The reason is

that λn being close to −1 is an obvious obstacle for mixing: say, if λn = −1, then the graph is bipartite

(Exercise 7.3 (c)), and the distribution at time t depends strongly on the parity of t.

Before proving the theorem, let us see four examples.

Example 1. For simple random walk on a complete n-vertex graph with loops, whose transition matrix
1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n


has eigenvalues 1, 0, . . . , 0, the bound in Theorem 7.7 is 0, that is, pt(x, y) is 1/n for every t ≥ 1.

Example 2. For simple random walk on the n-cycle Cn, the exercise below tells us that the eigenvalues

are cos(2πj/n), j = 0, 1, . . . , n − 1. If n is even, Cn is bipartite, and indeed −1 is an eigenvalue. If n is

odd, then the absolute spectral gap is 1− cos(2π/n) ≍ n−2. So, the upper bound in the theorem gets small

at Cn2 log n. The true mixing time is actually Cn2, as we will see in Exercises 7.12 (c), 7.15 (c), and in

Section 8.2. {ex.specCn}
Exercise▷ 7.5. Verifying the above example, compute the spectrum of simple random walk on the n-cycle

Cn. (Hint: think of the Markov operator as an average of two operators: rotating clockwise or counter-

clockwise. The eigenvalues for the rotations are easy to calculate, with a basis of eigenfunctions that are

actually the same for the two rotations, hence they are also eigenfunctions for the average.)

Example 3. A random walk can be made “lazy” by flipping a fair coin before each step, and only moving

if the coin turns up heads (otherwise, the walk stays in the same place for that step.) If {0, 1}k is the

k-dimensional hypercube, consider the simple random walk on this hypercube and let P be its Markov

operator. Then P̄ = I+P
2 is the Markov operator for the lazy random walk on the hypercube, and it has

eigenvalues 1+λi

2 .

It turns out that gabs = 1
k in this case, and π∗ = 1

2k
. So, the upper bound in the theorem gets small

for t = Ck2, but the true mixing time is actually C k log k; see Exercises 7.12 (c), 7.14, and Exercise 8.6.
{ex.hyperspec}

Exercise▷ 7.6. Compute the spectrum of P̄ on {0, 1}k in the above example. (Hint: think of this as a

product of Markov chains Pi, i = 1, . . . , k: with probability 1/k, move in the ith coordinate according to Pi.

Then, if fi,j is an eigenfunction of Pi with eigenvalue λi,j, what happens to the function F (x1, . . . , xk) :=∏k
i=1 fi,j(xi) when P̄ is applied?)

Our last example concerns graphs that are easy to define, but whose existence is far from clear. See

the next section for more on this. {ndcExpander}
Definition 7.8. An (n, d, c)-expander is a d-regular graph on n vertices, with h(V ) ≥ c. A d-regular

expander sequence is a sequence of (nk, d, c)-expanders with nk → ∞ and c > 0. By Theorem 7.6, the

existence of this c > 0 is equivalent to having a uniformly positive spectral gap.
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Example 4. For simple random walk on an (n, d, c) expander, π is uniform, and π∗ = 1
n . For t =

C(d, c) log n, the bound in the theorem is small. This is sharp, up to a constant factor. In fact, note that any

d-regular graph with n vertices has diameter at least logd−1 n, which implies that maxx,y |pt(x,y)−π(y)π(y) | = 1

for t ≤ logd−1 n. Therefore, an expander mixes basically as fast as possible for a constant degree graph.

(The converse is false, see Exercise 7.18.)

Proof of Theorem 7.7. Define φx(z) :=
1{x=z}
π(x) . Then (P tφy)(x) = P[Xt=y|X0=x ]

π(y) = pt(x,y)
π(y) . So,

|pt(x, y)− π(y)|
π(y)

= |(P tφy − 1, φx)| = |(P t(φy − 1), φx)|

≤ ∥φx∥ · ∥P t(φy − 1)∥ =
1√
π(x)

∥P t(φy − 1)∥ ,

where the inequality is from Cauchy-Schwarz. Now, since (φy−1,1) = 0, we can write φy−1 =
∑n
i=2 aifi,

where f1, . . . , fn is an orthonormal basis of eigenvectors. Thus,

∥P t(φy − 1)∥2 = ∥
n∑
i=2

aiλ
t
ifi∥2 =

n∑
i=2

|λti|2∥aifi∥2

≤ λ2t∗
n∑
i=2

∥aifi∥2 = λ2t∗ ∥φy − 1∥2 ≤ λ2t∗ ∥φy∥2,

where λ∗ := maxi≥2 |λi|, and the last inequality is by the Pythagorean theorem. So |pt(x,y)−π(y)π(y) | ≤
λt∗

1√
π(x)π(y)

, and we are done.

This theorem measures closeness to stationarity in a very strong sense, in the L∞-norm between the

functions pt(x, ·)/π(·) and 1(·), called the uniform distance. The proof itself used, as an intermediate

step, the L2-distance

∥P tφy − 1∥2 =

∥∥∥∥pt(·, y)

π(y)
− 1(·)

∥∥∥∥
2

=

∥∥∥∥pt(y, ·)π(·)
− 1(·)

∥∥∥∥
2

= χ2
(
pt(y, ·), π(·)

)
,

where the middle equality uses that pt(x, y)/π(y) = pt(y, x)/π(x) for reversible chains, and χ2 is the

chi-square distance, the following asymmetric distance between two measures:

χ2(µ, ν) :=
∑
x∈V

∣∣∣∣µ(x)

ν(x)
− 1

∣∣∣∣2 ν(x) , (7.5) {e.chi2dist}{e.chi2dist}

which we will again use in Section 8.3. The most popular notion of distance uses the L1-norm, or more

precisely the total variation distance, defined as follows: for any two probability measures µ and ν on

V ,

dTV(µ, ν) : = max
{
|µ(A)− ν(A)| : A ⊆ V

}
=

1

2

∑
x∈V
|µ(x)− ν(x)| = 1

2

∑
x∈V

∣∣∣∣µ(x)

ν(x)
− 1

∣∣∣∣ ν(x) .
(7.6) {e.TV}{e.TV}

{ex.TVminA}
Exercise▷ 7.7. Prove the equality between the two lines of (7.6). This also shows dTV to be a metric.

(Hint: show first that A := {x ∈ V : µ(x) ≥ ν(x)} maximizes |µ(A)− ν(A)|.)
{ex.TVcoupling}

Exercise▷ 7.8. Show that dTV(µ, ν) = min
{
P[X ̸= Y ] : (X,Y ) is a coupling of µ and ν

}
.
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Of course, one can use any Lp norm, or quantities related to the entropy, and so on, see [SaC97, BobT06].

In any case, given a notion of distance, the mixing time of a chain is usually defined to be the smallest

time t when the distance between pt(x, ·) and π(·) becomes less than some small constant, say 1/4. This

time will be denoted by tmix(1/4). Why is this is a good definition? Let us discuss the case of the total

variation distance. Let

d(t) := sup
x∈V

dTV

(
pt(x, ·), π(·)

)
and d̄(t) := sup

x,y∈V
dTV

(
pt(x, ·), pt(y, ·)

)
.

The following two exercises explain why we introduced d̄(t).

Exercise▷ 7.9. Show that d(t) ≤ d̄(t) ≤ 2d(t).

Exercise▷ 7.10. Using Exercise 7.8, show that d̄(t+ s) ≤ d̄(t) d̄(s).

Therefore, for tmix(1/4) = tTV
mix(1/4),

d(ℓ tmix(1/4)) ≤ d̄(ℓ tmix(1/4)) ≤ d̄(tmix(1/4))ℓ ≤ (2d(tmix(1/4))ℓ ≤ 2−ℓ .

For instance, tmix(2−100) ≤ 100 tmix(1/4), so tmix(1/4) captures well the magnitude of the time needed for

the chain to get close to stationarity.

Define the separation distance at time t by s(t) := supx∈V

(
1− pt(x,y)

π(y)

)
. Note that this is a one-sided

version of the uniform distance: s(t) < ϵ means that all states have collected at least a (1−ϵ)-factor of their

share at stationarity, but there still could be some states where the walk is very likely to be, compared to

the stationary measure of those states. Since the total measure of this singularly favoured set is at most ϵ,

the separation distance is a natural and useful measure of mixing.
{ex.separation}

Exercise▷ 7.11. Show that, in any finite reversible chain, d(t) ≤ s(t) ≤ 4d(t/2). (Hint: since t and t/2

appear together, it seems like a good idea to write a trajectory of length t as t/2 + t/2 and reverse time

for the second leg. Then, using
√
pt/2(x, z)pt/2(y, z) ≥ pt/2(x, z) ∧ pt/2(y, z), we can get to a formula that

resembles d(t/2) by Exercise 7.7.)

The relaxation time of a reversible chain is defined to be trelax := 1/gabs, where gabs is the absolute

spectral gap. This is certainly related to mixing: Theorem 7.7 implies that

t∞mix(1/e) ≤
(
1 + ln

1

π∗

)
trelax . (7.7) {e.inftyrelax}{e.inftyrelax}

It also has an interpretation as a genuine temporal quantity, shown by the following exercise that is just

little more than a reformulation of the proof of Theorem 7.7:
{ex.L2mixing}

Exercise▷ 7.12. Let (V, P, π) be a reversible chain with eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 and

corresponding eigenfunctions f1, . . . , fn.

(a) For f : V −→ R, let Varπ[f ] := Eπ[f2] − (Eπf)2 =
∑
x f(x)2π(x) −

(∑
x f(x)π(x)

)2
. Show that

gabs > 0 implies that limt→∞ P tf(x) = Eπf for all x ∈ V . Moreover,

Varπ[P tf ] ≤ (1− gabs)2t Varπ[f ] ,

with equality at the eigenfunction corresponding to the λi giving gabs = 1 − |λi|. Hence trelax is the

time needed to reduce the standard deviation of any function to 1/e of its original standard deviation.
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(b) Show that

4 dTV

(
pt(x, ·), π(·)

)2 ≤ ∥∥∥∥pt(x, ·)π(·)
− 1(·)

∥∥∥∥2
2

=

n∑
i=2

fi(x)2λ2ti .

(c) When the chain (V, P ) is transitive, then, for any x ∈ V ,

4 dTV

(
pt(x, ·), π(·)

)2 ≤ ∥∥∥∥pt(x, ·)π(·)
− 1(·)

∥∥∥∥2
2

=

n∑
i=2

λ2ti .

For instance, assuming the answer to Exercise 7.6, one can easily get the bound d
(
1/2 k ln k+ c k

)
≤

e−2c/2 for c > 1 on the TV distance for the lazy walk on the hypercube {0, 1}k. (This is sharp even

regarding the constant 1/2 in front of k ln k — see Exercise 7.14 below.) Also, assuming the answer

to Exercise 7.5, one can get that tTV
mix(Cn) = O(n2) for the n-cycle.

Furthermore, the finite chain analogue of the proof of the ∥P∥ ≤ ρ(P ) inequality in Proposition 7.1

gives the following:
{pr.convspeed}

Proposition 7.9. For the distance in total variation, limt→∞ d(t)1/t = 1− gabs.

Proof. The direction ≤ follows almost immediately from Theorem 7.7. For the other direction, let f be an

eigenfunction corresponding to the λi giving g = 1−|λi|. This is orthogonal to the constant functions (the

eigenfunctions for λ1 = 1), hence
∑
x f(x)π(x) = 0. Therefore,

|λtif(x)| = |P tf(x)| =
∣∣∣∑
y

(
pt(x, y)− π(y)

)
f(y)

∣∣∣ ≤ ∥f∥∞ 2 dTV

(
pt(x, ·), π(·)

)
≤ 2 ∥f∥∞ d(t) .

Taking x ∈ V with f(x) = ∥f∥∞, we get (1− gabs)t ≤ 2d(t), then taking tth roots gives the result.

The above inequality (1− gabs)t ≤ 2d(t) easily gives that gabs ≥ c/tTV
mix(1/4), or in other words,

trelax ≤ C tTV
mix(1/4) , (7.8) {e.relaxTV}{e.relaxTV}

for some absolute constants 0 < c,C <∞.

Besides (7.8), it is clear that tTV
mix(ϵ) ≤ t∞mix(ϵ) for any ϵ. It is therefore more than natural to ask: going

from the relaxation time to the uniform mixing time, how bad is the ln 1/π∗ factor in (7.7), and when and

how could we eliminate that? In some cases, this factor is not very important: e.g., in the example of

simple random walk on the cycle Cn, it gives a bound O(n2 log n), instead of the true mixing time ≍ n2.

However, for rapidly mixing chains, where trelax = O(log |V |), this is a serious factor. For the case of SRW

on an expander, it is certainly essential, and (7.7) is basically sharp. In some other cases, this factor will

turn out to be a big loss: e.g., for SRW on the hypercube {0, 1}k, or on a lamplighter group, say, on Z2 ≀Zdn,

or for chains on spin systems, such as the Glauber dynamics of the Ising model in a box Zdn at critical

or high temperature. In these cases, |Vn| is exponential in the parameter n that is the dimension of the

hypercube or the linear size of the base box Zdn, while we still would like to have polynomial mixing in n,

and the factor ln 1/π∗ might ruin the exponent of the polynomial. Looking at the proof of Theorem 7.7,

this factor comes from two sources. The first one is an application of Cauchy-Schwarz that looks indeed

awfully wasteful: it seems very unlikely that P tφy − 1 is almost collinear with φx, it seems even more

unlikely that this happens for a lot of y’s and a fixed x, and it is certainly impossible for a fixed y and

several x’s, since different φx’s are orthogonal. This suggests that if we do not want mixing in L∞, only

in some average, then we should be able to avoid this wasteful Cauchy-Schwarz. The second source is the

possibility that all the non-unit eigenvalues are close to λ2. To exclude this, one needs to understand the
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spectrum very well. The above Exercise 7.12 (c) gave two examples where both sources of waste can be

eliminated.

In the case of the hypercube {0, 1}k, mixing times can be calculated very precisely, without using

the spectrum, by the following direct approach. The first idea is that the steps can be thought of as

rerandomizing a uniformly chosen coordinate, and hence, at the random stopping time τall when we have

rerandomized all the coordinates, we are exactly at stationarity. This is exactly the classical coupon-

collector problem: if there are k different types of coupons, and in each step we obtain a uniform random

one, how much time does it take to collect one of each type? In expectation, this takes time 1 + k/(k −
1) + · · · + k/1 ∼ k ln k, and, because of the independence of stages in collecting the coupons, one clearly

expects sharp concentration around this expectation. Therefore, at time (1 +o(1)) k log k, we must be very

close to stationarity in a strong sense:
{ex.coupconc}

Exercise▷ 7.13. By proving concentration for the coupon collecting problem, show that the 1/2-lazy random

walk on {0, 1}k has separation distance s(k ln k + tk) ≤ Ce−ct for some 0 < c,C <∞ and all t > 0.

This chain turns out to have a separation distance cutoff at the mixing time τ sepmix = (1+o(1))k log k:

∀ϵ > 0 :
min{t : s(t) < ϵ}

min{t : s(t) < 1− ϵ}
→ 1, as k →∞ . (7.9) {e.cutoff}{e.cutoff}

The reason is that τall is a so-called strong stationary stopping time (i.e., even the conditional distribu-

tion Xτall

∣∣ {τ < t} is stationary, for any t > 0) that has a halting state: there is a vertex such that being

there ensures that the stopping time has already occurred (starting from all-0, the all-1 vertex is such). For

such stopping times, the separation distance starting from x satisfies sx(t) = Px[ τ > t ]; see [LevPW17,

Remark 6.12]. Thus, the concentration of τall from below gives the lower bound for the separation cutoff

on the hypercube.

However, still for the 1/2-lazy walk on the hypercube, to be close to stationarity in total variation

distance, we do not need to rerandomize every single coordinate! Starting, say, from the all-0 vertex,

TV-mixing should occur when enough coordinates have been rerandomized so that the few remaining 0’s

disappear in the fluctuations of the rerandomized coordinates. The stationary fluctuations in the number

of 0 coordinates is of order
√
k, hence the coupon collecting should be okay to stop when fewer than

√
k

coordinates are missing. The following exercise makes this intuition precise.
{ex.hyperTV}

Exercise▷ 7.14. The goal here is to show that the total variation mixing time of the 1/2-lazy random walk

X0, X1, . . . on the hypercube {0, 1}k is (1/2 + o(1)) k log k.

(a) Let Yt be the number of missing coupons at time t in the coupon collector’s problem with k coupons.

For α < 1, show that

EYαk log k ∼ k1−α and DYαk log k = o(k1−α).

Using Markov’s and Chebyshev’s inequalities, deduce that Yαk log k/
√
k → 0 or ∞ in probability, for

α > 1/2 and < 1/2, respectively.

(b) Let N(µ, σ2) denote the normal distribution. Show that, for any sequence σk → σ ∈ (0,∞), we have

that dTV

(
N(0, σ2), N(µk, σ

2
k)
)
→ 0 or 1, for µk → 0 and µk → ∞, respectively. Using this and the

local version of the de Moivre–Laplace theorem, prove that

dTV

(
Binom(k, 1/2), Binom(k − kβ , 1/2) + kβ

)
→

0 if β < 1/2 ,

1 if β > 1/2 .
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(c) For X0 = (0, 0, . . . , 0) ∈ {0, 1}k, let the distribution of Xt be πt. What is it, conditioned on ∥Xt∥1 = ℓ?

(d) Let Yt be the number of coordinates that have not been rerandomized by time t. Compare the distri-

bution of k − ∥Xt∥1, conditioned on Yt ≥ y, to Binom(k − y, 1/2) + y. And what is the distribution

of ∥Z∥1, where Z has distribution π, uniform on {0, 1}k?
(e) Deduce from the previous parts that dTV

(
παk log k, π

)
→ 0 or 1, for α > 1/2 and < 1/2, respectively.

In particular, we have a cutoff phenomenon again, as in (7.9), but now in total variation, at half the

time. (So, the factor 1/2 between the times in Exercise 7.11 was sharp). See [LevPW17, Chapter 18] for

more on cutoff.

A general method to bound total variation mixing times from above, very similar to stationary stopping

times, is by Exercise 7.8: for any coupling of the two chains x = X0, X1, . . . and y = Y0, Y1, . . . on V (G),

dTV

(
pt(x, ·), pt(y, ·)

)
≤ P[Xt ̸= Yt | X0 = x, Y0 = y ] .

If we choose y = Y0 according to the stationary measure, then Yt is also stationary, hence

d(t) ≤ max
x

P[Xt ̸= Yt | X0 = x, Y0 ∼ π ] .

As an example, a simple natural coupling for the lazy walk on the hypercube {0, 1}k comes from our

arguments above: we first choose a coordinate i ∈ {1, 2, . . . , k} uniformly, then, if Xn(i) ̸= Yn(i), then

either Xn or Yn moves in the ith coordinate, each with probability half. If Xn(i) = Yn(i), then the two

walks move or stay put together. In this coupling, we reach Xn = Yn when all the h coordinates in which

X0 and Y0 differed have already been sampled, so we get the coupon-collector problem again, with expected

coupling time k/h+ k/(h− 1) + · · ·+ k/1 ∼ k lnh if both k and h are large, with a sharp concentration as

in Exercise 7.13. In the worst case h = k, this gives a coupling time (1 + o(1)) k ln k, but even when y = Y0

is chosen uniformly, which makes h concentrated around k/2, we get the same asymptotics. That is, for

total variation mixing, this method is off here by a factor of 2, as shown by Exercise 7.14.

To get the sharp TV-mixing on the hypercube, coupling can also be used, but in a somewhat indirect

way. First, part (c) of Exercise 7.14 shows that the walk Xt on {0, 1}k is close to stationarity iff the

Hamming weight ∥Xt∥1 is close to its stationary distribution Binom(k, 1/2). But the projected walk ∥Xt∥1
is clearly a Markov chain again, called the lazy Ehrenfest urn, whose TV-mixing time can be found

precisely, using the simplest possible coupling: with probability 1/2 one chain moves, with probability 1/2

the other. See [LevPW17, Theorem 18.3] for an analysis of the coupling time. However, it is not hard to

see that this coupling cannot be pulled back to a coupling of the walks on the hypercube.

In order to get good lower bounds on mixing times, it would of course be nice to know all the eigenvalues

and eigenfunctions. A less algebraic hence more widely applicable idea is to find a natural observable that

shows efficiently if we are close to stationarity. In our above discussion for the hypercube, this was the

Hamming weight. The following exercise gives two ways in which such observables can be useful.
{ex.mixlower}

Exercise▷ 7.15 (Lower bounds from eigenfunctions and similar observables).

(a) For the lazy random walk on {0, 1}k, consider the total Hamming weight W (x) :=
∑k
i=1 xi. Estimate

its Dirichlet energy E(W ) and variance Varπ[W ] = ∥W − EπW∥2, and deduce by the variational

formula (7.4) that the spectral gap of the walk is at most of order 1/k (which we already knew from

the exact computation in Exercise 7.6), i.e., the relaxation time is at least of order k. Then find

the L2-decomposition of W into the eigenfunctions of the Markov operator, and deduce the decay of

Varπ[P tW ] as a function of t.
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(b) Take SRW on the n-cycle Cn. Find a function that shows by (7.4) that the spectral gap of the

chain is a most of order 1/n2. (Again, we already knew this from computing the spectrum exactly in

Exercise 7.5, but we want to point out here that finding one good observable is typically much easier

than determining the entire spectrum.)

(c) For SRW on the n-cycle Cn, consider the function F (i) := 1{n/4 ≤ i < 3n/4} for i ∈ Cn. Observe

that although this F gives only an Ω(n) lower bound on the relaxation time if the variational for-

mula (7.4) is used, the variance Varπ[P tF ] does not start decaying before t reaches order n2, hence

Exercise 7.12 (a) does imply a quadratic lower bound on the relaxation time. (That is, the same

observable might fail or succeed, depending on the method.) Explain how this is possible in terms of

the L2-decomposition of F into eigenfunctions of the Markov operator.

The following theorem, often called “Wilson’s method for lower bounds on mixing” and stated here

without a proof, is a very useful generalization of the idea how the Hamming weight gave us a sharp lower

bound for the TV mixing time in Exercise 7.14. See [LevPW17, Theorem 13.28] for a proof.
{t.WilsonLower}

Theorem 7.10 (Wilson’s method [Wil04]). Consider an irreducible aperiodic Markov chain (Xt)t≥0 on a

finite state space V . Let Φ be an eigenfunction with real eigenvalue 1/2 < λ < 1, satisfying

Ex
[
|Φ(X1)− Φ(x)|2

]
≤ R

for some R > 0, for all starting points X0 = x. Then, for any ϵ ∈ (0, 1) and any x ∈ V ,

tTV
mix(ϵ) ≥ 1

2 log(1/λ)

(
log

(1− λ) Φ(x)2

2R
+ log

1− ϵ
ϵ

)
.

For instance, for the 1/2-lazy random walk on {0, 1}k, for Φ(x) being the Hamming weight W (x), we

have λ = 1−1/k, R = 1, and maxx Φ(x) = k, hence indeed get tTV
mix(ϵ) ≥ (1/2+o(1)) k ln k, for any ϵ ∈ (0, 1)

fixed. A more advanced example is the Interchange Process on the symmetric group Sn given by the

path [1, n], i.e., the random walk on Sn generated by picking uniformly at random one of the adjacent

transpositions (i, i + 1) in each step, 1 ≤ i ≤ n − 1. Thinking of this process as permuting n particles,

each particle is performing a very lazy random walk on [1, n], with one step in each ≍ n steps of the chain.

Hence each particle needs time ≍ n3 to get mixed on [1, n], and to get most of them mixed, similarly to

the hypercube example, we will need time ≍ n3 log n. An exact lower bound, via Theorem 7.10, is again

given by Φ being a sum of eigenfunctions, each with an eigenvalue close to 1. Namely, the movement

of the ith particle is a projection of the full Markov chain, again Markovian, with second eigenfunction

ϕ(k) = cos (2k−1)π
2n , and then Φ(σ) :=

∑n
i=1 ϕ(i)ϕ(σ(i)) is an eigenfunction of the full chain, with eigenvalue

λ = 1− π2

n3 + O(n−4). The coefficients ϕ(i) are not constant now (as opposed to the hypercube example)

to make the resulting eigenfunction non-trivial, and they are chosen so that maxσ Φ(σ) and R are easy to

compute and are useful: the first is quite large while the second is quite small. Indeed, with a little bit of

work it turns out that Φ(id) ≍ n and R ≍ 1/n2, and hence we get a lower bound tTV
mix(ϵ) ≥ 1+o(1)

π2 n3 lnn.

This was proved to be sharp in [Lac16].

Exercise▷ 7.16. Fill in the details of the above calculation for the Interchange Process on [1, n].

We have seen that the TV mixing time on the hypercube is significantly larger than the relaxation

time, and showed the cutoff phenomenon in Exercise 7.14. Exercise 7.15 showed for the cycle Cn that

n2 ≼ trelax ≼ tTV
mix, which is the right order of magnitude also from above, by Exercise 7.12 (c). But we did

not talk about cutoff, which was not an accident:
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Exercise▷ 7.17. Show that if tTV
mix(Vn) ≍ trelax(Vn) for a sequence of finite reversible Markov chains on n

vertices, then the sequence cannot exhibit cutoff for the total variation mixing time.

There are natural chains where the three mixing times, trelax ≼ tTV
mix ≼ t∞mix, are in fact of different

orders: e.g., simple random walk on the lamplighter groups Z2 ≀ Zdn, with a natural set of generators. For

d = 2,

trelax ≍ n2 log n , tTV
mix(ϵ) ≍ n2 log2 n , t∞mix(ϵ) ≍ n4 . (7.10) {e.LLmix}{e.LLmix}

The reason is, very briefly, that the relaxation time is given by the maximal hitting time for SRW on the

base graph torus Z2
n, the TV mixing time is given by the expected cover time of the base graph, while

the uniform mixing time is given by the time when the set St of unvisited sites on the base graph satisfies

E[ 2|St| ] < 1 + ϵ. See [PerR04a]. It is especially interesting to notice the difference between the separation

and uniform mixing times: by time C n2 log2 n with large C, the small pieces left out by the SRW on the

torus are not enough to make the pt(x, ·)-measure of any specific state too small, but they still allow for

certain states to carry very high measures.

In this example, (7.10), the relaxation and the mixing times are on the same polynomial order of

magnitude; their ratio is just log n, which is log log |Vn|. This seems to be a rather general phenomenon;

e.g., I do not know examples of Markov chains over spin systems where this does not hold. However, I

cannot formulate a general result or even conjecture on this, because of counterexamples like expanders,

or the ones in Exercise 7.18 (b).

Let us now discuss whether a uniformly positive spectral gap is required for fast mixing. This depends

on the exact definition of “fast mixing”. First of all, Proposition 7.9 implies that in a sequence of finite

chains, we have convergence to stationarity with a uniformly exponential speed if and only if the absolute

spectral gaps are uniformly positive. On the other hand, if we define “fast mixing” by the mixing time

being small, i.e., tTV
mix(1/4) = O(log |V |), then (7.8) does not imply a uniformly positive absolute spectral

gap. Indeed, that does not hold in general:
{ex.qexpander}

Exercise▷ 7.18. You may accept here that transitive expanders exist.

(a) Give a sequence of d-regular transitive graphs Gn = (Vn, En) with |Vn| → ∞ that mix rapidly,

tTV
mix(1/4) = O(log |Vn|), but do not form an expander sequence.

(b) In a similar manner, give a sequence Gn = (Vn, En) satisfying trelax ≍ tTV
mix(1/4)α ≍ logα |Vn|, with

some 0 < α < 1.

A nice property of simple random walk on an expander is that the consecutive steps behave similarly

in several ways to an i.i.d. sequence, but the walk can be generated using much less randomness. This is

useful in pseudorandom generators, derandomization of algorithms, etc. To conclude this section, here is

an exact statement of this sort: {pr.AKSz}
Proposition 7.11. Let (V, P ) be a reversible Markov chain with stationary measure π and spectral gap

1 − λ2 > 0, and let A ⊂ V have stationary measure at most β < 1. Let (Xi)
∞
i=0 be the trajectory of the

chain in stationarity (i.e., X0 ∼ π). Then

P
[
Xi ∈ A for all i = 0, 1, . . . , t

]
≤ C(1− γ)t ,

where γ = γ(λ2, β) > 0 and C is an absolute constant.
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This was first proved by Ajtai, Komlós and Szemerédi [AjKSz87]; see [HooLW06, Section 3] for a proof

and applications. I am giving here what I think is the simplest possible proof. Stronger and extended

versions of this argument can be found in [AloS00, Section 9.2] and [HamMP12]. We will use the following

simple observation:
{ex.suppcontr}

Exercise▷ 7.19. If (V, P ) is a reversible Markov chain with stationary measure π and spectral gap 1−λ2 > 0,

and f ∈ L2(V ) has the property that π(supp f) ≤ 1− ϵ, then

(Pf, f) ≤ (1− δ1)(f, f) and (Pf, Pf) ≤ (1− δ2)(f, f)

for some δi = δi(λ2, ϵ) > 0.

Proof of Proposition 7.11. We want to rewrite the exit probability in question in a functional analytic

language, since we want to use the notion of spectral gap. So, consider the projection Q : f 7→ f1A for

f ∈ L2(V ), and note that

P
[
Xi ∈ A for i = 0, 1, . . . , 2t+ 1

]
=
(
Q(PQ)2t+11,1

)
=
(
P (QP )tQ1, (QP )tQ1

)
, by self-adjointness of P and Q

≤ (1− δ1)
(
(QP )tQ1, (QP )tQ1

)
, by Exercise 7.19

≤ (1− δ1)
(
P (QP )t−1Q1, P (QP )t−1Q1

)
, by Q being a projection

≤ (1− δ1) (1− δ2)
(
(QP )t−1Q1, (QP )t−1Q1

)
, by Exercise 7.19

≤ (1− δ1) (1− δ2)t
(
Q1, Q1

)
) , by iterating previous step

≤ (1− δ1) (1− δ2)t β ,

and we are done, at least for odd times. For even times, we can just use monotonicity in t.

7.4 From infinite to finite: Kazhdan groups and expanders
{ss.expanders}

From the previous section, one might think that transitive expanders are the finite analogues of non-

amenable groups. This is true in some sense, but this does not mean that we can easily produce transitive

expanders from non-amenable groups. A simple but crucial obstacle is the following:
{ex.coveringspec}

Exercise▷ 7.20.

(a) If G′ −→ G is a covering map of infinite graphs, then the spectral radii satisfy ρ(G′) ≤ ρ(G),

i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then

ρ(G) ≥ ρ(Tk) = 2
√
k−1
k .

(b) If G′ −→ G is a covering map of finite graphs, then λ2(G′) ≥ λ2(G), i.e., the larger graph is a worse

expander.

The main group-theoretic source of expanders is the following notion, introduced in [Kaz67]. See the

book [BekdHV08] for a comprehensive treatment.
{d.kazhdan}

Definition 7.12. We say that a countable group Γ has Kazhdan’s property (T) if, for any unitary

representation ρ : Γ −→ U(H) on a complex Hilbert space H without non-zero invariant vectors (fixed by

all g ∈ Γ), there exists a κ > 0 and a finite subset K ⊂ Γ such that for every nonzero v ∈ H there exists

k ∈ K with

∥ρ(k)v − v∥ ≥ κ∥v∥ . (7.11) {e.Kaka}{e.Kaka}

80



If there exists a pair κρ,Kρ for each ρ, then there also exists one κ,K that works for every ρ simultaneously.

The reason is that for any sequence ρ1, ρ2, . . . one can take the representation π =
⊕

n ρn, and then the

pair κπ,Kπ will work for each ρi, as well.

In other words, property (T) means that having no (non-zero) invariant vectors in a representation

always implies that there are no almost invariant vectors either, where having almost-invariant vectors

means that for every finite K ⊂ Γ and every κ > 0 there is some non-zero v ∈ H with

sup
k∈K
∥ρ(k)v − v∥ < κ∥v∥ . (7.12) {e.noKaka}{e.noKaka}

The notation (T) may be considered as a visual representation of the formulation that the trivial represen-

tation is isolated in the so-called Fell topology on the unitary representations of the group — a topology

we are not going to define here. Also, the original definition is in the generality of topological groups Γ,

so that K stands not for finite, but for compact subsets. Finally, note that if we have an action of Γ on

a real Hilbert space by orthogonal transformations, then we can also consider it as a unitary action on a

complex Hilbert space, hence the Kazhdan property will apply to real actions, too.

For any generating set S ⊂ Γ, we can define the Kazhdan constant

κ(Γ, S) := inf

{
sup
s∈S

∥ρ(s)v − v∥
∥v∥

: Γ
ρ−→ U(H) without invariant vectors, v ∈ H \ {0}

}
.

Obviously, if there is a finite S with κ(Γ, S) > 0, then Γ is Kazhdan. Furthermore, if S1 ⊆ S2, then

κ(Γ, S1) ≤ κ(Γ, S2). One can easily get sort of a reverse inequality, as well:

Exercise▷ 7.21. For any pair S1, S2 of finite generating sets of a group Γ, show that if κ(Γ, S1) > 0, then

κ(Γ, S2) > 0, too.

After all these definitions, we can finally say that Kazhdan groups do exist: finite groups are such.

Example: If Γ is finite, then κ(Γ,Γ) ≥
√

2. Let us assume, on the contrary, that v is a vector in H with

norm 1 with ∥ρ(g)v−v∥ <
√

2, for all g ∈ Γ. Then ρ(g)v is in the open half-space H+
v := {w ∈ H : (v, w) >

0} for all g. If we average over all g,

v0 :=
1

|Γ|
∑
g

ρ(g)v ,

we obtain an invariant factor which is in the interior of H+
v , hence it is non-zero.

It is not obvious to produce infinite Kazhdan groups. First of all, infinite amenable groups are not

good:

Exercise▷ 7.22. If a group is Kazhdan and amenable, then it is a finite group. (Hint: The indicators of

Følner sets are almost invariant vectors in ℓ2(Γ).)

But the “most non-amenable group”, the free group F2 with two generators, is not Kazhdan either,

since there exists a surjection F2 −→ Z (the obvious projection) to an amenable group, and then F2 acts

on ℓ2(Z) just as Z does.

The main examples are that SLd(Z), for d ≥ 3, are Kazhdan. See the discussion preceding Theorem 14.5

for a tiny bit of intuition why the d = 2 case is not good for property (T).

The main motivation for Kazhdan to introduce his property was to show that lattices in groups like

SLd(R) for d ≥ 3 are finitely generated. Here is why property (T) helps.
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Proposition 7.13. Any countable Kazhdan group Γ is finitely generated. Moreover, κ(Γ, S) > 0 for any

finite generating set S.

Proof. Let C be the set of finitely generated subgroups of Γ. For any H ∈ C, we can take the (say, left)

cosets Γ/H := {gH : g ∈ Γ} (as a set, not as a multiset!), and then Γ acts on ℓ2(Γ/H) by left translations,

a representation we denote by λΓ/H :

λΓ/H(g)(f)(xH) := f(g−1xH) .

Now, if we take the representation

π :=
⊕
H∈C

λΓ/H : Γ −→
⊕
H∈C

ℓ2(Γ/H) ,

and any finite subset K ⊂ Γ, then the Kronecker delta function δ⟨K⟩ ∈
⊕

H∈C ℓ
2(Γ/H) is invariant under

any π(g), g ∈ ⟨K⟩. That is, these δ⟨K⟩ are almost-invariant vectors of π, as defined in (7.12). Since Γ is

assumed to be Kazhdan, π must also have true invariant vectors. But any non-zero coordinate of such a

vector, indexed by some H ∈ C, is invariant in ℓ2(Γ/H), and therefore Γ/H must be finite. Since H is

finitely generated, Γ is finitely generated, as well.

Now assume that κ(Γ, S) = 0 for some finite generating set S. Then there is a sequence of representa-

tions ρn and unit vectors vn ∈ Hn such that ∥ρn(s)vn − vn∥ → 0 for every s ∈ S. Then, since any g ∈ Γ

can be written as a finite product g = s1 · · · st with si ∈ S, we have (writing ρ = ρn as a left action)

∥ρn(g)vn − vn∥ =
∥∥ρ(s1 · · · st−1)ρ(st)vn − ρ(s1 · · · st−1)vn + ρ(s1 · · · st−2)ρ(st−1)vn − · · ·+ ρ(s1)vn − vn

∥∥
≤
∥∥ρ(s1 · · · st−1)ρ(st)vn − ρ(s1 · · · st−1)vn

∥∥+ · · ·+
∥∥ρ(s1)vn − vn

∥∥
= ∥ρ(st)vn − vn∥+ · · ·+ ∥ρ(s1)vn − vn∥ ,

since ρ is unitary. Each of the t terms in this sum goes to 0, hence ∥ρn(g)vn− vn∥ → 0 for any fixed g ∈ Γ.

This means that there cannot exist a finite set K that works for every ρ and every v in the simultaneous

version of property (T).

The first reason for property (T) entering probability theory was the construction of expanders. On

one hand, we have the following not very difficult theorem, see [Lub94, Proposition 1.2.1] or [HooLW06,

Lemma 1.9]:

Theorem 7.14 ([Pin73],[Pip77]). Asymptotically almost every d-regular graph is an expander.

However, as with some other combinatorial problems, although there are many expanders, it is hard to

find an infinite family explicitly.

Exercise▷ 7.23 (Margulis 1973). If Γ is Kazhdan and infinite, with finite factor groups Γn, let Gn =

G(Γn, S) be the Cayley graph of Γn with a fixed generating set S of G. Then the Gn are expanders.

This was the first explicit construction of an expander family, from an infinite Kazhdan group with

infinitely many different finite factors. Since then, much easier constructions have been found. An early

example that uses only some simple harmonic analysis is [GaGa81]. More recently, a completely elementary

construction was found by Reingold, Vadhan and Wigderson (2002), using the so-called zig-zag product;

see [HooLW06, Section 9].
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Any infinite k-regular transitive graph G has spectral radius ρ(G) ≥ ρ(Tk) = 2
√
k−1
k , and any finite k-

regular graph on n vertices has second largest eigenvalue λ2 (G) ≥ 2
√
k−1
k − o(1) as n→∞, see [HooLW06,

Section 5.2].

A sequence of k-regular graphs Gn are called Ramanujan graphs if

lim inf
n→∞

λ2 (Gn) =
2
√
k − 1

k
.

So, the Ramanujan graphs are the ones with largest spectral gap.

Again, for any ϵ > 0, asymptotically almost every k-regular graph has λ2(G) ≤ 2
√
k−1
k + ϵ — this is

due to Joel Friedman, and is much harder to prove than just being expanders. There are also explicit

constructions, first done by Lubotzky, Philips and Sarnak in 1988. They showed that G(SL3(Fp), S), with

appropriate generating sets S are Ramanujan graphs. See [HooLW06] and [Lub94].

Conjecture 7.15 (Question on k-regular graphs). What is the asymptotic distribution of λ2 if we choose

k-regular graphs uniformly at random? The limiting distribution should be

λ2 − 2
√
k−1
k + f(n)

g(n)
→ TWβ=1,

for some unknown normalizing functions f, g, where TWβ stands for the Tracy-Widom distribution for the

fluctuations of the largest eigenvalue of the β-ensemble of random matrices; in particular, for β = 1, it is

the GOE ensemble, the real symmetric Gaussian random matrices.

The motivation behind this conjecture is that the adjacency matrix of a random k-regular graph is a

sparse version of a random real symmetric Gaussian matrix. In fact, the typical eigenvalue of large random

k-regular graphs, in the k → ∞ limit, looks like the typical eigenvalue of large random matrices; more

precisely, the eigenvalue distribution of large random k-regular graphs converges to the spectral measure of

Tk (see Section 14.2), and this spectral measure converges to Wigner’s semicircle law as k →∞, which is

the limiting distribution of the eigenvalue distribution of large random matrices. See, for instance, [Dei07]

on the random matrix ensembles and their universal appearance throughout science.

8 Isoperimetric inequalities and return probabilities in general
{s.return}

The main topic of this chapter is a big generalization of the deduction of exponential heat kernel decay from

non-amenability (or fast mixing from positive Cheeger constant): general isoperimetric inequalities also give

sharp upper bounds on the return probabilities. This was first discovered by Varopoulos [Var85a], developed

further with his students [VarSCC92]. This approach is very much functional analytic, a continuation of

the methods encountered in Sections 7.1 and 7.2, proving and using the so-called Nash inequalities. We

will sketch this approach in the first section, then will study in more depth the method of evolving sets, a

beautiful probabilistic approach developed by Ben Morris and Yuval Peres [MorP05].

An important special case can be formulated as follows:
{t.varopoulos}

Theorem 8.1. IPd ⇒ pn(x, y) ≤ Cn− d
2 . For transitive graphs, this is an equivalence.

As can be seen from the second statement of the theorem, there are also bounds going in the other di-

rection. For instance, an n−d/2 heat kernel decay implies a so-called d-dimensional Faber-Krahn inequality,

see [Cou00] for a nice overview, and [CouGP01] for a geometric approach for groups. For general graphs,

this is strong enough to deduce an at least d-dimensional volume growth, but not IPd. Similarly, lower
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bounds on the volume growth, without any regularity assumption, do not imply upper bounds on return

probabilities. We will not study these questions, but before diving into Nash inequalities and evolving sets,

let us give two quick exercises:

Exercise▷ 8.1.

(a) Using the Carne-Varopolous bound, Theorem 9.2 below, show that a |Bn(x)| = o(n2/ log n) volume

growth in a bounded degree graph implies recurrence.

(b) Construct a recurrent tree with exponential volume growth.

8.1 Poincaré and Nash inequalities
{ss.PoincareNash}

Recall the Sobolev inequality from Proposition 7.5: for f ∈ ℓ0(V ),

V satisfies IPd(κ) =⇒ ∥f∥d/(d−1) ≤ C(κ) ∥∇f∥1 . (8.1) {e.Sobolev}{e.Sobolev}

To compare this inequality for different d values, take fn to be roughly constant with a support of π-

measure n. Then ∥fn∥d/(d−1) ≍ n(d−1)/d. So, one way of thinking of this inequality is that the function f

becomes smaller by taking the derivative in any direction, but if the space has better isoperimetry, then

from each point we have more directions, hence the integral ∥∇f∥1 loses less mass compared to ∥f∥1. In

particular, for the non-amenable case (d =∞), we already have ∥f∥1 ≤ C(κ) ∥∇f∥1.

So, in (8.1), to make up for the loss caused by taking the derivative, we are taking different norms on

the two sides, depending on the isoperimetry of the space. Another natural way of compensation would

be to multiply the right hand side by a factor depending on the size of the support. This is done in the

Poincaré inequalities, well-known from PDEs [Eva98, Section 5.8]:

If U ⊆ Rd with Lipschitz boundary, then∥∥f(x)− fRU
∥∥
Lp(RU)

≤ CU R ∥∇f∥Lp(RU) , (8.2) {e.Poincare}{e.Poincare}

with

fRU =

∫
RU

f(x) dx

vol(RU)
.

Since the quality of the isoperimetry now does not appear in (8.2), one might hope that this can be

generalized to almost arbitrary spaces. Indeed, the following holds:
{ex.SC}

Exercise▷ 8.2 (Saloff-Coste’s Poincaré inequality [Kle10]). Show that if f : Γ −→ R on any group Γ, and

BR is a ball of radius R in a Cayley graph, then

∥∥f − fBR

∥∥
ℓ2(BR)

≤ 2
vol(B2R)

vol(BR)
R ∥∇f∥ℓ2(B3R). (8.3) {e.SC}{e.SC}

Hints: we have ∣∣f(y)− fBR

∣∣ ≤ ∑z∈BR
|f(z)− f(y)|

vol(BR)
≤
∑
g∈B2R

|f(yg)− f(y)|
vol(BR)

, (8.4) {e.Hint a}{e.Hint a}

and if g = s1 . . . sm with m ≤ 2R and generators si ∈ S, then∣∣f(yg)− f(y)
∣∣ ≤ ∣∣f(ys1 . . . sm)− f(ys1 . . . sm−1)

∣∣+ · · ·+
∣∣f(ys1)− f(y)

∣∣ . (8.5) {e.Hint b}{e.Hint b}
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Note that for non-amenable groups, we have the Dirichlet inequality ∥f∥2 ≤ C ∥∇f∥2, see Theo-

rem 7.3, i.e., the factor R on the right hand side of (8.2) can be spared. So, just like in the case of Sobolev

inequalities, no compensation is needed.

The following exercise says that harmonic functions show that the Poincaré inequality (8.3) is essentially

sharp. The statement can be regarded as a discrete analogue of the classical theorem that functions

satisfying the Mean Value Property are smooth. (Such a function cannot go up and down too much:

whenever there is an edge contributing something to ∥∇f∥, the harmonicity carries this contribution to a

large distance.)
{ex.revPoincare}

Exercise▷ 8.3 (Reverse Poincaré inequality). Show that there is a constant c = c(Γ, S) > 0 such that for

any harmonic function f on the Cayley graph G(Γ, S),

cR ∥∇f∥ℓ2(BR) ≤ ∥f∥ℓ2(B2R) . (8.6) {e.reverse}{e.reverse}

There are several ways how Poincaré or similar inequalities can be used for proving heat kernel estimates.

The first work in this direction was by Varopoulos [Var85a]. He proved sharp heat kernel upper bounds by

first proving that an isoperimetric inequality IPF(κ), with f = t
F(t) increasing, implies the following Nash

inequality:

∥f∥22 ≤ g
(
∥f∥21/∥f∥22

)
EP,π(f), f ∈ ℓ0(V ) , (8.7) {e.Nash}{e.Nash}

where g = Cκf(4t)
2. The proof is quite similar to the proofs of Proposition 7.5 and Theorem 7.3. To make

the result more readable, consider the case of IPd(κ), i.e., F(t) = t(d−1)/d. Then we have g(t) = Cκt
2/d,

and (8.7) reads as

∥f∥2 ≤ Cκ
(
∥f∥21/∥f∥22

)1/d ∥∇f∥2 ,
some kind of mixture of the Sobolev and Poincaré inequalities (8.1) and (8.3). For instance, when f = 1BR

,

we get the usual ∥f∥2 ≤ CκR ∥∇f∥2. But we will apply (8.7) to some other functions.

The next step is to note that

EP,π(f) ≤ 2(∥f∥22 − ∥Pf∥22) ,

where P = (I + P )/2 is the Markov operator for the walk made lazy. Therefore, applying the Nash

inequality to f = P
n
δx for each n, we arrive at a difference inequality on the sequence

u(n) := ∥Pnδx∥22 = (P
2n
δx, δx) = p2n(x, x)Cx ,

namely

u(n) ≤ 2g
(
1/u(n)

)(
u(n)− u(n+ 1)

)
.

This gives an upper bound on the decay rate of u(n) as a solution of a simple differential equation. Then

we can use that p2n(x, x) ≤ 2p2n(x, x). See [Woe00, Section 14.A] for more detail.

A different approach, with stronger results, is given in [Del99]. For Markov chains on graphs with nice

regular d-dimensional volume growth conditions and Poincaré inequalities, he proves that

c1 n
−d/2 exp(−C1 d(x, y)2/n) ≤ pn(x, y) ≤ c2 n−d/2 exp(−C2 d(x, y)2/n) .

Let us note here that a very general Gaussian estimate on the off-diagonal heat kernel decay is given

by the Carne-Varopoulos Theorem 9.2 below.
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8.2 Evolving sets: the results
{ss.evolving}

Recall that a Markov chain is reversible if there is a measure m with π(x)p(x, y) = π(y)p(y, x); such a π is

always stationary. This happens iff the transition probabilities can be given by symmetric conductances:

c(x, y) = c(y, x) with p(x, y) = c(x,y)
Cx

, and then π(x) = Cx is a good choice.

Even for the non-reversible case, when the stationary measure π(x) is not Cx, we define Q(x, y) :=

π(x)p(x, y), and the isoperimetric profile is

ϕ(r) := inf

{
Q(S, Sc)

π(S)
: π(S) ≤ r

}
.

For instance, IPd(κ) implies ϕ(r) ≥ κr−1/d.
On a finite chain, we take π(V ) = 1, and let ϕ(r) = ϕ(1/2) for r > 1/2.

{t.Morris-Peres}
Theorem 8.2 (Morris-Peres [MorP05]). Suppose 0 < γ < 1/2, p(x, x) > γ ∀x ∈ V . If

n ≥ 1 +
(1− γ)2

γ2

∫ 4/ϵ

4min(π(x),π(y))

2 du

uϕ(u)2
, (8.8) {e.Morris-Peres}{e.Morris-Peres}

then

pn(x, y)/π(y) < ϵ or |pn(x, y)/π(y)− 1| < ϵ ,

depending on whether the chain is infinite or finite.

For us, the most important special cases are the following:

1) By the Coulhon-Saloff-Coste isoperimetric inequality, Theorem 5.11, any group of polynomial growth

d satisfies IPd. Then the integral in (8.8) becomes

Cγ

∫ 4/ϵ

4

4 du

u1−2/d
≍ (1/ϵ)2/d.

That is, the return probability will be less than ϵ after n ≍ ϵ−2/d steps, so pn(x, x) < Cn−d/2.

2) IP∞ turns the integral into Cγ log(1/ϵ), hence pn(x, x) < exp(−cn), as we know from the Kesten-

Cheeger-Dodziuk-Mohar Theorem 7.3.

3) For groups of volume growth exp(c rα) with α ∈ (0, 1], the CSC isoperimetric inequality implies

ϕ(r) ≥ c/ log1/α r. Then the integral becomes∫ 1/ϵ

1

log2/α u

u
du ≍ log1+ 2

α (1/ϵ) ,

thus pn(x, y) ≤ exp(−cnα/(α+2)). At least for α = 1, this is again the best possible, by the following

exercise.

Exercise▷ 8.4.* Show that on the lamplighter group Z2 ≀ Z we have pn(x, x) ≥ exp(−cn1/3).

As we discussed in the introduction to this section, these bounds were first proved by Varopoulos, using

Nash inequalities. The beauty of the Morris-Peres approach is that is completely probabilistic, defining

and using the so-called evolving set process. Moreover, it works also for the non-reversible case, unlike the

functional analytic tools. (Although, in the non-reversible case, finding the stationary measure and the

corresponding isoperimetric profile might be quite difficult.)
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The integral (8.8) using the isoperimetric profile was first found by Lovász and Kannan [LovKa99], for

finite Markov chains, but they deduced mixing only in total variation distance, not uniformly as Morris and

Peres. To demystify the formula a bit, note that for a finite Markov chain on V with uniform stationary

distribution, using the bound ϕ(r) ≥ ϕ(1/2) = h for all r, where h is the Cheeger constant (since r = 1/2

is an infimum over a larger set), the Lovász-Kannan integral bound implies the upper bound

≍
∫ 1

1
|Vn|

1

rh2
dr =

log |Vn|
h2

on the mixing time, as was shown earlier in Theorem 7.7. The idea for the improvement via the integral is

that, especially in geometric or transitive settings, small subsets often have better isoperimetry than the

large ones. (Recall here the end of Section 5.3, and also see the next exercise.)

Example: Take an n-box in Zd. A sub-box of side-length t has stationary measure r = td/nd and boundary

≍ td−1/nd, hence the isoperimetric profile is ϕ(r) ≍ 1/t = r−1/d/n. (Of course, one would need to show

that sub-boxes are at least roughly optimal for the isoperimetric problem. This can be done similarly to

the infinite case Zd, see Section 5.4, with some non-trivial extra work.) This is clearly decreasing as r

grows. Therefore, the Cheeger constant is h ≍ 1/n, achieved at r ≍ 1. Using Theorem 7.6, we get that

the spectral gap is at least of order 1/n2, which is still sharp, but then Theorem 7.7 gives only a uniform

mixing time ≤ Cdn2 log n. However, using the Lovász-Kannan integral, the mixing time comes to Cdn
2.

Another standard example for random walk mixing is the hypercube {0, 1}d with the usual edges.

Exercise▷ 8.5. For 0 ≤ m ≤ d, show that the minimal edge-boundary for a subset of 2m vertices in the

hypercube {0, 1}d is achieved by the m-dimensional sub-cubes. (Hint: use induction.)

The isoperimetric profile of {0, 1}d can also be computed, but it is rather irregular and hard to work

with in the Lovász-Kannan integral, and it does not yield the optimal bound. But, as we will see, with the

evolving sets approach, one needs the isoperimetry only for sets that do arise in the evolving sets process:
{ex.hypermix}

Exercise▷ 8.6. * Prove O(n log n) mixing time for {0, 1}n using evolving sets and the standard one-

dimensional Central Limit Theorem.

8.3 Evolving sets: the proof
{ss.evolproof}

We first need to give the necessary definitions for the evolving sets approach, and state (with or without

formal proofs) a few basic lemmas. Then, before embarking on the proof of the full Theorem 8.2, we will

show how the method works in the simplest case, by giving a quick proof of Kesten’s Theorem 7.3, the

exponential decay of return probabilities in the non-amenable case, even for non-reversible chains.

Let S ⊆ V . Define: S̃ = {y : Q(S, y) ≥ Uπ(y)}, where U ∼ Unif[0, 1]. Remember: Q(S, y) =∑
x∈S π(x)p(x, y) with πP = π, a fixed stationary measure. This is one step of the evolving set process.

Thus

P
[
y ∈ S̃

∣∣ S ] = P
[
Q(S, y) ≥ Uπ(y)

]
=
Q(S, y)

π(y)
, (8.9) {e.evol}{e.evol}

which leads to

E[π(S̃) | S ] =
∑
y

π(y)P
[
y ∈ S̃

∣∣ S ] =
∑
y

Q(S, y) = π(S) .

Therefore, for the evolving set process Sn+1 = S̃n, the sequence {π(Sn)} is a martingale.

Now take S0 = {x}; then E[π(Sn) ] = π(x). Moreover:
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Lemma 8.3. P
[
y ∈ Sn

∣∣ S0 = {x}
]π(y)
π(x) = pn(x, y).

Proof. We use induction on n. The case n = 0 is trivial. Then, using the induction hypothesis,

pn(x, y) =
∑
z

pn−1(x, z) p(z, y) =
∑
z

P{x}
[
z ∈ Sn−1

]π(z)

π(x)
p(z, y) .

Since

P{x}
[
z ∈ Sn−1

]
π(z)p(z, y) = E{x}

[
1{z∈Sn−1}Q(z, y)

]
,

the above sum over z can be written as

1

π(x)
E{x}

[
Q(Sn−1, y)

]
.

Then, using (8.9), this is equal to

π(y)

π(x)
E{x}

[
P
[
y ∈ Sn

∣∣ Sn−1 ] ] =
π(y)

π(x)
P{x}

[
y ∈ Sn

]
,

and we are done.

These two properties, that π(Sn) is a martingale and P{x} [y ∈ Sn]π(y) = pn(x, y)π(x), at least when

the stationary measure π is uniform, are shared by the Markov chain trajectory {Xn}. However, since

P[ y ∈ S̃ | S ] = Q(S,y)
π(y) , the size of S̃ will have a conditional variance depending on the size of the boundary

of S: the larger the boundary, the larger the conditional variance that the evolving set has. This makes it

extremely useful if we want to study how the isoperimetric profile affects the random walk.

Recall that, if f is a concave function, by Jensen’s inequality E
[
f(X)

]
≤ f(E

[
X
]
). Moreover, if there

is considerable variance, then the inequality is strict. For example, if f is
√

:

Exercise▷ 8.7. If Var[X] ≥ c (EX)2 then E
[√

X
]
≤ (1− c′)

√
EX, where c′ > 0 depends only on c > 0.

Recall that Q(x, y) = π(x) · p(x, y) thus Q(A,B) =
∑
a∈A,b∈B π(a)p(a, b).

Proof of Theorem 8.2. We will focus on the case of an infinite state space. Let us first state a lemma that

formalizes the above observations: large boundary for S means large conditional variance for S̃, and that

in turn means a definite decrease in E

√
π(S̃) compared to E

√
π(S). We omit the proof, because it is

slightly technical, and we have already explained the main ideas anyway.
{l.teclem1}

Lemma 8.4. Assume 0 < γ ≤ 1/2 and p(x, x) ≥ γ, for all x ∈ V . If Ψ(S) = 1 − ES

[√
π(S̃)
π(S)

]
then, for

each S ⊂ V , we have that

Ψ(S) ≥ γ2

2(1− γ)2
ϕ(S)2,

where

ϕ(S) =
Q(S, Sc)

π(S)
.

Notice that, if we define Ψ(r) = inf {Ψ(S) : π(S) ≤ r}, then the lemma gives

Ψ(r) ≥ γ2

2(1− γ)2
ϕ(r)2,

and the proof of Theorem 8.2 reduces to show that pn(x, y)/π(y) < ϵ if n >
∫

1
rΨ(r) dr.
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As promised, an example of the usefulness of this method is that we can immediately get exponential

decay for non-amenable chains:

If ϕ(r) ≥ h > 0 ∀r, then Lemma 8.4 implies that Ψ(r) ≥ h′ > 0, i.e.,

E
[√

π(S̃) | π(S)
]
≤ (1− h′)

√
π(S).

So, by iterating from S0 = {x} to Sn we obtain E{x}
[√

π(Sn)
]
≤ exp(−Cn). If we assume π(x) ≡ 1,

for example in the group case, this implies that pn(x, y) = P{x}[ y ∈ Sn ] ≤ E{x}
√
|Sn| ≤ exp(−Cn), as

desired, where the middle inequality comes from the ridiculous bound P{x}[ y ∈ Sn ] ≤ P{x}
[√

π(Sn) ≥ 1
]

and Markov’s inequality.

However, for the general case we will have to work harder. The replacement for the last ridiculous

bound will be (8.14) below, which handles the case of a non-constant π better than a simple application

of Markov’s inequality. A more serious issue is the non-uniformity of the isoperimetric bound. Recall

that usually (e.g., on the lattice Zd) the boundary-to-volume ratio is smaller for larger sets, hence, if at

some point, π(Sn) happens to big (which is not very likely for a martingale at any given time n, since

Eπ(Sn) = Eπ(x), but still may happen at some random times), then our bound from Lemma 8.4 becomes

weak, and we lose control. It would be much better to have a stronger downward push for larger sets; when

π(Sn) is small, then we are happy anyway.

For this reason, we introduce some kind of a dual process. Denote the evolving set transition kernel by

K(S,A) = PS [ S̃ = A ], the probability that, being in S, the next step is A. Now, consider a non-negative

function on the state space X = 2V of the evolving set process, which equals 1 on some Ω ⊂ X and equals

0 for another subset Λ ⊂ X, and harmonic on X \ (Ω ∪ Λ). Then, we can take Doob’s h-transform:

K̂(S,A) :=
h(A)

h(S)
K(S,A)

which is indeed a transition kernel: by the harmonicity of h, for A /∈ Ω ∪ Λ,∑
A

K̂(S,A) =
∑
A

h(A)

h(S)
K(S,A) =

h(S)

h(S)
= 1.

The usual reason for introducing the h-transform is that the process given by the kernel K̂ is exactly

the original process conditioned to hit Ω before Λ (in particular, it cannot be started in Λ, and once it

reaches Ω it is killed). See Lemma 6.13 and (6.10) for a simple example.

For the evolving set process, we will apply the Doob transform with h(S) := π(S). Recall that π(Sn) is a

martingale on X \{∅} exactly because π(S) is harmonic for S ̸= ∅. (We have harmonicity at S = V because

that is an absorbing state of the original evolving sets chain.) So, for the infinite state space evolving set

process, K̂ is the process conditioned on never becoming empty. We do not prove this carefully, since we

will not use this fact.

We now define Zn := 1√
π(Sn)

. Then

1

π(x)
E{x}

√
π(Sn) = Ê{x}Zn , (8.10) {e.ESEZ}{e.ESEZ}

because, as it is easy to check from the definitions, ÊSf(Sn) = ES

[
π(Sn)
π(S) f(Sn)

]
for any function f .

In the hat mean:

Ê

[
Zn+1

Zn

∣∣∣ Sn] = Ê

[ √
π(Sn)√
π(Sn+1)

∣∣∣ Sn] = E

[√
π(Sn+1)√
π(Sn)

∣∣∣ Sn] < 1−Ψ(π(Sn)), (8.11) {e.e-psi}{e.e-psi}
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with the last inequality provided by the definition of Ψ(r) after Lemma 8.4.

When Zn is large then Sn is small and Ψ is good enough to get from (8.11) a significant decrease for

Zn in the new process. And, by (8.10), a fast average decay of Zn in the new process means a fast decay

for Sn in the original process, and we are happy! This sounds like black magic, but is nevertheless correct.

It is a version of the technique of taking a “strong stationary dual” in [DiaF90].

Let us state another technical lemma, which formalizes how a control like (8.11) that we have now for

Zn in the K̂-process actually leads to a fast decay in Ê.
{l.lem-tech2}

Lemma 8.5. Assume f0, f : (0,∞) −→ [0, 1] are increasing functions and Zn > 0 is a sequence of random

variables with Z0 fixed, and Ln := EZn.

(a) Suppose that Ln+1 ≤ Ln(1− f(Ln)) for all n ≥ 0. If n ≥
∫ L0

δ
dz

zf(z) for some δ > 0, then Ln ≤ δ.
(b) Suppose now that E[Zn+1 | Zn ] ≤ Zn(1 − f0(Zn)) for all n ≥ 0, and let f(z) := f0(z/2)/2. If

n ≥
∫ Z0

δ
dz

zf(z) for some δ > 0, then EZn ≤ δ.

Proof. Notice that the recursive condition in part (a) implies that∫ Lk

Lk+1

dz

z f(z)
≥ 1

f(Lk)

∫ Lk

Lk+1

dz

z
=

1

f(Lk)
ln

Lk
Lk+1

≥ 1 .

Summing this up for k = 0, 1, . . . , n− 1 and using that
∫ L0

δ
dz

z f(z) ≥
∫ L0

Ln

dz
z f(z) if Ln ≤ δ gives the result.

To get part (b) from part (a), we can use the following simple inequality:

E[Z f0(Z) ] ≥ E
[
Z 1{Z>EZ/2} f0(EZ/2)

]
≥ EZ

2
f0(EZ/2) .

Thus, the recursive condition on Zn with f0 implies the condition of part (a) for EZn with f , and hence

the result follows.

In order to apply this lemma, we rewrite (8.11) as Ê [Zn+1|Zn] < Zn(1−f0(Zn)), with f0(z) := Ψ(1/z2),

and get that

n ≥
∫ 1/
√
π(x)

δ

2 dz

zΨ(4/z2)
implies Ê{x}Zn ≤ δ . (8.12) {e.ZnPsi}{e.ZnPsi}

By (8.10), this gives a good upper bound on E{x}
√
π(Sn), but if we then used just the primitive argument

as before, we would get

pn(x, y)

π(y)
≤ P{x}[ y ∈ Sn ]

1

π(x)
≤

E{x}
√
π(Sn)√

π(y)π(x)
=

Ê{x}Zn√
π(y)

≤ δ√
π(y)

,

which is not good enough when
√
π(y) is small. So, we need to find a better way to deduce the smallness

of return probabilities from the smallness of E{x}
√
π(Sn). Here it comes.

{d.chi2dist}
Definition 8.6 (A non-symmetric comparison of measures). We define χ as:

χ2(µ, π) =
∑
y

π(y)
µ(y)2

π(y)2
.

For finite chains, we had the version (7.5), but we will not discuss finite chains here in the proof.
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For µ(·) = pn(x, ·) and π(·) = 1, we have χ(pn(x, ·), 1) =
∑
y pn(x, y)2. If pn(x, ·) is roughly uniform

on a large set, i.e., pn(x, y) ≍ ϵ for y ∈ An, |An| ≍ 1
ϵ , then χ ≍ ϵ, which suggests that the smallness of χ

w.r.t. the uniform π is a reasonable measure of being well-spread. In fact, from the smallness of χ we can

deduce uniform smallness:
pn1+n2(x, y)

π(y)
=

1

π(y)

∑
y

pn1(x, z) pn2(z, y)

=
∑
z

pn1
(x, z)

π(z)
π(z)

←−p n2
(y, z)

π(z)

≤ χ(pn1
(x, ·), π)χ(←−p n2

(y, ·), π)

(8.13) {e.p-chi}{e.p-chi}

using Cauchy-Schwartz, where ←−p n2
(y, z) = π(z)

π(y)p(z, y) stands for the stationary reversal. Note that this

stationary reversal has the same stationary measure as the original chain, and hence it is easy to see that

its isoperimetric profile is also the same.

Also, we can compare pn with π using evolving sets:

χ2(pn(x, ·), π) =
∑
y

π(y)
P{x}[ y ∈ Sn ]

2
π(y)2

π(x)2π(y)2

=
1

π(x)2

∑
y

π(y)P{x}[ y ∈ Sn, y ∈ Tn ]

=
1

π(x)2
E{x}[π(Sn ∩ Tn) ],

where {Sn} and {Tn} are two independent evolving set processes. Then, applying Cauchy-Schwartz,

1

π(x)2
E{x}

[
π(Sn ∩ Tn)

]
≤ 1

π(x)2
E{x}

[√
π(Sn)π(Tn)

]
.

Thus

χ(pn(x, ·), π) ≤ 1

π(x)
E{x}

[√
π(Sn)

]
, (8.14) {e.p-esp}{e.p-esp}

which is better than what we had before.

So, we now apply (8.12) with δ =
√
ϵ, so that, together with the inequalities (8.13) and (8.14), and

after a change of variables u = 4/z2, we get that

n ≥
∫ 4/ϵ

4(π(x)∧π(y))

du

uΨ(u)
implies

pn(x, y)

π(y)
≤ ϵ .

Using the relation between Ψ and ϕ in Lemma 8.4, we arrive at Theorem 8.2.

9 Speed, entropy, Liouville property, Poisson boundary
{s.speedetc}

9.1 Speed of random walks
{ss.Speed}

We have seen many results about the return probabilities pn(x, x), i.e., about the on-diagonal heat kernel

decay. We now say a few words about off-diagonal behaviour.
{l.offdiag}

Lemma 9.1. Given a reversible Markov chain with a stationary measure π(x), we have:

(a)

pn(x, y) ≤

√
π(y)

π(x)
ρn .
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(b)

sup
x,y

p2n(x, y)

π(y)
≤ sup

x

p2n(x, x)

π(x)
.

Proof. Both inequalities rely on Cauchy-Schwarz. For part (a):

π(x)pn(x, y) = (δx, P
nδy)

≤ ∥δx∥∥Pnδy∥

≤
√
π(x)∥Pn∥

√
π(y) .

Dividing by π(x) and using ∥Pn∥ ≤ ∥P∥n = ρ(P )n, we get the result.

For part (b), we also use the fact that P is self-adjoint:

π(x)p2n(x, y) = (δx, P
2nδy)

= (Pnδx, P
nδy)

≤ (Pnδx, P
nδx)1/2(Pnδy, P

nδy)1/2

=
(
(δx, P

2nδx)(δy, P
2nδy)

)1/2
= (π(x)p2n(x, x)π(y)p2n(y, y))

1/2
.

Now divide both sides by π(y)π(x) and take the supremum over all x and y:

sup
x,y

p2n(x, y)

π(y)
≤ sup

x,y

p2n(x, x)1/2p2n(y, y)1/2

π(x)1/2π(y)1/2
= sup

x

p2n(x, x)

π(x)
.

The following important result strengthens part (a) of the previous lemma by basically saying that the

off-diagonal decay is at least as fast as on Z.
{t.carne}

Theorem 9.2 (Carne-Varopoulos [Car85, Var85b]). Given a reversible Markov chain,

pn(x, y) ≤ 2

√
π(y)

π(x)
ρn exp

(
−dist(x, y)2

2n

)
,

where the distance is measured in the graph metric given by the graph of the Markov chain, i.e., there is

an edge between x and y if and only if p(x, y) > 0.

This form is due to Carne, with a miraculous proof using Chebyshev polynomials, which we sketch below.

Varopoulos’ result was a bit weaker, with a more complicated proof. There is now also a probabilistic proof,

see [Pey08].

Sketch of proof. We will prove that

pn(x, y) ≤

√
π(y)

π(x)
ρnP0

[
|Sn| ≥ d(x, y)

]
, (9.1) {e.Carne}{e.Carne}

where Sn is simple random walk on Z. Then the Azuma-Hoeffding bound Proposition 1.8 applied to Sn

implies the bound we claimed.

Using trigonometric identities, one can easily prove by induction that for every k ≥ 1 there is a degree

k real polynomial Tk such that cos(kθ) = Tk(cos θ) for every θ ∈ R. These are the Chebyshev polynomials.
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Note that |Tk(r)| ≤ 1 for r ∈ [−1, 1], hence the spectral theorem implies that Qk := Tk
(
P/∥P∥

)
is an

operator on L2(V, π) with norm at most 1. (If the Reader is uncomfortable with spectral theory, just

truncate P to get a finite Markov chain in a large neighbourhood of the starting point x.)

Now, the connection to SRW on Z arises by writing

rn = (cos θ)n =

(
eiθ + e−iθ

2

)n
=

n∑
k=−n

P0[Sn = k ] eikθ =

n∑
k=−n

P0[Sn = k ]Tk(r) ,

where T−k := Tk. Therefore, using the norm 1 functions φx(z) := 1x=y/
√
π(x),√

π(x)√
π(y)

pn(x, y) = (φx, P
nφy) = ∥P∥n

n∑
k=−n

P0[Sn = k ] (φx, Qkφy) .

Since (φx, Qkφy) = 0 for k < d(x, y), and |(φx, Qkφy)| ≤ 1 always holds, (9.1) follows.
{p.speed}

Proposition 9.3. Consider a graph G with degrees bounded by D, and a reversible Markov chain on

its vertex set V , with not necessarily nearest-neighbour transitions. Assume that the reversible measure

satisfies a uniform bound π(x)/π(y) < B < ∞ for any x, y ∈ V , and that ρ < 1. Then, in the graph

metric,

lim inf
n→∞

dist(o,Xn)

n
> 0 a.s.

Proof. Choose α > 0 small enough that Dα < 1/ρ. Then,

Po[dist(o,Xn) ≤ αn] =
∑

x∈Bαn(o)

pn(o, x) ≤ |Bαn(o)|
√
Bρn

≤ Dαn
√
Bρn ≤

√
B exp(−cαn) .

In the first line, we used part (a) of Lemma 9.1 and the bound on π(·). The second inequality holds

because of the choice of α. Thus, by Borel-Cantelli, dist(o,Xn) ≤ αn holds only finitely many times, and

lim infn→∞
dist(o,Xn)

n > α almost surely.
{l.speedexists}

Lemma 9.4. For any group-invariant random walk on a group (with not necessarily nearest neighbour

jumps in the Cayley graph that gives the metric),

lim
n→∞

E
dist(o,Xn)

n
exists.

Proof. First we define the sequence (an)∞n=1 by an = Edist(o,Xn). We can see that this sequence is

subadditive:

Edist(o,Xn+m) ≤ Edist(o,Xn) + Edist(Xn, Xn+m)

≤ Edist(o,Xn) + Edist(o,Xm) .

So we may apply Fekete’s lemma, which gives us that limn→∞ an/n exists.

A stronger statement also holds: limn→∞
dist(o,Xn)

n exists almost surely. This follows from Kingman’s

subadditive ergodic theorem; see, e.g., [LyPer16, Theorems 14.10 and 14.44].

We have seen in Proposition 9.3 that non-amenability implies positive speed. The converse is false, as

the d ≥ 3 case of the following theorem shows. For the definition of the lamplighter groups, see the end of

Section 5.1.
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{t.LLspeed}
Theorem 9.5. For the lamplighter groups Z2 ≀ Zd, the following bounds hold for dn = dist(o,Xn):

(a) d = 1 has E[dn] ≍
√
n

(b) d = 2 has E[dn] ≍ n
logn

(c) d ≥ 3 has E[dn] ≍ n.
In each case, we will prove here the statement only for some specific generating set.

{q.speedinv}
Question 9.6. Is it true that positive speed never depends on the finite symmetric generating set?

The case for Z2 ≀ Zd is known [Ers04a].

Proof. In each case, we will consider the walk given by staying put with probability 1/4, switching the

lamp at the present location with probability 1/4, and moving to one of the 2d neighbours with probability

1/(4d) each.

Figure 9.1: The generators for the walk on Z2 ≀ Zd. {f.LLd}

Then, if Xn = (Ln, ϕn), where Ln is the position of the lamplighter and ϕn is the configuration of the

lamps, then it is easy to give some crude bounds on dn: it is at least | suppϕn|, the number of lamps on,

plus the distance from the origin of the farthest lamp on, and it is at most the number of steps in any

procedure that visits all the lamps that are on, switches them off, then goes back to the origin. Moreover,

the expected size of suppϕn can be estimated based on the expected size of the range Rn of the movement

of the lamplighter, using the following exercise:
{ex.lastvisit}

Exercise▷ 9.1. Show that P
[
x ∈ suppϕn+1

∣∣ x ∈ Rn ] ≥ 1/4.

Therefore, we have
E |Rn|

4
≤ E | suppϕn+1| ≤ E |Rn| , (9.2) {e.litrange}{e.litrange}

so estimating E |Rn| will certainly be important.

Now, in the d = 1 case, we have

|min suppϕn| ∨ |max suppϕn| ≤ dn ≤ |Ln|+ 3|min suppϕn|+ 3|max suppϕn| , (9.3) {e.LLd1}{e.LLd1}

using that the number of lamps on is at most |min suppϕn|+|max suppϕn|. By the Central Limit Theorem,

P[ |Ln| > ϵ
√
n ] > ϵ for some absolute constant ϵ > 0. Thus, by Exercise 9.1, we have

P
[

suppϕn ̸⊆ [−ϵ
√
n, ϵ
√
n]
]
> ϵ/4

for n ≥ 2. Now, by the left side of (9.3), we have

E[ dn ] ≥ E
[
|min suppϕn| ∨ |max suppϕn|

]
≥ P

[
suppϕn ̸⊆ [−ϵ

√
n, ϵ
√
n]
]
ϵ
√
n ≥ ϵ2

√
n/4 ,
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which is a suitable lower bound.

For an upper bound, let Mn = maxk≤n |Lk|. Clearly, |min suppϕn| ∨ |max suppϕn| ≤ Mn. From the

CLT, it looks likely that not only Ln, but even Mn cannot be much larger than
√
n, but if we do not want

to lose log n-like factors, we have to be slightly clever. In fact, we claim that

P[Mn ≥ t ] ≤ 4P[Ln ≥ t ] . (9.4) {e.maxreflection}{e.maxreflection}

This follows from a version of the reflection principle. If Tt is the first time for Ln to hit t ∈ Z+, then, by

the strong Markov property and the symmetry of the walk restarted from t,

P[Tt ≤ n,Ln ≥ t ] ≥ 1

2
P[Tt ≤ n ] ;

we don’t have exact equality because of the possibility of Ln = t. Since {Ln ≥ t} ⊂ {Tt ≤ n}, this

inequality can be rewritten as

2P[Ln ≥ t ] ≥ P[Tt ≤ n ] = P
[

max
k≤n

Lk ≥ t
]
.

Since P[Mn ≥ t ] ≤ 2P[ maxk≤n Lk ≥ t ], we have proved (9.4).

Summing up (9.4) over t, we get E[ |Mn| ] ≤ 2E[ |Ln| ] ≤ C
√
n for some large C < ∞, from the CLT.

Using (9.3), we see that E[ dn ] ≤ C ′
√
n, and we are done.

Now consider the case d = 2. For the lamplighter, we have pk(0, 0) ≍ 1/k. (This comes from the general

fact that pk(0, 0) ≍ k−d/2 on Zd). Thus,
∑n
k=1 pk(0, 0) ≍ log n. But

∑n
k=1 pk(0, 0) is exactly the expected

number of visits to 0 by time n. This suggests that once a point is visited, it is typically visited roughly

log n times in expectation, and thus the walk visited roughly n/ log n different points. In fact, it is not

hard to prove that

E |Rn| ≍
n

log n
. (9.5) {e.2dRn}

Exercise▷ 9.2. Prove the above statement.

The precise asymptotics in the above statement is also known, a classical theorem by Erdős and Dvoret-

zky.

Since, to get from Xn to the origin, we have to switch off all the lamps, by (9.2) we have E |Rn|/4 ≤ E dn.

On the other hand, Rn is a connected subset of Z2 containing the origin, so we can take a spanning tree

in it, and wherever Ln ∈ Rn is, can go around the tree to switch off all the lamps and return to the

origin. This can be done in less than 3|Rn| steps in Z2, while the switches take at most |Rn| steps, hence

dn ≤ 4|Rn|. Altogether, E dn ≍ E |Rn|, so the d = 2 case follows from (9.5).

For the case d ≥ 3, consider the following exercise:

Exercise▷ 9.3. For simple random walk on a transitive graph, we have:

lim
n→∞

E |Rn|
n

= q := Po[never return to o] .

From this exercise and (9.2), we can deduce that:

n ≥ E[dn] ≥ E | suppϕn| ≥
E |Rn|

4
≥ qn

4
,

thus proving the case d ≥ 3.

The distinction between positive and zero speed will be a central topic of the present chapter. And, of

course, there are also finer questions about the rate of escape than just being linear or sublinear, which

will be addressed in later chapters.
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9.2 The Liouville and strong Liouville properties for harmonic functions
{ss.Liouville}

In this section we will start to examine what kind of discrete harmonic functions may exist for infinite

Markov chains. As we saw in Section 6.3 (with an application in Section 8.3), harmonic functions are

intimately related to martingales, hence we will make use of the following:
{d.suMG}

Definition 9.7. A submartingale is a sequence (Mn)∞n=1 such that the following two conditions hold:

∀n E |Mn| <∞ ,

∀n E[Mn+1 |M1, . . . ,Mn ] ≥Mn .

A supermartingale is a similar sequence, except that the second condition is replaced by

∀n E[Mn+1 |M1, . . . ,Mn ] ≤Mn .

{t.MGconverge}
Theorem 9.8 (Martingale Convergence Theorem). Let (Mn)∞n=1 be a submartingale such that supnE

[
Mn1{Mn>0}

]
<

∞. (For instance, there exists some constant B with Mn ≤ B almost surely.). Then there exists a random

variable M∞ with

Mn →M∞ a.s.

For a proof, see [Dur10, Theorem 5.2.8].
{c.nobddharm}

Corollary 9.9. A recurrent Markov chain has no nonconstant bounded harmonic functions, not even

harmonic functions bounded from one direction (equivalently, positive ones).

Proof. If f is a positive harmonic function, then Mn = f(Xn) is a martingale (in particular, a super-

martingale) bounded from below. If f , in addition, is nonconstant, then there are x and y states such that

f(x) ̸= f(y). The walk is recurrent, so returns to these states infinitely often. So ∀N ∃m,n > N such that

Mm = f(x) and Mn = f(y). So Mn cannot converge to any value, which contradicts Theorem 9.8. So no

such f can exist.
{t.LiouProp}

Theorem 9.10. In any Markov chain, if x, y ∈ V are such that there is a coupling (Xn, Yn)n≥0 of random

walks starting from (x, y) such that P[Xn ̸= Yn ] → 0, then any bounded harmonic function has the same

value on x and y. In particular, if every pair x, y ∈ V has this coupling property, then the chain has the

Liouville property, i.e., every bounded harmonic function is constant.

Proof. Suppose f is a bounded harmonic function, say |f | < B. Then f(Xn) and f(Yn) are both martin-

gales, with E[ f(Xn) ] = f(x) and E[ f(Yn) ] = f(y). Thus,

∀n |f(x)− f(y)| = |Ef(Xn)−Ef(Yn)|

≤ E |f(Xn)− f(Yn)|

≤ P[Xn ̸= Yn ] 2B .

Therefore, |f(x)− f(y)| ≤ limn→∞P[Xn ̸= Yn ] 2B = 0, so f must be constant.
{t.Blackwell}

Theorem 9.11 (Blackwell 1955). Zd has the Liouville property.
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Proof. Clearly, f is harmonic with respect to P if and only if it is harmonic with respect to I+P
2 , the lazy

version of P . So, consider the lazy random walk in Zd given by flipping a d-sided coin to determine which

coordinate to move in and then using the lazy simple random walk on Z in that coordinate. This is the

product chain of lazy walks coordinatewise. Now consider the following coupling: Xn and Yn always move

in the same coordinate as one another. If their distance in that coordinate is zero, then they move (or

remain still) together in that coordinate. If not, then when X moves, Y stays still and when X stays still,

Y moves. Each of X and Y when considered independently is still using the lazy random walk described.

Now, considering one coordinate at a time, if Xn and Yn have not yet come together in that coordinate,

then whenever that coordinate is chosen, the distance goes up by one with probability 1/2 and down

by one with probability 1/2. This is equivalent to a simple random walk on Z, which is recurrent, so

with probability 1, Xn and Yn will eventually have distance zero in that coordinate, and then will remain

together for the rest of the coupling. This happens in each coordinate, so with probability 1, ∃N such that

Xn = Yn ∀n ≥ N . So by Theorem 9.10, this chain has the Liouville property.

Exercise▷ 9.4.* By studying how badly the coupling may fail, show that any harmonic function f on Zd {ex.sublin}
with sublinear growth, i.e., satisfying lim∥x∥2→∞ f(x)/∥x∥2 = 0, must be constant.

Exercise▷ 9.5. Using couplings, show that any random walk on Zd with symmetric bounded jumps has the

Liouville property.

In fact, the Choquet-Deny theorem [ChoD60] says that any generating measure on any Abelian group

has the Liouville property. See Theorem 9.30 in Section 9.6 below for a proof that can be generalized for

nilpotent groups. Generalizing in a different direction, the Choquet-Deny proof also implies the following;

see [Saw97]:
{t.ZdMartin}

Theorem 9.12 (Strong Liouville property for Zd). For the random walk generated by any probability

measure µ on Zd whose support generates all of Zd and has the properties that∑
x∈Zd

µ(x) |x| <∞ and
∑
x∈Zd

µ(x)x = 0 ∈ Rd , (9.6) {e.ChDsymm}{e.ChDsymm}

any nonnegative harmonic function is constant.

Proof. The main tool will be the classical Krein-Milman theorem (1940): any compact convex subset K

of a locally convex Hausdorff topological vector space X is the closed convex hull of its extreme points:

K = conv(ext(K)). Based on our intuition from finite-dimensional vector spaces, this sounds like a

triviality, but we can see its power from the fact how easily it implies this result, stronger than Theorem 9.11.

Let X be the vector space of real µ-harmonic functions on Zd, with the topology of pointwise conver-

gence, and let

K := {h ∈ X : h ≥ 0, and h(0) = 1} .

This is obviously convex. Furthermore, observe that, since the support of µ generates Zd, harmonicity

and the conditions h ≥ 0 and h(0) = 1 imply that for each x ∈ Zd there exists a bound Hµ(x) such that

h(x) ≤ Hµ(x) for every h ∈ K. Thus K is compact by Tychonoff’s theorem. Let h be an extreme point of

K; by the Krein-Milman theorem, it is enough to prove that h is constant. Again using that the support

of µ generates Zd, the maximum principle implies that h(x) > 0 for all x ∈ Zd. Then, the definition of

harmonicity can be written as

h(x) =
∑
s∈Zd

µ(s)h(s)
h(x+ s)

h(s)
, (9.7) {e.hconvcomb}{e.hconvcomb}
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for any x ∈ Zd. Since Zd is Abelian, the function x 7→ hs(x) := h(x + s)/h(s) is again harmonic, with

hs(0) = 1, and hence the RHS of (9.7) is a convex combination of elements of K. (Note here that (9.7)

with x = 0 says that
∑
s µ(s)h(s) = 1.) Since h is extremal, we must have hs(x) = h(x) for each s with

µ(s) > 0. By µ being a generating measure of Zd, this implies that h(x+ y) = h(x)h(y) for any x, y ∈ Zd,
and thus h is of the form h(x) = exp(α · x) for some α ∈ Zd.

Now, assuming (9.6), we apply Jensen’s inequality to the x = 0 case of (9.7):

1 =
∑
s∈Zd

µ(s) exp(α · s) ≥ exp

α ·∑
s∈Zd

µ(s)s

 = 1 .

Since x 7→ h(x) = exp(α · x) is strictly convex, we can have the above equality in Jensen only if h(s) is

constant 1 on the entire support of µ(s). Thus α · s = 0 for every s in the support, while the support must

span Rd if it is a generating set, and hence α = 0, and h(x) = 1 for all x ∈ Zd.

In Theorem 9.10 and its application Theorem 9.11, we deduced the Liouville property from a coupling

property of the random walk. Can we use something similar instead of the Krein-Milman theorem to

prove Theorem 9.12? For smooth positive harmonic functions on Rd, the task would be easy: harmonicity

of f implies that f(x) = Exf(Bt) holds for any t ≥ 0, for Brownian motion Bt started at B0 = x; on

the other hand, the densities of Bt for B0 = x and B0 = y are within a factor of 1 + o(1) from each

other as t → ∞ (starting from t ≫ ∥x − y∥22), hence the same holds for the expectations, and we get

f(x) = f(y) in the limit. For Zd, the discreteness causes some technical difficulties: e.g., it is not true that

supz∈Zd

(
pn(x, z))/pn(y, z)−1

)
→ 0 as n→∞, since for any n there is a z for which pn(x, z) = 0 < pn(y, z).

One possibility to resolve this issue is to use the Local Central Limit Theorem for the random walk at

times n and n(1 + ϵ); another one is to use the divisible sandpile model, Theorem 3.3 of [LevP09].

Exercise▷ 9.6. Use either of the above suggestions to give a probabilistic proof of Theorem 9.12.
{ex.LiouSLiou}

Exercise▷ 9.7. Consider an irreducible Markov chain (V, P ).

(a) Assume that dTV

(
pn(x, ·)), pn(y, ·)

)
→ 0 as n → ∞, for any x, y ∈ V . Show that (V, P ) has the

Liouville property.

(b) Show that biased nearest-neighbor random walk on Z has the property of part (a), but nevertheless it

does not have the strong Liouville property: it has non-constant positive harmonic functions.

The asymmetry of the walk in part (b) of the previous exercise made it easy to distinguish between the

Liouville and strong Liouville properties. We will see an example below where even the symmetric simple

random walk on a group has the Liouville but not the strong Liouville property. But, before that, let us

see the first example that does not have the Liouville property: the d-regular tree Td with d ≥ 3.

Consider Figure 9.2, and let f(y) = Py[{xn} ends up in A]. By transience and by any vertex being a

cutpoint of the tree, limn→∞ 1xn∈A exists a.s, so this definition makes sense. It is obviously a bounded

harmonic function. Let p = Px[never hit o] ∈ (0, 1), then f(x) = (1 − p)f(o). This shows that f is

nonconstant.

Exercise▷ 9.8. Show that the lamplighter group Z2 ≀ Zd with d ≤ 2 has the Liouville property.

Exercise▷ 9.9. Show that the lamplighter group with d ≥ 3 does not have the Liouville property.
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Figure 9.2: Portion of a d-regular tree (d = 3) {f.dreg}

A hint for these two exercises is that positive speed and the existence of non-trivial bounded harmonic

functions will turn out to be intimately related issues, so you may look at the proof of Theorem 9.5 to

get an idea how to construct good couplings in the case d ≤ 2 and how to construct nonconstant bounded

harmonic functions in the case d ≥ 3.
{t.LLLipHarm}

Theorem 9.13 ([BenDCKY]). Consider SRW on the lamplighter group Z2 ≀Z with one of the usual finite

generating sets. Then the strong Liouville property completely fails: there are infinitely many linearly

independent positive Lipschitz harmonic functions.

Idea of proof. As in Theorem 9.5, the random walk trajectory will be denoted by Xn = (Mn, ϕn). Consider

a fixed configuration χ of lamps on −N with finitely many lamps on; for simplicity, we will take now all

the lamps to be off. Let τR be the hitting time of −R or R by the lamplighter, and consider

gχR(x) := Px

[
ϕτR
∣∣
−N = χ

]
.

It is not hard to see that for R large enough, gχR(x) is comparable (up to constant factors depending on

χ) to the probability of not visiting before τR any negative integer that is less than min suppχ. This

probability is on the order of 1/R (with constant factors depending on χ and x), and it should not be

surprising that the limit

gχ(x) := lim
R→∞

R · gχR(x)

exists, non-constant, and Lipschitz in x. And, of course, it is harmonic. Furthermore, one can show that

for different configurations χ, these functions are all linearly independent.

Exercise▷ 9.10. Fill in some of the gaps in the above proof.
{ex.sublinLL}

Exercise▷ 9.11. Similarly to Exercise 9.4 about Zd, show that the lamplighter group Z2 ≀ Z has no non-

constant harmonic functions of sublinear growth.

In Exercises 9.4 and 9.11, the triviality of sublinear growth harmonic functions followed from good

couplings of the random walk. One may speculate that the existence of such good couplings is intimately

related to the walk not being too much spread out. This motivates the following courageous conjecture,

with both sides being open (beyond the case of almost nilpotent groups, where both the diffusive behaviour

and the triviality of sublinear growth harmonic functions are known [HeSC93, Theorem 6.1]):

Conjecture 9.14 (Gady Kozma). SRW on a group has no non-constant harmonic functions of sublinear

growth iff the walk is diffusive, i.e., Edist(X0, Xn) ≍
√
n.
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It is important to mention here that the diffusive
√
n rate of escape is the slowest possible on transitive

graphs; see Section 10.2.

9.3 Entropy, and the main equivalence theorem
{ss.SpEnt}

As we have seen in the previous two sections, on the lamplighter groups Z2 ≀Zd there is a strong relationship

between positive speed and the existence of non-trivial bounded harmonic functions. The main result of

the current section is that this equivalence holds on all groups, see Theorem 9.17 below. However, a

transparent probabilistic reason currently exists only on the lamplighter groups. For the general case, the

proof goes through more ergodic/information theoretic notions like entropy and tail-σ-fields. We start by

discussing entropy.

Let µ be a finitely supported probability measure on a group Γ such that suppµ generates Γ. Then we

get a nearest neighbour random walk on the directed right Cayley graph of Γ given by the generating set

suppµ:

P[xn+1 = h | xn = g ] = µ(g−1h) ,

where h, g ∈ Γ. Then the law ofXn is the n-fold convolution µn = µ∗n, where (µ∗ν)(g) :=
∑
h∈Γ µ(h)ν(h−1g).

This walk is reversible iff µ is symmetric, i.e., µ(g−1) = µ(g) for all g ∈ Γ. All our previous random walks

on groups were examples of such walks.

Recall the notion of entropy H(µ) from Definition 1.10 in Section 1.2.

Definition 9.15. The asymptotic entropy h(µ) of the random walk generated by µ is defined by:

h(µ) := lim
n→∞

H(µn)

n
= lim
n→∞

H(Xn)

n
.

Exercise▷ 9.12. Show that h(µ) exists for any µ on a group Γ that satisfies H(µ) <∞.

As a corollary to the fact H(µ) ≤ log | suppµ|, if Γ has sub-exponential volume growth (in the directed

Cayley graph given by the not necessarily symmetric suppµ), then h(µ) = 0.

Here is a fundamental theorem that helps comprehend what asymptotic entropy means:
{t.SMB}

Theorem 9.16 (Shannon-McMillan-Breiman, version by Kaimanovich-Vershik). For almost every random

walk trajectory {Xn},

lim
n→∞

− logµn(Xn)

n
= h(µ).

To see why this theorem should be expected to hold, note that the expectation of − logµn(Xn) is

exactly H(µn), hence the sequence converges in expectation to h(µ) by definition. So, this theorem is an

analogue of the Law of Large Numbers. For a proof, see [KaiV83].

Exercise▷ 9.13. h(µ) = 0 iff ∀ϵ > 0 there exists a sequence {An} with µn(An) > 1− ϵ and log |An| = o(n).

In words, zero entropy means that the random walk is mostly confined to a sub-exponentially growing set.

We now state a central theorem of the theory of random walks on groups. We will define the invariant

σ-field (also called the Poisson boundary) only in the next section, so let us give here an intuitive meaning:

it is the set of different places where infinite random walk trajectories can escape (with the natural measure

induced by the random walk, called the harmonic measure at infinity). A great introduction to the Poisson

boundary is the seminal paper [KaiV83].
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{t.SEHI}
Theorem 9.17. For any symmetric finitely supported random walk on a group, the following are equivalent:

(S) positive speed σ(µ) > 0,

(E) positive asymptotic entropy h(µ) > 0,

(H) existence of non-constant bounded harmonic functions (the non-Liouville property),

(I) non-triviality of the invariant σ-field (Poisson boundary).

Here are some two-sentence summaries of the proofs:

The meaning of (S) ⇐⇒ (E) is that positive speed for a reversible walk is equivalent to the walk being

very much spread out. This will be proved in this section. Note that the reversibility of the walk (in other

words, the symmetry of µ) is important: consider, e.g., biased random walk on Z, which has positive speed

but zero entropy.

The equivalence (I) ⇐⇒ (H) holds for any Markov chain, and will be proved in Section 9.4: a bounded

harmonic function evaluated along a random walk trajectory started at some vertex x is a bounded mar-

tingale, which has an almost sure limit whose expectation is the value at x. Therefore, from a bounded

harmonic function we can construct a function “at infinity”, and vice versa.

Finally, (E) ⇐⇒ (I) will be proved in Section 9.5, by expressing the asymptotic entropy as the amount

of information gained about the first step by knowing the limit of the random walk trajectory, see (9.12).

Hence positive entropy means that non-trivial information is contained in the boundary. This equivalence

holds also for non-symmetric measures µ, but it is important for the walk to be group-invariant, as will be

shown by an example of a non-amenable bounded degree graph that has positive speed and entropy, but

has the Liouville property and trivial Poisson boundary.

Beyond the case of lamplighter groups discussed in the previous sections, the following is open:

Exercise▷ 9.14. *** Find a direct probabilistic proof of (S) ⇐⇒ (H) for symmetric bounded walks on

any group. Is there a quantitive relationship between the speed and the amount of bounded harmonic

functions, e.g., their von Neumann dimension, defined later? (It is clear from the discussion of the different

equivalences above that both the symmetry and the group invariance of the walk is needed.)

For symmetric finitely supported measures with support generating a non-amenable group, from Propo-

sition 9.3 we know that the walk has positive speed and hence non-trivial Poisson boundary. The importance

of the lamplighter group examples was pointed out first by [KaiV83]: Z2 ≀Zd shows that exponential volume

growth is not enough (d ≤ 2) and non-amenability is not needed (d ≥ 3) for positive speed. Nevertheless, it

is worth comparing non-amenability and non-trivial Poisson boundary: the first means that µn(1) decays

exponentially (Theorem 7.3), while the second means that µn(Xn) decays exponentially (by Theorem 9.16).

We will see a characterization of amenability using the Poisson boundary in Theorem 9.29 below.

Now, we prove (S) ⇐⇒ (E) by giving the following quantitative version:
{t.VVSE}

Theorem 9.18 (Varopoulos [Var85b] and Vershik [Ver00]). For any symmetric finitely supported measure

µ on a group,

log
1

ρ(µ)
+ σ(µ)2/2 ≤ h(µ) ≤ ν(µ)σ(µ) ,

where ρ(µ) is the spectral radius, σ(µ) is the speed of the walk, and ν(µ) := (limn log |Bµn |)/n is the

exponential rate of volume growth of the graph (where the limit exists because |Bn+m| ≤ |Bn| · |Bm|.) Both

for the speed and the volume, distances are given by the generating set supp µ.
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Proof. For the lower bound, the key ingredient is the Carne-Varopoulos bound, Theorem 9.2, which implies:

− log pn(o,Xn)

n
≥ log

1

ρ
+ o(1) +

dist(o,Xn)2

2n2
.

Taking expectation w.r.t. Xn, we get

H(Xn)

n
≥ log

1

ρ
+

E
[

dist(o,Xn)2
]

2n2
+ o(1) ≥ log

1

ρ
+ o(1) +

(
Edist(o,Xn)

)2
2n2

.

The LHS tends to h(µ), the RHS tends to log 1
ρ + σ(µ)2/2, hence we are done.

For the upper bound, the key idea is that entropy on a finite set is maximized by the uniform measure.

Thus, using that the sphere |∂Br(o)| has size at most exp
(
(ν + o(1))r

)
as r → ∞, and assuming that

dist(o,Xn)→∞ almost surely,

H(Xn) = H(dist(o,Xn)) +H(Xn |dist(o,Xn)) ≤ log n+ E log exp
(
(ν + o(1))dist(o,Xn)

)
.

Dividing by n, the LHS converges to h(µ), while the RHS converges to ν(µ)σ(µ). In case dist(o,Xn)→∞
does not hold, i.e., the walk is recurrent, then the group has at most two-dimensional volume growth, so

H(Xn) can grow at most logarithmically, and h(µ) = 0 follows.
{ex.funda}

Exercise▷ 9.15 (Vershik).*** The upper bound in the previous theorem is called “the fundamental inequal-

ity” in [Ver00]. Does there exist for every finitely generated group a finitely supported µ with equality here,

h(µ) = ν(µ)σ(µ)? The trouble with a strict inequality is that then the random walk measure is far from

uniform on the sphere where it is typically located, i.e., sampling from the group using the random walk is

not a good idea.

As we mentioned in Question 9.6, it is not known if the positivity of speed on a group is independent of

the Cayley graph, or more generally, invariant under quasi-isometries. On general graphs, the speed does

not necessarily exist, but the Liouville property can clearly be defined. However, for the class of bounded

degree graphs it is known that the Liouville property is not quasi-isometry invariant [Lyo87, Ben91]. A

simple example is given in [BenS96a], which we now describe:

The set Y = {0, 1}∗ of finite 0-1-words can naturally be viewed as an infinite binary tree. Let A be the

subset of words in which the ratio of 1’s among the letters is more than 2/3. Now consider the lattice Z4,

take a bijection between the vertices along the x-axis of Z4 and the vertices in A, and put an edge between

each pair of vertices given by this bijection. This graph will be G. It easily follows from the law of large

numbers that SRW on Y spends only finite time in A, and hence SRW on G, started from any y ∈ Y ,

will ever visit the Z4 part only with a probability bounded away from 1. Whenever the walk visits Z4,

by the transience of the Z3 direction orthogonal to the x-axis, with positive probability it will eventually

stay in Z4. So, the function v 7→ Pv[ the walk ends up in Z4 ] for v ∈ G is a non-trivial bounded harmonic

function. Now, let Y ′ be the tree where each edge (w,w0) of Y is replaced by a path of length k, for some

large but fixed k ∈ N, and G′ is the same join of Y ′ and Z4 as before. If k is large enough, then SRW on

Y ′ will visit A infinitely often, and hence it will enter Z4 infinitely often, and hence will almost surely end

up in Z4. By the coupling results Theorem 9.10 and Theorem 9.11 for the triviality of bounded harmonic

functions, this means that G′ has the Liouville property. However, G and G′ are obviously quasi-isometric

to each other.
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9.4 Liouville and Poisson
{ss.LioPoi}

Having proved (S) ⇐⇒ (E), we now turn to harmonic functions, the invariant sigma-field, and the equiva-

lence (I) ⇐⇒ (H). Let us start with a basic result of probability theory:
{t.Levy01}

Theorem 9.19 (Lévy’s Zero-One Law). Given a filtration Fn ↑ F∞, and X almost surely bounded, we

have that:

E[X | Fn ]→ E[X | F∞ ] a.s.

This is called a zero-one law since, for the case X = 1A with A ∈ F∞, it says

P[A | Fn ]→ 1A a.s.,

hence the conditional probabilities P[A | Fn ] converge to 0 or 1.

Proof. This is simply a special case of the Martingale Convergence Theorem 9.8. To see this, recall from

Section 6.3 that Mn := E[X|Fn] is a bounded martingale, and then apply the theorem.

Although this result might seem obvious, it is quite powerful: for example, it implies the following

fundamental theorem, to be used later in this section and in Section 12.1.
{t.Kol01}

Theorem 9.20 (Kolmogorov’s 0-1 law). Let X1, X2, . . . be independent random variables and A a tail

event (i.e., it is contained in the tail-σ-field
⋂
n≥1 σ{Xn, Xn+1, . . . }, or in plain words, its occurrence is

not influenced by any finite subset of the variables). Then P[A ] = 0 or 1.

Proof using martingales. For each n, A is independent of Fn, so E
[

1A
∣∣ Fn

]
= P[A ]. As n → ∞, the

left-hand side converges to 1A almost surely, by Lévy’s theorem. So P[A ] = 1A almost surely, and it

follows that P[A ] ∈ {0, 1}.

A down-to-Earth proof. For each n, A is measurable in the product sigma-algebra σ{Xn, Xn+1, . . . }, hence,

for any ϵ > 0 there exists a k = k(n, ϵ) and a cylinder event An,ϵ measurable in σ{Xn, Xn+1, . . . , Xn+k}
such that P[A△An,ϵ ] < ϵ. Now consider ñ > n + k, and then the event Añ,ϵ. Clearly, An,ϵ and Añ,ϵ are

independent. Thus,∣∣∣P[A ]−P[A ]
2
∣∣∣ ≤ ∣∣∣P[A ]−P[An,ϵ ]P[Añ,ϵ ]

∣∣∣+ P[A△An,ϵ ] + P[A△Añ,ϵ ]

≤
∣∣∣P[A ]−P

[
An,ϵ ∩Añ,ϵ

]∣∣∣+ 2ϵ

≤
∣∣∣P[A ]−P

[
A ∩A

]∣∣∣+ P[A△An,ϵ ] + P[A△Añ,ϵ ] + 2ϵ

≤ 4ϵ .

This holds for every ϵ > 0, hence A is independent of itself, P[A ] ∈ {0, 1}.

Let P be a transition matrix for a Markov chain on a countable state space S. Let Ω be the measure

space

Ω =
{
{yj}∞j=0 : P (yj , yj+1) > 0, ∀j

}
,

with the usual Borel σ-field (the minimal σ-field that contains all the cylinders {{yj}∞j=0 : y0 = x0, . . . , yk =

xk}, for all k and x0, . . . , xk ∈ S), and the natural measure generated by P . Also, for any x ∈ S, define

the measure space

Ω(x) =
{
{yj}∞j=0 : y0 = x, P (yj , yj+1) > 0, ∀j

}
,
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with the Borel σ-field. Now the measure generated by P is a probability measure: the Markov chain

trajectories started from x.

We define two equivalence classes. For y, z ∈ Ω let

y
T∼ z ⇐⇒ ∃n ∀m ≥ n ym = zm ,

and

y
I∼ z ⇐⇒ ∃k, n ∀m ≥ n ym = zm+k .

We identically define the equivalence for Ω(x) for any x ∈ S. Using these equivalence relations, we now

give an alternative definition of the tail σ-field T and also define the invariant σ-field I on Ω (and

identically for Ω(x) for any x ∈ S):
{d.tailinv}

Definition 9.21. A ∈ T if and only if

(i) A is Borel-measurable.

(ii) y ∈ A, y T∼ z =⇒ z ∈ A, i.e., A is a union of tail equivalence classes.

A ∈ I if and only if

(i) A is Borel-measurable.

(ii) y ∈ A, y I∼ z =⇒ z ∈ A, i.e., A is a union of invariant equivalence classes.

Definition 9.22. A function F : Ω −→ R is called a tail function if it is T -measureable (i.e., F is

Borel measureable and y
T∼ z implies F (y) = F (z)). Similarly, F is called an invariant function if it is

I-measureable.

Of course, being an invariant function is a stronger condition than being a tail function. A key example

of strict inequality is simple random walk on a bipartite graph G(V,E) with parts V = V1 ∪ V2: the event

A = {y2n ∈ V1 for all n} is in the tail field but is not invariant.

It is also important to notice that although the jumps in the Markov chain are independent, Kol-

mogorov’s 0-1 law does not say that tail or invariant functions are always trivial, since the yn’s themselves

are not independent. For instance, if the chain has three states, {0, 1, 2}, where 1 and 2 are absorbing, and

p(0, i) = 1/3 for all i, then B = {yn = 1 eventually} is an invariant event, with P0[B] = 1/2.

Call two tail or invariant functions f, g : Ω −→ R equivalent if Px[f = g] = 1 for any x ∈ S. Accordingly,

we say that T or I is trivial if for any x ∈ S and any event A in the σ-field, Px[A] ∈ {0, 1}. Note that if

we consider only the measures Px, then the distinction between T and I in the above example of simple

random walk on a bipartite graph disappears: for x ∈ V1, we have Px[A ] = 1, hence a Px-measure zero

set can be added to A to put it into I, while for x ∈ V2, we have Px[A ] = 0, hence a Px-measure zero set

can be subtracted from A to put it into I. The following theorem shows that for SRW on groups, a similar

collapse always happens; on the other hand, the exercise afterwards shows that this is not a triviality.
{t.TI}

Theorem 9.23.

(i) For simple random walk on a finitely generated group, with starting point x ∈ Γ, the invariant and

tail sigma-fields I and T coincide up to Px-measure zero sets.

(ii) For any countable irreducible Markov chain (V, P ), the lazy version P̃ = (I+P )/2 has invariant and

tail sigma-fields Ĩ and T̃ coinciding up to Px-measure zero sets, for any x ∈ V .
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Exercise▷ 9.16. Give an example of a graph G = (V,E) and a vertex x ∈ V such that for simple random

walk started at x, the σ-fields T and I are not the same up to Px-measure zero sets.

Part (ii) of Theorem 9.23 is the simpler to prove: the key idea is that the number of actual steps

taken in P̃n has distribution Binom(n, 1/2), whose TV-distance from Binom(n + 1, 1/2) converges to 0,

hence dTV

(
p̃n(x, ·), p̃n+1(x, ·)

)
→ 0, as well. As one can easily imagine, this implies that the exact time

that would make the difference between Ĩ and T̃ does not actually matter, hence Ĩ = T̃ under Px. The

analogous ingredient for part (i) is the following result, whose proof we omit, although the Reader is invited

to think about it a little bit: {t.D02}
Theorem 9.24 (Derriennic’s 0-2 law [Der76]). For SRW on a finitely generated group, for any k ∈ N,

∥µn − µn+k∥1 = 2 dTV(µn, µn+k) =

2 for all n , or

o(1) as n→∞ .

Exercise▷ 9.17. Prove Theorem 9.23 from Theorem 9.24 and the hints above. Consult [LyPer16, Sections

14.2 and 14.6] if needed.

We now have the following connection between the invariant σ-field and bounded harmonic functions

for arbitrary Markov chains on a state space S. In some sense, it is a generalization of Theorem 9.10, which

roughly said that if there is one possible limiting behavior of a Markov chain, then there are only trivial

bounded harmonic functions. {t.harmonicinv}
Theorem 9.25. There is an invertible correspondence between bounded harmonic functions on S and

equivalence classes of bounded invariant functions on Ω .

Proof. Let f : Ω −→ R be an invariant function representing an equivalence class, then the corresponding

harmonic function u : S −→ R is

u(x) = Exf(X0, X1, . . .) ,

where Ex is the expectation operator with respect to Px. From the other direction, let u : S −→ R
be harmonic, then the corresponding equivalence class is the one represented by the invariant function

f : Ω −→ R defined by

f(y0, y1, . . .) = lim sup
n→∞

u(yn) .

We now prove this correspondence is invertible. For one direction, let u : S −→ R; we need to show

u(x) = Ex lim supu(Xn) .

This follows easily from the fact that u(Xn) is a bounded martingale, and so by the Martingale Convergence

Theorem 9.8 and the Dominated Convergence Theorem, we have that Ex lim supu(Xn) = Ex(u(X0)) =

u(x).

For the other direction, let f : Ω −→ R be invariant and represent an equivalence class, then we need

to prove that for any x ∈ S the following equality holds Px-a.s.:

f(y0, y1, . . .) = lim sup
n→∞

Eynf(X0, X1, . . .) .
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In words, for almost every random walk trajectory {yn} started from y0 = x, the end-result is well-

approximated by the average end-result of a new random walk started at a large yn. Indeed, for any x ∈ S
we have by Lévy’s 0-1 law Theorem 9.19 that Px-a.s.

f(y0, y1, . . .) = lim
n→∞

Ex

[
f(y0, . . . , yn, Xn+1, . . .)

∣∣∣X0 = y0, . . . , Xn = yn

]
,

but since f is an invariant function,

Ex

[
f(y0, . . . , yn, Xn+1, . . .)

∣∣∣X0 = y0, . . . , Xn = yn

]
= Eynf(X0, X1, . . .) ,

and we are done.

By looking at indicators of invariant events, we get the following immediate important consequence, a

much more general version of the (I) ⇐⇒ (H) equivalence in Theorem 9.17.
{c.harmbound}

Corollary 9.26. The invariant σ-field of Ω is trivial if and only if all bounded harmonic functions on S
are constant.

The invariant σ-field of a Markov chain (or equivalently, the space of bounded harmonic functions)

is called the Poisson boundary. We can already see why it is a boundary: it is the space of possible

different behaviours of the Markov chain trajectories at infinity. The name Poisson comes from the following

analogue.

If U ⊂ C is the open unit disk, and f : ∂U −→ R is a bounded Lebesgue-measurable function, then we

can define its harmonic extension f : U −→ R by the Poisson formula

f(z) =

∫ 1

0

1− |z|2

|e2πiθ − z|2
f(θ) dθ ,

which is nothing else but integration against the harmonic measure from x, i.e., Exf(τ), where τ is the

first hitting time of ∂U by Brownian motion in U. That is, ∂U plays the role of the Poisson boundary for

Brownian motion on U.

This analogy between random walks on groups and complex analysis can be made even closer by equip-

ping U with the hyperbolic metric, then thinking of this hyperbolic plane as SL2(R)/SO(2), via the Möbius

transformations of the upper half plane model, as around (3.3). Now, harmonic measure on ∂U w.r.t. hy-

perbolic Brownian motion is the same as w.r.t. the Euclidean one, except that the hyperbolic BM never hits

the ideal boundary ∂U, only converges to it. It turns out that simple random walk on cocompact discrete

subgroups of PSL2(R) (equivalently, on hyperbolic tilings) approximates well this hyperbolic Brownian

motion w.r.t. harmonic measure, hence the Poisson boundary of these groups can be realized geometrically

as ∂U. This is true in much greater generality: the Poisson boundary of Gromov-hyperbolic groups can be

naturally identified with their usual topological Gromov-boundary [Kai00].

9.5 The Poisson boundary and entropy. The importance of group-invariance
{ss.PoiEnt}

We now prove the (E) ⇐⇒ (I) part of Theorem 9.17, in a more general form: for arbitrary finite entropy

measures instead of just symmetric finitely supported ones.
{t.PoiEnt}

Theorem 9.27 ([KaiV83]). For any countable group Γ and a measure µ on it with finite entropy H(µ) <∞,

the Poisson boundary of µ is trivial iff the asymptotic entropy vanishes, h(µ) = 0.
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Proof. We will need the notion of conditional entropy: if X and Y are two variables on the same

probability space, taking values in some countable sets, then the conditional entropy H(X |Y ) is the

expected entropy of the conditioned variable X, given Y :

H(X |Y ) =
∑
y

P[Y = y ] ·

(
−
∑
x

P[X = x | Y = y ] logP[X = x | Y = y ]

)
= −

∑
x,y

P[X = x, Y = y ]
(

logP[X = x, Y = y ]− logP[Y = y ]
)

= H(X,Y )−H(Y ).

The concavity of −x log x and Jensen’s inequality imply that, for any possible value x of X,∑
y

(
−P[X = x | Y = y ] logP[X = x | Y = y ]

)
P[Y = y ] ≤ −P[X = x ] logP[X = x ] ,

and thus H(X |Y ) ≤ H(X), with equality if and only if P[X = x | Y = y ] = P[X = x ] for all possible

x, y, that is, if X and Y are independent. It follows that

H(X,Y ) ≤ H(X) +H(Y ) , (9.8) {e.Hjoint}{e.Hjoint}

with equality if and only if X and Y are independent, which shows that entropy is a very sensible measure

of randomness.

With this definition, using the notation xi = y−1i−1yi for i ≥ 1 on the trajectory space Ω(y0), from

Py0

[
Xi = yi for i = 1, . . . , k

∣∣ Xn = yn
]

=
µ(x1) · · ·µ(xk)µn−k(y−1k yn)

µn(yn)
(9.9) {e.9}{e.9}

we easily get

H(X1, . . . , Xk | Xn) = kh1 + hn−k − hn , (9.10) {e.7}{e.7}

where hi := H(µi) = H(Xi). Now notice that Markovianity implies that H(X1, . . . , Xk | Xn, Xn+1) =

H(X1, . . . , Xk | Xn), and (9.8) implies that H(X1, . . . , Xk | Xn, Xn+1) ≤ H(X1, . . . , Xk | Xn+1). Com-

bined with the k = 1 case of (9.10), we get that

hn − hn−1 ≥ hn+1 − hn .

From this and the definition of h(µ), we get that hn+1 − hn decreases monotonically to h(µ).

Now, take the limit n→∞ in (9.10) to get

lim
n→∞

H(X1, . . . , Xk | Xn) = kh1 − kh(µ)

= H(X1, . . . , Xk)− kh(µ) ,
(9.11) {e.12}{e.12}

where H(X1, . . . , Xk) = kH(µ) = kh1 is similar to (9.9). Note that, in particular, we get the following

formula for the asymptotic entropy:

h(µ) = H(X1)− lim
n→∞

H(X1 | Xn) . (9.12) {e.13}{e.13}

By (9.8), we can reinterpret (9.11) as follows: h(µ) = 0 iff (X1, . . . , Xk) is asymptotically independent

of Xn for all k ≥ 1, under any Py0 . We will show that this is equivalent to the triviality of the tail σ-field

T . Since Theorem 9.23 tells us that T = I up to Py0 -measure zero sets, this will finish the proof.
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Conditioned on Xn, any tail event A ∈ T is independent of (X1, . . . , Xk) by the Markov property.

Thus, if (X1, . . . , Xk) is also asymptotically independent of Xn, then A is independent of (X1, . . . , Xk).

That means that A is measurable w.r.t. the jumps made after Xk, for any k, hence it is in the tail σ-field

of the jumps. So, T is trivial by Kolmogorov’s 0-1 law (Theorem 9.20). Conversely, if T is trivial, then

Lévy’s 0-1 law (Theorem 9.19) tells us that the distribution of (X1 | Xn) = (X1 | Xn, Xn+1, . . . ) converges

to that of X1. Fatou’s lemma implies that lim infn→∞H(X1 | Xn) ≥ H(X1), and hence in (9.12) we must

have h(µ) = 0.

In the above proof, and hence in the equivalence between positive speed and the non-Liouville property,

it is important for the walk to be group-invariant, as shown by the following example, a non-amenable

bounded degree graph that has positive speed and entropy, but has the Liouville property and triv-

ial Poisson boundary. The main place where the above proof breaks down is in (9.9), where we wrote

P[Xn = yn | Xk = yk ] = µn−k(y−1k yn), and hence got hn−k instead of H(Xn | Xk) in (9.10).

Example: a non-amenable Liouville graph [BenK10]. Take an infinite binary tree, and on the vertex

set of each level Ln, place a 3-regular expander. Clearly, simple random walk on this graph G = (V,E)

has positive speed (namely, 2/6− 1/6 = 1/6) and positive entropy (after n steps, the walk is close to level

n/6 with huge probability, and given that this level is k, the distribution is uniform on this set of size 2k).

However, this graph is Liouville. The main idea is that the expanders mix the random walk fast enough

within the levels, so that there can never be a specific direction of escape. Here is the outline of the actual

argument.

Let h : V −→ R be a bounded harmonic function. Let u, v ∈ V , and let νun denote the harmonic

measure on level Ln of simple random walk (i.e., the distribution of the first vertex hit), for n larger than

the level of u. Then, by the Optional Stopping Theorem (see Section 6.3), for all large n,

h(u)− h(v) =
∑
w∈Ln

h(w)(νun(w)− νvn(w)) ≤ max
x∈G

h(x) 2 dTV(νun , ν
v
n) .

So, we need to show that the total variation distance between the harmonic measures converges to zero. The

idea for this is that when first getting from Ln to Ln+1, the walk with positive probability makes at least

one step inside the expander on Ln, delivering some strict contractive effect in the L2-norm. (All Lp norms

are understood w.r.t. the uniform probability measure on Ln.) It is also not hard to show that moving in

the other directions are at least non-expanding. Formally, define the operator Tn : L2(Ln) −→ L2(Ln+1)

by

Tnϕ(y) := 2
∑
x∈Ln

ϕ(x)νxn+1(y) ,

where the factor 2 = |Ln+1|/|Ln| ensures that Tn1 = 1, and, in fact, one can show that ∥Tn∥1→1 ≤ 1 and

∥Tn∥∞→∞ ≤ 1, so, by the Riesz-Thorin interpolation theorem, also ∥Tn∥2→2 ≤ 1. Then, by looking at

the possible first steps of the walk before hitting Ln+1, we can write Tn as a weighted sum of composition

of other operators, all with L2-norm at most 1, while the one encoding the step within Ln is a strict

L2-contraction on functions orthogonal to constants. Altogether, we get that for any function ϕ ∈ L2(Ln)

with
∑
x∈Ln

ϕ(x) = 0, we have ∥Tnϕ∥2 ≤ (1− c)∥ϕ∥2 with some c > 0. This implies that fun := 2nνun − 1 =

TnTn−1 · · ·Tk+1(2kδu − 1), where u ∈ Lk, satisfies ∥fun∥2 → 0 as n→∞. This also easily implies that

2 dTV(νun , ν
v
n) ≤ ∥fun∥1 + ∥fvn∥1 → 0 ,

and we are done.

A key motivation for [BenK10] was the following conjecture:
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{ex.infexp}
Exercise▷ 9.18 (Itai Benjamini). *** Show that there exists no infinite expander: this would be a

bounded degree infinite graph such that every ball Bn(x) around every vertex x is itself an expander, with

a uniform Cheeger constant c > 0.

Show at least that this property is invariant under quasi-isometries, or at least independent of the choice

of a finite generating set of a group.

Note that the graph in the above example has expander balls around the root of the binary tree. One

may hope that the above proof could be generalized to show that simple random walk on an infinite

expander would always have trivial Poisson boundary, and thus this could not be a Cayley graph, at least.

However, such a generalization seems problematic. It is important in this proof that the harmonic measure

from the root on the levels Ln is uniform; in fact, if we start a random walk uniformly at x ∈ Ln, then

the averaged harmonic measure on Ln+1 is uniform again. Formally, this is used in proving ∥Tn∥∞→∞ ≤ 1

w.r.t. the uniform measures on the levels. Without this uniformity, say, if we place expanders on the levels

on an irregular infinite tree, one could work with non-uniform measures on the levels in the definition of

the operators Tn or in the operator norms, and still could have ∥Tn∥2 ≤ 1 for all n. However, the expanders

on the levels are expanders w.r.t. uniform measure, and if the harmonic measure on a level is concentrated

on a very small subset, then the walk might not feel the contractive effect in the horizontal direction. See,

e.g., the following exercise.

Exercise▷ 9.19 ([BenK10]).* Consider an imbalanced binary tree: from each vertex, put a double edge to

the right child and a single edge to the left child. Then place a regular expander on each level in a way that

the resulting graph has a non-trivial Poisson boundary.

This issue calls for the following question:
{ex.unifharm}

Exercise▷ 9.20. *** Does every finitely generated group have a generating set in which the harmonic

measures νon on the spheres Ln := ∂inV Bn(o) are roughly uniform in the sense that there exist 0 < c,C <∞
such that for each n there is Un ⊂ Ln with νon(Un) > c and c < νon(x)/νon(y) < C for all x, y ∈ Un? This

is very similar to Vershik’s question, Exercise 9.15.

An affirmative answer to this question, together with an affirmative answer to the question of invariance

of the infinite expander property under a change of generators would give a proof of Benjamini’s conjecture,

Exercise 9.18, for Cayley graphs. On the other hand, one could try to find counterexamples to Exercises 9.20

and 9.15 among non-amenable torsion groups, say (see Section 15.2).

9.6 Unbounded measures
{ss.unbound}

There are a lot of nice results showing that there are good reasons for leaving sometimes our usual world

of finitely supported measures.

The following two theorems from [KaiV83] make a direct connection between non-trivial Poisson bound-

ary and non-amenability. Recall that a measure µ on a group Γ with unit element e is called aperiodic if

the largest common divisor of the set {n : µn(e) > 0} is 1.
{t.PoissonMean}

Theorem 9.28. For any aperiodic measure µ whose (not necessarily finite) support generates the group

Γ, the Poisson boundary of µ is trivial if and only if the convolutions µn converge weakly to a left-invariant

mean on L∞(Γ), see Definition 5.4; i.e., if for any bounded function f : Γ −→ R and any g ∈ Γ, we have∑
x∈Γ

(
µn(x)− µn(g−1x)

)
f(x)→ 0.
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Proof. Note that weak convergence to a left-invariant mean is a bit weaker than the condition dTV

(
µn(·), µn(g−1·)

)
→

0 that we used in the coupling proofs of Section 9.2. Nevertheless, it still implies a trivial Poisson boundary:

if f is any bounded harmonic function, then f(g) =
∑
x∈Γ µn(g−1x)f(x) for any n ∈ N, and subtracting

from this the g = e case and letting n→∞, we get that f(g) = f(e), for any g ∈ Γ.

On the other hand, in the proof of Theorem 9.27 we saw that a trivial Poisson boundary implies that

Pe[X1 = g | Xn ] converges to µ(g) for almost every trajectory X0, X1, . . . . Thus, for any g ∈ suppµ, we

have

lim
n→∞

µn−1(g−1Xn)

µn(Xn)
= 1 almost surely.

If µ is aperiodic, then by passing to a large enough convolution power we may assume that µ(e) > 0.

Taking g = e in the displayed formula, we get that

lim
n→∞

µn−1(Xn)

µn(Xn)
= 1 almost surely.

Comparing the two displayed formulas, for g ∈ suppµ,

1 = lim
n→∞

µn−1(g−1Xn)

µn(Xn)
= lim
n→∞

µn−1(g−1Xn)

µn−1(Xn)
= lim
n→∞

µn(g−1Xn)

µn(Xn)
almost surely,

where we got the last equality by changing the index n to n + 1 and conditioning on the last step to be

Xn = Xn+1, an event of positive probability. This implies that, for any ϵ > 0,

µn
{
x ∈ Γ :

∣∣∣∣1− µn(g−1x)

µn(x)

∣∣∣∣ > ϵ

}
→ 0

for any g ∈ suppµ. Since suppµ generates Γ, we obtain the desired convergence to an invariant mean.

The previous theorem immediately implies that on a non-amenable group any non-degenerate µ has non-

trivial Poisson boundary. (For symmetric finitely supported measures we knew this from Proposition 9.3.)

Conversely, Theorem 9.28 can also be used to produce a symmetric measure with trivial Poisson boundary

in any amenable group. The idea is to take an average of the uniform measures on larger and larger Følner

sets. This establishes the following result, conjectured by Furstenberg.
{t.FurstConj}

Theorem 9.29. A group Γ is amenable iff there is a measure µ supported on the entire Γ whose Poisson

boundary is trivial.

In this theorem, the support of the measure µ that shows amenability might indeed need to be large:

it is shown in [Ers04a, Theorem 3.1] that, on the lamplighter groups Z2 ≀Zd with d ≥ 3, any measure with

finite entropy has non-trivial Poisson boundary.

For non-amenable groups, the theorem says that positive speed cannot be ruined by strange large

generating sets. Can the spectral radius being less than 1 be ruined? It turns out that there exist

non-amenable groups where the spectral radius of finite symmetric walks can be arbitrary close to 1

[Osi02, ArBLRSV05], hence I expect that an infinite support can produce a spectral radius 1.

Exercise▷ 9.21. ** Can there exist a symmetric measure µ whose infinite support generates a finitely

generated non-amenable group Γ such that the spectral radius is ρ(µ) = 1?

We have already mentioned the Choquet-Deny theorem [ChoD60], saying that any irreducible measure

on any Abelian group has the Liouville property. How small does a group have to be for this to remain

true? It was proved by Dynkin-Malyutov (1961) and Margulis (1966) that all virtually nilpotent groups
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have this property, and this was recently proved to be an equivalence [FrHTV18]. The following very simple

proof for the direction that random walks on Abelian groups are always Liouville was found by Raugi, also

extended to nilpotent groups by him.
{t.Raugi}

Theorem 9.30 ([Rau04]). For any probability measure µ on a countable nilpotent group Γ that generates

the entire group, the associated Poisson boundary is trivial.

Proof for the Abelian case. Let h : Γ −→ R be a bounded harmonic function, T1, T2, . . . independent steps

w.r.t. µ, and Xn = X0 + T1 + · · ·+ Tn the random walk. For all n ≥ 1, define

un(x) : = Ex
[ (
h(Xn)− h(Xn−1)

)2 ]
=

∑
t1,...,tn∈Γ

(
h(x+ t1 + · · ·+ tn)− h(x+ t1 + · · ·+ tn−1)

)2
µ(t1) · · ·µ(tn) .

Now, for n ≥ 2,

un(x) = E
[
Ex
[ (
h(Xn)− h(Xn−1)

)2 ∣∣ T2, . . . , Tn ] ]
≥ E

[ (
Ex
[
h(Xn)− h(Xn−1)

∣∣ T2, . . . , Tn ])2 ] by Jensen or Cauchy-Schwarz

= E
[ (
h(x+ T2 + · · ·+ Tn)− h(x+ T2 + · · ·+ Tn−1)

)2 ]
by harmonicity and commutativity

= Ex
[ (
h(Xn−1)− h(Xn−2)

)2 ]
= un−1(x) .

On the other hand, un(x) = Ex
[
h(Xn)2

]
− Ex

[
h(Xn−1)2

]
by the orthogonality of martingale in-

crements (Pythagoras for martingales), hence
∑N
n=1 un(x) = Ex

[
h(XN )2

]
− h(X0)2. This is a sum of

non-decreasing non-negative terms that remains bounded as N → ∞, hence all the terms must be zero,

which means that h is constant along any possible trajectory and hence on the entire group.

We know from the entropy criterion for the Poisson boundary that a finitely supported measure on

any group with subexponential growth has trivial boundary. On the other hand, Anna Erschler proved in

[Ers04b] that there exist a group with subexponential growth (an example of Grigorchuk, see Section 15.1)

and some infinitely supported measure on it with finite entropy that has a non-trivial Poisson boundary.

The following question from [KaiV83] is still open: Is it true that on any group of exponential growth

there is a µ with non-trivial Poisson boundary? For solvable groups, this was shown (with symmetric µ

with finite entropy) in [Ers04a, Theorem 4.1]. On the other hand, Bartholdi and Erschler have recently

shown that there exists a group of exponential growth on which any finitely supported µ has a trivial

boundary [BartE11].

10 Growth of groups, of harmonic functions and of random walks

10.1 A proof of Gromov’s theorem
{ss.Gromov}

We now switch to the theorem characterizing groups of polynomial growth due to Gromov [Gro81] and give

a brief sketch of the new proof due to Kleiner [Kle10], also using ingredients and insights from [LeeP13]

and [Tao10]. In fact, [Tao10] contains a self-contained and mostly elementary proof of Gromov’s theorem.

We will borrow some parts of the presentation there.
{t.Gromov}

Theorem 10.1 (Gromov’s theorem [Gro81]). A finitely generated group has polynomial growth if and only

if it is virtually nilpotent.
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We have already proved the “if” direction, in Theorem 4.12. For the harder “only if” direction, we will

need several facts which we provide here without proper proofs but at least with a sketch of their main

ideas. The first ingredient is the following:
{t.harmfindim}

Theorem 10.2 ([ColM97], [Kle10]). For fixed positive integers d and ℓ there exists some constant f(d, ℓ),

such that for any Cayley graph G of any finitely generated group Γ of polynomial growth with degree ≤ d,

the space of harmonic functions on G with growth degree ≤ ℓ has dimension ≤ f(d, ℓ) (so in particular is

finite-dimensional).

For a tiny bit of intuition to start with, recall Exercise 9.4, saying that sublinear harmonic functions

on Zd are constant. But there, in the coupling proof, we used the product structure of Zd heavily, while

here we do not have any algebraic information — this is exactly the point. The Colding-Minicozzi proof

used Gromov’s theorem, so it was not good enough for Kleiner’s purposes, but it did motivate his proof.

Sketch of proof of Theorem 10.2. We give Kleiner’s proof for the case when the Cayley graph satisfies the

so-called doubling condition: there is an absolute constant D < ∞ such that |B(2R)| ≤ D |B(R)| for any

radius R. This does not follow easily from being a group of polynomial growth, so this is an annoying but

important technicality all along Kleiner’s proof. Now, the key lemma is the following:
{l.elliptic}

Lemma 10.3. Cover the ball BR by balls Bi of radius ϵR, and suppose that a harmonic function f : G −→
R has mean zero on each Bi. Then ∥f∥ℓ2(BR) ≤ C ϵ ∥f∥ℓ2(B4R).

Proof. Shrink each Bi by a factor of two, and take a maximal subset of them in which all of them are

disjoint. Then the corresponding original balls Bi still cover BR. Let the set of these Bis be B. Enlarge

now each Bi ∈ B by a factor of three. We claim that each point in B2R is covered by at most some D′

of these 3Bi’s. This is because of the doubling property: if there were more than D′ of them covering a

point x, then B3.5ϵR(x) would contain D′ disjoint balls Bi/2, so we would have D′|BϵR/2| ≤ |B3.5ϵR|, which

cannot be for large enough D′.

Now apply Saloff-Coste’s Poincaré inequality Exercise 8.2 to each Bi, sum over the Bi’s, use the

existence of D′, then apply the reverse Poincaré inequality Exercise 8.3 to B2R to get∑
x∈BR

|f(x)|2 ≤
∑
Bi∈B

∑
x∈Bi

|f(x)|2 ≤ O(1) ϵ2R2
∑
Bi∈B

∑
x∈3Bi

|∇f(x)|2

≤ O(1) ϵ2R2
∑

x∈B2R

|∇f(x)|2 ≤ O(1) ϵ2
∑

x∈B4R

|f(x)|2 ,

which proves the lemma.

This lemma implies that by imposing relatively few constraints on a harmonic function we can make it

grow quite rapidly. To finish the proof of Theorem 10.2, the idea is that if we take a vector space spanned

by many independent harmonic functions, then this lemma implies that some of the functions in this space

would grow quickly. So, the space of harmonic functions with moderate growth cannot be large. To realize

this idea, the trick is to consider the Gram determinant

det
(
(ui, uj)ℓ2(BR)

)N
i,j=1

,

where {ui : i = 1, . . . , N} is a basis for the harmonic functions of growth degree ≤ ℓ such that {ui : 1 ≤
i ≤ M} span the subspace where the mean on each Bi ∈ B is zero. This determinant is the squared

volume of the parallelepiped spanned by the ui’s. Now, on one hand, obviously ∥ui∥ℓ2(BR) ≤ ∥ui∥ℓ2(B4R)
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for all i, while, for 1 ≤ i ≤ M = N − |B|, we also have ∥ui∥ℓ2(BR) ≤ C ϵ ∥ui∥ℓ2(B4R) by Lemma 10.3.

By the construction of B and the doubling property, |B| = O(ϵ). Altogether, the squared volume of the

parallelepiped is

det
(
(ui, uj)ℓ2(BR)

)N
i,j=1

≤ O(ϵ2)N−O(ϵ) det
(
(ui, uj)ℓ2(B4R)

)N
i,j=1

≤ O(ϵ2)N−O(ϵ)O(1) 4d+2ℓ det
(
(ui, uj)ℓ2(BR)

)N
i,j=1

by the growth conditions

≤ 1

2
det
(
(ui, uj)ℓ2(BR)

)N
i,j=1

if ϵ is small and N is large .

This means that the determinant is zero for all R whenever N is larger than some f(d, ℓ). This proves

Theorem 10.2.

The second ingredient for the proof of Gromov’s theorem is complementary to the previous one: it

will imply that for groups of polynomial growth there do exist non-trivial harmonic functions of moderate

growth. Combining the two ingredients, we will be able to construct a non-trivial representation of our

group over a finite-dimensional vector space, and then use the better understanding of linear groups.
{t.Mok}

Theorem 10.4 ([Mok95], [KorS97], [Kle10], [LeeP13], [ShaT10]). Let Γ be a finitely generated group

without Kazhdan’s property (T); in particular, anything infinite amenable is fine. Then there exists an

isometric (linear) action of Γ on some real Hilbert space H without fixed points and a non-constant Γ-

equivariant harmonic function Ψ : Γ −→ H. Equivariance means that Ψ(gh) = g(Ψ(h)) for all g, h ∈ Γ,

and harmonicity is understood w.r.t. some symmetric finite generating set.

The first three of the five proofs listed above use ultrafilters to obtain a limit of almost harmonic

functions into different Hilbert spaces. The last two proofs are constructive and quite similar to each other

(done independently), inspired by random walks on amenable groups. We will briefly discuss now the proof

of Lee and Peres [LeeP13].

Let us focus on the amenable case. (The trick for the general non-Kazhdan case is to consider the right

Hilbert space action instead of the regular representation on ℓ2(Γ) that is so closely related to random

walks.) It works for all amenable transitive graphs, not only for groups. The key lemma is the following:
{l.yafoo}

Lemma 10.5. For simple random walk on any transitive amenable graph G(V,E), we have

inf
φ∈ℓ2(V )

∥(I − P )φ∥2(
φ, (I − P )φ

) = 0 .

As we have seen in Theorem 7.3 and Lemma 7.2, both ∥(I − P )φ∥2/∥φ∥2 and
(
φ, (I − P )φ

)
/∥φ∥2 are

small if we take φ to be the indicator function 1A of a large Følner set A ⊂ V . But the lemma concerns

the ratio of these two quantities, which would be of constant order for typical Følner indicator functions

1A. Instead, the right functions to take will be the smoothened out versions
∑k−1
i=0 Pi1A(x) = Ex

∣∣{0 ≤
i ≤ k − 1 : Xi ∈ A}

∣∣, which are some truncated Green’s functions.
{ex.smoothing}

Exercise▷ 10.1.

(a) Show that if (V, P ) is transient or null-recurrent, then P if → 0 pointwise for any f ∈ ℓ2(V ).

(b) Let φk = φk(f) :=
∑k−1
i=0 P

if . Show that 1
k (φk, f)→ 0.

(c) Show that ∥(I − P )φk∥2 ≤ 4∥f∥2 and (φk, (I − P )φk) = (2φk − φ2k, f).
{ex.boosting}

Exercise▷ 10.2. * Show that if ∥(I − P )f∥/∥f∥ < θ is small (e.g., for the indicator function of a large

Følner set), then there is a k ∈ N such that
(
2φk(f) − φ2k(f), f

)
≥ L(θ) is large. (Hint: first show that

there is an ℓ such that (φℓ(f), f) is large, then use part (b) of the previous exercise.)
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The combination of Exercise 10.1 (c) and Exercise 10.2 proves Lemma 10.5. Let us note that the

proof would have looked much simpler if we had worked with φ = φ∞(f) =
∑∞
i=0 P

if , with f = 1A

for a large Følner set A. Namely, we would have (I − P )φ = 1A, hence ∥(I − P )φ∥2 = |A|, while

(φ, (I − P )φ) =
∑
x∈A φ(x) ≥ r(|A| − dr|∂inV A|) for any given r, where G is d-regular, since we stay in A

for at least r steps of the walk if we start at least distance r away from the boundary. The above identity

and the inequality together give the required small ratio in Lemma 10.5. However, we would need to

prove here that this φ exists (which is just transience) and is in ℓ2(V ), which is in fact true whenever the

volume growth of G is at least degree 5, but it is not clear how to show that without relying on Gromov’s

polynomial growth theorem, which we obviously want to avoid here.

We now want to prove Theorem 10.4 for the amenable case. Choose a sequence ψj ∈ ℓ2(Γ) giving the

infimum 0 in Lemma 10.5, and define Ψj : G −→ ℓ2(Γ) by

Ψj(x) : g 7→ ψj(g
−1x)√

2
(
ψj , (I − P )ψj

) .
These are clearly equivariant functions on Γ. It is easy to see that∑

y∈Γ
p(x, y)∥Ψj(x)−Ψj(y)∥2 = 1 (10.1) {e.sumone}{e.sumone}

for every x ∈ Γ, and ∥∥∥Ψj(x)−
∑
y∈Γ

p(x, y)Ψj(y)
∥∥∥2 =

∥(I − P )ψj∥2

2
(
ψj , (I − P )ψj

) → 0 , (10.2) {e.almostharm}{e.almostharm}

as j → ∞. Using (10.1), the Ψj ’s are uniformly Lipschitz, and by (10.2), they are almost harmonic.

Then one can use a compactness argument to extract a limit, a harmonic equivariant function that is

non-constant because of (10.1). This finishes the construction.

As the final ingredient for Gromov’s theorem, here is what we mean by linear groups being better

understood: {t.Tits}
Theorem 10.6 (Tits’ alternative [Tit72]). Any finitely generated linear group (i.e., a subgroup of some

GL(n,F)) is either almost solvable or contains a subgroup isomorphic to F2.

Actually, the special case of a finitely generated subgroup of a compact linear Lie group H ⊂ GL(n,C)

will suffice for us, which is already a statement that can be proved in a quite elementary way, as I learnt

from [Tao10]. First of all, H is isomorphic to a subgroup of U(n), since any inner product on Cn can

be averaged by the Haar measure of H to get an H-invariant inner product on Cn, thereby H becoming

a subgroup of the unitary group associated to this inner product. Then, the key observation is that if

g, h ∈ U(n) are close to the identity (in the operator norm), then their commutator is even closer:

∥[g, h]− 1∥op = ∥gh− hg∥op
= ∥(g − 1)(h− 1)− (h− 1)(g − 1)∥op
≤ 2 ∥g − 1∥op ∥h− 1∥op ,

(10.3) {e.commclose}{e.commclose}

where the first line used that g, h are unitary and the last line is by the triangle inequality. Using this, one

can already easily believe Jordan’s theorem: any finite subgroup Γ of U(n) contains an Abelian subgroup

Γ∗ of index at most Cn. Why? The elements Γϵ of Γ lying in a small enough ϵ-neighbourhood of the

identity will generate a good candidate for Γ∗: the finite index comes from the compactness of U(n) and
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the positivity of ϵ, while a good amount of commutativity comes from taking the element g of Γϵ closest to

the identity, and then using (10.3) to show that [g, h] = 1 for any h ∈ Γϵ. Then one can use some sort of

induction. Similarly to this and to the proof of Proposition 4.9, one can prove that any finitely generated

subgroup of U(n) of subexponential growth is almost Abelian.

Proof of Gromov’s Theorem 10.1. We now use these facts to give a proof of the “only if” direction, by

induction on the growth degree of Γ. The base case is clear: groups of growth degree 0 are precisely the

finite ones, and they are almost nilpotent, since the trivial group is nilpotent. Suppose we already proved

the result for groups of degree ≤ d − 1, and let Γ be finitely generated of polynomial growth with degree

≤ d. Γ is amenable, hence from Theorem 10.4 we have a non-trivial equivariant harmonic embedding ψ

into a real Hilbert space H. It is Lipschitz, because ψ(gs) − ψ(g) = g(ψ(s) − ψ(e)). Let V be the vector

space of harmonic real-valued Lipschitz functions on Γ — it is finite dimensional by Theorem 10.2. Since

ψ : G −→ H is non-constant, there is a bounded linear functional π : H −→ R such that ψ0 := π ◦ ψ ∈ V
is a non-constant harmonic function on Γ. This ψ0 cannot attain its maximum by the maximum principle,

so it takes infinitely many values.

Now, Γ acts on V via g : u 7→ ug, where ug(x) = u(g−1x). Moreover, it preserves the Lipschitz norm,

and also acts on the vector space W = V/C, where u(x) ∼ u(x) + c for any c ∈ C. On W , the Lipschitz

norm is a genuine norm, and on a finite dimensional vector space any two norms are equivalent (up to

constant factor bounds), hence the action of Γ preserves a Euclidean structure up to constant factors.

Thus, we get a representation ρ : Γ −→ GL(W ) with a precompact image. This image is infinite, because

by applying elements of Γ we can get infinitely many different functions from ψ0. So, the group B = Im ρ

is finitely generated, infinite, and of polynomial growth, inside a compact Lie group, so by the compact Lie

case of the Tits alternative Theorem 10.6, it is almost solvable (and, in fact, almost Abelian, but let us use

only solvability). Let A0 = A be the finite index solvable subgroup of B, and Ak = [Ak−1, Ak−1]. Since

A is infinite and solvable, there is a smallest index ℓ such that Aℓ has infinite index in Aℓ−1. Then Aℓ−1

has finite index in B, so Γ1 := ρ−1(Aℓ−1) has finite index in Γ, so is also finitely generated of polynomial

growth with degree ≤ d, by Corollary 3.8. It is enough to show that Γ1 is almost nilpotent. The group

Aℓ−1/Aℓ is Abelian, infinite and finitely generated, hence it can be projected onto Z. So, we get a projection

ψ : Aℓ−1 −→ Z, and then an exact sequence

1 −→ N −→ Γ1
ψ◦ρ−→ Z −→ 1 .

We now apply the results of Section 4.3: by Proposition 4.9, N is finitely generated and of polynomial

growth with degree ≤ d−1, so, it is almost nilpotent by the inductive assumption. Then, by Proposition 4.8,

Γ1 is almost nilpotent.

This proof was made as quantitative as possible [ShaT10]; one of the many kinds of things that Terry

Tao likes to do. In particular, they showed that there is some small c > 0 such that a |B(R)| ≤ Rc(log logR)c

volume growth implies almost nilpotency and hence polynomial growth. This is the best result to date

towards verifying the conjectured gap between polynomial and exp(c
√
n) volume growth.

We will see in Chapter 16 that there are transitive graphs that are very different from Cayley graphs:

not quasi-isometric to any of them. But this does not happen in the polynomial growth regime: there is

an extension of Gromov’s theorem by [Tro85] and [Los87], see also [Woe00, Theorem 5.11], that any quasi-

transitive graph of polynomial growth is quasi-isometric to some Cayley graph (of an almost nilpotent

group, of course). In particular, it has a well-defined integer growth degree.
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10.2 Random walks on groups are at least diffusive
{ss.diffusive}

We have seen that non-amenability implies positive speed of escape. However, we may ask for other rates

of escape.

Exercise▷ 10.3. Using the results seen for return probabilities in Chapter 8, show that:

(a) Any group with polynomial growth satisfies E
[
d(X0, Xn)

]
≥ c
√
n. (Notice that this is sharp for Zd,

d ≥ 1, using the Central Limit Theorem.)

(b) If the group has exponential growth, then E
[
d(X0, Xn)

]
≥ c n1/3.

Although it may seem that a random walk on a group with exponential growth should be further away

from the origin than on a group with polynomial growth, the walk with exponential growth also has more

places to go which are not actually further away, or in other words, it is more spread-out than random

walk on a group with polynomial growth. Moreover, there can be many dead ends in the Cayley graph:

vertices from which all steps take us closer to the origin. Therefore, it is not at all obvious that the rate of

escape is at least c
√
n on any group, and this was in fact unknown for quite a while.

{ex.AnnaMok}
Exercise▷ 10.4 (Anna Erschler). Using the equivariant harmonic function Ψ into a Hilbert space H claimed

to exist for any amenable group in Theorem 10.4, show that

E
[
d(X0, Xn)2

]
≥ c · n ,

which is slightly weaker than the rate c
√
n for the expectation in the previous exercise. Hint: If Mn is mar-

tingale in H, then E
[
∥Mn −M0∥2

]
=
∑n−1
k=0 E

[
∥Mk+1 −Mk∥2

]
, a Pythagorean Theorem for martingales

(the orthogonality of martingale incremements) in Hilbert spaces.

If we want to improve the linear bound on the second moment to a square root bound on the first

moment, we need to show that d(X0, Xn) is somewhat concentrated. One way to do that is to show that

higher moments do not grow rapidly.

Exercise▷ 10.5.* Show that E
[
∥Ψ(Xn)−Ψ(X0)∥4

]
≤ Cn2, using the orthogonality of martingale incre-

mements. Then deduce that E
[
d(X0, Xn)

]
≥ c
√
n. (This improvement is due to Bálint Virág. Hint: do

not be afraid to consider the time-reversal of the random walk when you need to condition on the future.)

Even stronger concentration is true:
{t.LeePeres}

Theorem 10.7 (James Lee and Yuval Peres [LeeP13]). There is an absolute constant C < ∞ such that,

for SRW on any amenable transitive d-regular graph, for any ϵ > 0 and all n ≥ 1/ϵ2, we have

1

n

n∑
k=0

P
[
d(X0, Xk) < ϵ

√
n/d

]
≤ Cϵ .

Let us point out that one does not really need an actual harmonic Lipschitz embedding of the tran-

sitive amenable graph G into Hilbert space to bound the rate of escape from below, but can use the

approximate harmonic functions φ∞(1A) or φk(1A) for large Følner sets A directly, and get quantitative

bounds: E[ d(X0, Xn)2 ] ≥ n/d, where G is d-regular. There is a similar bound for finite transitive graphs:

E[ d(X0, Xn)2 ] ≥ n/(2d) for all n < 1/(1 − λ2), where λ2 is the second largest eigenvalue of G. See

[LeeP13].

Exercise▷ 10.6. ** The tail of the first return time: is it true that Px[τ+x > n] ≥ c/
√
n for all groups?

(This was a question from Alex Bloemendal in class, and I did not know how hard it was. Later this turned

out to be a recent theorem of Ori Gurel-Gurevich and Asaf Nachmias.)
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11 Harmonic Dirichlet functions and Uniform Spanning Forests
{s.HDandUSF}

11.1 Harmonic Dirichlet functions
{ss.HD}

Recall that the Dirichlet energy for functions f : V (G) −→ R is defined as
∑
x∼y |f(x)− f(y)|2. We have

seen that the question whether there are non-constant bounded harmonic functions is interesting. It is

equally interesting whether a graph has non-constant harmonic Dirichlet functions (i.e., harmonic functions

with finite Dirichlet energy, denoted by HD(G) from now on). This is not to be confused with our earlier

result that there is a finite energy flow from x to∞ iff the network is transient: such a flow gives a harmonic

function only off x. Note, however, that the difference of two different finite energy flows from x with the

same inflow at x is a non-constant harmonic Dirichlet function, hence the non-existence of non-constant

HD functions is equivalent to a certain uniqueness of currents in the graph. We will explain this more in a

later version of these notes, but, very briefly, the non-trivial harmonic Dirichlet functions lie between the

“extremal” currents, the free and wired ones. This connection was first noted by [Doy88]. See [LyPer16,

Chapter 9] for a complete account.

The property of having non-constant HD functions (i.e., HD > R) is a quasi-isometry invariant, which

is due to Soardi (1993), and can be proved somewhat similarly to Kanai’s Theorem 6.11. Thus we can talk

about a group having HD > R or not.

In amenable groups, all harmonic Dirichlet functions are constants, HD = R. One proof is by [BLPS01],

using uniform spanning forests, see the next section.

Exercise▷ 11.1. The free groups Fk with k ≥ 2 have HD > R.

Exercise▷ 11.2. * Any non-amenable group with at least two ends (and hence with a continuum of ends,

by Stallings’ Theorem 3.3) has HD > R.

Although hyperbolic planar tilings are not quasi-isometric to regular trees, being a non-amenable planar

graph is a good indication for having HD > R:
{t.circlepacking}

Theorem 11.1 (He-Schramm [HeS95], Benjamini-Schramm [BenS96a, BenS96b]). For any locally finite

infinite triangulated planar graph, there exists a circle packing representation, i.e., the vertices are repre-

sented by disks, and edges are represented by two disks touching. In such a circle packing representation,

the union of the triangular faces is either the entire plane, in which case the graph is recurrent, or it is

a domain conformally equivalent to a disk, in which case the graph is transient. If the case is the latter

(conformally equivalent to a disk), then HD > R.

For the circle packing representation, see the original paper [HeS95] or [Woe00, Section 6.D]. For the

HD results, see the papers or [LyPer16, Sections 9.3 and 9.4].

It is worth mentioning another theorem which shows where Kazhdan groups fits.
{t.BeVaKazhdan}

Theorem 11.2 ([BekV97]). If Γ is a Kazhdan group, then HD = R for any Cayley graph.

As HD is a vector space, we can try to compute its dimension. Of course, when HD > R, this dimension

is infinite, due to the action of Γ on the Cayley graph. But there is a notion, the von Neumann dimension

of Hilbert spaces with group action, denoted by dimΓH, which gives dimensions relative to L2(Γ): that is,

dimΓ(L2(Γ)) = 1, and in general the values can be in R≥0.
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{t.BeVaHDbeta}
Theorem 11.3 ([BekV97]). We have that dimΓ HD = β

(2)
1 (Γ) for any Cayley graph of Γ, where β

(2)
1 (Γ) is

the first Betti number of the L2-cohomology of the group. In particular, dimΓ HD does not depend on the

Cayley graph.

We will see a probabilistic definition of β
(2)
1 (Γ) in the next section, giving a way of measuring the

difference between free and wired currents.

11.2 Loop-erased random walk, uniform spanning trees and forests
{ss.USF}

For this section, [LyPer16, Chapters 4 and 10] and the fantastic [BLPS01] are our main references.

On a finite graph, we can use the loop-erased random walk LERW to produce a uniformly random

spanning tree UST with Wilson’s algorithm [Wil96]:

In a connected finite graph G, we choose an order of the vertices x0, x1, . . . , xn, then produce a path

from x1 to x0 by starting a random walk at x1 and stopping it when we hit x0. If the random walk produces

some loops, we erase them in the order of appearance. Then we start a walk from x2 till we hit the path

between x0 and x1, take the loop-erasure of it, and so on, always walking from xi till we hit the already

existing tree, until all the vertices become part of the tree.

Theorem 11.4 (Wilson’s algorithm). If G is a finite graph, then Wilson’s algorithm (defined above)

samples a spanning tree with the uniform distribution (from now on, UST, uniform spanning tree).

This result probably appears to be an absolute miracle. We will not prove it in detail, but here is the

main idea. For each vertex x ∈ V (G), let us generate an i.i.d. random sequence Sx(i), i = 1, 2, . . . of

uniform random neighbors of x: a sequence of possible next steps the random walk can take from x, with

the right distribution. We think of this infinite sequence Sx as a stack, where Sx(1) is the topmost element,

the only one that is visible, and below Sx(i) is Sx(i + 1), ad infinitum. Now, given these stacks, and the

sequence of vertices x0, x1, . . . , xn, we can generate the LERW deterministically: starting the walk from

x0, we always move according to the visible element of the stack of the vertex where we are currently, and

having used it, we remove that element from the stack. Now the key statement is that the final spanning

tree is in fact independent of the ordering x0, x1, . . . , xn, and can be obtained from the stacks simply by

repeatedly removing visible directed cycles from the topmost layer, in any possible order, until no directed

cycles are left, which means that the topmost layer gives us a spanning tree. It is now hopefully less

surprising that this resulting tree is in fact independent of the cycles removed from above of it, and it is

just a uniform random spanning tree.

There is a natural more general version of the algorithm: for any finite irreducible Markov chain

p(x, y)x,y∈V , if T is a spanning tree on V with a distinguished root vertex r, we can orient each edge

of T towards r, and consider the weight Ψ(T ) =
∏

(x,y)∈E(T ) p(x, y) with the above orientation (x, y).

Then the theorem is that Wilson’s algorithm, with the LERW using of course the Markov chain transition

probabilities, produces a random tree with distribution proportional to Ψ.

This algorithm can be useful to study UST even on the complete graph Kn; on more complicated

graphs, such as subgraphs of Zd, where LERW can be understood well, it is often the main tool.

Exercise▷ 11.3 ([LyPer16]). Use Wilson’s algorithm on the complete graph Kn to prove Cayley’s formula:

the number of trees on n labeled vertices is nn−2. (Hint: given any spanning tree tn−1 of Kn, consider a

sequence t1 ⊂ t2 ⊂ · · · ⊂ tn−2 ⊂ tn−1 of subtrees such that ti has i edges. Find recursively the probability

that Wilson’s algorithm builds this sequence of trees.)
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Exercise▷ 11.4 ([PerR04b]). * Using Wilson’s algorithm on the complete graph Kn, prove the following

Rayleigh limit law for distances in a uniform random tree Tn on n labeled vertices: if x ̸= y are two

uniformly chosen random vertices, then their graph distance satisfies

lim
n→∞

P
[
dTn(x, y) > t

√
n
]

= exp(−t2/2) .

(Hint: a bit similarly to the previous exercise, compute P[ dTn(x, y) > k | dTn(x, y) > k − 1 ] for each k.)

One corollary to Wilson’s algorithm (but it was proved first by Kirchhoff in 1847) is that edge marginals

in the UST have random walk and electric network interpretations. Moreover, the joint probability for k

edges being in the UST is given by a k× k determinant involving currents. This is the Transfer-Current

Theorem of Burton and Pemantle [BurtP93] that we will include in a later version of these notes.

In an infinite graph G, we can take an exhaustion Gn of it. In each step of the exhaustion, we obtain

a UST, denoted by USTn. Using the electric interpretations, it can be shown that if S ⊂ E(Gn), then we

have P
[
S ⊂ USTn

]
≥ P

[
S ⊂ USTn+1

]
, hence the limit exists for all finite S. These limit probabilities

form a consistent family, since any consistency condition will be satisfied in some large enough Gn, hence,

the Kolmogorov extension theorem gives us a measure, the free uniform spanning forest, denoted by FUSF.

It cannot have cycles, but it is not necessarily connected, since a USTn restricted to a finite subgraph has

these properties, as well.

If we have two exhaustions, Gn and G′n, then for any n there is an m such that Gn ⊂ G′m, and vice

versa, hence the limit limnP
[
S ⊂ USTn

]
= P

[
S ⊂ FUSF

]
does not depend on the exhaustion. This also

implies that the FUSF of a Cayley graph has a group-invariant law: if we translate a finite edge-set S

by some g ∈ Γ, and want to show P
[
S ⊂ FUSF

]
= P

[
g(S) ⊂ FUSF

]
, we can just translate the entire

exhaustion we used in the definition.

Another possible approach for a limit object could be that, at each step in the exhaustion Gn ⊂ G,

we “wire” all the boundary vertices of Gn into a single vertex, obtaining G∗n. (We can keep or delete the

resulting loops, this will not matter.) In this wired Gn we pick a UST and call it UST∗n. It can now be

shown that if S ⊂ E(G∗n), then P
[
S ⊂ UST∗n

]
≤ P

[
S ⊂ UST∗n+1

]
, hence we again have a limit, called

WUSF: wired uniform spanning forest. This again does not depend on the exhaustion, and on a Cayley

graph has a group-invariant law.

Since G∗n can be considered as having the same edge set as Gn, but less vertices, it is intuitively clear that

USTn stochastically dominates UST∗n, i.e., they can be coupled so that USTn ⊇ UST∗n. (This domination

can be proved using electric networks again.) This implies that, in the limit, FUSF stochastically dominates

WUSF. However, there seems to be no unique canonical coupling on the finite level, hence there does not

seem to be a unique coupling in the limit, and the above proof of the group invariance breaks down.
{ex.WFUSF}

Exercise▷ 11.5.*** Does there exist a group invariant monotone coupling between FUSF and WUSF?

A recent result of R. Lyons and A. Thom is that this is the case for sofic groups (see Question 14.2

below). On the other hand, the following theorem shows that the situation in general is not simple.
{t.mester}

Theorem 11.5 ([Mes13]). There are two Aut(G)-invariant processes F ,G ⊆ E(G) on G = T3 × Z such

that there exists a monotone coupling F ⊆ G (i.e., G stochastically dominates F ), but there exists no

invariant coupling F ⊆ G .

The group invariance of WUSF also follows from Wilson’s algorithm rooted at infinity, which is also a

reason for considering it to be a very natural object:
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Theorem 11.6. On transient graphs, the WUSF can be generated by Wilson’s algorithm rooted at infinity:

Order the vertices of the network as {x1, x2, . . . }. Start a loop-erased random walk at x1. This walk will

escape to infinity. Now start a loop-erased random walk at x2. Either this second walk will go to infinity,

or it will intersect the first walk at some point (possibly x2). If it intersects, end the walk there. Repeat ad

infinitum.

No algorithm is known for generating the FUSF in a similar way, but there are special cases where the

WUSF is the same as the FUSF, for example, on all amenable transitive graphs [Häg95], as follows (and

see Theorem 11.8 below for the exact condition for equality):
{p.amenUSF}

Proposition 11.7. On any amenable transitive graph, FUSF = WUSF almost surely.

Proof. Both FUSF and WUSF consists of infinite trees only. For any such forest F , if Fn is a Følner

sequence, then the average degree along Fn is 2. Hence we also have EdegWUSF(x) = EdegFUSF(x) = 2 for

all x. On the other hand, we have the stochastic domination. Hence, by Exercise 13.3 (b), we must have

equality.

The edge marginals of WUSF are given by wired currents, while those of the FUSF are given by free

currents. More generally, the Transfer-Current Theorem mentioned above implies that both the FUSF and

the WUSF are determinantal processes. Now, since the difference between free and wired currents are given

by the non-trivial harmonic Dirichlet functions, see Section 11.1, we get the following result, with credits

going to [Doy88, Häg95, BLPS01, Lyo09]:
{t.WFUSFHD}

Theorem 11.8. WUSF = FUSF on a Cayley graph if and only if HD = R. More quantitively:

(1) EdegWUSF(x) = 2.

(2) EdegFUSF(x) = 2 + 2β
(2)
1 (Γ).

Due to Wilson’s algorithm rooted at infinity, WUSF is much better understood than FUSF, as shown

below by a few nice results. On the other hand, the connection of FUSF to β
(2)
1 (Γ) makes the free one more

interesting. For instance:

Exercise▷ 11.6 (Gaboriau).*** Let Γ be a group, and ϵ be given. Does there exist an invariant percolation

Pϵ with edge marginal less than or equal to ϵ such that FUSF ∪ Pϵ is connected?

If the answer is yes, it would imply that cost(Γ) = 1+β
(2)
1 (Γ), see Section 13.5 below. The corresponding

question for WUSF has the following answer:

Theorem 11.9 ([BLPS01]). WUSF ∪ PBer(ϵ) is connected for all ϵ if and only if Γ is amenable.

Wilson’s algorithm has the following important, but due to the loop erasures, not at all immediate,

corollary:
{t.rwcollision}

Theorem 11.10 ([LyPS03]). Let G be any network. The WUSF is a single tree a.s. iff two independent

random walks started at any different states intersect with probability 1.

The following exercise shows that, on a transitive graph, when the WUSF is not a single tree, then it

has infinitely many components. This is not known for the FUSF.

Exercise▷ 11.7.
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(a) [She06] Let G(V,E) be a transitive graph, U ⊂ V an invariant random subset, and {Xn}∞n=0 a simple

random walk started at X0 = x ∈ V . Prove that {Xn} hits U with probability 1. (Hint: let f(x,U) be

the hitting probability given U , and F (x) be its expectation. What are the harmonicity properties of

these functions?)

(b) Deduce from the previous part that the number of trees in the WUSF is more than one but finite with

probability zero.

On Zd, the following very precise and beautiful result has been proved:
{t.numTrees}

Theorem 11.11 ([BenKPS04]). Consider USF = WUSF = FUSF on Zd. If d ≤ 4, then the USF is a single

tree. If 4 < d ≤ 8 then the USF contains infinitely many spanning trees, but all are neighbours, in the

sense that given any two of these trees, there is a a vertex in the first, and a vertex in the second which are

neighbours. If 8 < d ≤ 12 then the USF contains infinitely many spanning trees. It may be the case that

there exist two such trees which are not neighbours, but they will have a common neighbour. In general,

if 4n < d < 4(n + 1) then the USF contains infinitely many spanning trees, and given any two such trees,

there is a chain of trees, each the neighbour of the next, connecting the first to the second, with at most

(n− 1) trees in the chain, not including the original two trees.

12 Percolation theory
{s.perc}

Percolation theory discusses the connected components (clusters) in random subgraphs of a given graph.

The simplest example of this is Bernoulli(p) bond percolation, where each edge of a graph is erased

(gets closed) with probability 1 − p, and kept (remains open) with probability p. Another version is site

percolation, where we keep and delete vertices, and look at the components induced by the vertices kept.

We will usually consider bond percolation, but the results are always very similar in the two cases. (In

fact, bond percolation is just site percolation on the so called line graph of the original graph, hence site

percolation is more general.) Bernoulli percolation on Zd was introduced by Hammersley [Ham57], who gave

the name “percolation” because he thought of this as a model of water percolating through a porous stone.

By now, it has become a classical subject, one of the main examples of statistical mechanics; the standard

textbook is [Gri99]. In particular, percolation in the plane is a key example in contemporary probability, in

the study of critical phenomena, see [Wer07]. Percolation on groups beyond Zd was initiated by Benjamini

and Schramm in 1996 [BenS96c], for which the standard reference is [LyPer16]. In a slightly different

direction, Ber(p) bond percolation on the complete graph Kn on n vertices is the classical Erdős-Rényi

(1960) model G(n, p) of probabilistic combinatorics, see [AloS00].

The most important feature of Bernoulli percolation on most infinite graphs is a simple phase transi-

tion: the existence of a non-trivial critical density pc ∈ (0, 1), above which there is an infinite connected

component, and below which there is not. In statistical mechanics in general, the name “phase transition”

usually means that there is an important external parameter (most often the temperature), and when this

passes a critical point, the system undergoes a dramatic change — usually, some global order appears (e.g.,

water molecules start getting aligned, and water freezes). The existence of an infinite cluster in percolation

may sound like a very simple-minded analogue of global order, but, as we will see in Section 13.1, it is

actually not far from being physically relevant.

12.1 Basic definitions, examples and tools
{ss.percbasics}

Here is the precise definition of the critical density mentioned above:
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{d.pc}
Definition 12.1. For Ber(p) percolation on any infinite connected graph G(V,E), define pc := inf{p :

Pp[∃ an infinite cluster ] > 0} ∈ [0, 1]. We will write pc(G, bond) or pc(G, site) if we want to emphasize

that we are talking about bond or site percolation. If pc ∈ (0, 1), then we talk about the existence of a phase

transition, and the intervals [0, pc) and (pc, 1] are called the sub- and supercritical phases, respectively.

As a trivial example, note that pc(Z) = 1, both for bond and site percolation, hence there is no phase

transition in this case. As a less trivial example, we will see in a second that

1/3 ≤ pc(Z2,bond) ≤ 2/3 , (12.1) {e.thirds}{e.thirds}

so that we do have a non-trivial phase transition here. More generally, we will see that for “non-1-

dimensional graphs” one expects pc ∈ (0, 1), and will prove, among other things, that pc(Td+1,bond) =

pc(Td+1, site) = 1/d for the d+ 1-regular tree, and pc(Z2,bond) = 1/2. However, before proving anything,

let us examine Definition 12.1 a bit.

First of all, here are some measure theoretic basics, in case you are worried if the definition makes sense.

The probability space we have here is the infinite product space {0, 1}E(G), where 0 or 1 encodes if an edge

is closed or open, respectively. In this infinite product space, the sigma-algebra is the one generated by

finite cylinder events (defined in general as events of the form {ω : ωi ∈ Ai for all i ∈ I}, where I is a finite

subset of the coordinates, and each Ai is some fixed measurable set in the ith coordinate); in other words, it

consists of the Borel sets w.r.t. the product topology. Moreover, there is a unique probability measure Pp

on this space that coincides with the obvious measure on finite cylinders, and for every event A and every

ϵ > 0 there exists an event Aϵ depending only on finitely many coordinates (i.e., a finite union of finite

cylinder events) such that P[A△Aϵ ] < ϵ. This follows from Caratheodory’s and Kolmogorov’s extension

theorems (see [Dur10, Sections A.1, A.2., A.3]). For instance, {∃ an infinite cluster} is indeed an event,

since it is equal to
⋃
x∈V

⋂
n≥1{x←→ ∂outV Bn(x)}. Here, {x←→ ∂outV Bn(x)} is the event (depending only

on finitely many variables) that there exists an open path between x and the outer vertex boundary of the

ball Bn(x), as defined at the beginning of Subsection 5.1.

Next, is it obvious that Pp[∃ an infinite cluster ] is monotone in p? Well, a simple proof is by the

standard coupling of all Ber(p) percolation measures for p ∈ [0, 1]: to each edge e (in the case of bond

percolation) assign an independent U(e) ∼ Unif[0, 1] variable, and then ωp := {e ∈ E(G) : U(e) ≤ p}
is a Ber(p) bond percolation configuration for each p, while ωp ⊆ ωp′ for p ≤ p′. In this coupling,

{∃ ∞ cluster in ωp} ⊆ {∃ ∞ cluster in ωp′}, hence the probability is monotone. Moreover, whether or not

an infinite cluster exists does not depend on the states of any finite set of edges, so this is a tail event. As

a result, Kolmogorov’s 0-1 law (see Theorem 9.20) implies that Pp[∃ an infinite cluster ] = 1 for all p > pc.

As we will see, whether we have an infinite cluster exactly at pc is a very interesting question.

Let us now turn to the proof of (12.1). For the lower bound, note that if the cluster C (o) of the origin

o = (0, 0) is infinite, then it contains arbitrary long self-avoiding paths starting from o (by a compactness

argument, even contains an infinite one), while the number of such paths of length n in Z2 is at most

4 · 3n−1, hence

Pp[ o←→∞ ] ≤ Pp[∃ open self-avoiding path of length n from o]

≤ Ep[number of open self-avoiding paths of length n from o]

≤ 4(3p)n ≤ C exp(−cn)

for some c = c(p) > 0 and C = C(p) < ∞ for any p < 1/3. This tends to zero as n → ∞, hence there is

no infinite cluster almost surely.
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For the upper bound, we consider the dual percolation configuration on the planar dual of Z2, where

a dual edge is dual-open if the corresponding primal edge is closed. The idea is that C (o) can be finite

only if o is surrounded by a closed (i.e., dual-open) dual circuit, and for p close to 1, long dual circuits are

unlikely. See Figure 12.1. Indeed, for p > 2/3,

Pp[∃ closed self-avoiding dual circuit of length n surrounding o] ≤ n (3(1− p))n ≤ C exp(−cn) ,

where the factor n comes from the fact that any such dual circuit must intersect the segment [0, n] on the

real axis of the plane. This is summable in n, hence, for N large enough, the sum over n ≥ N is less than

1, hence with positive probability there is no closed dual circuit longer than N surrounding the origin.

This implies that the outer vertex boundary ∂outV BN/8(o) must be connected to infinity, hence we have an

infinite cluster with positive probability. (Proof: If the union U of the open clusters intersecting BN/8(o) is

finite, then take its exterior edge boundary ∂+EU , i.e., the boundary edges with an endpoint in the infinite

component of Z2 \ U . The edges dual to these edges contain a closed circuit around o, with length larger

than N .) I.e., there is an infinite cluster with positive probability, and we are done. (This counting of dual

circuits and using the first moment method is called the Peierls contour argument.)

Figure 12.1: Counting primal self-avoiding paths and dual circuits. {f.Peierls}

{l.pc}
Lemma 12.2. Let θx(p) := Pp[ |C (x)| =∞ ], where C (x) is the cluster of the vertex x. Then, the following

definitions for pc are equivalent:

pc := inf
{
p : Pp[∃ an infinite cluster ] > 0

}
= inf

{
p : Pp[∃ an infinite cluster ] = 1

}
:= inf

{
p : ∃x ∈ V with θx(p) > 0

}
= inf

{
p : ∀x ∈ V, θx(p) > 0

}
.

Proof. We have already discussed that Kolmogorov’s 0-1 law, Theorem 9.20, implies that the first two

definitions are equivalent. Next, if the probability that an infinite cluster exists is 0 for some p, then the

probability that any given x is part of an infinite cluster must also be 0. On the other hand, if θx(p) = 0

holds for all x ∈ V , then the union bound gives that Pp[∃ an infinite cluster ] ≤
∑
x θx(p) = 0. This

yields the equivalence with the third definition. For the equivalence with the fourth definitions, we need

that θx(p) > 0 happens or fails simultaneously for all x ∈ V depending only on p, which is not clear in

a non-transitive graph. We are going to show this in three different ways, just to introduce some basic

techniques that will often be useful.

First proof of Pp[∃ ∞ cluster ] = 1 implying Pp[ |Cx| =∞ ] > 0 for any x ∈ V (G). On any connected

graph, the events En := {Bn(x) intersects an infinite cluster} increase to {∃ ∞ cluster} as n→∞, hence

Pp[∃ ∞ cluster ] = 1 implies that there exists some n = n(x) such that

Pp[ ∂
in
V Bn(x)←→∞ ] > 0 .
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On the other hand, we also have

Pp[x←→ y inside Bn(x) for all y ∈ ∂inV Bn(x) ] > 0 ,

since this requires just finitely many bits to be open. These two events of positive probability depend on

different bits, hence are independent of each other, hence their intersection also has positive probability.

Since the intersection implies that {x←→∞}, we are done.

Second proof. Bernoulli percolation has a basic property called finite energy or insertion and deletion

tolerance. For the case of bond percolation, for any event A and e ∈ E(G), let

A ∪ {e} := {ω ∪ {e} : ω ∈ A},

A \ {e} := {ω \ {e} : ω ∈ A}.

Then the property is that P[A ] > 0 implies that P[A ∪ {e} ] > 0 and P[A \ {e} ] > 0, as well, for any

e ∈ E(G). In fact, for Ber(p) percolation, we have

Pp[A ∪ {e} ] ≥ pPp[A ] and Pp[A \ {e} ] ≥ (1− p)Pp[A ] .

Why? First of all, we can focus only on finite cylinder events A =
{
ω ∈ {0, 1}E(G) : ω(ei) = 1, i =

1 . . . , k, ω(fj) = 0, j = 1, . . . , ℓ
}

, since any measurable event can be approximated by a finite union of

such events. And then, Pp[A ∪ {e} ] = Pp[A ] if e ∈ {ei}, Pp[A ∪ {e} ] = p/(1− p)Pp[A ] if e ∈ {fj}, and

Pp[A ∪ {e} ] = pPp[A ] if e ̸∈ {ei} ∪ {fj}. Similarly, Pp[A \ {e} ] ≥ (1− p)Pp[A ].

Why is this property called finite energy? One often wants to look at not just Bernoulli percolation,

but more general percolation processes: a random subset of edges or vertices. For instance, the Uniform

Spanning Tree and Forests from Section 11.2 are bond percolation processes, while the Ising model of

magnetization, where the states of the vertices (spins) have a tendency to agree with their neighbours

(with a stronger tendency if the temperature is lower) is a site percolation process; see Section 13.1.

Such models are often defined by assigning some energy to each (finite) configuration, then giving larger

probabilities to smaller energy configurations in some way (typically using a negative exponential of the

energy). Then the finite energy property is that any finite modification of a configuration changes the

energy by some finite additive constant, and hence the probability by a positive factor. If changing one

edge or site changes the probability by a uniformly positive factor, independently of A, then the model has

uniformly finite energy or uniform deletion/insertion tolerance. Bernoulli percolation and the Ising model

are such examples, while the UST is neither deletion nor insertion tolerant.

We can now easily establish that if Pp[|C (x)| = ∞] > 0 holds at some p for some x ∈ V (G), then the

same holds for any y ∈ V (G) in place of x. Take a finite path γ between x and y, and then

Pp[y ←→∞] ≥ Pp[γ is open, x←→∞] ≥ p|γ|Pp[x←→∞],

by repeated applications of the insertion tolerance shown above.

Third proof. Given a partially ordered set Ω, we say that an event A is increasing or upward closed

if 1A(ω1) ≤ 1A(ω2) whenever ω1 ≤ ω2, where 1A is the indicator of the event A. For bond percolation on

G, the natural partially ordered set Ω is, of course, the set of all subsets of E(G) ordered by inclusion, or

{0, 1}E(G) with coordinate-wise ordering.
{t.HarrisFKG}

Theorem 12.3 (Harris-FKG inequality). Increasing events in the Bernoulli product measure are positively

correlated: P[A ∩B ] ≥ P[A ]P[B ], or E[ fg ] ≥ E[ f ]E[ g ] if f and g are increasing functions with finite

second moments.
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Before proving this, let us go back to the equivalence with the fourth definition in Lemma 12.2 as an

example: for any x, y ∈ V (G), the events {x←→ y} and {y ←→∞} are both monotone increasing, hence,

by the Harris inequality,

Pp[y ←→∞] ≥ Pp[x←→ y, x←→∞] ≥ Pp[x←→ y]Pp[x←→∞],

finishing our third proof of Lemma 12.2.

Proof of Theorem 12.3. This is classical for the case when we have only one bit. Even more generally than

just Ber(p) measure on {0, 1}, one can consider two increasing functions on R with any probability measure

µ, and then the statement is one of Chebyshev’s inequalities:∫
R
f(x)g(x) dµ(x) ≥

∫
R
f(x)dµ(x)

∫
R
g(x)dµ(x) . (12.2) {e.Cheb}{e.Cheb}

The proof of this is very easy:∫
R

∫
R

[f(x)− f(y)] [g(x)− g(y)] dµ(x) dµ(y) ≥ 0 ,

since the integrand is always nonnegative, and then rearranging gives (12.2). The general case, namely a

product probability measure µ1 × · · · × µd on Rd, can be proved by induction on the dimension. Namely,

fixing the first d−1 coordinates in any way, we get two increasing functions in the last coordinate, hence can

apply the 1-dimensional case, and this averaging out w.r.t. the last coordinate yields a (d− 1)-dimensional

problem that we know by induction. If you cannot see the details for yourself, look it up in [LyPer16,

Section 7.2].

The explanation for the name Harris-FKG is that Harris proved it for product measures (just what we

stated) in [Har60], a fundamental paper for percolation theory. But there is a generalization of Theorem 12.3

for dependent percolation processes where the energy of a configuration is given by certain nice local

functions favouring agreement: this is the FKG inequality, due to Fortuin, Kasteleyn and Ginibre

(1971). For instance, the Ising model of magnetization does satisfy this inequality. The proof of this must

be very different from what is sketched above, since the measure does not have the product structure

anymore. Indeed, we will do this in Theorem 13.1, via a beautiful Markov chain coupling argument, due to

Holley. For now, see [Wik10b] for a very short introduction to the general FKG inequality, and [GeHM01]

for a proper one. At the opposite end from the FKG inequality, in the UST, as usual for determinantal

measures, increasing events supported on disjoint sets are negatively correlated [LyPer16, Section 4.2].

Before going further, here are two exercises to make sure you understand what the measurability of

having an infinite cluster means:

Exercise▷ 12.1. Let G(V,E) be any bounded degree infinite graph, and Sn ↗ V an exhaustion by finite

connected subsets. Is it true that, for p > pc(G), we have

lim
n→∞

Pp[ largest cluster for percolation inside Sn is the subset of an infinite cluster ] = 1 ?

Exercise▷ 12.2. Show that for percolation on any infinite graph, the event {there are exactly three infinite

clusters} is Borel measurable.
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We will often consider random subgraphs that are not given by independent Bernoulli variables. On

the one hand, there are a lot of natural processes of this type, such as the Uniform Spanning Forests from

Section 11.2 and the Ising model from Section 13.1. On other hand, as we will see later on, studying

percolation in this generality will also turn out to be useful for Bernoulli percolation itself.

When looking at general percolation processes on transitive graphs G, one usually wants that it is an

invariant percolation process: a random subset of edges or vertices whose law is invariant under the

automorphism group of G, or at least under a subgroup of Aut(G) that still acts transitively on G. (If G

is a Cayley graph of a group Γ, then one often considers Γ-invariance, invariance under the translations

by the group elements, even if this is only a proper subgroup of Aut(G). E.g., the graph Z2 has more

automorphisms than just translations.) Intuitively, invariance means that the process “looks the same”

from all vertices of G. For a formal definition, we first have to say how the automorphism group acts on

configurations and events. Thinking of a site percolation configuration ω as a function on the vertices, it

is natural to pull it back via automorphisms: for any γ ∈ Aut(G) and x ∈ V (G), we let ωγ(x) := ω(γ(x)).

Note that if δ is another automorphism, then ωδ◦γ(x) = ω(δ(γ(x))) = (ωδ)(γ(x)) = (ωδ)γ(x); thus,

while Aut(G) with the composition ◦ as group operation acts naturally from the left on G, it will act

from the right on configurations (and that is why we chose to write ωγ). An event A can be considered

as a set of configurations, hence Aγ := {ωγ : ω ∈ A}. E.g., for the event A = {|Cx| > 100}, we

have Aγ = {|Cγ−1(x)| > 100}. And now we can finally say that a percolation measure P is invariant

under a group Γ of automorphisms if P[A ] = P[Aγ ] for any event A and any γ ∈ Γ. For the event

B = {∃x : |Cx| > 100}, we have Bγ = B, hence this is an invariant event in any percolation process. In

general, we say that an event A is Γ-invariant for a percolation measure P if P[A△Aγ ] = 0 for all γ ∈ Γ.

The next exercise gives a non-trivial example of an invariant bond percolation on the 3-regular tree T3:

o
a

b1

b2

Figure 12.2: Constructing the unique invariant random perfect matching on T3. {f.invmatch}

{ex.invmatch}
Exercise▷ 12.3. We are going to define a random perfect matching ω of T3. Fix a root o ∈ V (T3). Choose

uniformly at random one of the three edges emanating from o to be in ω. Denote this chosen edge by (o, a),

while the other two by (o, bi), i = 1, 2. Now, for each bi, choose one of the two edges emanating from bi not

in the direction of o uniformly at random to be in ω. The two edges emanating from a but not containing

o can of course not be in ω. Continue inductively for each vertex, for the pair of edges emanating from the

vertex not in the direction of o. See Figure 12.2.

Prove that the resulting perfect matching has a distribution that is invariant under all the automorphisms

Aut(T3), despite the fact that the construction itself used a specific vertex as the origin. In fact, this is the

unique Aut(T3)-invariant distribution on perfect matchings of T3.
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A basic property that an invariant percolation process might have is ergodicity:
{l.ergodic}

Lemma 12.4. Ber(p) bond (or site) percolation on any infinite transitive graph G is ergodic: any invari-

ant event has probability 0 or 1. In fact, instead of transitivity, it is enough that there is an edge with an

infinite orbit (and then it is easy to see that every edge has an infinite orbit).

Proof. As discussed after Definition 12.1, any measurable event A can be approximated by a finite union

of finite cylinder events, i.e., for any ϵ > 0 there is an event Aϵ depending only on finitely many coordinates

such that Pp[A△Aϵ ] < ϵ. Then, there exists a “large enough” γ = γϵ ∈ Aut(G) such that the two sets

of relevant coordinates for Aϵ and Aγϵ are disjoint, hence Pp[Aϵ ∩ Aγϵ ] = Pp[Aϵ ]
2
. On the other hand,

Pp[A ∩Aγ ] = Pp[A ] by invariance. Altogether, Pp[A ] can be approximated well by Pp[A ]
2
:∣∣∣Pp[A ]−Pp[A ]

2
∣∣∣ =

∣∣∣Pp[A ∩Aγ ]−Pp[A ]
2
∣∣∣ ≤ ∣∣∣Pp[Aϵ ∩ Aγϵ ]−Pp[Aϵ ]

2
∣∣∣+ 2ϵ+ 2ϵ = 4ϵ .

By letting ϵ→ 0, we get that Pp[A ]
2

= Pp[A ], hence Pp[A ] ∈ {0, 1}.

There are natural invariant percolations that are not ergodic: a trivial example is taking the empty or

the full vertex set with probability 1/2 each; a less trivial one is the Ising model on Z2 at low temperature

with a free boundary condition, which gives a mixture of the plus and minus phases (see Section 13.1).

We will be concerned here mainly with ergodic measures, although in Theorem 12.19 for instance, the

difference between ergodicity and non-ergodicity will be the main point.

Similarly to invariance, ergodicity can also be understood w.r.t. not the entire automorphism group of

the transitive graph, but a subgroup of it. If the group gets smaller, then invariance becomes a weaker

condition, while ergodicity becomes stronger. For instance, on Z2, consider the bond percolation that is

the collection of all the vertical lines, or all the horizontal ones, with probability 1/2 each. This is Aut(Z2)-

invariant and Aut(Z2)-ergodic, but not ergodic under the Z2 translations. The bond percolation that is

simply the collection of all the vertical lines deterministically is not Aut(Z2)-invariant, but Z2-invariant

and Z2-ergodic. Another example is the site percolation process on Z2 in which, with probability 1/2,

the even vertices (i.e., (x, y) ∈ Z2 with x + y being even) are open, the odd vertices are closed, and vice

versa with probability 1/2. Even though this measure looks degenerate the same way as the previous

horizontal/vertical example, it is both Aut(Z2)-invariant and Z2-ergodic. The property it fails to possess

is total ergodicity: there is a finite index subgroup under which it is not ergodic. In other words, it is

periodic. The following exercise also utilizes this anomaly:
{ex.ErgodUnion}

Exercise▷ 12.4. Show that the union of two independent ergodic percolation processes may not be ergodic.

A strengthening of ergodicity is mixing. For an invariant percolation P on an infinite transitive graph

G, the definition is that for any two events A,B, and any ϵ > 0, there is a finite set Kϵ ⊂ Aut(G) such

that if γ ̸∈ Kϵ, then
∣∣P[A ∩ γ(B) ] − P[A ]P[B ]

∣∣ < ϵ. For general graphs, an appropriate definition is

that, for any k ≥ 1, if A and Bn are cylinder events such that each Bn depends on at most k variables

(sites or bonds), and all the variables on which Bn depends are at distance at least n from the variables on

which A depends, then limn→∞
∣∣P[A ∩Bn ]−P[A ]P[Bn ]

∣∣ = 0. For transitive graphs, the two definitions

are easily seen to be equivalent. It is also easy to see, by copying the proof of Lemma 12.4, that mixing

implies ergodicity. Simple examples for ergodic but non-mixing percolations are periodic percolations. A

non-periodic example comes from a key example of ergodic theory, irrational rotations:
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Exercise▷ 12.5. Consider the following site percolation on Z: let α ∈ R \Q fixed, U ∼ Unif[0, 1] random,

and let ωn := 1 if U + nα (mod 1) is in [0, 1/2), and ωn := 0 otherwise. Show that this is Z-invariant,
ergodic, but not mixing.

Most results and conjectures below will concern percolation on transitive graphs, but let us point out

that there are always natural modifications (with almost identical proofs) for quasi-transitive graphs, i.e.,

when V (G) has finitely many orbits under Aut(G).

Here is a basic application of ergodicity and insertion tolerance:
{l.01infty}

Lemma 12.5. In any ergodic insertion tolerant invariant percolation process on any infinite transitive

graph, the number of infinite clusters is an almost sure constant, namely 0, 1, or ∞.

Proof. For any k ∈ {0, 1, 2, . . . ,∞}, the event {the number of infinite clusters is k} is translation invariant,

hence it has probability 0 or 1 by ergodicity. I.e., the number of infinite clusters is an almost sure constant.

Now, assume that this constant is 1 < k < ∞. By the measurability of the number of clusters, for

any c < 1 there exists an integer r such that the probability that the ball Br(o) intersects at least two

infinite clusters is at least c. But then, by insertion tolerance, we can change everything in Br(o) to open,

resulting in an event with positive probability, on which the number of infinite clusters is at most k− 1: a

contradiction.

The number of infinite clusters in Bernoulli percolation is a basic and interesting topic. We will prove

later in this section that pc(Tk+1, site) = pc(Tk+1,bond) = 1/k for the k + 1-regular tree, and it is pretty

obvious that, for all p ∈ (pc(Tk), 1), there are a.s. infinitely many infinite clusters: on the other side of each

closed edge or site neighboring an open cluster, there is a new k-ary tree that almost surely has infinite

clusters again. On the other hand, having infinitely many infinite clusters turns out to be impossible

in amenable transitive graphs such as Zd (see Section 5.1 for the definition). In rough terms, there is

not enough space for many infinite clusters to coexist without getting glued together (made possible by

insertion tolerance). This was first proved for Bernoulli percolation on Zd in [AiKN87], but the “right”

proof is the following one:
{t.BurtonKeane}

Theorem 12.6 (Burton-Keane [BurtK89]). For any insertion and deletion tolerant ergodic invariant

percolation on any amenable transitive graph, the number of infinite clusters is almost surely 0 or 1.

Proof. Given a percolation configuration ω ⊆ E(G), a furcation point is a vertex in an infinite cluster C

whose removal from C would break it into at least three infinite connected components.

Now, if there were infinitely many infinite clusters, then, using insertion and deletion tolerance, they

could be joined, somewhat similarly to the proof of Lemma 12.5 above, to get that a given vertex is a

furcation point with positive probability. However, we have to do this joining procedure now a bit more

carefully. First of all, we are going to describe a procedure where we insert and delete edges depending on

what the configuration is in a given ball Br(o). But this is fine, since there are only finitely many possibilities

for the configuration inside Br(o), hence there is one with positive probability, and we can just stick to

inserting and deleting the edges corresponding to this one configuration, regardless of the actual percolation

configuration, and this will work with positive probability. So, here is one such possible procedure. Take

r so large that the ball Br(o) contains at least three infinite clusters with positive probability. Pick three

infinite clusters C1,C2,C3 that intersect Br(o). Delete everything inside Br(o), then one-by-one insert

paths γi of length r from o to Ci, for i = 1, 2, 3, such that the union of these three paths is a tree. The

branch point of this tree that is the farthest from o is a furcation point. (For bond percolation, this
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Figure 12.3: Furcation points in an infinite cluster. {f.trifur}

will actually be a trifurcation point, whose deletion results in exactly three infinite clusters, but for site

percolation processes, we may get more than three.) So, the fixed ball Br(o) contains a furcation point with

positive probability, and hence the probability that any given vertex of the transitive graph is a furcation

point must be positive.

Now that we know that furcation points exist, inside a large Følner set Fn the expected number

of furcation points Xn grows linearly with |Fn|. On the other hand, deterministically, the inner vertex

boundary of Fn has to be at least Xn+2. (This requires a little thought. See Figure 12.3 and Exercise 12.6.)

Combining these two facts, |∂Fn| should grow linearly with |Fn|, contradicting the definition of a Følner

sequence.

{ex.BKmethod}
Exercise▷ 12.6.

(a) Show carefully the claim we used in the Burton-Keane theorem: if C∞ denotes the union of all the

infinite clusters in some percolation on G, and U ⊂ V (G) is finite, then the size of C∞ ∩ ∂outV U is at

least the number of furcation points of C∞ in U , plus 2.

(b) Extend the above proof of the Burton-Keane theorem to quasi-transitive graphs.

Here is a small generalization of the second part of the Burton-Keane proof. Recall that the ends of a

graph were defined in Exercise 3.3.
{ex.BK3ends}

Exercise▷ 12.7. In any invariant percolation on any transitive amenable graph, show that there cannot be

clusters with at least three ends.

Without insertion tolerance, the first part of the Burton-Keane proof clearly breaks down. And in fact,

the conclusion becomes false:

Exercise▷ 12.8. Give a Z2-invariant and Z2-ergodic bond percolation on Z2 with infinitely many∞ clusters.

Then give one that is also invariant under interchanging the two coordinates.

More challenging are the following exercises:

Exercise▷ 12.9.*

(a) Give an Aut(Z2)-invariant and Z2-ergodic bond percolation on Z2 with exactly two∞ clusters. (Hint:

construct a one-ended subtree and consider it together with its dual.)

(b) Give a deletion-tolerant version of part (a). (Hint: try deleting edges from the previous construction

randomly with tiny probabilities.)
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Exercise▷ 12.10.* Is there an ergodic deletion-tolerant Z2-invariant bond percolation on Z2 with infinitely

many infinite clusters? (Hint: use Exercise 12.7 for the dual percolation.)

We will now discuss another key example: percolation on a regular tree. This turns out to be a special

case of a classical object: the cluster of a fixed vertex in Ber(p) percolation on a k + 1-regular tree Tk+1

is very close to a Galton-Watson process with offspring distribution ξ = Binom(k, p). A usual GW

process is a random tree where we start with a root in the zeroth generation, then each individual in

the nth generation gives birth to an independent number of offspring with distribution ξ, together giving

the (n + 1)th generation. For Ber(p) percolation on Tk+1, the root has a special offspring distribution

Binom(k + 1, p). However, this difference does not affect questions like the existence of infinite clusters

(which you should be able to verify).

So, to find pc(Tk+1), it is enough to understand when a GW process survives with positive probability.

A standard method for this is the following. Consider the probability generating function of the offspring

distribution,

f(s) := E[ sξ ] =
∑
k≥0

P[ ξ = k ]sk. (12.3) {e.GWpgf}{e.GWpgf}

Notice that if Zn is the size of the nth generation, then E[ sZn ] = f◦n(s), therefore we have

q := P[ extinction ] = lim
n→∞

P[Zn = 0 ] = lim
n→∞

f◦n(0) . (12.4) {e.GWq}{e.GWq}

Assuming that P[ ξ = 1 ] ̸= 1, the function f(s) is strictly increasing and strictly convex on [0, 1], so (12.4)

easily implies that q is the smallest root of s = f(s) in [0, 1]. (Just draw a figure of how f(s) may look like

and what the iteration f◦n(0) does!)
{ex.GWpgf}

Exercise▷ 12.11. Using the above considerations, show that if E[ ξ ] ≤ 1 but P[ ξ = 1 ] ̸= 1, then the GW

process almost surely dies out. Deduce that pc(Tk+1) = 1/k and θ(pc) = 0.

A quite different strategy is the following:
{ex.GWMG}

Exercise▷ 12.12.*

(a) Consider a GW process with offspring distribution ξ, Eξ = µ. Let Zn be the size of the nth level,

with Z0 = 1, the root. Show that Zn/µ
n is a martingale, and using this, assuming P[ ξ = 1 ] ̸= 1,

that µ ≤ 1 implies that the GW process dies out almost surely.

(b) On the other hand, if µ > 1 and E[ ξ2 ] < ∞, first show that E
[
Z2
n

]
≤ C(EZn)2. (Hint: use the

conditional variance formula D2[Zn] = E
[
D2[Zn

∣∣ Zn−1]
]

+ D2
[
E[Zn | Zn−1 ]

]
.)

Then, using the Second Moment Method, namely, if X ≥ 0 a.s., then P[X > 0 ] ≥ (EX)2/E[X2 ]

(prove this or see (12.14) in Section 12.3), deduce that the GW process survives with positive proba-

bility.

(c) Extend the above to the case Eξ =∞ or Dξ =∞ by a truncation ξ1ξ<K for K large enough.

Let us describe yet another strategy, which is robust enough to be used in different finite random

graph models (see, e.g., [vdHof13]). Consider the following exploration process of any rooted tree, with

the children of each vertex being ordered. During the process, vertices will be active, inactive, or neutral,

and active vertices will be ordered. In the 0th step, start with the root as the only active vertex; all other

vertices are neutral. In the (i+ 1)th step, examine the children of the first vertex v in the active list after

the ith step, put these children at the beginning of the active list, and turn v inactive. If the tree is finite,

the process will end up with all vertices being inactive; if the tree is infinite, then the process will run

forever, with the vertices of the first infinite ray all being put in the active list. See Figure 12.4.
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Figure 12.4: On the left, the shades of vertex colours show the order in which the sets of children are put

into the active list. The labels on the vertices show the order in which they turn inactive, which is in fact

the Depth First Search order. On the right, the steps of the walk are indexed by the vertices as they turn

inactive, while the height shows the current number of active vertices. {f.GWexplore}

The above exploration process is well-suited to construct a subcritical GW tree fully or a supercritical

GW tree partially. Indeed, let {Xi : i ≥ 1} be a sequence of iid variables from the offspring distribution

ξ, which will be the number of children being put into the active list at each step, let S0 = 1, and then

Si+1 = Si + Xi+1 − 1 is the size of the active list after the (i + 1)th step. This is a random walk with iid

increments distributed as ξ− 1. If Eξ < 1, then the walk has a negative drift, hence Sn = 0 will eventually

happen almost surely. If Eξ = 1 but P[ ξ = 1 ] ̸= 1, then the walk is recurrent, by Exercise 12.13 below. If

Eξ > 1, then the walk has a positive drift, hence with positive probability will go to infinity without ever

reaching zero: there exists K > 0 such that P
[

mini≥0 Si > −K
]
> c1 > 0, while we get above K before

dying with some probability c2 > 0, hence we never die with probability at least c1c2 > 0. In summary, we

have reached the same conclusion as in Exercises 12.11 and 12.12. {ex.ChuFu}
Exercise▷ 12.13 (Discrete Chung-Fuchs theorem).

(a) Let Sn = X1 + · · ·+Xn be a random walk with i.i.d. jumps in Zd. Show that, for any m ∈ Z+,

∞∑
n=0

P
[
∥Sn∥∞ ≤ m

]
≤ (2m+ 1)d

∞∑
n=0

P[Sn = 0 ] .

(Hint: for any v ∈ Zd with ∥v∥∞ ≤ m, the event {Sn = v} can be decomposed as
⋃n
ℓ=0{Sn = v, Tv =

ℓ}, according to the first hitting time of v.)

(b) Assume now that d = 1, and that Sn satisfies the following Weak Law of Large Numbers: Sn/n
p−→ 0.

(For instance, EXi = 0 is enough; see [Dur10, Theorem 2.2.9.]) Notice that, for any m ∈ Z+ and

A > 0 arbitrarily large, part (a) implies

∞∑
n=0

P[Sn = 0 ] ≥ 1

2m+ 1

∞∑
n=0

P
[
|Sn| ≤ m

]
≥ 1

2m+ 1

⌊Am⌋∑
n=0

P
[
|Sn| ≤ n/A

]
.

Deduce from this and the WLLN that the expected number of returns to 0 is infinite. Conclude that

the walk is recurrent.

The “real” Chung-Fuchs theorem says that even for arbitrary real-valued random walks on R, the Weak

Law of Large Numbers Sn/n
p−→ 0 is sufficient for neighbourhood-recurrence; that is, P

[
∥Sn∥∞ < ϵ i.o.

]
= 1

for any ϵ > 0; see [Dur10, Section 4.2]. The proof follows the strategy of the previous exercise, with the
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extra difficulty that the small errors in several “close” returns may build up or cancel each other out, and

thus it is not obvious that the equivalences

∞∑
n=0

P
[
∥Sn∥∞ < ϵ

]
=∞ ⇐⇒ P

[
∃ n : ∥Sn∥∞ < ϵ

]
= 1 ⇐⇒ P

[
∥Sn∥∞ < ϵ i.o.

]
= 1 (12.5) {e.returns}{e.returns}

hold. Nevertheless, this is indeed the case; see [Dur10, Theorem 4.2.6].
{ex.CauchyRW}

Exercise▷ 12.14 (Chung-Fuchs is not sharp). Recall the standard Cauchy density: 1
π(1+x2) for x ∈ R.

A natural way to obtain it is to take the x coordinate of the intersection of a line at a uniform random

orientation from the origin of the (x, y) plane with the line y = 1.

(a) Let X and Y be independent standard normal variables. Show that X/Y has Cauchy distribution.

(b) Prove that the harmonic measure on the line y = 1 for 2-dimensional Brownian motion (Xt, Yt)

started at the origin is given by the Cauchy distribution. (Hint: we want the distribution of Xτ ,

where τ = min{t : Yt = 1}. Show first, using the reflection principle for Brownian motion, that
√
τ

has the same distribution as 1/|Y1|.)
(c) From part (b) and the scale invariance of 2-dim BM, deduce that a sum of i.i.d. Cauchy variables,

Sn = ξ1 + ξ2 + · · ·+ ξn, has the distribution of nξ1. Conclude that the Cauchy distribution does not

satisfy Sn/n
p−→ 0.

(d) Show that for any interval (−ϵ, ϵ), the expected number of returns of the Cauchy walk Sn is infinite.

By (12.5), this implies that Sn is recurrent.

The following result is a striking example of a probabilistic duality between sub-critical and super-

critical GW trees. It will be exploited in our proof of the Erdős-Rényi giant cluster phase transition,

Theorem 12.23. For two-dimensional percolation, using that there is also a planar duality, there is a close

analogy to this (just like in Figure 12.1), but for higher dimensions and other Cayley graphs, only a vague

intuition remains.

Exercise▷ 12.15 (Galton-Watson duality).* Either by computing generating functions directly, or by using {ex.GWduality}
a Doob transform argument (see Lemma 6.13), show the following duality of super- and sub-critical GW

trees. Consider a supercritical GWξ tree, with generating function f(z) = E[ zξ ] and extinction probability

q = f(q).

(a) Condition GWξ on non-extinction, and take the subtree of those vertices that have an infinite line of

descent. Show that this is a GW tree with offspring distribution ξ∗, where

P[ ξ∗ = k ] =

∞∑
j=k

(
j

k

)
(1− q)k−1qj−kP[ ξ = j ] .

Deduce that the generating function f∗(z) = E[ zξ
∗

] is obtained by taking the part of f(z) in the

[q, 1]2 square and rescaling it to the square [0, 1]2. Note that P[ ξ∗ = 0 ] = 0 and Eξ∗ = Eξ.

(b) Condition GWξ on extinction. Show that we get a subcritical GW tree, with offspring distribution ξ̃,

whose generating function f̃(z) is obtained by taking the part of f(z) in the [0, q]2 square and rescaling

it to the square [0, 1]2. Note that Eξ̃ = f ′(q) < 1.

In particular, if we condition the GW tree with offspring distribution Poisson(λ) on extinction, where

λ > 1, then we get a GW tree with offspring distribution Poisson(µ) with µ < 1, where λe−λ = µe−µ.
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For the study of percolation on general locally finite rooted trees T , Russ Lyons defined an “average

branching number” [Lyo90]:

br(T ) := sup

{
λ ≥ 1 : inf

Π

∑
e∈Π

λ−|e| > 0

}
, (12.6) {e.br}{e.br}

where the infimum is taken over all cutsets Π ⊂ E(T ) separating the root o ∈ V (T ) from infinity, and |e|
denotes the distance of the edge e from o. The following exercises help digest what this notion measures:

Exercise▷ 12.16. Let T be a locally finite infinite tree with root o.

(a) Show that br(T ) does not depend on the choice of the root o.

(b) Show that the d+ 1-regular tree has br(Td+1) = d.

(c) Define the lower growth rate of T by gr(T ) := lim infn |Tn|1/n, where Tn is the set of vertices at

distance exactly n from o. Show that br(T ) ≤ gr(T ).

Exercise▷ 12.17. Find the branching number of the following two trees (see Figure 12.5):

(a) The quasi-transitive tree with degree 3 and degree 2 vertices alternating.

(b) The so-called 3-1-tree, which has 2n vertices on each level n, with the left 2n−1 vertices each having

one child, the right 2n−1 vertices each having three children; the root has two children.

Figure 12.5: A quasi-transitive tree and the 3-1 tree. {f.twotrees}

A clear motivation for definition (12.6) is given by the following interpretation. Let us denote the set of

non-backtracking infinite rays starting from o by ∂T , the boundary of the tree, equipped with the metric

d(ξ, η) := e−|ξ∧η|, where ξ ∧ η is the last common vertex of the two rays, and |ξ ∧ η| is its distance from o.

Then, basically by definition,

edimH(∂T,d) = br(T ) and edimM (∂T,d) = gr(T ) ,

where dimH is Hausdorff dimension and dimM is lower Minkowski dimension. Since Hausdorff dimension

has, over the past hundred years, proved a better notion than Minkowski dimension, the branching number

ought to be a better way of measuring average branching than growth.

A first sign of the usefulness of branching number is that Lyons proved (via a refinement of the second

moment method that we saw in Exercise 12.12) that pc(T ) = 1/br(T ). This easily implies that br(GWξ) =

Eξ a.s. on nonextinction, which is another “proof” that this is a good definition of average branching.

Indeed, if we perform Ber(p) percolation on GWξ, then the component of the root is simply another

GW tree, with mean offspring pEξ. Hence pc(GWξ) = 1/Eξ a.s. on nonextinction, giving the formula

br(GWξ) = Eξ.
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The branching number turns out to govern the behavior of most stochastic processes on trees. For

instance, if we take λ-biased homesick random walk, where the edge going towards the starting point o

has weight λ compared to the outgoing edges that have weight 1, the walk is recurrent for λ > br(T ) and

transient for λ < br(T ).

Exercise▷ 12.18. Prove the last statement on transience and recurrence using flows and cutsets in electric

networks (see Theorem 6.9 and Proposition 6.10).

Lyons has found even closer connections between percolation and random walks on general trees; see

[Lyo92], and, of course, [LyPer16]. For some more examples of the branching number playing a role in

processes on trees, see [Vir02] regarding the speed of random walks, [EvKPS00] regarding the Ising model,

and [BalPP06] regarding bootstrap percolation.

12.2 Percolation on infinite groups: pc, pu, unimodularity, and general invari-

ant percolations
{ss.percinfty}

Now, back to the question of pc ∈ (0, 1), the lower bound of (12.1) generalizes easily: if G has maximal

degree d, then pc(G) ≥ 1/(d − 1). See Exercise 12.19 for a more general statement. However, the upper

bound relied on planar duality, hence it is certainly less robust. The straightforward generalization that

does hold is Exercise 12.20 (a).
{ex.pcfactor}

Exercise▷ 12.19. Assume that π : G′ ↠ G is a topological covering between infinite graphs, or in other

words, G is a factor graph of G′. Show that pc(G
′) ≤ pc(G).

{ex.cutsets}
Exercise▷ 12.20.

(a) Show that if in a graph G the number of minimal edge-cutsets (a subset of edges whose removal

disconnects a given vertex from infinity, minimal w.r.t. containment) of size n is at most exp(Cn)

for some C <∞, then pc(G) ≤ 1− ϵ(C) < 1.

(b) Fix o ∈ V (G) in a graph with maximal degree ∆. Prove that the number of connected sets o ∈ S ⊂
V (G) of size n is at most ∆(∆− 1)2n−3. (Hint: any S has a spanning tree, and one can go around

a tree visiting each edge twice.) Conclude that Zd, d ≥ 2, has an exponential bound on the number of

minimal cutsets. In particular, pc(Zd) < 1, although we already knew that from Z2 ⊆ Zd.

Exercise▷ 12.21. ** Let λ(G) := lim supn→∞ |{S ⊂ V (G) : o ∈ S connected, |S| = n}|1/n denote the

exponential growth rate of the number of “lattice animals”. We saw in part (b) of the previous exercise

that λ(G) ≤ (∆ − 1)2 for any graph of maximal degree ∆. What is the smallest possible upper bound

here? Kesten’s book [Kes82] has a beautiful argument proving λ(G) ≤ (∆ − 1)e: for site percolation at

p = 1/(∆ − 1), write the probability that the cluster of o is finite using lattice animals and their outer

vertex boundaries.

Now, here is a fundamental and natural conjecture on the non-triviality of pc:
{c.pc<1}

Conjecture 12.7 (Non-triviality of the percolation phase transition [BenS96c]). If G is a non-one-

dimensional graph, i.e., it satisfies an isoperimetric inequality IP1+ϵ for some ϵ > 0 (defined in Section 5.1),

then pc < 1.

This has been verified in many cases, including all known groups. (As a little philosophical exercise, the

Reader is invited to ponder what “all known groups” may mean.) We start with Cayley graphs of finitely

presented groups.
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Let G(V,E) be a bounded degree graph, and let ∂G be the set of its ends, see Section 3.1. Let

CutCon(G) be the cutset-connectivity of G: the smallest t ∈ Z+ such that any minimal edge-cutset Π

between any two elements of V (G) ∪ ∂G is t-connected in the sense that in any non-trivial partition of it

into two subsets, Π = Π1 ∪ Π2, there are ei ∈ Πi whose distance in G is at most t. In words, it is the

largest “gap” that a minimal edge-cutset can have between its elements. For instance, CutCon(Z2) = 1,

CutCon(hexagonal lattice) = 2, and CutCon(Td) = 1 for all d, despite the fact that cutsets separating a

vertex from infinity (i.e., from the set of all ends of Td) do not have bounded connectivity. We are going

to prove that if Γ is a finitely presented group, then any finitely generated Cayley graph G(Γ, S) has

CutCon(G) < ∞; the first proof [BabB99] used cohomology groups, but there is a few-line linear algebra

proof by Ádám Timár [Tim07], which we now present. As we will see, this is closely related to having an

exponential bound on the number of minimal cutsets. Timár also proved that CutCon(G) <∞ and having

an exponential bound are both quasi-isometry invariants.
{pr.CutCon}

Proposition 12.8. Note that each cycle in a graph G can be viewed as a configuration of edges, i.e., an

element of {0, 1}E(G), or even as an element of the vector space FE(G)
2 . The cycle space of G over F2 is

then the linear subspace spanned by all the cycles.

Assume that the cycles of length at most t generate the entire cycle space of G. (This is obviously the

case if G is the Cayley graph of a finitely presented group.) Then CutCon(G) ≤ t/2.

Proof. Let x, y ∈ V (G) ∪ ∂G and Π = Π1 ∪ Π2 a minimal edge cutset separating them, with a nontrivial

partition. The minimality of Π implies that each edge e ∈ Π has the property that one of the endpoints of

e is connected to x, the other endpoint to y, by paths that are disjoint from Π. Therefore, if x (or y) is an

end, we can find a vertex x′ (y′) such that there is a path between x and x′ (y and y′) in G\Π. Otherwise,

simply set x′ := x (y′ := y).

Again by the minimality of Π, there is a path Pi between x′ and y′ that avoids Π3−i, for i = 1, 2. Now

look at P1 + P2 ∈ FE(G)
2 . This is clearly in the cycle space, so, we can write P1 + P2 =

∑
c∈K c for some

finite set K of cycles of length at most t. Let K1 ⊆ K be the subset of cycles that are disjoint from Π2,

and write

θ := P1 +
∑
c∈K1

c = P2 +
∑

c∈K\K1

c .

We see from the first sum that this θ ⊂ E(G) is disjoint from Π2. But the only odd degree vertices in it are

x′ and y′, so it must contain a path from x′ to y′. That must intersect Π, but is disjoint from Π2, hence it

intersects Π1. But in the second sum, P2 is disjoint from Π1, so there must be some cycle in K \K1 that

intersects Π1. It also intersects Π2, and its length is at most t, which proves the claim.

We saw in Exercise 3.4 that an infinite group can have 1, 2, or continuum many ends. Firstly, having

two ends is equivalent to being a finite extension of Z, which implies, of course, being one-dimensional

and having pc = 1. Secondly, if Γ is a finitely presented group with one end, then the proposition says

that minimal cutsets between a vertex o and infinity have bounded connectivity. This implies that once

we fix an edge in a minimal cutset of size n, there are only exponentially many possibilities for the cutset,

by Exercise 12.20 (b). So, if we show that there is a set Sn of edges with size at most exponential in

n such that each such cutset must intersect it, then we get an exponential upper bound on the number

of such cutsets, and Exercise 12.20 (a) gives pc(G) < 1. We claim that the ball BAn(o) is a suitable

choice for Sn for A > 0 large enough. If we assume that Γ has at least quadratic volume growth, then

for any finite set K ⊂ V (G) the Coulhon-Saloff-Coste isoperimetric inequality, Theorem 5.11, says that

|∂EK| ≥ c
√
|K|, since ρ(|K|) ≤ C

√
|K|. Therefore, if the component of o in G \Π contains BAn(o), then
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|Π| ≥ c
√
|BAn(o)| ≥ c′An. So, by choosing A large enough, a cutset of size n around o must intersect

BAn(o), as desired. And Γ must indeed have volume growth at least quadratic: if it has polynomial growth,

then by Gromov’s Theorem 10.1 it is almost nilpotent, hence it has an integer growth rate that cannot be

1, because then Γ would be a finite extension of Z and it would have two ends.

We are left with the case that Γ has continuum many ends. But then it is non-amenable by Exercise 5.4.

And, for any nonamenable graph G, we have pc(G) ≤ 1/(h + 1) < 1, even without finitely presentedness

or even transitivity, as proved by [BenS96c] (or see [LyPer16, Theorem 6.24]):
{pr.nonamenexplore}

Proposition 12.9. For bond percolation on any graph G with edge Cheeger constant h > 0, we have

pc(G) ≤ 1/(h + 1) < 1. Moreover, for any p > 1/(h + 1), we have Pp[n < |C (o)| <∞ ] < exp(−cn) for

some c = c(p) > 0.

Proof. Fix an arbitrary ordering of the edges, E(G) = {e1, e2, . . . }. Explore the cluster of a fixed vertex

o by taking the first ei with an endpoint in o, examining its state, extending the cluster of o by this edge

if its open, then taking the first unexamined ei with one endpoint in the current cluster of o and the

other endpoint outside, and so on. If the full C (o) is finite, then this process stops after exploring an open

spanning tree of the cluster plus its closed boundary and possibly other closed edges between vertices in the

spanning tree. If C (o) = n, then we have found n− 1 open edges and at least |∂EC (o)| ≥ hn closed edges

in this process of examining i.i.d. Ber(p) variables. But if p > 1/(h+ 1), then this is exponentially unlikely,

by a standard large deviation estimate, say, Proposition 1.8. Furthermore, with positive probability there

is no such n, just as a biased random walk on Z might never get back to the origin.

It is not very hard to show (but needs some “stochastic domination” techniques we have not discussed

yet) that pc(G(Γ, S)) < 1 is independent of the generating set. Moreover, it is invariant under quasi-

isometries.

It is also known [LyPer16, Theorem 7.24] that any group of exponential growth has pc < 1; see

Exercise 12.23 below for an example. On the other hand, recall that groups of polynomial growth are all

almost nilpotent and hence finitely presented, see Exercise 4.3 and Section 10.1. This means that among

groups, Conjecture 12.7 remains open only for groups of intermediate growth. However, all known examples

of such groups, see Section 15.1, have Cayley graphs containing a copy of Z2, hence the conjecture holds

also for them [MuPa01].

The general Conjecture 12.7 is also known to hold for planar graphs of polynomial growth that have

an embedding into the plane without vertex accumulation points [Koz07].
{ex.LLCG}

Exercise▷ 12.22. Recall from Exercise 5.6 that the lamplighter group Γ = Z2 ≀ Z with generating set S =

{R,Rs, L, sL} is the Diestel-Leader graph DL(2, 2). Show that CutCon(DL(2, 2)) =∞.
{ex.LLpc}

Exercise▷ 12.23. Show that the lamplighter group with generating set S = {L,R, s} has pc(G(Γ, S)) < 1,

by finding a subgraph in it isomorphic to the so-called Fibonacci tree F : a directed universal cover of the

directed graph with vertices {1, 2} and edges {(12), (21), (22)}. (There are two directed covers, with root

either 1 or 2.) Find the exponential volume growth limn(log |Bn|)/n of F , and just quote the result (due

to Russ Lyons) that for periodic trees like F , this being positive implies pc(F ) < 1.

Now, the next natural question is what happens exactly at pc. For the case of regular trees, in Exer-

cises 12.11 and 12.12, and in the random walk exploration approach of Figure 12.4, we have seen several

different reasons why critical Galton-Watson processes die out. We will see in Section 12.4 that critical

percolation on nice planar lattices, such as Z2, also dies out. A main conjecture in percolation theory is

that the critical behaviour θ(pc) = 0 should hold in general:
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{c.thetapc}
Conjecture 12.10 (Continuity of the percolation phase transition [BenS96c]). On any transitive

graph with pc < 1, θ(pc) = 0.

We will show in Corollary 12.14 that θ(p) is right-continuous with the only possible discontinuity being

at p = pc, hence the conjecture is equivalent to θ(p) being continuous everywhere.

That transitivity is needed can be seen from the case of general trees:

Exercise▷ 12.24. Consider a spherically symmetric tree T where each vertex on the nth level Tn has dn ∈
{k, k + 1} children, such that limn→∞ |Tn|1/n = k, but

∑∞
n=0 k

n/|Tn| < ∞. Using the second moment

method, show that pc = 1/k and θ(pc) > 0.

There are several reasons to believe Conjecture 12.10. As we have partly seen and will partly discuss

below, it is known to hold in the extremal cases: Z2 and other planar lattices on one hand, and regular

trees and non-amenable Cayley graphs on the other. It is also known on Zd with d ≥ 19. One of the

most famous problems of statistical physics is the case of Z3 — and here one can test the conjecture

by computer simulations. Also, simple models of statistical physics tend to have a continuous phase

transition. (In physics language, the phase transition is of second order, i.e., key observables like θ(p)

are continuous but non-differentiable at pc.) However, it should be noted that the FK(p, q) random cluster

models (discussed in Section 13.1), a dependent bond percolation model whose q = 1 case is just Bernoulli

bond percolation, conjecturally have a first order (i.e., discontinuous) phase transition on the lattice Z2

for q > 4, at pc(q) =
√
q

1+
√
q . Consequently, there are probably no serious philosophical reasons why the

percolation phase transition must be continuous.

My main intuition why the conjecture should hold is the following. A general phenomenon, which will

be discussed in more detail in Section 12.5, is that infinite clusters usually inherit the rough geometric

properties of the underlying transitive graph. Of course, this should be interpreted properly: e.g., infinite

clusters at p < 1 never satisfy any IPψ with lim supx→∞ ψ(x) = ∞, since, due to randomness, there will

be arbitrary large bad pieces; nevertheless, some weaker properties, e.g., satisfying a so-called anchored

isoperimetric inequality IP ∗ψ should already be inherited (proved, for instance, on Zd for all p > pc, and on

any finitely presented Cayley graph for p close enough to 1, in [Pet08]). Now, if a transitive graph G has

an infinite cluster at some p < 1, then it also satisfies IP2, since transitive graphs of polynomial growth

are all quasi-isometric to nilpotent groups and hence have integer volume growth and isoperimetry (see

Section 5.3 and the end of Section 10.1). Assuming the above idea of inheriting geometric properties, any

infinite cluster C should also have some sort of an at least 2-dimensional structure, which, in line with

Conjecture 12.7, should ensure pc(C ) < 1. But percolation on a percolation cluster is just percolation at a

smaller value, hence this would mean that the interval of p values with an infinite cluster is open from the

right, and therefore we have θ(pc(G)) = 0.

A small issue with turning this argument into an actual proof is that an anchored isoperimetric inequality

IP ∗d with d ≥ 2, mentioned above, does not actually imply pc < 1, hence the survival of something stronger

would be needed. A much bigger issue is that it is hard to imagine how the survival of these geometric

properties at some p could be proved without such a detailed knowledge of percolation at that value that

would imply the non-existence of infinite clusters anyway. For instance, on Zd, the situation is as follows.

It is known that the half-space Zd+ = Zd−1 × Z+ satisfies pc(Zd+) = pc(Zd) and that θ(pc) = 0 holds there

[BarGN91]. Therefore, if there is an infinite cluster at pc, which must be unique by the Burton-Keane

Theorem 12.6, then it will look quite strange, something like a giant swirl: any coordinate hyperplane will
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cut it into finite pieces. This sounds crazy, but nobody has succeeded in the past decades in ruling out

this scenario.

The attentive reader may ask: how does the above intuitive “inherited geometry” argument break for

those FK(p, q) models with a discontinuous phase transition? See the end of Section 13.1 for an answer

that reveals that the FK(p, q) model should be blamed for this failure: for q > 4, the density of bonds

itself is discontinuous in the parameter p. Hence, even though at pc(q) one expects to have an infinite

cluster C that resembles Z2 well, and thus FK(1− ϵ, q) on C should have an infinite cluster for ϵ > 0 small

enough, there exists no p < pc(q) such that FK(p, q) on Z2 would stochastically dominate FK(1 − ϵ, q) on

C . Consequently, this failure for the FK model does not weaken the credibility of the argument for the

case of Bernoulli percolation.

Let us also mention that for quite a few years it was not known even on Zd whether

pT := sup{p : Ep|Co| <∞} = or < pH := pc = sup{p : θ(p) = 0} , (12.7) {e.pTpH}{e.pTpH}

where T and H are in the honor of Temperley and Hammersley. First it was proved in [AiN84, Lemma 3.1]

that EpH |Co| = ∞, even in the stronger form that limp↗pH Ep|Co| = ∞. Then pT = pH was established

independently by Menshikov [Men86] and Aizenman-Barksy [AiB87], and it is since then that simply pc

has been used universally. In fact, they did not only prove finite expectation of the cluster size below pc,

but also the exponential decay

Pp[ o←→ ∂Bn(o) ] ≤ e−nσ(p) for all p < pc . (12.8) {e.expdec}{e.expdec}

The arguments of [AiN84, AiB87] work with little modifications for all transitive graphs; see [Koz11, v1 on

arXiv] or [AntV08]. This approach is based on certain partial differential inequalities; we will give a flavor

of it in the proof of Theorem 12.29 in Section 12.4. For a full treatment of all the above results on Zd, see

[Gri99, Chapters 5 and 6].

Exercise▷ 12.25. Consider the d-ary canopy tree of Figure 14.1: infinitely many leaves on level 0, grouped

into d-tuples, each tuple having a parent on level −1, which are grouped again in d-tuples, and so on, along

infinitely many levels. Show that pT = 1/
√
d while pc = 1.

Exercise▷ 12.26. Prove using subadditivity that σ(p) := limn→∞
−1
n logPp[ o←→ ∂Bn(o) ] exists in any

transitive graph.

Let us now see in more detail for what graphs Conjecture 12.10 has actually been proved. Besides

regular trees, it is quite classical also on nice planar lattices, where even the critical value is known in

some cases, e.g., pc(Z2,bond) = pc(TG, site) = 1/2, where TG is the triangular grid — these are Kesten’s

theorems from 1980. Percolation, and more generally, statistical mechanics at criticality in the plane is

indeed a miraculous world, exhibiting conformal invariance. This field has seen amazing progress in

the past few years, due to the work of Schramm, Smirnov, and others; see Section 12.4 for a bit more

details. As an appetizer: although the value of pc for percolation is a lattice-dependent local quantity

(see Conjecture 14.18), critical percolation itself should be universal: “viewed from far”, it should look

the same and be conformally invariant on any planar lattice, even though criticality happens at different

densities. For instance, critical exponents such as θ(p) = (p− pc)5/36+o(1) as p↘ pc should always hold,

though the existence and values of such exponents are proved only for site percolation on the triangular

lattice.

Conjecture 12.10 is also known for Zd with d ≥ 19, using a perturbative Fourier-type expansion method

called the Hara-Slade lace expansion. Again, this method is good enough to calculate, e.g., θ(p) =
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(p − pc)1+o(1) as p ↘ pc. This, together with other critical exponents, are conjecturally shared by many-

many transitive graphs, namely all mean-field graphs; this should include Euclidean lattices for d > 6, all

non-amenable groups, and probably most groups “in between”. This is known only in few cases, like “highly

non-amenable” graphs (including regular trees, of course); again see Section 12.4 for more information.

The following important general theorem settles Conjecture 12.10 for all non-amenable groups. On the

other hand, the cases of Zd, with 3 ≤ d ≤ 18, and of all non-Abelian amenable groups remain wide open.
{t.BLPSpc}

Theorem 12.11 (Benjamini-Lyons-Peres-Schramm [BLPS99a, BLPS99b]). For any non-amenable Cayley

(or more generally, unimodular transitive) graph, percolation at pc dies out.

We will give a rough sketch of a proof of this theorem, but first we need to define when a transitive

graph G is called unimodular. Let Γ be the automorphism group of G, and Γx be the stabilizer of the

vertex x. Then the condition is that |Γxy| = |Γyx| for all (x, y) ∈ E(G). So, not only the graph looks the

same from all vertices, but it does not have + and − directions in which it looks different on a quantitative

level. (But different directions are still possible in a finer sense: see Exercise 12.27). A simple example of a

non-unimodular transitive graph is the grandparent graph: take a 3-regular tree, pick an end of it, and

add an edge from each vertex to its grandparent towards the fixed end. Another class of examples are the

Diestel-Leader graphs DL(k, ℓ) with k ̸= ℓ, defined just before Exercise 5.6. A more complicated example

can be found in [Tim06b].

The importance of unimodularity is the Mass Transport Principle, discovered by Olle Häggström: G is

unimodular iff for any random function f(x, y, ω), where x, y ∈ V (G) and ω ∈ Ω is the randomness, that

is diagonally invariant, i.e., f
(
γ(x), γ(y), ωγ

)
= f(x, y, ω) for any γ ∈ Aut(G), with the definition of ωγ

given before Lemma 12.4, we have ∑
y∈V

Ef(x, y, ω) =
∑
y∈V

Ef(y, x, ω). (12.9) {e.MTP}{e.MTP}

We think of f(x, y, ω) as the the mass sent from x to y when the situation is given by ω, e.g., the percolation

configuration. Then the MTP means the conservation of mass on average.

Given a non-unimodular transitive graph, one can easily construct a deterministic mass transport rule

that does not satisfy (12.9): for instance, in the grandparent graph, if every vertex sends mass 1 to each

grandchild, then the outgoing mass is 4, but the incoming mass is only 1. In the other direction, given a

unimodular graph, a simple resummation argument gives (12.9). As the simplest case, Cayley graphs do

satisfy the Mass Transport Principle (and hence are unimodular): using F (x, y) := Ef(x, y, ω), we have∑
x∈G F (o, x) =

∑
x∈G F (x−1, o) =

∑
y∈G F (y, o), where, in the first equality we used that multiplying

from the left by a group element is a graph-automorphism, and in the second equality we used that x 7→ x−1

is a self-bijection of Γ. See [LyPer16, Sections 8.1, 8.2] for more details on MTP and unimodularity.
{ex.+-}

Exercise▷ 12.27.

(a) Give an example of a unimodular transitive graph G such that there exist neighbours x, y ∈ V (G)

such that there is no graph-automorphism interchanging them.

(b) * Can you give an example with a Cayley graph?

In some sense, MTP is a weak form of averaging. Exercise 12.31 below is a good example of this. And

it is indeed weaker than usual averaging:

Exercise▷ 12.28 (Soardi-Woess 1990). Show that amenable transitive graphs are unimodular.
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A typical way of using the MTP is to show that whenever there exist some invariantly defined special

points of infinite clusters in an invariant percolation process, then there must be infinitely many in any

infinite cluster. For instance: {ex.trifurcation}
Exercise▷ 12.29. Recall the notion of a trifurcation point from the proof of the Burton-Keane Theo-

rem 12.6.

(a) In any invariant percolation process on any transitive graph G, show that the number of trifurcation

points is either almost surely 0 or ∞. (If the process is also ergodic, then either a.s. 0, or a.s. ∞.)

(b) In an invariant percolation process on a unimodular transitive graph G, show that almost surely the

number of trifurcation points in each infinite cluster is 0 or ∞.

(c) Give an invariant percolation on a non-unimodular transitive graph with infinitely many trifurcation

points a.s., but only finitely many in each infinite cluster.

The previous exercise about trifurcation points and Exercise 3.4 about ends of groups have the following

joint generalization:
{ex.perc3ends}

Exercise▷ 12.30.

(a) In an invariant percolation process on a unimodular transitive graph G, show that almost surely the

number of ends of each infinite cluster is 1 or 2 or continuum.

(b) Give an invariant percolation on a non-unimodular transitive graph that has infinite clusters with

more than two but finitely many ends.

A more quantitative use of the MTP is the following:
{ex.marginonamen}

Exercise▷ 12.31. Let ω be any invariant bond percolation on a transitive unimodular graph G. Let αK be

the average degree inside a finite subgraph K ⊂ G, and let α(G) be the supremum of αK over all finite

K. Then clearly α(G) + hE(G) = degG(o), where hE is the Cheeger constant infS |∂ES|/|S|. Show that if

E[ degω(o) ] > α(G), then ω has an infinite cluster with positive probability.

In words, since α(G) is the supremum of the average degrees in finite subgraphs, it is not surprising

that a mean degree larger than α(G) implies the existence of an infinite cluster. The MTP is needed to

pass from spatial averages to means w.r.t. invariant measures.
{ex.tree2/3margin}

Exercise▷ 12.32. The bound of Exercise 12.31 is tight: show that for the set of invariant bond percolations

on the 3-regular tree T3 without an infinite cluster, the supremum of edge-marginals is 2/3. (Hint: the

complement of the unique invariant perfect matching has density 2/3 and consists of Z components.)

Exercise 12.31 is, of course, vacuous if G is amenable. And non-amenability is in fact essential for the

conclusion that a large edge-marginal implies the existence of an infinite cluster, as can be seen from the

following two exercises:

Exercise▷ 12.33. For any ϵ > 0, give an example of an invariant bond percolation process ω on Zd with

only finite clusters a.s., but E[ degω(o) ] > 2d− ϵ.
{ex.marginamen}

Exercise▷ 12.34. Generalize the previous exercise to all amenable Cayley graphs. (Hint: close the bound-

aries of a set of randomly translated Følner sets, with a “density” high enough to ensure having only finite

clusters, but low enough to ensure high edge marginals. The statement holds not only for Cayley graphs,

but also for all amenable transitive graphs; however, for any two vertices in a Cayley graph, there is a

unique natural automorphism moving one to the other, which makes the proof a bit easier.)
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Note that Exercises 12.31 and 12.34 together give a percolation characterization of amenability, similar

to Kesten’s random walk characterization, Theorem 7.3:
{t.marginal}

Theorem 12.12 (Percolation characterization of amenability [BLPS99a]). A unimodular transitive graph

is amenable iff for any ϵ > 0 there is an invariant bond percolation ω with finite clusters only and edge-

marginal P[ e ∈ ω ] > 1− ϵ.

A related characterization can be found in Exercise 13.24. On the other hand, maybe surprisingly,

a very similar condition characterizes not non-amenability but a stronger property, Kazhdan’s (T): see

Theorem 12.19 below.

Sketch of proof of Theorem 12.11. We will base our sketch on [BLPS99b]. First of all, by the ergodicity of

Bernoulli percolation (Lemma 12.4) and by Lemma 12.5, we need to rule out the case of a unique and the

case of infinitely many infinite clusters.

Let ω ⊆ E(G) be the percolation configuration at pc, and assume it has a unique infinite cluster C∞.

For any ϵ > 0, we define a new invariant percolation ξϵ on E(G), thicker than ω in some sense and sparser

in another. For each x ∈ V (G), there is a random finite set {x∗i } of vertices that are the closest points of

C∞ to x. Choose one of them uniformly at random, denoted by x∗. Let γϵ be an independent Ber(ϵ) bond

percolation. Then let the edge (x, y) ∈ E(G) be open in ξϵ if dist(x,C∞) < 1/ϵ, dist(y,C∞) < 1/ϵ, and x∗

and y∗ are connected in ω \ γϵ. It is easy to see that limϵ→0 P[ (x, y) ∈ ξϵ ] = 1. Hence, by Exercise 12.31,

for some small enough ϵ > 0, there is an infinite cluster in ξϵ with positive probability. However, it is also

easy to check that such an infinite cluster implies the existence of an infinite cluster in ω \ γϵ. But this is

just Ber(pc − ϵ) percolation, so it has no infinite clusters a.s. — a contradiction.

Assume now that there are infinitely many infinite clusters in ω. Using insertion tolerance, they can

be glued to get infinitely many trifurcation points as in Exercise 12.29. Moreover, the same application

of MTP shows that, almost surely, if a trifurcation point is removed, then each of the resulting infinite

clusters still has infinitely many trifurcation points. Let V ⊂ V (G) denote the set of trifurcation points;

see Figure 12.6 (a). There is an obvious graph structure G on V as vertices, with an edge between two

trifurcation points if there is a path connecting them in ω that does not go through any other trifurcation

point; see Figure 12.6 (b). This graph, although not at all a subgraph of G, represents the structure of the

infinite clusters of ω well, which is a critical percolation structure; on the other hand, each component of

G is kind of tree-like, with a lot of branching. These two properties appear to point in different directions,

so we can hope to derive a contradiction. For the actual proof, we will exhibit a nonamenable spanning

forest F inside each component of G in an invariant way.

For each v ∈ V, let {Ci(v) : i = 1, . . . , jv} be the set of infinite clusters of G\{v} neighbouring v, where

jv ≥ 3. For each 1 ≤ i ≤ jv, let {wℓi : 1 ≤ ℓ ≤ ki} be the set of G-neighbours of v in Ci(v). We now use

some extra randomness: assign an i.i.d. Unif[0, 1] label to each v ∈ V, and for each v and 1 ≤ i ≤ jv, draw

an edge from v to that element of {wℓi : 1 ≤ ℓ ≤ ki} that has the smallest label. See Figure 12.6 (c). We

then forget the orientations of the edges to get F . It is not very hard to show that F has no cycles; the

Reader is invited to write a proof or look it up in [BLPS99b].

Now again let γϵ be an independent Ber(ϵ) bond percolation. Then ω \ γϵ has only finite clusters. Let

Fϵ be the following subgraph of F : if (x, y) ∈ E(F ), then (x, y) ∈ Fϵ if x and y are in the same cluster

of ω \γϵ. Clearly, Fϵ is an invariant bond percolation process on V (G), with edges usually not in E(G). It

has only finite clusters, while limϵ→∞P[ (x, y) ∈ F \Fϵ ] = 0. But each tree of F is a non-amenable tree

with minimum degree at least 3, suggesting that this cannot happen. We cannot just use Exercise 12.31,
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Figure 12.6: Constructing the graph G and forest F of trifurcation points in an infinite cluster. {f.trifurtree}

since F itself is not a transitive unimodular graph, but a similar MTP argument on the entire V (G) can

be set up to find the contradiction. We omit the details.

The above proof breaks down for non-unimodular transitive graphs. Nevertheless, Conjecture 12.10 has

been established for most such graphs in the union of [Tim06b] and [PerPS06].

We have seen around the Burton-Keane Theorem 12.6 that the number of infinite clusters in Bernoulli

percolation is a relevant question. For the non-amenable transitive case, where having infinitely many

infinite clusters is a possibility, one can define a second critical point, pu(G) := inf{p : Pp[∃! ∞ cluster] >

0}. The following theorem implies that for all p ∈ (pu, 1] there is uniqueness a.s., and for all p ∈ (pc, pu)

there is non-uniqueness. Note that there is no monotonicity that would make this obvious: as we raise p,

on the one hand, infinite clusters can merge, reducing their number, but on the other hand, new infinite

clusters could also appear by finite clusters merging. The following result says that the second case does

not occur: {t.relentless}
Theorem 12.13 (Above pc, new infinite clusters do not appear [HäPS99]). Consider the standard mono-

tone coupling of Ber(p) percolations {ωp : p ∈ [0, 1]} using Unif[0, 1] labels, on any infinite transitive graph.

Then, a.s. in this standard coupling, if p is such that ωp has an infinite cluster a.s., and p < p′, then each

infinite cluster of ωp′ contains an infinite cluster of ωp.

The original proof, which we do not discuss here, uses Invasion Percolation; see Section 13.4. There is

also a proof using the indistinguishability of infinite clusters; see Theorem 12.18 below and the paragraphs

afterwards.

Before turning to the study of pu, we give a nice application of the theorem in a different direction.

This proof was shown to me by Gady Kozma, but it is also very similar to [LyPer16, Exercise 7.33].
{c.thetacont}

Corollary 12.14. On any transitive graph, θ(p) is right-continuous at every p ∈ [0, 1] and continuous at

every point except possibly at pc.

Proof. Right-continuity follows immediately from θ(p) being a decreasing limit (as n → ∞) of the mono-

tone increasing continuous functions p 7→ Pp[ o←→ ∂Bn(o) ]. Alternatively, here is a more probabilistic

argument. In the standard coupling, let Cp be the event that Co is infinite in ωp; it is enough to show that

Cp =
⋂
q:p<q Cq. The direction ⊆ is obvious, while ⊇ follows from noticing that if |Co| <∞ in ωp, then Co

has a finite boundary, hence we can raise p a bit without changing Co at all.
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To prove left-continuity at every p > pc, take q ∈ (pc, p), and let Rpq be the distance of o from the

closest infinite cluster of ωq, with distance measured within ωp. Theorem 12.13 ensures that Rpq is finite if

and only if o is in an infinite cluster of ωp. In other words,

θ(p)− θ(q) = P[ 0 < Rpq <∞ ] . (12.10) {e.thetaR}{e.thetaR}

Furthermore, Rpq is clearly a decreasing function of q.

Now, given any ϵ > 0, if r = r(q, ϵ) is large enough, then P[ r < Rpq <∞ ] < ϵ. Given this r, if δr > 0

is small enough, then P
[
Br(o) ∩ ωp \ ωp−δr = ∅

]
> 1− ϵ. For δ := min{δr, p− q}, using the monotonicity

of Rpq , we have

P
[

0 < Rpp−δ <∞
]

= P
[

0 < Rpp−δ ≤ r
]

+ P
[
r < Rpp−δ <∞

]
≤ P

[
ωp \ ωp−δ ∩Br(o) ̸= ∅

]
+ P[ r < Rpq <∞ ]

≤ ϵ+ ϵ .

By (12.10), this shows left-continuity.

Let us note that we did not use the full power of Theorem 12.13 in this proof: instead of having it

almost surely simultaneously for all pairs p < p′, it is enough if for any pair p < p′ we have it almost surely,

since we used it only for q, p− δ, and p.

The immediate questions regarding pu are whether the intervals (pc, pu) and (pu, 1) are always non-

empty when there are no simple obstacles forbidding it, and whether there are infinitely many or only one

infinite cluster at pu itself.
{c.pcpu}

Conjecture 12.15 (The non-uniqueness phase [BenS96c]). For transitive graphs, pc < pu iff G is

non-amenable. {c.pu}
Conjecture 12.16 (The uniqueness phase [BenS96c]). For transitive non-amenable graphs with one

end, pu < 1.

Exercise▷ 12.35. Show that in a transitive graph with infinitely many ends, pu = 1.

Before discussing what is known about the non-triviality of these intervals, here is an important char-

acterization of uniqueness:
{t.uniconn}

Theorem 12.17 ([LySch99]). If ω is an ergodic insertion-tolerant invariant percolation on a unimodular

transitive graph G satisfying infx,y∈V (G) P
[
x

ω←→ y
]
> 0, then ω has a unique infinite cluster.

Conversely, if an ergodic invariant ω satisfying the FKG inequality has a unique infinite cluster, then

infx,y∈V (G) P
[
x

ω←→ y
]
> 0.

The second part is obvious: if C∞ is the unique infinite cluster of ω, then {x ∈ C∞} is an increasing

event with a positive probability p > 0 that is independent of x, hence P[x
ω←→ y ] ≥ P[x, y ∈ C∞ ] ≥ p2.

Exercise▷ 12.36. Give an example of a Ber(p) percolation on a Cayley graph G that has non-uniqueness,

but there is a sequence xn ∈ V (G) with dist(x0, xn)→∞ and infnPp[x0 ←→ xn ] > 0.

Exercise▷ 12.37. * Give an example of an ergodic uniformly insertion tolerant invariant percolation on

Z2 with a unique infinite cluster but infx,y∈Z2 P
[
x

ω←→ y
]

= 0. (Hint: you can use the ideas of [HäM09].)

Exercise▷ 12.38. Using Theorem 12.17, prove that pu(Td × Z) ≤ 1/2 for any d ≥ 2.
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The proof of the first part of Theorem 12.17 in [LySch99] uses a fundamental result from the same

paper:
{t.indist}

Theorem 12.18 (Cluster indistinguishability [LySch99]). If ω is an ergodic insertion-tolerant invariant

percolation on a unimodular transitive graph G, and A is a Borel-measurable translation-invariant set of

subgraphs of G, then either all infinite clusters of ω are in A a.s., or none.

A rough intuitive explanation of how Theorem 12.18 implies Theorem 12.17 is the following. First of all,

we want to define a “cluster density” for each infinite cluster C . In an amenable transitive graph, averaging

along Følner sets would be fine, but we cannot do that in general; instead, let us run a simple random walk

from an arbitrary fixed starting point o, and look at the relative frequency of visits to C (as a limit over

the first n steps). Using a subadditive limit argument, one can show that this limit exists for each C and is

an almost sure constant, denoted by αo(C ). Now, if we start the walk from a different vertex o′, then with

positive probability we get to o in a finite number of steps, and then the limit frequency will forget this

starting segment, hence αo′(C ) = αo(C ) with positive probability. Since these are almost sure constants, we

get that αo(C ) does not depend on o. Thus, it is an invariant quantity, and by cluster indistinguishability,

it must be the same α ∈ [0, 1] for each cluster. However, if infx,y P
[
x

ω←→ y
]

= ρ > 0, then the random

walk frequency α is clearly at least ρ (obvious in expectation, and frequency is an a.s. constant). Since the

sum of these frequencies is at most 1, there must be only finitely many infinite clusters. Then, by insertion

tolerance and ergodicity, there must be a unique one.

As promised earlier, Theorem 12.18 also easily implies Theorem 12.13 (above pc, new infinite clusters

do not appear), at least in its weak form that for any pair p < p′ it holds almost surely, as pointed out in

[LySch99]. Indeed, note that, for p < p′ and conditioned on ωp′ , the configuration ωp is just percolation on

ωp′ with density p/p′. Assuming θ(p) > 0, there must be an infinite cluster of ωp′ with θ(p/p′) > 0. But

then, by indistinguishability, every infinite ωp′ -cluster must have θ(p/p′) > 0, and hence, by Kolmogorov’s

0-1 law, every ωp′ -cluster must have an infinite ωp-cluster almost surely.

Regarding pc < pu, it was shown by Pak and Smirnova-Nagniebeda [PaSN00] that every non-amenable

group has a generating set satisfying this. Of course, this property should be independent of the generating

set taken (probably also a quasi-isometry invariant). Here is a brief explanation of what kind of Cayley

graphs make pc < pu easier. As usually, we will consider bond percolation.

In a transitive graph G, let an be the number of simple loops of length n starting (and ending) at a

given vertex o, and let γ(G) := lim supn a
1/n
n . The smaller this is, the more treelike the graph is, hence

there is hope that pu will be larger. Indeed, as proved by Schramm, see [LyPer16, Theorem 7.30],

1

γ(G)
≤ pu(G) , (12.11) {e.gammapu}{e.gammapu}

for any transitive graph G. The proof is a nice counting argument, which we outline briefly. Taking

p < p+ < 1/γ, it is enough to prove by the easy direction of Theorem 12.17 that, for o and x far away from

each other, Pp[ o←→ x ] must be small. If o←→ x at level p (in the standard coupling), then either there

are many cut-edges between them already at level p+, or there are many p+-open simple loops. In the first

scenario, keeping many (say, k) cut-edges open even at level p is exponentially costly: the probability is

(p/p+)k, conditionally on the connection at p+. But the second scenario is unlikely because there are not

enough simple loops in G: if uk(r) denotes the probability that there is some x ̸∈ Br(o) such that o and x

are p+-connected with at most k cut-edges, then u0(r)→ 0 as r →∞ because of p+ < 1/γ, and the same

can be shown for each uk(r) by induction on k, by noticing that uk+1(r) ≤ u0(s) + |Bs(o)|uk(r− s). Then,

by choosing k then r large enough, both contributions to Pp[ o←→ x ] will be small, proving (12.11).
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Now, if G is d-regular, then an/d
n ≤ pn(o, o) for SRW on G, hence

1

dG ρ(G)
≤ 1

γ(G)
, (12.12) {e.gammarho}{e.gammarho}

where ρ is the spectral radius of the SRW. On the other hand, by Proposition 12.9,

pc(G) ≤ 1

hE(G) + 1
<

1

hE(G)
=

1

dG ιE(G)
, (12.13) {e.pcrho}{e.pcrho}

where hE is the edge Cheeger constant defined using the ratios |∂ES|/|S|, while ιE is the edge Cheeger

constant of the Markov chain (the SRW), i.e., it uses the ratios C(∂ES)/π(S), as in Section 7.2. After

comparing the three displayed inequalities (12.11, 12.12, 12.13), the aim becomes to find a Cayley graph

G for which ιE is close to 1 and ρ is close to 0. Fortunately, these two aims are really the same, by the

quantitive bound ι2E/2 ≤ 1 − ρ ≤ ιE from Kesten’s Theorem 7.3. And making ρ → 0 is easy: take any

finite generating set S, for which we have some ρ(G(Γ, S)) = ρ0 < 1, then take G(Γ, Sk) for some large k,

where Sk = S · · ·S is the multiset of all possible k-wise products (i.e., we keep the multiplicities with which

group elements occur as k-wise products). The transition matrix for SRW on the resulting multigraph is

just the kth power of the original transition matrix, hence ρ(G(Γ, Sk)) = ρk0 → 0 as k → ∞, and we are

done.

It is not known if this ρ→ 0 can be achieved with generating sets without multiplicities. For instance,

would the ball BSk (1) work, given by any finite generating set S? The answer is “yes” for groups having a

free subgroup F2, or having the so-called Rapid Decay property, which includes all Gromov-hyperbolic

groups. See [PaSN00] for the (easy) proofs of these statements.

The following exercise shows that if we do not insist on adding edges in a group-invariant way (i.e., by

increasing the generating set), but still want to add them only “locally”, then we indeed can push hE close

to the degree (or in other words, can push ιE close to 1) without using multiple edges. Even the outer

vertex Cheeger constant hV := inf |∂outV S|/|S| can be close to the degree, which is of course stronger, since

|∂outV S| ≤ |∂ES| ≤ (d− 1)|S| in a d-regular graph.

Exercise▷ 12.39. Show that for any d-regular non-amenable graph G and any ϵ > 0, there exists K < ∞
such that we can add edges connecting vertices at distance at most K, such that the new graph G∗ will be d∗-

regular, no multiple edges, and ιV (G∗) := hV (G∗)/d∗ will be larger than 1− ϵ for the outer vertex Cheeger

constant. (Hint: use the wobbling paradoxical decomposition from Exercise 5.9. The Mass Transport

Principle shows that this proof cannot work in a group-invariant way.)

Exercise▷ 12.40.***

(a) Is it true that ιE(G(Γ, BSk ))/|BSk | → 1 as k →∞ for any nonamenable group Γ and the ball of radius

k in any finite generating set S?

(b) Is it true that ιV (G(Γ, BSk ))/|BSk | ̸→ 1 for any group Γ and any finite generating set S?

Possibly the best attempt so far at proving pc < pu in general is an unpublished argument of Oded

Schramm, which we discuss in Section 12.5 below, see Theorem 12.36.

There is an interpretation of pc < pu in terms of the Free and Wired Minimal Spanning Forests, see

Theorem 13.13 below.

Conjecture 12.16 on pu < 1 is known under some additional assumptions (besides being nonamenable

and having one end): CutCon(G) < ∞ (for instance, being a finitely presented Cayley graph) or being a

Kazhdan group are sufficient, see [BabB99, Tim07] or [LyPer16, Section 7.6], and [LySch99], respectively.

Here is how being Kazhdan plays a role:
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{t.Kazhdanclosure}
Theorem 12.19 ([GlW97]). A f.g. infinite group Γ is Kazhdan iff the measure µhalf on 2Γ that gives

probability half to the emptyset and probability half to all of Γ is not in the weak* closure of the Γ-invariant

ergodic probability measures on 2Γ.

In other words, for a transitive d-regular graph G(V,E) and any o ∈ V , let

δerg(G) := sup

{
Eµ
∣∣{(o, x) ∈ E : σ(x) = σ(o)}

∣∣
dG

:
ergodic invariant measures µ on σ ∈ {±1}V

with Eµσ(o) = 0

}
.

Then, a f.g. group Γ is Kazhdan iff any (or one) of its Cayley graphs G has δerg(G) < 1.

There are some natural variants of δerg(G): instead of all ergodic measures, we can take only the tail-

trivial ones (i.e., all tail events have probability 0 or 1), or only those that are factors of an i.i.d. Unif[0, 1]

process on V or E (i.e., we get σ as a measurable function f of the i.i.d. process ω, where f commutes

with the action of Γ on the configurations σ and ω). The corresponding suprema are denoted by δtt and

δfiid. Clearly, δerg(G) ≥ δtt(G) ≥ δfiid(G) (wait, not that clearly...), but are they really different? An

unpublished result of Benjy Weiss and Russ Lyons is that, for Cayley graphs, δfiid(G) < 1 is equivalent

to nonamenability. (One direction is easy: see Exercise 12.41 (a) below.) On the other hand, it is only

conjectured that δtt(G) < 1 is again equivalent to nonamenability. In general, it is a hard task to find out

what tail trivial processes are factors of some i.i.d. process. See [LyNaz11] and Section 14.2 for a bit more

on these issues. {ex.agree}
Exercise▷ 12.41.

(a) Show that δfiid(G) = 1 for any amenable transitive graph G. (Hint: have i.i.d. coin flips in large

Følner neighbourhoods vote on the σ-value of each vertex.)

(b) Show that δerg(T3) = 1. (Hint: free groups are not Kazhdan e.g. because they surject onto Z.)

Exercise▷ 12.42.***

(a) Find the value of δfiid(T3).

(b) Show that δtt(T3) < 1.

We come back now to the question of pu < 1:
{c.Kazhdanpu}

Corollary 12.20 ([LySch99]). If G is a Cayley graph of an infinite Kazhdan group Γ, then pu(G) < 1.

Moreover, at pu there is non-uniqueness.

Sketch of proof of pu < 1. Assume pu(G) = 1, and let ωp be Ber(p) percolation at some p < 1. Let ηp

be the invariant site percolation where the vertex set of each cluster of ωp is completely deleted with

probability 1/2, independently of other clusters. By Theorem 12.17, we have infx,y Pp[x←→ y ] = 0. It

is not surprising that this implies that ηp is ergodic. On the other hand, as p → 1, it is clear that ηp

converges to µhalf in the weak* topology, so Theorem 12.19 says that Γ could not be Kazhdan.

Let us also sketch a non-probabilistic proof that uses directly Definition 7.12 of being Kazhdan, instead

of the characterization Theorem 12.19. It is due to [IKT09], partly following a suggestion made in [LySch99].

Sketch of another proof of pu < 1. Let Ω = {0, 1}Γ, with the product Bernoulli measure µp with density

p. Given the right Cayley graph G(Γ, S) for a finite generating set S, and a site percolation configuration

ω ∈ Ω, let Cω be the set of its clusters, Cω(g) be the cluster of g, and ℓ2(Cω) be the Hilbert space of square
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summable real-valued sequences defined on Cω. Consider now the direct integral of these Hilbert spaces

over all ω,

H :=

∫
Ω

ℓ2(Cω) dµp(ω) , (φ,ψ)µp :=

∫
Ω

∑
C∈Cω

φ(ω,C)ψ(ω,C) dµp(ω) , for φ,ψ ∈ H .

Γ has a natural unitary (in fact, orthogonal) representation ρ onH, translating vectors by ρg(φ)(ω,C) :=

φ(ωg, g−1C) for C ∈ Cω, where ωg(h) := ω(gh); note here that g−1C ∈ Cωg , since g−1x
ωg

←→ g−1y iff

x
ω←→ y. Now, if ι ∈ H is the vector that is 1 at Cω(1) and 0 at the other clusters of ω, for each ω, then

∥ι∥µp
= 1, and

Pp[ g ←→ h ] = Pp[ C (g) = C (h) ] = (ρg(ι), ρh(ι))µp
= (ι, ρgh−1(ι))µp

.

This implies, by the way, that Pp[ g ←→ h ] is a positive definite function.

Take an ϵ > 0 smaller than the Kazhdan constant κ(Γ, S) > 0. If p is close enough to 1, then

∥ι− ρs(ι)∥µp
= 2− 2(ι, ρs(ι)) = 2Pp[ 1 ↚→ s ] < ϵ for all s ∈ S. Hence, by the Kazhdan property, there is

an invariant vector ξ ∈ H.

It is easy to see that a vector ξ is invariant under the representation ρ iff ξ(ω,C) = ξ(ωg, g−1C) for all

g ∈ Γ. On the other hand, for each ω, we have ξ(ω, ·) ∈ ℓ2(Cω), hence its maximum is attained at finitely

many clusters. Taking these clusters, we get an invariant choice of finitely many clusters. By a simple

application of the Mass Transport Principle, all of these clusters must be infinite. If there are infinitely

many infinite clusters in µp, then, by the cluster indistinguishability Theorem 12.18, there is no invariant

way to choose finitely many of them, hence we must have a unique infinite cluster instead.

Exercise▷ 12.43. Fill in the missing details in either of the above proof sketches for pu < 1 for Kazhdan

groups.

Exercise▷ 12.44 (Todor Tsankov). *** Prove pc < pu for Kazhdan groups by finding an appropriate

representation.

12.3 Percolation on finite graphs. Threshold phenomema
{ss.percfin}

The best-known example is the Erdős-Rényi random graph model G(n, p), which is just Ber(p) percolation

on the complete graph Kn. We will give a very brief introduction; see [Ja LR00] for more on random

graphs, [AloS00] for probabilistic combinatorics in general, and [KalS06] for a nice survey of influences and

threshold phenomena that we will define in a second. [Gri10] contains a bit of everything, similarly to the

present notes.

A graph property A over some vertex set V is a subset of {0, 1}V×V that is invariant under the diag-

onal action of the permutation group Sym(V ) (by diagonal action, we mean that ω(v, w)π := ω(π(v), π(w))

for any π ∈ Sym(V )), or in other words, that does not care about the labelling of the vertices. Examples

are “containing a triangle”, “being connected”, “being 3-colourable”, and so on. Such properties are most

often monotone increasing or decreasing (as defined just before Theorem 12.3). It was noticed by Erdős and

Rényi [ErdR60] that, in the G(n, p) model, monotone graph properties have a relatively sharp threshold:

there is a short interval of p values in which they become extremely likely or unlikely. (Recall from the

first page of Section 12.1 that the standard coupling implies that, for monotone properties A, the function

p 7→ Pp[A ] is monotone.) Here is a simple example:

Let X be the number of triangles contained in G(n, p) as a subgraph. Clearly, EpX =
(
n
3

)
p3, hence, if

p = p(n) = o(1/n), then Pp[X ≥ 1 ] ≤ EpX → 0. What can we say if p(n)n → ∞? We have EpX → ∞,
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but, in order to conclude that Pp[X ≥ 1 ] → 1, we also need that X is somewhat concentrated. This is

the easiest to do via the Second Moment Method: for any random variable X ≥ 0, applying Cauchy-

Schwarz to E[X ] = E[1X>0X ] gives

P[X > 0 ] ≥ (EX)2

E[X2 ]
. (12.14) {e.2MM}{e.2MM}

More generally, for t ∈ (0, 1), we have E[X ](1− t) ≤ E[1X>tEX X ], and Cauchy-Schwarz gives

P[X > tEX ] ≥ (1− t)2 (EX)2

E[X2 ]
. (12.15) {e.2MM2}{e.2MM2}

This is called sometimes the Paley-Zygmund inequality. Note that it is better than Chebyshev’s

inequality in that it gives a non-empty result even when VarX > (EX)2.

Now, back to the number of triangles, if I∆ is the indicator variable for the event that the triangle

∆ ⊂ E(Kn) is open, then I∆ and I∆′ are independent if ∆ and ∆′ do not share an edge, and

Varp[X] =
∑

∆,∆′⊂E(Kn)
triangles

Covp[I∆, I∆′ ] =
∑
∆

Varp[I∆] +
∑

|∆∩∆′|=1

Covp[I∆, I∆′ ]

=

(
n

3

)
p3(1− p3) + 2

(
n

2

)(
n− 2

2

)
(p5 − p6)

∼ n3

6
p3 +

n4

2
p5 .

Thus, for p ∼ λ/n with λ ∈ (0,∞), we have Ep[X
2 ] ≤ C(λ)(EpX)2. Moreover, limλ→∞ C(λ) = 1.

Therefore, the first moment estimate and (12.14) yield that

0 < a(λ) ≤ Pp[X ≥ 1 ] ≤ b(λ), with lim
λ→0

b(λ) = 0 and lim
λ→∞

a(λ) = 1 . (12.16) {e.triangles}{e.triangles}

The following exercise gives an example of subgraph containment where the Second Moment Method

fails. See [AloS00, Sections 4.4 and 10.1] for a thorough discussion of this phenomenon and what can one

do about it.

Exercise▷ 12.45. Let H be the following graph with 5 vertices and 7 edges: a complete graph K4 with an

extra edge from one of the four vertices to a fifth vertex. Show that if 5/7 > α > 4/6, and p = n−α, then

the expected number of copies of H in G(n, p) goes to infinity, but nevertheless the probability that there is

at least one copy goes to 0.

Here are now the exact general definitions for threshold functions (if it looks complicated, it is only

because it covers all cases in one formula):
{d.threshold}

Definition 12.21. Consider the Ber(p) product measure on the base sets [n] = {1, . . . , n}, and let An ⊆
{0, 1}[n] be a sequence of increasing events (not the empty and not the full). For t ∈ [0, 1], let pAt (n) be

the p for which Pp[An ] = t, and call pA(n) := pA1/2(n) the critical probability for A. (These exist since

p 7→ Pp[An ] is strictly increasing and continuous, equalling 0 and 1 at p = 0 and p = 1, respectively.) The

sequence A = An is said to have a threshold if

Pp(n)[An ]→

1 if p(n)
pA(n)

∨ 1−pA(n)
1−p(n) →∞ ,

0 if p(n)
pA(n)

∧ 1−pA(n)
1−p(n) → 0 .
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Furthermore, the threshold is sharp if for any ϵ > 0, we have∣∣pA1−ϵ(n)− pAϵ (n)
∣∣

pA(n) ∧ (1− pA(n))
→ 0 as n→∞ ,

and it is coarse if there are ϵ, c > 0 such that the above ratio is larger than c for all n.

Similar definitions can be made for decreasing events.

A sequence An of events will often be defined only for some subsequence nk → ∞: for instance, the

base set [nk] may stand for the vertex or the edge set of some graph Gk(Vk, Ek).

The following basic result is due to Bollobás and Thomason [BolT87] (with a different proof, using

isoperimetric considerations — we will see soon what thresholds have to do with isoperimetry):
{ex.threshold}

Exercise▷ 12.46. Prove that for any sequence monotone events A = An and any ϵ there is Cϵ < ∞ such

that
∣∣pA1−ϵ(n)− pAϵ (n)

∣∣ < Cϵ p
A
ϵ (n) ∧ (1− pA1−ϵ(n)). Conclude that every sequence of monotone events has

a threshold. (Hint: take many independent copies of a low density percolation to get success with good

probability at a larger density.)

An example that has a threshold but a very coarse one is dictatorship by the ith variable: Di := {ω :

i ∈ ω}, for some fixed i ∈ [n]. For this event, Pp[Di ] = p. A less trivial example of a coarse threshold

is the event of containing a triangle, by (12.16). We will describe an example of a sharp threshold in

Theorem 12.23

Can we tell without exact calculations how sharp the threshold of a given sequence of events is? A

short threshold interval means that Pp[A ] changes rapidly with p, hence the following result, called the

Margulis-Russo formula, is fundamental in the study of threshold phenomena: for any event A,

d

dp
Pp[A ] =

∑
i∈[n]

ĪAp (i) , which is

=
∑
i∈[n]

Pp[ i is pivotal for A ] for A increasing,
(12.17) {e.Russo}{e.Russo}

where ĪAp (i) := Pp[A | i ∈ ω ]−Pp[A | i ̸∈ ω ] is the signed influence of the variable i on A, while pivotal

means that changing the variable in a given configuration ω changes the outcome of the event. The ordinary

(unsigned) influence is just IAp (i) := Pp[ i is pivotal for A ], equalling ĪAp (i) for A increasing.

The proof of (12.17) is simple: write Pp[A ] =
∑
ω 1A(ω)Pp[ω ], compute the derivative for each term,

d

dp
Pp[A ] =

∑
ω

1A(ω)Pp[ω ]

[
|ω|1

p
− (n− |ω|) 1

1− p

]
, (12.18) {e.ddpA}{e.ddpA}

then, by monitoring that a given configuration ω ∈ A appears for what η configurations as η ∪ {i} = ω,

notice that
n∑
i=1

Pp[A | i ∈ ω ] =
∑
ω

1A(ω)Pp[ω ]

[
|ω|+ |ω|1− p

p

]
,

and similarly,
n∑
i=1

Pp[A | i ̸∈ ω ] =
∑
ω

1A(ω)Pp[ω ]

[
(n− |ω|) + (n− |ω|) p

1− p

]
,

and the difference of the last two equations is indeed equal to (12.18).

Here is a more intuitive proof that we explain, for simplicity, for increasing A. In the standard coupling

of the Ber(p) measures for p ∈ [0, 1], if we gradually raise the density from p to p+ϵ, then the increase in the
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probability of the event is exactly the probability that there is a newly opened variable that is pivotal at

that moment. Probabilities are harder to compute than expectations, hence look at the expected number

of these pivotal openings, which is∫ p+ϵ

p

Eq[ number of pivotals for A ] dq .

For very small ϵ (depending even on n, the number of bits), the probability that there is more than one bit

that has opened is very small. This implies that (1) the expectation in the integral is basically constant

on [p, p + ϵ], hence the integral is close to ϵEp[ number of pivotals for A ], and (2) this expected number

of pivotal openings is close to the probability of having any, which is exactly what we are after. Thus,

dividing by ϵ and taking limϵ→0 gives (12.17).
{ex.ctsRusso}

Exercise▷ 12.47. Let f : {0, 1}[n] −→ R be any monotone function (not necessarily Boolean), and consider

the derivatives ∇if(ω) := f(ω ∪ {i})− f(ω \ {i}). Show that

d

dp
Ep[ f ] =

∑
i∈[n]

Ep
[
|∇if |

]
.

So, by (12.17), one can prove a sharp (or coarse) threshold for some increasing A = An by showing that

the total influence IAp :=
∑
i I
A
p (i) = Ep[ number of pivotals for A ] is large (or small) for all p around

the critical density pA(n).

Exercise▷ 12.48. In the random graph G(n, p) with p = λ/n, for An = {containing a triangle}, show

directly that the expected number of pivotal edges is ≍ n (with factors depending on λ), and hence, by Russo’s

formula (12.17), the threshold window is of size pA1−ϵ(n)− pAϵ (n) ≍ 1/n, as we also saw from (12.16).

Note that IAp is the size of the edge boundary of A in {0, 1}[n], measured using Pp:

IAp =
∑

(x,y)∈∂EA
(
Pp[x] + Pp[y]

)
.

(0, 0, 0)

(1, 1, 1)

x1

x2

x3

x1

x2

x3

Figure 12.7: For majority on 3 variables, A = Maj3 :=
{
x ∈ {0, 1}3 :

∑3
i=1 xi ≥ 2

}
, each variable is pivotal

in four configurations (at the endpoints of two edges). {f.InfIsop}

Therefore, bounding the total influence from below is the same as proving isoperimetric inequalities in

the hypercube. For instance, for the uniform measure p = 1/2, the relationship between total influence

and edge boundary is IA1/2 = |∂EA|/2n−1, and the classical edge-isoperimetric inequality for the hypercube,

Exercise 5.12, becomes

IA1/2 ≥ 2P1/2[A ] log2

1

P1/2[A ]
. (12.19) {e.InfIsop}{e.InfIsop}

An easier inequality is the following Poincaré inequality (connecting isoperimetry and variance, just as in

Section 8.1):

IA1/2 ≥ 4P1/2[A ] (1−P1/2[A ]) . (12.20) {e.InfPoin}{e.InfPoin}

Also, compare these inequalities with Exercise 6.13 that uses a slightly larger “boundary”.
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{ex.InfIsop}
Exercise▷ 12.49.

(a) Prove the identity IA1/2 = |∂EA|/2n−1.
(b) Show that, among all monotone events A on [n], the total influence IA1/2 is maximized by the majority

Majn, and find the value. (Therefore, Majn has the sharpest possible threshold at p = 1/2. For general

p, but still bounded away from 0 and 1, the optimum remains similar: see (12.28).)
{ex.InfPoin}

Exercise▷ 12.50. Prove the Poincaré inequality (12.20).

Hint: Define a map from the set of pairs (ω, ω′) ∈ A×Ac into ∂EA. Alternatively, use discrete Fourier

analysis, defined very briefly as follows:

For any function f : {−1, 1}n −→ R of n bits, define the Fourier-Walsh coefficients f̂(S) :=

E1/2

[
f(ω)χS(ω)

]
, where

{
χS(ω) :=

∏
i∈S ω(i) : S ⊆ [n]

}
is an orthonormal basis w.r.t. (f, g) :=

E1/2[ fg ]. (In a slightly different language, these are the characters of the group Zn2 .) Determine the

variance Varf , and, for Boolean functions f = 1A, the total influence IA1/2 in terms of the squared coeffi-

cients f̂(S)2.

For balanced events, i.e., when P1/2[A ] = 1/2, the stronger (12.19) gives I1/2(A) ≥ 1, which is sharp,

as shown by the dictator, Di := {ω : i ∈ ω} as an event, or Di(ω) := ω(i) as a Boolean function, mentioned

above as an example of a very coarse threshold.

More generally, we have seen in Exercise 5.12 that the sets with small edge boundary depend on as few

coordinates as possible. What can be said for p ̸= 1/2? What properties have sharp thresholds? There is

an ultimate answer by Friedgut and Bourgain [FriB99]: an increasing property A has a coarse threshold

at pA iff it is local, i.e., it can be ϵ-approximated at pA by an increasing event B whose minimal elements

have size bounded by some B(ϵ). Typical examples are the events of containing a triangle or some other

fixed subgraph, either anywhere in the graph, or on a fixed subset of the bits as in a dictator event. Sharp

thresholds correspond to global properties, such as connectivity, and k-colorability for k ≥ 3. (Although

Ak := {non-k-colorable} can be enforced by having a (k + 1)-clique, the critical probability for the latter

event is much higher, hence this does not mean locality. Could there exist any local event that has a smaller

critical probability, but still has a noticeable effect on Ak? It turns out that even conditioning on a specific

k-clique to be present at the critical probability of Ak does not significantly increase the probability of

Ak, which implies that Ak cannot be approximated by bounded events.) The exact results are slightly

different in the case of graph and hypergraph properties (Friedgut) and general events (Bourgain), and we

omit them. Note that although it is easy to show locality of events that are “obviously” local, it might

be much harder to prove that something is global and hence has a sharp threshold. Therefore, it is still

useful to have more robust conditions for the quantification of how sharp a threshold is. The following is

a key theorem, which is a generalization of the p = 1/2 case proved in [KahKL88], strengthening (12.20);

see also [Tal94]:
{t.BKKKL}

Theorem 12.22 ([BouKKKL92]). For Ber(p) product measure on [n], and any nontrivial event A ⊂
{0, 1}[n], we have

IAp ≥ cPp[A ] (1−Pp[A ]) log
1

2mAp
, (12.21) {e.totalInf}{e.totalInf}

where mAp := maxi I
A
p (i). Furthermore,

mAp ≥ cPp[A ] (1−Pp[A ])
log n

n
. (12.22) {e.maxInf}{e.maxInf}

In both inequalities, c > 0 is an absolute constant.
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For instance, if we can prove for some sequence of monotone events A = An that mAp → 0 as n→∞,

uniformly in a large enough interval of p values around pA(n), then (12.21) and the Margulis-Russo formula

(12.17) show that the threshold interval is small:
∣∣pA1−ϵ(n) − pAϵ (n)

∣∣ → 0 for any ϵ > 0. Note that this

condition is going in the direction of excluding locality: a bounded set of small-influence bits usually do not

have a noticeable influence even together. Furthermore, if there is a transitive group on [n] under which An
is invariant (such as a graph property), then all the individual influences are the same, so IAp = nmAp , and

(12.22) implies that the threshold interval is at most Cϵ/ log n. We will see some applications of these ideas

in Sections 12.4 and 13.3. The proofs of these influence results, including the Friedgut-Bourgain theorem,

use Fourier analysis on the hypercube Zn2 , as defined briefly in Exercise 12.50.

Note that we have already encountered the idea that small individual influences imply a sharp threshold:

the Azuma-Hoeffding large deviation inequality for martingales of bounded increments (Proposition 1.8),

used in the concentration results of (6.8) and Exercises 6.12 and 6.13. The connections between influences,

the concentration of measure phenomenon and isoperimetric inequalities are explored in depth in [Tal94,

Tal96, Led01].

We will now discuss a sharp threshold, concerning the property most relevant from the viewpoint

of percolation. On a finite graph, instead of infinite clusters (that contain a given vertex with positive

probability), we talk about giant clusters, i.e., clusters that occupy a positive fraction of the vertices of

Gn = (Vn, En). For the Erdős-Rényi model G(n, p), the threshold for the appearance of a giant cluster is

around 1/n:
{t.giant}

Theorem 12.23 ([ErdR60,  Lucz90, Ald97]). Let Ci be the ith largest cluster in the random graph G(n, p)

with p ∼ (1 + ϵ)/n, possibly ϵ = ϵn.

(i) For n−1/3 ≪ −ϵn ≪ 1, for any j ≥ 1 fixed,

|Cj |
2ϵ−2n log(ϵ3nn)

P−→ 1 .

In particular, if ϵn < ϵ for some fixed ϵ < 0, then the size of the largest cluster is O(log n).

(ii) For ϵn = λn−1/3, where λ ∈ R is fixed, the random vector (|C1|, |C2|, . . . )/n2/3 has a non-degenerate

limiting distribution (ξ1(λ), ξ2(λ), . . . ), which can be described as follows. Consider Brownian motion

with drift λ − t at time t, or in other words, Wt := Bt + λt − t2/2. Now ξi(λ) is the ith longest

excursion of Wt −mins∈[0,t]Ws away from zero.

(iii) For n−1/3 ≪ ϵn ≪ 1, the largest cluster is

|C1|
2ϵnn

P−→ 1 ,

while, for all j ≥ 2,
|Cj |

2ϵ−2n log(ϵ3nn)

P−→ 1 .

In particular, for ϵn > ϵ > 0, there is a giant cluster, with all other components having size O(log n).

Proof for fixed ϵ. We sketch a simple proof that uses the exploration random walk that we also used earlier

for Galton-Watson trees, a relative of the Depth First Search; see Figure 12.4. A similar approach, with

explicit bounds and also handling ϵ = ϵn varying in the critical window, can be found in [NaPe10]. An even

simpler approach than ours, which uses Depth First Search directly, but yields much less, is in [KrSu13].
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So, recall the exploration process of Figure 12.4 for Galton-Watson trees, with its list of active vertices

S0 = 1 and Si+1 = Si + Xi+1 − 1. For the same process in G(n, p), the difference is that the sequence

{Xi : i ≥ 1}, the number of vertices put in the active list in each step, is not an iid sequence, but

Xi+1 ∼ Binom(n−Si− i, p). So, conditionally on Si, the increment Xi+1 is still independent of X1, . . . , Xi,

and as long as i = o(n) (which implies Si = o(n) as well, with high probability), the distribution of Xi is

still close to Poisson(1 + ϵ). More precisely, note that the number Ui of unexamined vertices after the ith

step is Ui ∼ Binom(n− 1, (1− p)i), hence

Xi+1 ∼ Binom(n− 1, (1− p)ip) , (12.23) {e.exploreXi}{e.exploreXi}

which of course is stochastically dominated by Binom(n− 1, p). Similarly, since Si + Ui + i = n,

Si ∼ Binom(n− 1, 1− (1− p)i)− i+ 1 . (12.24) {e.exploreSi}{e.exploreSi}

(i) For ϵ < 0, we get an upper bound on the size of the cluster of a given vertex from being stochastically

dominated by a GW tree with offspring distribution Binom(n − 1, p), which has a mean strictly less than

1. The probability of having total volume larger than n is exponentially small, hence the largest cluster

in G(n, p) will have a volume O(log n) by a union bound (and it is easy to see that we indeed get a lot of

clusters of this size).

(ii) For ϵ = 0, the GW exploration walk has increments of mean zero and finite variance, hence is recurrent.

The probability that it stays positive for time at least k is comparable to the probability that it gets to

height
√
k, which is ≍ 1/

√
k; see Exercise 6.18. Therefore, by stochastic domination, letting Nk :=

|{v : the cluster of v has size > k}|, we have EG(n,1/n)[Nk ] ≤ O(n/
√
k). In particular, for any sequence

k = kn ≫ n2/3, we get that

n2/3 PG(n,1/n)[Nk ≥ 1 ] ≪ EG(n,1/n)[Nk ] ≪ n2/3 , (12.25) {e.DeepTrick}{e.DeepTrick}

which implies that |C1| = O(n2/3) with probability tending to 1.

We can easily get a matching lower bound: if the exploration walk of a given vertex in G(n, 1/n) stays

positive for time o(n2/3) only, then we can start a new run of the exploration walk in the unexplored part

of the graph, with increments still close to Poisson(1), then again and again. It turns out that we can

have about n1/3 runs before we have explored so many vertices that the increments Xi start becoming

visibly smaller, and hence it is very likely that an excursion of duration at least δn2/3, which happens with

probability around n−1/3/
√
δ, will sooner or later appear among our tries. In more detail: if we denote

by Y1, . . . , Yn1/3 the i.i.d. lengths of excursions away from 0 for a random walk Z0 = 0, Z1, Z2, . . . on Z,

with i.i.d. Poisson(1) − 1 jumps, which stochastically dominate the lengths of our first n1/3 tries in the

exploration process, then, for any small κ > 0,

P[Y1 + · · ·+ Yn1/3 > Kn2/3 ] = P
[

#{1 ≤ i ≤ Kn2/3 : Zi = 0} < n1/3
]
< κ (12.26) {e.RWzeros}{e.RWzeros}

if K is large enough, independently of n. See Exercise 12.51 below for a proof. So, we can assume,

with probability at least 1 − κ, that during the first n1/3 tries in the exploration process, the number of

unexplored vertices is at least n −Kn2/3, and therefore, the downwards drift in the exploration random

walk is at most Kn−1/3 in each step. An excursion in the i.i.d. walk stays alive for at least δn2/3 steps

with probability around n−1/3/
√
δ, and conditioning on this event, it is positive with a margin at least√

δn1/3 with a uniformly positive probability (since the conditioned walk stochastically dominates the

unconditioned i.i.d. walk). In the actual exploration walk, the drift collected in δn2/3 steps is at most
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δn2/3Kn−1/3 = δKn1/3, which is less than the margin
√
δn1/3 if δ is small enough. That is, the probability

that even the actual exploration walk stays alive is still at least cn−1/3/
√
δ, with an absolute constant c > 0.

(To make this argument precise, one can couple the exploration walk with an i.i.d. walk with negative drift,

and use an exponential large deviations bound on the latter.) Hence, the overall probability that all of the

n1/3 runs fail to reach length δn2/3 is at most κ+ (1− c n−1/3/
√
δ)n

1/3

, which is small if first κ then δ are

chosen to be small, hence our claim is proved.

(iii) For ϵ > 0, the probability of survival of a Poisson(1 + ϵ) GW tree is (2 + o(1))ϵ (see Exercise 12.61

in Section 12.4). By stochastic domination and GW duality (Exercise 12.15), with probability at least

1 − (2 + o(1))ϵ, the cluster of a fixed vertex has a size that is bounded from above by a random variable

that is independent of n. How large will the cluster get if the exploration process survives this initial phase

and gets unbounded? We claim that, for any α < 2, ϵ > 0, and any sequence kn →∞,

P
[
Si > 0 for all i = kn + 1, . . . , αϵn

∣∣ Skn > 0
]

= 1− o(1) . (12.27) {e.StayingAlive}{e.StayingAlive}

Indeed, look at (12.24): using 1− (1−p)i ≥ (1+ϵ)i
n − (1+ϵ)2i2

2n2 (which follows, e.g., from inclusion-exclusion),

one can easily check that there exist δ = δα,ϵ > 0 and Iϵ ∈ N such that, for all Iϵ ≤ i ≤ αϵn, we have

1−(1−p)i > i(1+δ)/n, and hence P[Si > 0 ] ≥ 1−exp(−cα,ϵi) holds by the large deviations bound (1.11).

Then, a union bound over i = kn+ 1, . . . , αϵn implies (12.27). On the other hand, for any β > 2 and ϵ > 0,

there exists δ = δα,ϵ > 0 such that 1 − (1 − p)βϵn < βϵ − δ, hence (12.24) now implies that P[Sβϵn > 0 ]

is exponentially small in n. That is, the exploration process does not stop until (2 − o(1))ϵn vertices are

accumulated in the cluster, but then will die soon, reaching only (2 + o(1))ϵn vertices.

Summarizing, the cluster is small (independently of n) with probability at least 1− (2 + o(1))ϵ, of size

(2 + o(1))ϵn with probability (2 + o(1))ϵn, and something else with at most the remaining probability o(ϵ).

Therefore, when we explore the clusters one-by-one, the first few clusters will be small (for an approximately

Geom(2ϵ) random number of times), and then we get a cluster of size ∼ (2 + o(1))ϵn. At this point, we

are left with n′ ∼ (1 − 2ϵ)n vertices, while p = 1+ϵ
n ∼ (1+ϵ)(1−2ϵ)

n′ , which is strictly subcritical, hence the

largest cluster in the rest of the graph will be of size O(log n).

Given the above critical behaviour, it is easy to explain intuitively why the critical window is ϵ ≍ n−1/3.

At p = 1/n, the number of closed edges between any two of the large clusters of size ≍ n2/3 is ≍ n4/3. Thus,

we need to raise p by ≍ n−4/3 to see these large clusters merge, and after raising p by a large constant times

n−4/3, almost all of these clusters have joined together, giving birth to the giant cluster. Exercise 12.65

in Section 12.4 below gives one way to make this intuition precise. Furthermore, see [DinKLP11] for an

anatomy of the young giant.
{ex.RWzeros}

Exercise▷ 12.51. The goal of this exercise would be to prove the bound (12.26) above on the zeros of an

i.i.d. random walk on the integers. However, I’m still searching for the simplest approach. Meanwhile:

(a) Using P[Z2k = 0 ] ≍ 1/
√
k, which follows from the local CLT, as in [Dur10, Theorem 3.5.2], together

with the First and Second Moment Methods, prove the weaker result that there exist some κ > 0 such

that P
[

#{1 ≤ i ≤ n : Zi = 0} > κ
√
n
]
> κ, for all n.

(b) For SRW on Z, calculate explicitly the probability P[Z2k = 0 ], then use Stirling’s formula to show

that the number of zeroes up to time n, divided by
√
n has a limit distribution: the absolute value of

a standard normal variable!

(c)* Using part (a), fill in the details in the strategy outlined in [Pet09] to prove that

P
[

#{1 ≤ i ≤ n : Zi = 0} < κ
√
n
]
≍ κ ,
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for all κ ∈ (0, 1), uniformly in n.

Exercise▷ 12.52. To make sure you understand the proof above for the case ϵ > 0, explain how it is possible

that the exploration process runs for ∼ 2ϵn steps despite the fact that already after cutting off γϵn vertices,

for any γ > 1, the remaining graph is G((1− γϵ)n, 1+ϵn ), which is subcritical.

Beyond the birth of the giant cluster, another natural phase transition is connectedness, which happens

at (1 + o(1)) lnn
n , with a sharp transition. (In fact, Friedgut’s above characterization of coarse thresholds

implies that coarse thresholds can occur only at critical values of the form pc(n) ≍ n−a/b, a/b ∈ Q, not at
lnn
n .) The following exercise gives the intuition how this value arises.

Exercise▷ 12.53. Let Xλ(n) be the number of isolated vertices in the random graph G(n, λ lnn
n ).

(a) Show that EXλ(n) ∼ n1−λ as n → ∞. Deduce that, for λ > 1 fixed, with probability tending to 1

there exist no isolated vertices. For λ < 1 fixed, using the 2nd Moment Method, show that there exist

isolated vertices with probability tending to 1.

(b) Show that if α > 1−λ > 0, then the probability that there exists a union of components that has total

size between nα and n − nα is going to 0. This is an indication that isolated vertices are the main

obstacles to connectivity.

There is much beyond percolation on the complete graph Kn. The first question is the analogue of

pc < 1 for non-1-dimensional graphs:
{c.finitepc}

Conjecture 12.24 (Benjamini). Let Gn = (Vn, En) be a sequence of connected finite transitive graphs

with |Vn| → ∞ and diameter diam(Gn) = o(|Vn|/ log |Vn|). Then there is a, ϵ > 0 such that

P1−ϵ[there is a connected component of size at least a|Vn|] > ϵ

for all large enough n.

Exercise▷ 12.54. Show by example that the o(|Vn|/ log |Vn|) assumption is sharp.

The next question is the uniqueness of giant clusters.
{c.finiteunique}

Conjecture 12.25 ([AloBS04]). If Gn is a sequence of connected finite transitive graphs with |Vn| → ∞,

then for any a > 0 and ϵ > 0,

sup
p<1−ϵ

Pp[there is more than one connected component of size at least a|Vn|]→ 0

as n→∞, where Pp denotes the probability with respect to Ber(p) percolation.

Exercise▷ 12.55. Show by example that the 1− ϵ cutoff is needed.

Besides the Erdős-Rényi G(n, p), another classical example where these conjectures are known to hold

is the hypercube {0, 1}n, again with critical value (1 + o(1))/n [AjKSz82]. Furthermore, they are known

for expanders, even without transitivity [AloBS04]. The proof of Conjecture 12.25 for this case proceeds

by first showing a simple general upper bound on the average influence, somewhat complementing (12.22):

for any increasing event A ⊂ {0, 1}[n], if p ∈ (ϵ, 1 − ϵ), then ∃α = α(ϵ) such that, for a uniformly chosen

random i ∈ [n],

Pp[ i is pivotal for A ] ≤ α√
n

; (12.28) {e.pmaxInf}{e.pmaxInf}
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in other words, the total influence is always IAp = O(
√
n). (This generalizes Exercise 12.49 (b) from the

case p = 1/2.) This bound is applied to proving that there cannot be many edges whose insertion would

connect two large clusters. On the other hand, two macroscopic clusters in an expander would necessarily

produce such pivotal edges, hence there is uniqueness.

Despite the conjectured uniqueness of the giant cluster, there is a possible analogue of the non-

uniqueness phase of the non-amenable case: in the intermediate regime, the identity embedding of the

giant cluster into the original graph should have large metric distortion. (Locally we see many large clus-

ters, only later they hook up, due to the finiteness of the graph itself.) For the hypercube, the conjectured

second critical value is around 1/
√
n [AngB07].

12.4 Critical percolation: the plane, trees, scaling limits, critical exponents,

mean field theory
{ss.critperc}

Statistical mechanics systems with phase transitions are typically the most interesting at criticality, and

Bernoulli percolation is a key example for the study of critical phenomena. Critical percolation is best

understood in the plane and on tree-like (so-called mean field) graphs, where the latter is understood

broadly and vaguely: e.g., Zd for high d is locally tree-like enough and the global structure is simple

enough so that critical percolation can be understood quite well, while Gromov-hyperbolic groups are

very much tree-like globally, but presently this is not enough for a good understanding. This section will

concentrate on critical planar percolation and the case of regular trees, with a brief discussion on more

general ideas and the mean field theory.

The planar self-duality of the lattice Z2 was apparent in our proof of the upper bound in 1/3 ≤ pc(Z2) ≤
2/3. A more striking (but still very simple) consequence of this self-duality is the following:

{l.half}
Lemma 12.26. The events of having an open left-right crossing in an n × (n + 1) rectangle in Ber(1/2)

bond percolation Z2, and also in an n× n rhombus in Ber(1/2) site percolation TG both have a probability

exactly 1/2, regardless of n.

Figure 12.8: The self-duality of percolation on TG and Z2. {f.duality}

For the proof, we will need some basic deterministic planar topological results. First of all, open-

ing/closing the sites of TG is the same as colouring the faces of the hexagonal lattice white/black, so, for

better visualization, we will use the latter, as in the left hand picture of Figure 12.8. Now, it is intuitively

quite clear that, in any two-colouring, either there is a left-right white crossing, or a top-bottom black

crossing in the rhombus, exactly one of the two possibilities. (In other words, a hex game will always end

with a winner.) The fact that there cannot be both types of crossings is a discrete version of Jordan’s

curve theorem, and the fact that at least one of the crossings must occur is a discrete version of Brouwer’s
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fixed point theorem in two dimensions: any continuous map from the closed disk to itself must have a

fixed point. However, to actually prove the discrete versions (even assuming the topology theorems), some

combinatorial hacking is inevitable, as shown, e.g., by colouring the faces of Z2: if being neighbours requires

a common edge, then it can happen that neither crossing is present, while if it requires only a common

corner, then both crossings might be present at the same time.

I am not going to do the discrete hacking in full detail, but let me mention two approaches. The most

elegant one I have seen is an inductive proof via Shannon’s and Schensted’s game of Y, see [PerW10, Section

1.2.3]. A more natural approach is to use the exploration interface. Add an extra row of hexagons (an

outer boundary) to each of the four sides, the left and right rows coloured white, the top and bottom rows

coloured black; the colours of the four corner hexagons will not matter. Now start a path on the edges of

the hexagonal lattice in the lower right corner, with black hexagons on the right, white ones on the left.

One can show that this path exploring the percolation configuration cannot get stuck, and will end either

at the upper left or the lower right corner. Again, one can show that in the first case the right boundary

of the set of explored hexagons will form a black path from the top to the bottom side of the rhombus,

while, in the second case, the left boundary will form a white path from left to right, and we are done.

For bond percolation on Z2, a similar statement holds. Given a percolation configuration in the n×(n+1)

rectangle (the red bonds on the right hand picture of Figure 12.8), consider the dual (n+ 1)× n rectangle

on the dual lattice, with the dual configuration (the blue bonds): a dual edge is open iff the corresponding

primal edge was closed. Again, either there is a left-right crossing on the primal graph, or a top-bottom

crossing on the dual graph, exactly one of the two possibilities. The exploration interface now goes with

primal bonds on its left and dual bonds on its right, with the left and right sides of the rectangle fixed to

be present in the primal configuration, and the top and bottom sides fixed to be in the dual configuration.

Exercise▷ 12.56. Assuming the fact that at least one type of crossing is present in any two-colouring of

the n× n rhombus, prove Brouwer’s fixed point theorem in two dimensions.

Proof of Lemma 12.26. By the above discussion, if A is the event of a left-right primal crossing in Ber(p)

percolation, then the complement Ac is the event of a top-bottom dual crossing (on TG, primal/dual simply

mean open/closed). But, by colour-flipping and planar symmetry, we have Pp[A
c ] = P1−p[A ]. This says

that Pp[A ] + P1−p[A ] = 1, hence, for p = 1− p = 1/2, we have P1/2[A ] = 1/2, as desired.

For a physicist, the fact that at p = 1/2 there is a non-trivial event with a non-trivial probability that

is independent of the size of the system suggests that this should be the critical density pc. This intuition

becomes slightly more grounded once we know that the special domains considered in Lemma 12.26, where

percolation took place, are actually not that special:
{pr.RSW}

Proposition 12.27 (Russo-Seymour-Welsh estimates). Consider Ber(1/2) site percolation on TGη, the

triangular grid with mesh size η, represented as a black-and-white colouring of the hexagonal lattice, so that

connections are understood as white paths. We will use the notation P = Pη
1/2.

(i) Let D ⊂ C be homeomorphic to [0, 1]2, with piecewise smooth boundary, and let a, b, c, d ∈ ∂D be

the images of the corners of [0, 1]2. Then

0 < c0 < P
[
ab←→ cd in percolation on TGη inside D

]
< c1 < 1 (12.29) {e.RSWquad}{e.RSWquad}

for some ci(D, a, b, c, d) and all 0 < η < η0(D, a, b, c, d) small enough.
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(ii) Let A ⊂ C be homeomorphic to an annulus, with piecewise smooth inner and outer boundary pieces

∂1A and ∂2A. Then

0 < c0 < P
[
∂1A←→ ∂2A in percolation on TGη inside A

]
< c1 < 1 (12.30) {e.RSWannu}{e.RSWannu}

for some ci(D, a, b, c, d) and all 0 < η < η0(A) small enough.

Similar statements hold for Ber(1/2) bond percolation on Z2, with any reasonable definition of “open

crossing of a domain”.

Proof. The key special case is the existence of some s > r such that crossing an r × s rectangle in the

harder (length s) direction has a uniformly positive probability, depending only on r/s. In fact, we are

going to show the recursive inequality

P
[
LR(r, 2s)

]
≥ P

[
LR(r, s)

]2
/4 , (12.31) {e.RSWkey}{e.RSWkey}

where LR(r, s) is the left-to-right crossing event in the rectangle r×s in the horizontal (length s) direction,

and r, s are arbitrary, except that are chosen relative to the mesh η in a way that the vertical midline of

the r × 2s rectangle is an axis of symmetry of the “lattice rectangle” (i.e., the union of lattice hexagons

intersecting the rectangle), and both halves “basically” agree with the r×s lattice rectangle (the hexagons

cut into two by the midline are considered to be part of both halves). See Figure 12.9.a.

Then, since we see from Lemma 12.26 that LR(⌊
√

3n⌋η, nη) ≥ 1/2 for any n ∈ Z+, repeated applications

of (12.31) yield the positivity claim for all r, s. After this, one can easily convince themselves that gluing

open connections in overlapping rectangles via the Harris-FKG inequality implies all the claims of the

proposition. We leave the details to Exercise 12.57.

Before proving (12.31), let us note that

Pp[ LR(r, (1 + 2ϵ)r) ] ≥ Pp[ LR(r, (1 + ϵ)r) ]
3

(12.32) {e.RSWeasy}{e.RSWeasy}

holds trivially for any p ∈ [0, 1] and ϵ > 0, since left-to-right crossings in the leftmost and rightmost

r × (1 + ϵ)r subrectangles of the r × (1 + 2ϵ)r rectangle, plus an up-down crossing in the middle r × r
subsquare, together ensure LR(r, (1 + 2ϵ)r). Compared to (12.32), the main point of (12.31) is that it

handles the case s < r < 2s.

The following very simple proof of (12.31) is due to Stas Smirnov. (Anecdote: when Oded Schramm

received the proof from Smirnov, in the form of a one-page fax containing basically just (12.31) and

Figure 12.9, he considered posting the fax to the arXiv under Smirnov’s name, to make sure that everyone

gets to know this beautiful proof.)

Let D be the r × 2s lattice rectangle, with left and right halves A and B. Fixing the outer boundary

black along the top side of A and white along its left side, start an exploration interface in the upper left

corner until it hits one of the two other sides of A. The event of hitting the midline between A and B is

equivalent to LR(A): the right (white) boundary of the stopped interface will be the uppermost left-right

crossing of A (provided that a crossing exists). Condition now on this event and also on the right (white)

boundary γ of the interface. See again Figure 12.9.a. Note that the configuration in the part of A below

γ and in the entire B is independent of γ.

Now let the reflection of γ across the midline between A and B be γ̃; if γ ended at a hexagon cut into

two by the midline, then this hexagon will be in γ and not in γ̃. See Figure 12.9.b. In the subdomain of

D below γ ∪ γ̃, we can repeat the argument of Lemma 12.26, with boundary arcs γ, γ̃, β, α in a clockwise

order, where α is the bottom side of A together with the part of the left side below γ, and similarly for β
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A B

γ

γ γ̃

βα

(a)
(b)

(c)

Figure 12.9: Smirnov’s proof of RSW. Open/white denoted by yellow, closed/black denoted by blue. {f.RSW}

in B. (The possible middle hexagon on the bottom side, just below the midline, will be in β and not in α.)

Namely, there is either a white crossing between γ and β or a black crossing between γ̃ and α, exactly one of

the two possibilities. By (almost-)symmetry, we have P[ γ ←→ β ] ≥ 1/2. If the white crossing between γ

and β occurs, then, together with the white γ, we get a white crossing from the left side of A to the bottom

or right side of B. So, denoting this event by LR(|A,B⌟), we get, after averaging the conditional probability

lower bound 1/2 over all possible choices of γ, that P
[
LR(|A,B⌟)

]
≥ P

[
LR(A)

]
· 1/2. Similarly, we have

P
[
LR(⌞A,B|)

]
≥ P

[
LR(B)

]
· 1/2. Since β and its reflection intersect only in at most one hexagon,

the intersection of the events LR(|A,B⌟) and LR(⌞A,B|) implies LR(D), see Figure 12.9.c. So, by the

FKG-Harris inequality,

P
[
LR(D)

]
≥ P

[
LR(|A,B⌟) ∩ LR(⌞A,B|)

]
≥ P

[
LR(A)

]
P
[
LR(B)

]
/4,

which is just (12.31). The next exercise finishes the proof.

{ex.RSWfin}
Exercise▷ 12.57. Using (12.31), complete the proofs of (i) and (ii) of the proposition, and explain what to

change so that the proof works for bond percolation on Z2, too.

There are several other proofs of Proposition 12.27, which is important, since they generalize in different

ways. The above proof used the symmetry between primal and dual percolation, and hence pc = 1− pc, in

a crucial way. Nevertheless, the result is also known, e.g., for critical site percolation on Z2; in particular,

θ(pc) = 0 is known there. One symmetry is still needed there: there is no difference between horizontal

and vertical primal crossings, since the lattice has that non-trivial symmetry. One of the most general such

results is [GriMan11]. It is also important that on such nice lattices, a joint generalization of (12.31) and

(12.32) holds, even in a stronger form [Gri99, Lemma 11.73]: for all p,

Pp

[
LR(r, ℓr)

]
≥ fℓ

(
Pp

[
LR(r)

])
, with fℓ(x) ≥ c(ℓ)x and lim

x→1
fℓ(x) = 1 . (12.33) {e.RSWpkey}{e.RSWpkey}

Some people (including Grimmett) call Proposition 12.27 the “box-crossing lemma”, and (12.31) or (12.33)

the “RSW-inequality”.

As we mentioned above, these RSW estimates are the sign of criticality. For instance, they imply the

following polynomial decay, which means that p = 1/2 is neither very subcritical nor supercritical:
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{ex.1arm}
Exercise▷ 12.58. Show that for p = 1/2 site percolation on TG or bond percolation on Z2, for the one-arm

probability α1(r,R) := P[ ∂Br(o)←→ ∂BR(o) ] and α1(n) := P[ 0←→ ∂Bn(o) ], we have the following

quasi-multiplicativity and polynomial decay:

(a) there exists c > 0 such that, for any radii ρ ≤ r/2 < 2r < R,

c α1(ρ, r)α1(r,R) ≤ α1(ρ,R) ≤ α1(ρ, r)α1(r,R) ; (12.34) {e.qmulti}{e.qmulti}

(b) there exist constants ci, αi such that

c1 n
−α1 ≤ α1(n) ≤ c2 n−α2 . (12.35) {e.1armpoly}{e.1armpoly}

However, more work was needed to fully establish the natural conjecture:
{t.HarrisKesten}

Theorem 12.28 (Harris-Kesten theorem [Har60],[Kes80]). pc(Z2,bond) = pc(TG, site) = 1/2. Moreover,

θ(pc) = 0.

Sketch of proof. The simpler direction is pc ≥ 1/2: the RSW estimates in annuli, part (ii) of Proposi-

tion 12.27, imply that the probability of connected to a large distance goes to zero (12.35), hence θ(1/2) = 0.

However, Harris did not have the RSW estimates available, hence followed a different route. If there is

an infinite white cluster on TG at p = 1/2 a.s., then, by symmetry, there is also an infinite black cluster.

We know from Theorem 12.6 that there is a unique white and a unique black infinite cluster. Given the

insertion and deletion tolerance and the FKG property, it is pretty hard to imagine that a unique infinite

white cluster can exist and still leave space for the infinite black cluster, so this really should not happen.

The simplest realization of this idea is due to Yu Zhang (1988, unpublished), as follows.

N

E

S

W

?

Figure 12.10: Zhang’s argument for the impossibility of θ(1/2) > 0. {f.Zhang}

Let Ci(n) for i ∈ {N,E,S,W} be the event that the North, East, South, West side of the n × n box

B(n) is connected to infinity within R2 \ B(n), respectively. Also, let Di(n) be the same events in the

dual percolation. Assuming θ(1/2) > 0, the box B(n) will intersect the infinite cluster for n large enough,

hence, using the FKG-inequality, we have

P
[
Ci(n)c

]4 ≤ P
[ ⋂
i∈{N,E,S,W}

Ci(n)c
]
→ 0 as n→∞ ,
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and the same for Di(n). Therefore,

P
[ ⋂
i∈{N,E,S,W}

Ci(n) ∩ Di(n)
]
> 0

for n large enough. However, this event, together with the uniqueness of both the primal and the dual

infinite cluster, is impossible due to planar topology. See Figure 12.10.

For the direction pc ≤ 1/2, the key idea is that at p = 1/2 we already have that large boxes are crossed

with positive probability (the RSW lemma), hence, with a bit of experience with the sharp threshold

phenomena in critical systems, discussed in Section 12.3, it seems plausible that by raising the density

to any 1/2 + ϵ, the probability of crossings in very large boxes will be very close to 1. Indeed, this can

be proved in several ways. Kesten, in order to use the Margulis-Russo formula (12.17), first of all proved

that E1/2[ |Piv(n)| ] ≥ c log n, where Piv(n) is the set of pivotal bits for the left-right crossing of the n× n
square. This is not surprising: it is easy to prove using RSW and two exploration paths that there is a

pivotal point with positive probability, at distance at least n/4, say, from the boundary of the square, and

then one can use RSW in dyadic annuli around that first pivotal point to produce logarithmically many

pivotals with high conditional probability. See Figure 12.11 and Exercise 12.59.
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Figure 12.11: Producing c log n pivotals in an n-box with positive probability. {f.logpiv}

{ex.logpiv}
Exercise▷ 12.59.

(a) Show that there is at least one pivotal for LR(n) with a uniformly positive probability. (Hint: using

an exploration path, find the topmost crossing if it exists, then make sure that there are no further

disjoint crossings by using another exploration.)

(b) Modify the previous part to show that there are pivotals and all of them are at least distance n/4 from

the boundary with positive probability. (Hint: guide the exploration paths using crossings of the right

colors.)

(c) Produce logarithmically many pivotals with positive probability. (Hint: look at Figure 12.11.)

In fact, the same proof, just inside the n × 2n rectangle instead of a square, shows that assuming

only that p satisfies 1 − ϵ > Pp[ LR(n, 2n) ] > ϵ, and using the easy RSW estimate (12.32), we still get

Ep[ |Piv(n, 2n)| ] ≥ c(ϵ) log n. Therefore, by the Margulis-Russo formula, d
dpPp[ LR(n, 2n) ] ≥ c(ϵ) log n

for all p with 1 − ϵ > Pp[ LR(n, 2n) ] > ϵ, which means that the size of this ϵ-threshold interval for
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LR(n, 2n) must be at most C(ϵ)/ log n. On the other hand, the hard RSW estimate (12.31) tells us that

P1/2[ LR(n, 2n) ] > c > 0 with a uniform c > 0. Therefore, for all ϵ, δ > 0, if n > nϵ,δ, then we have

P1/2+δ[ LR(n, 2n) ] > 1− ϵ . (12.36) {e.epsdelta}{e.epsdelta}

A slightly different route to arrive at the same conclusion, with less percolation-specific arguments but

with more sharp threshold technology, noticed by [BolR06], is to use the BKKKL Theorem 12.22 instead

of the Margulis-Russo formula. Then we need to bound only the maximal influence m
LR(n)
p that any bit

might have on the event LR(n). Well, if a bit is pivotal, then it has the alternating 4-arm event to the sides

of the n × n square. Wherever the bit is located, at least one of these primal and one of these dual arms

is of length n/2, hence

mLR(n)
p ≤ Pp

[
0←→ ∂B(n/2)

]
∧P1−p

[
0←→ ∂B(n/2)

]
≤ c2 n

−α2 for all p ,

by Exercise 12.58. Then part (12.21) of Theorem 12.22 shows that the ϵ-threshold interval for LR(n) is at

most C(ϵ)/ log n, and then we get (12.36) again.

Now, the highly probable large crossings given by (12.36) can be combined using the FKG property and

a simple renormalization idea to produce long connections. Namely, take a tiling of the infinite lattice

by n × n boxes, giving a grid Gn isomorphic to Z2 (with the n-boxes as vertices and with the obvious

neighbouring relation), and define the following dependent bond percolation process on Gn: declare the

edge between two boxes open if the n × 2n or 2n × n rectangle given by the union of these two boxes is

crossed in the long direction and each box is crossed in the orthogonal direction. See Figure 12.12.

n

{

Figure 12.12: Supercritical renormalization: bond percolation on the grid Gn of n-boxes. {f.renorm}

The probability of each edge of Gn to be open is larger than 1− δ if n is large enough, and if two edges

do not share an endpoint, then their states are independent of each other. Therefore, a small variation on

the Peierls contour argument used in the proof of (12.1) applies: by taking every other edge along a dual

circuit of length n, the probability that this contour is completely closed (i.e., dual-open) is at most δn/2.

If δ < 1/9, then this exponentially small probability beats the exponential number n3n of dual circuits,

and we get the existence of an infinite cluster in the renormalized percolation process. This implies the

existence of an infinite cluster also in the original percolation, and finishes the proof of θ(1/2 + ϵ) > 0.

At criticality, there are large finite clusters (for instance, by Exercise 12.58), but there is no infinite one.

It is tempting to try to define a “just-infinite cluster” at pc. Two natural ideas are to hope that the condi-

tional measures Ppc [ · | 0←→ ∂Bn(o) ] have a weak limit as n→∞, or that the measures Pp[ · | 0←→∞ ]
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have a weak limit as p↘ pc. It was indeed proved in [Kes86] that both limits exist, and they are equal; this

measure is called Kesten’s Incipient Infinite Cluster or the IIC. The proof was recently streamlined

and generalized in [BasS17]; we suggest that the interested reader reads that short paper. It was later

shown by Kesten’s PhD student Antal Járai that many other natural definitions also yield the same mea-

sure [Jár03]. Also, see [HamPS15] for a way to produce the IIC from dynamical percolation (where bits are

switching between open and closed independently, using Poisson clocks): it is the law of the configuration

at a “typical time” when the cluster of the origin is infinite. Such exceptional times exist at pc on Z2 and

the triangular lattice [SchrSt10, GarPS10a], but not in high dimensions and regular trees [HäPSt97].

Exercise▷ 12.60.

(a) Show that the “conditional FKG-inequality” does not hold: find three increasing events A,B,C in

some Ber(p) product measure space such that Pp[AB | C ] < Pp[A | C ]Pp[B | C ].

(b) Show that the conditional FKG-inequality would imply that Pp[ · | 0←→ ∂Bn+1(o) ] stochastically

dominates Pp[ · | 0←→ ∂Bn(o) ] restricted to any box Bm(0) with m < n. (However, this monotonic-

ity is not known and might be false, and hence it was proved without relying on it that, for p = pc(Z2),

these measures have a weak limit as n→∞, the IIC.)

Here will come a very short intro to the miraculous world of statistical mechanics in the plane at critical-

ity, see [Wer07, Wer04, Schr07]. Very briefly, the main point is that many such models have conformally

invariant scaling limits: the classical example is that simple random walk on any planar lattice converges

after suitable rescaling to the conformally invariant planar Brownian motion (Paul Lévy, 1948). Similar

results hold or should hold for the uniform spanning tree, the loop-erased random walk, critical percolation,

critical Ising model, the self-avoding walk (the n→∞ limit of the uniform measures on self-avoiding walks

of length n), domino tilings (the uniform measure on perfect matchings), the Gaussian Free Field (the

“canonical” random height function), and the FK random-cluster models. For instance, for percolation,

although the value of pc is a lattice-dependent local quantity (see Conjecture 14.18), critical percolation

itself should be universal: “viewed from far”, it should look the same and be conformally invariant on any

planar lattice, even though criticality happens at different densities. However, the existence and conformal

invariance of a critical percolation scaling limit has been proved so far only for site percolation on the

triangular lattice, by Stas Smirnov (2001); there is some small combinatorial miracle there that makes

the proof work. On the other hand, Oded Schramm noticed in 1999 that using the conformal invariance

and the Markov property inherent in such random models, many questions can be translated (via the

Stochastic Löwner Evolution) to Itô calculus questions driven by a one-dimensional Brownian motion.

The methods developed in the last decade are good enough to attack the popular percolation questions

regarding critical exponents (presently proved for site percolation on the triangular lattice): the one-arm

exponent is

α1(n) := P[ 0←→ ∂Bn(0) ] = n−ρ1+o(1), with ρ1 = 5/48 ,

the alternating four-arm (or pivotality) exponent is

α4(n) := P




= n−ρ4+o(1), with ρ4 = 5/4 ,
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and the near-critical percolation probability satisfies

θ(p) = (p− pc)β+o(1), as p↘ pc, with β = 5/36 .

There is a striking relation between these three exponents:

β = 5/36 = 5/48× 1

2− 5/4
=

ρ1
2− ρ4

. (12.37) {e.KestenScaling1}{e.KestenScaling1}

This is Kesten’s near-critical scaling relation [Kes87], which he proved long before the existence and

the values of these exponents were verified. Let us explain very briefly the reasons for this relation.

The first step is that

Epc |Piv(n)| ≍ n2α4(n) = n3/4+o(1) (12.38) {e.piv}{e.piv}

holds, whose proof uses two facts: 1) For most vertices in the n× n square, being pivotal, i.e., having the

four alternating arms to the correct boundary pieces, is basically equivalent, up to constant probability

factors, to having four alternating arms to a distance comparable to n, whose probability is comparable to

α4(n). This is a generalization of the quasi-multiplicativity relation (12.34), and is proved using RSW and

FKG technology, but is far from being trivial, since the alternating 4-arm event is not a monotone event.

2) Close to the boundary, the probability of being pivotal starts being different, but it is not actually larger

than in the bulk, and there are much fewer such vertices, hence their contribution to the expectation is

negligible.

The second step is that (12.38) suggests, via the Margulis-Russo formula (12.17), that the critical

window for the left-right crossing event should be around n−3/4. This assumes that Ep|Piv(n)| remains

close to Epc |Piv(n)| in the entire critical window, i.e., that αp4(n) satisfies near-critical stability. This

stability result relies on the observation that the pivotality of a vertex y for the alternating 4-arm event

around x is equivalent up to constant probability factors to having the alternating 4-arm event not only

around x but also around y, and hence Ep|Piv(n)| governs not only the change in Pp[ LR(n) ], but also the

change in αp4(n). Indeed, taking absolute values in the Margulis-Russo formula (12.17) for non-monotone

events, and using that quasi-multiplicativity holds in the entire near-critical window
(
pϵLR(n), p

1−ϵ
LR(n)

)
, with

quasi-multiplicativity factors depending on ϵ, we obtain∣∣∣∣ ddpαp4(n)

∣∣∣∣ ≤ Cϵ n2 αp4(n)2 .

Dividing by αp4(n) and integrating from pϵ to any p ∈
(
pϵ, p1−ϵ

)
, we arrive at∣∣ logαp4(n)− logαp

ϵ

4 (n)
∣∣ ≤ Cϵ(Pp[ LR(n) ]−Ppϵ [ LR(n) ]

)
≤ Cϵ ,

or e−Cϵ ≤ αp4(n)/αp
ϵ

4 (n) ≤ eCϵ , which is the desired stability result. Moreover, since the change in any

k-arm probability αpk(n) is also governed by Ep|Piv(n)|, we obtain near-critical stability for them, as well

(in particular, for k = 1).

This near-critical window of size n−3/4+o(1) means that, at pc + ϵ, squares of size larger than ϵ−4/3+o(1)

are already very well connected, while in squares of size n ≪ ϵ−4/3+o(1), since ϵ ≪ n−3/4+o(1), crossing

probabilities are still very close to their critical values, hence the configuration looks critical (including the

stability of arm-exponents). This characteristic scale L(ϵ) = ϵ−4/3+o(1) is usually called the correlation

length. Now the point is that

Ppc+ϵ[ 0←→∞ ] ≍ Ppc+ϵ[ 0←→ ∂Bϵ−4/3+o(1)(0) ] = α1(ϵ−4/3+o(1)) = ϵ5/36+o(1) , (12.39) {e.KestenScaling2}{e.KestenScaling2}
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giving Kesten’s scaling relation (12.37).

Obviously, there were a few leaps of faith in this sketch, but we wanted to draw attention to the

fact that near-critical exponents can sometimes be derived from critical ones. A more robust version of

this argument, which does not use the Margulis-Russo formula, and can thus be generalized to Poissonian

dynamics other than just monotonically changing p, and even to non-product measures such as the FK(p, q)

random cluster measures of Section 13.1, is given in [GarPS13b]. Despite this robustness, Kesten’s scaling

relation turns out to be false for the FK random cluster measures [DuCGP13]. The reason is that changing

p around pc in those models turns out to be not at all a Poissonian dynamics; instead, in any monotone

coupling (analogous to the standard coupling of percolation, which was Poissonian in that case), new

edges appear in a fascinating self-organized way that reduces the near-critical window compared to what

we would guess from the number of pivotals at criticality. See the end of Section 13.1, around (13.12), for

a brief description of how such monotone couplings can be constructed and what they look like.

It is much easier to understand critical and near-critical behaviour of percolation on regular trees.
{ex.treebeta}

Exercise▷ 12.61. Using any of the three methods introduced in Section 12.1 to show the critical mean

offspring for Galton-Watson trees, show that on a regular tree Td, d ≥ 3, we have θ(p) ≍ p− pc as p↘ pc.

In more detail:

(a) Bound the location of the smaller solution of f(s) = s, where f(s) is the generating function of the

offspring distribution Binom(d, 1/d+ ϵ). See Exercise 12.11.

(b) Refine the first and second moment methods of Exercise 12.12. (Hint for the upper bound: since

Epc+ϵ[Z1/ϵ ] ≍ 1, a bound θ(pc+ϵ)≫ ϵ would imply that Epc+ϵ[Z1/ϵ | Z1/ϵ > 0 ]≪ 1/ϵ. On the other

hand, the recursive nature of the tree and θ(pc + ϵ)≫ ϵ would imply Epc+ϵ[Z1/ϵ | Z1/ϵ > 0 ]≫ 1/ϵ.)

(c) Use the exploration random walk of Figure 12.4 and martingale considerations as in Exercise 6.15.

(Actually, since following that exercise, we will want to find an 0 < r ̸= 1 such that E[ rBinom(d,1/d+ϵ) ] =

1, this solution at the end is quite similar to the one in part (a).)

The structure of critical GW trees is the easiest to understand in the following special case:
{ex.GWcontour}

Exercise▷ 12.62. Let T be the GW tree with offspring distribution ξ ∼ Geom(1/2)− 1. Draw the tree into

the plane with root ρ, add an extra vertex ρ′ and an edge (ρ, ρ′), and walk around the tree, starting from ρ′,

going through each “corner” of the tree once, through each edge twice (once on each side). At each corner

visited, consider the graph distance from ρ′: let this be process be {Xt}2nt=0, which is positive everywhere

except at t = 0, 2n, where n is the number of vertices of the original tree T .

Figure 12.13: The contour walk around a tree. {f.GWcontour}

(a) Using the memoryless property of Geom(1/2), show that {Xt} is SRW on Z.
(b) Show that P[T has height ≥ n] (i.e., the one-arm probability α1(n)) is 1/n.
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(c) Show that, conditioning T to have height at least n, with high probability the height will be around n

and the total volume will be around n2, where “around” means “up to constant factors”.

For general offspring distribution, the task is a bit harder, but far from impossible:

Exercise▷ 12.63. * Prove that, for any critical GW tree with offspring distribution having a variance {ex.tree1arm}
σ2 ∈ (0,∞), the one-arm probability is α1(n) := P[T has height ≥ n] ≍ 1/n, with factors depending on σ.

Choose one of the following strategies:

(a) Estimate the probability P[Zn > 0 ] = f◦n(0) using the generating function f(s) of (12.3).

(b) Compare the height of the tree with the maximum of the exploration random walk defined around

Figure 12.4, and use Exercise 6.18.

For a general critical GW tree with offspring variance σ2 ∈ (0,∞), the contour walk of Figure 12.13

does not have independent increments. Nevertheless, generalizing Exercise 12.62, it was proved by David

Aldous that, conditioning the tree to have volume n, the contour walk with the usual space-time scaling

converges to a Brownian excursion. In other words, the conditioned GW tree, as a metric space, converges

in law in the Gromov-Hausdorff topology of metric spaces to the tree defined by a Brownian excursion,

called Aldous’ Continuum Random Tree [Ald91].

Exercise▷ 12.64.* Consider critical percolation on Td. In Exercise 12.61, we found the off-critical expo- {ex.treeKesten}
nent β = 1, while in Exercise 12.63, we found the one-arm exponent to be ρ1 = 1. Can you relate these two

exponents to each other, similarly to Kesten’s scaling relation for critical planar percolation, (12.37,12.39)?

Exercise▷ 12.65. * A task similar to the previous exercise is to prove for the Erdős-Rényi random graph {ex.giantwindow}
G(n, p) that the critical window where the volumes of the largest clusters are all comparable to n2/3 is

p = (1 + λn−1/3)/n, λ ∈ (−∞,∞). See Theorem 12.23.

Conjecture 12.10 is open for Zd with 3 ≤ d ≤ 18, and all non-Abelian amenable groups. For Zd with

d ≥ 19, a perturbative Fourier-type expansion method called the Hara-Slade lace expansion works, see

[Sla06]. Again, this method is good enough to calculate critical exponents, e.g., θ(p) ≍ p − pc as p ↘ pc,

which are conjecturally shared by many-many transitive graphs, namely all mean-field graphs; this should

include Euclidean lattices for d > 6, all non-amenable groups, and probably most groups “in between”.

This is very much open, partly due to the problem that lace expansion works best with Fourier analysis,

which does not really exist outside Zd. The method relates Fourier expansions of percolation (or self-

avoiding walk, etc.) quantities to those of simple random walk quantities, and if we know everything about

Green’s function, we can understand how percolation, etc., behaves. (One paper when it is done entirely

in ”x-space”, without Fourier, is [HarvdHS03].) The method also identifies that the scaling limit should

be the Integrated Super-Brownian Excursion on Rd, but does not actually prove the existence of any

scaling limit. A readable simple introduction to this scaling limit object is [Sla02].

We have seen that the tree Td plays the role of the extremal example among d-regular transitive graphs

in several different settings: it minimizes the spectral radius, maximizes the speed of SRW, minimizes

the value of pc. This is also the case with critical exponents: the mean field exponents are typically the

extremal ones. For instance, we have the following result:
{t.thetalin}

Theorem 12.29. For percolation on any infinite transitive graph G, assuming that pc < 1 − δ for some

δ > 0, one has

θ(p)− θ(pc) ≥ c(δ)(p− pc) , for all p > pc .

In particular, the near-critical exponent β, whenever exists, is at most 1.
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For the case θ(pc) = 0, this is a byproduct of the Aizenman-Barsky method of partial differential

inequalities [AiB87] that was developed to prove pT = pH , defined in (12.7); see [Gri99, Theorem 5.48]. It

was also proved earlier, but with a small gap, in [ChCh86], using a simpler differential inequality. These

references consider percolation on Zd only, but the arguments work for any transitive graph with small

modifications. Furthermore, Menshikov’s proof of pT = pH also implies this result, even without the

assumption θ(pc) = 0, but only for transitive graphs of subexponential volume growth; see [Men86] or

[Gri99, Theorem 5.8]. The proof we give here is basically due to Gady Kozma (personal communication);

it is a simpler, more general, but weaker version of the Aizenman-Barsky approach. Finally, let us mention

that the condition pc < 1−δ should in fact be vacuous: as we will explain after Schramm’s Conjecture 14.18

on the locality of pc, the value 1 seems to be an isolated point in the set of values for pc for all transitive

infinite graphs.

Proof. We first of all claim that

Pp[n < |Co| <∞ ]→ 0 as n→∞, uniformly in any compact subinterval of (pc, 1]. (12.40) {e.NoLargeFinite}{e.NoLargeFinite}

Indeed, pointwise converging continuous functions on a compact interval converge uniformly, and both

assumptions are satisfied here: convergence holds for any given p, because {n < |Co|} ↗ {|C∞| = ∞};
on the other hand, Pp[n < |Co| <∞ ] is continuous in (pc, 1] for any given n, because we know from

Corollary 12.14 that θ(p) is continuous in this interval, and Pp[n < |Co| ] is clearly continuous, being a

polynomial in p.

Now we introduce a new variable beside p, analogous to an external magnetic field in the Ising model.

Color each vertex of G green with probability γ ∈ [0, 1), let G be the set of green vertices, and let

θ(p, γ) :=

Pp,γ

[
Co ∩ G ̸= ∅

]
if γ > 0 ,

θ(p) if γ = 0 .

It is easy to see that limγ↘0 θ(p, γ) = θ(p), hence this is a reasonable definition, and one should think of

green vertices as being connected directly to infinity.

To be absolutely precise in what follows, we should work with finite approximations θN (p, γ) that look

only at Co ∩ BN (o). These are polynomials hence smooth, and thus can be manipulated without worries;

on the other hand, they are so close to θ(p, γ) that the differentiability of that follows in both variables,

with the derivatives of θN converging to those of θ. These technicalities are detailed in [Gri99, Appendix

I], and we will ignore them here.

Now, for θ = θ(p, γ), we have the differential inequality

θ ≤ Pp,γ

[
|Co ∩ G| = 1

]
+ θ2 + θp

∂θ

∂p
. (12.41) {e.greendiffineq}{e.greendiffineq}

The first term is self-explanatory. The second term is an upper bound by the BK-inequality on the

probability that there exist two open paths from o to G that are disjoint except for o; in other words,

that the event {Co ∩ G ̸= ∅} holds but there is no pivotal edge for it. Finally, the third term is an upper

bound on the probability there is a pivotal edge. Here is a vague intuitive explanation for this bound. By

Russo’s formula (12.17), the expected number of pivotals is ∂θ
∂p . This is of course an upper bound on the

probability that there exists any, but we want to improve on this by putting in the factor θ (the factor of p

will be irrelevant to us). If there exist pivotal edges, then there is a linear ordering of them, {(xi, yi)}ti=1,

such that each xj lies on all the open paths from yj to o, and each (xi, yi), for i < j, lies on all the open
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paths from xj to o. Thus (xt, yt) may be called the “last pivotal edge”, and yt has two disjoint open paths

to G. But now it is quite natural that we need to collect at least about 1/θ pivotals before one of them

succeeds in sending a second open path to G — boosting the expected number of pivotals, as desired. An

actual proof can be found in [AiB87] or [Gri99, Section 5.3], using a decomposition along the possibilities

for the last pivotal edge (xt, yt).

A much simpler inequality is that, for p < 1− δ/2,

θ ≤ C(δ)
∂θ

∂p
. (12.42) {e.thetaderiv}{e.thetaderiv}

As before, ∂θ/∂p is the expected number of pivotal edges. But if we have a configuration where Co contains

a green site (which happens with probability θ), then we can make a local modification around o — closing

all edges but one — and get a configuration with at least one pivotal edge.

Now take any ϵ ∈ (0, δ/2). If γ is sufficiently close to 0, we easily get from (12.40) that the first term

on the right side of (12.41) is smaller than θ/2 for all p ∈ [pc + ϵ/2, pc + ϵ]. Rearranging, dividing by θ,

then using (12.42), we get

1/2 ≤ (C(δ) + p)
∂θ

∂p
.

This implies that θ(pc + ϵ, γ) ≥ θ(pc, γ) + cϵ, with c independent of γ. Taking γ to zero proves the

theorem.

Mean-field criticality has been proved without lace expansion in some non-amenable cases other than

regular trees: for “highly non-amenable graphs” [PaSN00, Scho01], for groups with infinitely many ends

and for planar transitive non-amenable graphs with one end [Scho02], and for a direct product of two trees

[Koz11]. For tree-like graphs even pc can be computed in many cases, using multi-type branching processes

[Špa09]. However, for these non-amenable cases it is not clear what the scaling limit should be: it still

probably should be Integrated Super-Brownian Excursion, but on what object? Some sort of scaling limit

of Cayley graphs, a bit similarly to how Rd arises from Zd, is the construction of asymptotic cones; in

particular, Mark Sapir conjectures [Sap07] that if two groups have isometric asymptotic cones, then they

have the same critical exponents. An issue regarding the use of asymptotic cones in probability theory was

pointed out by Itai Benjamini [Ben08]: the asymptotic cone of Zd is Rd with the ℓ1-metric, while the scaling

limits of interesting stochastic processes are usually rotationally invariant, hence the ℓ2-distance should be

more relevant. A possible solution Benjamini suggested was to consider somehow random geodesics in the

definition of the asymptotic cone; for instance, a uniform random ℓ1-geodesic in Z2 between (0, 0) and

(n, n) is very likely to be O(
√
n)-close to the ℓ2 geodesic, the straight diagonal line. However, it is far from

clear that this idea would work in other groups.

12.5 Geometry and random walks on percolation clusters
{ss.percgeom}

When we take an infinite cluster C∞ at p > pc(G) on a transitive graph, are the large-scale geometric and

random walks properties of G inherited? Of course, no percolation cluster (at p < 1) can be non-amenable,

or could satisfy any IPd, since arbitrarily bad pieces occur because of the randomness. There are relaxed

versions of isoperimetric inequalities that are conjectured to survive (known in some cases) but I don’t

want to discuss them right now. Instead, let me just give some of my favourite conjectures, and see [Pet08]

for more details. As we will see in a minute, these questions and ideas are related also to such fundamental

questions as Conjecture 12.15 on pc < pu above, and Conjecture 14.18 on the locality of pc below.
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{c.BLS}
Conjecture 12.30 ([BenLS99]). (i) If G is a transient transitive graph, then all infinite percolation clusters

are also transient. (ii) Similarly, positive speed and zero speed also survive.

Part (i) is known for graphs with only exponentially many minimal cutsets (such as Cayley graphs

of finitely presented groups) for p close enough to 1 [Pet08]. Part (ii) and hence also (i) are known for

non-amenable Cayley graphs for all p > pc [BenLS99]. Part (ii) is known also for p close enough to 1 on

the lamplighter groups Z2 ≀ Zd, d ≥ 3, and for all p > pc for d ≤ 2 [ChPP04].

Exercise▷ 12.66.* Without consulting [LyPer16], show that any supercritical GW tree (you may assume

E[ ξ2 ] <∞ for the offspring distribution, if needed), conditioned on survival, is a.s. transient.

Conjecture 12.31 (folklore). The giant cluster at p = (1 + ϵ)/n on the hypercube {0, 1}n has poly(n)

mixing time, probably Cϵ n
2.

Exercise▷ 12.67. By exhibiting long “hanging paths” in the giant cluster in {0, 1}n, show that the mixing

time is at least cϵn
2.

By the result of [AngB07] mentioned in the last paragraph of Section 12.3, the conjecture is proved for

p > n−1/2+ϵ, for any ϵ > 0.

A simple discovery I made (in 2003, literally on the margin of a paper by my advisor) was that good

isoperimetry inside C∞ would follow from certain large deviation results saying that it is unlikely for the

cluster Co of the origin to be large but finite. My favourite formulation is the following, called exponential

cluster repulsion.
{c.repulsion}

Conjecture 12.32 ([Pet08]). If G is a transitive (unimodular?) graph, then for all p > pc(G),

Pp

[
|Co| <∞ but ∃ an infinite C∞ with e(Co,C∞) > n

]
< Cp exp(−cpn),

where e(C1,C2) is the number of edges with one endpoint in C1 another in C2.

In [Pet08], I proved this result for Zd, all p > pc(Zd), and for any infinite graph with only exponentially

many minimal cutsets for p close enough to 1. The result implies that a weaker (the so-called anchored)

version of any isoperimetric inequality satisfied by the original graph is still satisfied by any infinite cluster.

These anchored isoperimetric inequalities are enough to prove, e.g., transience (using Thomassen’s crite-

rion (5.2)), therefore, Conjecture 12.32 would imply part (i) of Conjecture 12.30. However, they are only

conjecturally strong enough for return probabilities. But, on Zd, not only the survival of the anchored d-

dimensional isoperimetric inequality follows, but also the survival of almost the entire isoperimetric profile

(as defined in Section 8.2), hence, using the evolving sets theorem, the return probabilities inside C∞ are

pn(x, x) ≤ Cdn
−d/2. This was known before [Pet08], but this is the simplest proof by far, or at least the

most conceptual.

A nice result related to Conjecture 12.32 (but very far from the exponential decay) is a theorem by

Timár: in a non-amenable unimodular transitive graph, any two infinite clusters touch each other only

finitely many times, a.s. [Tim06a]

The reason that Conjecture 12.32 is known on Zd for p arbitrarily close to pc is due to a fundamental

method of statistical physics (in particular, percolation theory), presently available only on Zd, called

renormalization. See [Pet08] for a short description and [Gri99] for a thorough one. This technique uses

that Zd has a tiling with large boxes such that the tiling graph again looks like Zd itself. One algebraic
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reason for this tiling is the subgroup sequence (2kZd)∞k=0, given by the expanding endomorphism x 7→ 2x,

already mentioned in Section 4.4. It is unclear on what groups such tilings are possible:
{q.tiling}

Question 12.33 ([NekP09]). A scale-invariant tiling of a transitive graph G is a decomposition of its

vertex set into finite sets {Ti : i ∈ I} such that (1) the subgraphs induced by these tiles Ti are connected

and all isomorphic to each other; (2) the following tiling graph Ĝ is isomorphic to G: the vertex set is I,

and (i, j) is an edge of Ĝ iff there is an edge of G connecting Ti with Tj; (3) for each n ≥ 1, there is such

a tiling graph Ĝn+1 on Ĝn in such a way that the resulting nested sequence of tiles Tn(x) ∈ Ĝn containing

any fixed vertex x of G exhausts G.

Furthermore, G has a strongly scale-invariant tiling if each Tn is isomorphic to Tn+1.

If G has a scale-invariant tiling, is it necessarily of polynomial growth?

From the expanding endomorphism of Zd it is trivial to construct a strongly scale-invariant tiling,

but this uses the commutativity of the group very much. A harder result proved in [NekP09] is that the

Heisenberg group also has Cayley graphs with strongly scale-ivariant tilings.

Although this geometric property of the existence of scale-invariant tilings looks like a main motivation

and ingredient for percolation renormalization, it is actually not that important for the presently existing

forms of the method. See [NekP09] for more on this. On the other hand, there is a key probabilistic

ingredient missing, whose proof appears to be a huge challenge:
{q.unique}

Question 12.34 ([NekP09]). Let G be an amenable transitive graph, and let C∞ be its unique infinite

percolation cluster at some p > pc(G), with density θ(p). For a finite vertex set W ⊂ G, let ci(W ) denote

the number of vertices in the ith largest connected component of W . Does there exist a connected Følner

sequence Fn ↗ G such that for almost all percolation configurations,

lim
n→∞

c2(Fn ∩ C∞)

c1(Fn ∩ C∞)
= 0 ,

moreover,

lim
n→∞

c1(Fn ∩ C∞)

|Fn|
= lim
n→∞

|Fn ∩ C∞|
|Fn|

= θ(p) ?

Why would this be true? The main idea is that the intersection of the unique percolation cluster

with a large Følner set should not fall apart into small pieces, because if two points are connected to

each other in the percolation configuration, then the shortest connection should not be very long. This is

also the underlying idea why random walk on the infinite cluster should behave similarly to the original

graph. Furthermore, it is closely related to Conjecture 12.25 on the uniqueness of the giant cluster in finite

transitive graphs, and to Oded Schramm’s conjecture on the locality of pc, at least in the amenable setting;

see Conjecture 14.18 below.

An affirmative answer would follow from an affirmative answer to the following question, which can be

asked for any transitive graph, not only amenable ones.

Let ω denote the percolation configuration, and distω(x, y) the chemical distance, i.e., the distance

measured inside the percolation clusters (infinite if x and y are not connected).
{q.chemical}

Question 12.35. Is it true that for any transitive (unimodular?) graph, for any p > pu(G) there is a

K(p) <∞ such that for any x, y ∈ V (G),

Kx,y(p) := E
[ distω(x, y)

dist(x, y)

∣∣∣ distω(x, y) <∞
]
< K(p) <∞, (12.43) {e.chemical}{e.chemical}
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moreover, there is a κ < 1 with K(p) < O(1) (p− pu)−κ+o(1) as p↘ pu? The finiteness K(p) <∞ might

hold for almost all values p > pc, and the exponent κ < 1 might hold with pu replaced by pc; however, there

could exist special values (such as p = pu on certain graphs) with K(p) =∞.

The existence of K(p) <∞ is known on Zd [AntP96], but the p↘ pc behaviour is not known.

I do not presently see a conceptual reason for κ < 1 to hold — this condition is there only because we

will need it below. On the other hand, I do not know any example where some κ > 0 is actually needed.

A non-trivial example where one might hope for explicit calculations is site percolation on the hexagonal

lattice [Wer07]. If x and y are neighbours in G, then the event that they are connected in ω and the

shortest path between them leaves the r-ball but does not leave the 2r-ball around them is comparable

to the largest radius of an alternating 4-arm event around them being between r and 2r. (This rough

equivalence uses the so-called separation of arms phenomenon.) On the other hand, the outer boundary of

a closed cluster of radius roughly r is an open path having length r4/3+o(1) with large probability. (This

follows from the dimension being 4/3 and from [GarPS13a].) These, together with the 4-arm exponent 5/4

and the obvious observation that P[ distω(x, y) <∞ ] > c > 0, imply that

n−5/4+o(1) = c1 α4(n) ≤ P
[

distω(x, y) > n
∣∣ distω(x, y) <∞

]
≤ c2 α4(n3/4) = n−15/16+o(1),

which does not decide the finiteness of the mean at pc, but, using the theory of near-critical percolation

and the Antal-Pisztora chemical distance results (which are easy in 2 dimensions), it implies that κ ≤ 1/9

in (12.43). This value comes from the following facts: on the level of exponents, ignoring smaller order

effects, (1) at p = pc + ϵ, percolation looks critical up to scales ϵ−4/3 and supercritical at larger scales; (2)

the probability that the radius of the 4-arm event is about ϵ−4/3 is ϵ4/3·5/4; and (3) at this scale, the length

of the path is at most ϵ−4/3·4/3; so, altogether, we get an expectation at most ϵ5/3−16/9 = ϵ−1/9.

Further examples to try are the groups where critical percolation has the mean-field behaviour: here,

whenever the mean-field behaviour is actually proved (such as Zd, d ≥ 19, or planar non-amenable unimod-

ular transitive graphs), the expected chemical distance between neighbours is known to be finite [KozN09].

However, this is not known to imply that limp↘pc K(p) <∞, because continuity here is far from clear.

As Gady Kozma pointed out to me, a natural candidate to kill Question 12.35 for all p > pc could

be percolation near pu on graphs where there is already a unique infinite cluster at pu. The canonical

example of such a graph is a non-amenable planar graph G with one end — here pu(G) is equal to

1 − pc(G∗), where G∗ is the planar dual to G. Here, at pu(G), many things can be understood using the

mean-field theory at pc(G
∗), and, our back-of-the-envelope arguments, based on [KozN11], suggest that

Ppu

[
∞ > distω(x, y) > r

]
≍ 1/r for neighbours x, y. Hence K(pu) =∞, though barely. So, probably any

κ > 0 would do for p↘ pu; but, again, proving this seems hard.

Exercise▷ 12.68. *** Is it true that the chemical distance in percolation at pu between neighbours in a

planar unimodular transitive non-amenable graph with one end satisfies Kx,y(pu) =∞?

An affirmative answer to Question 12.35 would also prove that pc < pu on non-amenable transitive

graphs, via the following unpublished gem of Oded Schramm (which can now be watched in [Per09] or read

in [Koz11]):
{t.odedpcpu}

Theorem 12.36 (O. Schramm). Let G be a transitive unimodular non-amenable graph, with spectral radius

ρ < 1. Consider percolation at pc, where we know from Theorem 12.11 that there are only finite clusters.

Take a SRW (Xn)∞n=0 on G, independent from the percolation. Then, in the joint probability space of the
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percolation and the SRW,

P
[
X0 and Xn are in the same percolation cluster at pc

]
≤ 2ρn .

Proof. Consider the following branching random walk on G. Start m+1 particles from o, doing independent

simple random walks for n steps. Then each particle of this first generation branches into m particles, and

all the (m+ 1)m particles (the second generation) continue with independent SRWs for n more steps, then

each particle branches into m particles again, and so on. The expected number of particles at o at the

end of the tth generation, i.e., after tn SRW steps, is ptn(o, o) (m + 1)mt−1 ≈ ρtnmt, where “≈” means

equal exponential growth rates. If m < ρ−n, then this expectation decays exponentially fast in t. Since

p2n(o, x) ≤ p2n(o, o) for any x ∈ V (G) by Lemma 9.1, we get that for any fixed radius r > 0, the expected

number of total visits to Br(o) by all the particles is finite, i.e., the branching random walk is transient.

Now, using this branching walk and Ber(pc) percolation on G, we define a bond percolation process ξ

on the rooted (m + 1)-regular tree Tm+1 that indexes the branching random walk: if v is a child of u in

Tm+1, then the edge (u, v) will be open in ξ if the branching random walk particles corresponding to u and

v are at two vertices of G that are connected in the Ber(pc) percolation. So, the probability for any given

edge of Tm+1 to be open in ξ is P[X0
pc←→Xn], but this is, of course, not a Bernoulli percolation. At first

sight, it does not even look invariant, since the tree is rooted and the flow of time for the random walk has

a direction. However, using that G is unimodular and SRW is reversible, it can be shown that ξ is in fact

Aut(Tm+1)-invariant:

Exercise▷ 12.69. Show that the above percolation process ξ on Tm+1 is automorphism-invariant.

We have now all ingredients ready for the proof. We know from Theorem 12.11 that we have only

finite clusters in Ber(pc). Together with the transience of the branching random walk for m < ρ−n, we

get that ξ has only finite clusters. So, by Exercise 12.31, the average degree in ξ is at most 2. That is,

(m + 1)P[X0
pc←→Xn] ≤ 2. So, taking m := ⌈ρ−n⌉ − 1, we get that P[X0

pc←→Xn] ≤ 2/⌈ρ−n⌉ ≤ 2ρn, as

desired.

The way this theorem is related to pc < pu is the following. (1) The theorem implies that we have a

definite exponential decay of connectivity at pc in certain directions; (2) it seems reasonable that we still

should have a decay at pc + ϵ for some small enough ϵ > 0 (we will explain this in a second); (3) but then

pc + ϵ < pu, since from the FKG-inequality it is clear that at p > pu any two points are connected with a

uniformly positive probability: at least with θ(p)2.

The chemical distance result would be used in making the second step rigorous. Assuming pc = pu

and taking p = pu + ϵ with small ϵ > 0, we would have X0 and Xn in the same cluster with probability

θ(p)2 > 0. On the other hand, their distance in G is at most n, hence, by (12.43) and Markov’s inequality,

Pp

[
distω(X0, Xn) > 2K(p)n

∣∣ distω(X0, Xn) < ∞
]
< 1/2. So, when lowering the level of percolation

from p to pu, the probability that we have a connection between X0 and Xn at pu = pc is at least

θ(p)2/2 · (1 − ϵ)2K(p)n ≍ exp(−ϵ1−κ+o(1)n), which contradicts Theorem 12.36 if κ < 1 and ϵ is chosen

sufficiently small.

Finally, as pointed out in [Tim06a], good bounds on the chemical distance (see Question 12.35) can

imply good cluster repulsion (see Conjecture 12.32) not only through the renormalization method (see

Question 12.34), but also directly. The idea is that for neighbours x, y ∈ V (G), if Cx ̸= Cy, then a

large touching set e(Cx,Cy) = {ei : i ∈ I} would mean that after inserting the edge {x, y} into the

bond percolation configuration, the endpoints of the edges ei would be connected but with large chemical

distances:
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Exercise▷ 12.70 (Ádám Timár). Let G be a unimodular transitive graph. Assume that, for some Ber(p)

bond percolation, there are infinitely many infinite clusters and for any neighbours x, y ∈ V (G) we have

Ep
[

distω(x, y)
∣∣ Cx = Cy

]
< ∞. Show that Ep

[
e(Cx,Cy)

∣∣ Cx ̸= Cy
]
< ∞. (Hint: use the idea described

above, implemented using a suitable Mass Transport.)

13 Further spatial models
{s.spatial}

13.1 Ising, Potts, and the FK random cluster models
{ss.Ising}

The Ising and the more general Potts models have a huge literature, partly because they are more important

for physics than Bernoulli percolation is. The FK random cluster models, in some sense, form a joint

generalization of Potts, percolation, and the Uniform Spanning Trees and Forests, and hence are truly

fundamental. Since percolation and the USF already exhibit many of their main features, we will discuss

them rather briefly. See [GeHM01] for a great introduction and survey of these models (and further ones,

e.g., the hard core model), [Lyo00] specifically for their phase transitions on non-amenable graphs, and

[BerKMP05, Sly10] for relationships between phase transitions in spatial, dynamical, and computational

complexity behaviour. A future version of our notes will hopefully expand on these phase transitions a bit

more.

The Ising model is the most natural site percolation model with correlations between the sites. The

Potts(q) model is the obvious generalization with q states for each vertex instead of the Ising case q = 2.

For the definition of these models, we first need to focus on finite graphs G(V,E), with a possibly empty

subset ∂V ⊂ V of so-called boundary vertices. For spin configurations σ : V −→ {0, 1, . . . , q− 1}, consider

the Hamiltonian (or energy function)

H(σ) :=
∑

(x,y)∈E(G)

1{σ(x) ̸=σ(y)} , (13.1) {e.Hamq}{e.Hamq}

then fix β ≥ 0 and define the following probability measure (called Gibbs measure) on configurations

that agree with some given boundary configuration η on ∂V :

Pη
β [σ] :=

exp(−2βH(σ))

Zηβ
, where Zηβ :=

∑
σ:σ|∂V =η

exp(−2βH(σ)) . (13.2) {e.Gibbsq}{e.Gibbsq}

(The reason for the factor 2 in the exponent will become clear in the next paragraph.) This Zβ is called

the partition function. The more disagreements between spins there are, the larger the Hamiltonian

and the smaller the probability of the configuration is. The interpretation of β is the inverse temperature

1/T : at large β, disagreements are punished more, the system prefers order, while at small β the system

does not care that much: thermal noise takes over. In particular, β = 0 gives the uniform measure on all

configurations. See Figure 13.1 for an illustration.

A natural extension is to add an external field with which spins like to agree. From now on, we will

focus on the Ising case, q = 2, and therefore switch to the usual Ising setup σ : V (G) −→ {−1,+1}, to

be interpreted as + and − magnetic spins, instead of σ(x) ∈ {0, 1, . . . , q − 1}. So, we will consider the

Hamiltonian

H(σ, h) := −h
∑

x∈V (G)

σ(x)−
∑

(x,y)∈E(G)

σ(x)σ(y) , (13.3) {e.Hamh}{e.Hamh}

where h > 0 means spins like to be 1, while h < 0 means they like to be −1. Note that H(σ, 0) =

2H(σ) − |E(G)| with the definition of (13.1), hence, if we now define the corresponding measure and
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{f.Ising3}

Figure 13.1: The Ising model on a 200× 200 torus at three different inverse temperatures: at β = 0.4, at

βc = 1
2 ln(1 +

√
2) ≈ 0.44, and at β = 0.48. (Thanks to Gergely Lukáts for the pictures.)

partition function without the factor 2, as

Pη
β,h[σ] :=

exp(−βH(σ, h))

Zηβ,h
and Zηβ,h :=

∑
σ:σ|∂V =η

exp(−βH(σ, h)) , (13.4) {e.Gibbsh}{e.Gibbsh}

then exp(−βH(σ, 0)) = Kβ exp(−2βH(σ)) with a constant Kβ , and hence Pη
β,0[σ] = Pη

β [σ].

A further generalization is where edges (x, y) and vertices x have their own “coupling strengths” Jx,y

and Jx, instead of constant 1 and h, respectively. If Jx,y > 0 for all (x, y) ∈ E(G), i.e., neighbouring

spins like to agree, the model is called ferromagnetic, while if Jx,y < 0 for all (x, y), then it is called

antiferromagnetic. But we will stick to (13.3).

If this is the first time the Reader sees a model like this, they might think that the way of defining the

measure Pη
β,h from the Hamiltonian was a bit arbitrary, and Zβ,h is just a boring normalization factor.

However, these are not at all true. First of all, this way the measure Pη
β,h is defined using a product over

edges of G, hence it clearly satisfies the spatial Markov property, or in other words, it is a Markov

random field: if U ⊂ V (G) and we set ∂V = V \ U and ∂U = ∂outV U ⊂ ∂V , then for any boundary

condition η on ∂V , the measure Pη
β,h is already determined by η|∂U . In words, if we cut the graph into

two by a subset of vertices, then one side depends on the other only through the boundary vertices, just

like in a Markov chain, where the future depends on the past only through the present. (The Reader

should check this property right now, if it is not clear at first sight!) In fact, the Hammersley-Clifford

theorem says that for any graph G(V,E), the Markov random fields satisfying the finite energy condition

(as defined in the second proof of Lemma 12.2) are exactly the Gibbs random fields: measures that are

given by an exponential of a Hamiltonian that is a sum over cliques (complete subgraphs) of G. See [Gri10,

Section 7.2]. The role of the finite energy condition will be clear from the following example. A colouring

of the vertices of a graph with q colours is called proper if no neighbours share their colours. The uniform

distribution on proper q-colourings of a graph is clearly a Markov field, but it does not have the finite

energy property. And it is not a Gibbs measure, only in a certain β → ∞ limit: it can be considered as

the zero temperature antiferromagnetic Potts(q) model.

Another good reason for defining the measure from the Hamiltonian via exp(−βH) is that, for any given

energy level E ∈ R, among all probability measures µ on {±1}V (G) that satisfy the boundary condition η

and have Eµ[H(σ) ] = E, our Gibbs measures Pη
β,h maximize the entropy Ent(µ) := −

∑
ω µ(ω) logµ(ω),
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for some β ≥ 0. This is probably due to Boltzmann, proved using Lagrange multipliers. See, e.g., [CovT06,

Section 12.1]. So, if we accept the Second Law of Thermodynamics, then we are “forced” to consider these

Gibbs measures. Of course, this entropy maximization is closely related to the spatial Markov property:

both conditions describe the property of having as much independence as possible.

Similarly to generating functions in combinatorics, the partition function contains a lot of information

about the model. The first signs of this are the following:
{ex.partition}

Exercise▷ 13.1.

(a) Show that the expected total energy is

Eβ,h[H ] = − ∂

∂β
lnZβ,h , with variance Varβ,h[H] = − ∂

∂β
Eβ,h[H ] .

(b) The average free energy or pressure is defined by f(β, h) := (β|V |)−1 lnZβ,h. Show that for the

total average magnetization M(σ) := |V |−1
∑
x∈V σ(x), we have

m(β, h) := Eβ,h[M ] =
∂

∂h
f(β, h) .

(c) The susceptibility of the total magnetization to a change in the external magnetic field is

χ(β, h) :=
1

β

∂

∂h
m(β, h) =

1

β

∂2

∂h2
f(β, h) .

Relate this quantity to Varβ,h[M ]. Deduce that f(β, h) is convex in h.

So far, we have been talking about the Ising (and Potts) model on finite graphs, only. As opposed to

Bernoulli percolation, it is not obvious what the measure on an infinite graph should be. We certainly

want any infinite volume measure to satisfy the spatial Markov property, and, for any finite U ⊂ V (G) and

boundary condition η on ∂outV U , the distribution should follow (13.4). Note that this requirement already

suggests how to construct such measures: if P∞β,h is such a Markov field on the infinite graph G(V,E),

and Vn ↗ V is an exhaustion by finite connected subsets, with induced subgraphs Gn(Vn, En), and ηn

are random boundary conditions on ∂outV Vn sampled according to P∞β,h, then the laws E
[
Pηn
β,h

]
(with the

expectation taken over ηn) will converge weakly to P∞β,h. Vice versa, any weak limit point of a sequence

of measures Pηn
β,h will be a suitable Markov field. That limit points exist is clear from the Banach-Alaoglu

theorem, since {−1, 1}V or {0, 1, . . . , q−1}V with the product topology is compact. Therefore, the question

is: what is the set of (the convex combinations of) the limit points given by finite exhaustions?

Is there only one limit point, or several? In particular, do different boundary conditions have an effect

even in the limit? Intuitively, a larger β increases correlations and hence helps the effect travel farther,

while β = 0 is just the product measure, hence there are no correlations and there is a single limit measure.

Is there a phase transition in β, i.e., a non-trivial critical βc ∈ (0,∞), below which there is only one

limit measure, while there are multiple limit measures above? This certainly seems easier to achieve when

h = 0, since setting h > 0 affects every single spin directly, which probably overrides the effect of even

a completely negative boundary condition, at least for amenable graphs. This also suggests another way

of producing different infinite volume Gibbs measures for h = 0: the limits limh→0+ limn→∞Pηn
β,h and

limh→0− limn→∞Pηn
β,h, assuming that they exist, may differ.

To summarize this discussion, here are three possible ways to formalize the existence of a phase transi-

tion, both on finite and infinite graphs. It is the existence of some βc <∞ such that for all β > βc, some

of the following properties holds (which is clearly not the case for β = 0):
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(MGS) Multiple Gibbs states: On an infinite graph G, there exist at least two different Markov random

fields PG
β,h whose marginals on finite subsets satisfy the prescribed conditional distributions.

(SSB) Spontaneous symmetry-breaking: Let Gn be a sequence of finite graphs, with no boundary

condition, and consider the total average magnetization Mn(σ) := |V (Gn)|−1
∑
x∈V (Gn)

σ(x). For

any β ≥ 0, by the global ± spin flip symmetry, Eβ,h=0[Mn ] = 0. If

lim
h→0+

lim
n→∞

Eβ,h[Mn ] > 0 > lim
h→0−

lim
n→∞

Eβ,h[Mn ] ,

then we say that the ± symmetry is broken in the limit. (Of course, for an arbitrary graph sequence

Gn, these limits might not exist. One can take liminfs and limsups in that case.)

(LRO) Long range order: Again, let Gn be a sequence of finite graphs, and let Mn(σ) be the total

average magnetization, with Eβ,h=0[Mn ] = 0. Is there a sort of ergodicity, a Weak Law of Large

Numbers, where distant parts of the configuration σ are independent enough so that the spatial

average converges to the theoretical mean, i.e., Mn → 0 in probability? Or, instead, is there a long

range order, where σ globally favours either + or −, so that Mn is typically of constant order? A

clean formulation, almost equivalent to the above alternative: we have (LRO) if Varβ,h=0[Mn] does

not converge to 0. The virtue of this formulation is that the variance can be calculated once we know

the two-point correlations:

Varβ,h=0[Mn(σ)] =
1

|V (Gn)|2
∑

x,y∈V (Gn)

Eβ,h=0[σ(x)σ(y) ] .

Therefore, (LRO) means that correlations, at least on average, do not decay with the distance.

In any setting where both (MGS) and (SSB) apply, with the finite graphs Gn forming an exhaustion

of G, it is obvious that the second implies the first. It is also not surprising that, in such a setting, (LRO)

implies (MGS), since the former is about detecting a difference in one specific observable of the measures:

total magnetization. It is a bit harder to prove [Leb77] that (LRO) implies (SSB) in great generality. And

what is much harder, e.g., proved on the Ising model on Z3 at βc only recently [AiDCS15], is that having

no (LRO), which had been known earlier for all β ≤ βc, implies no (SSB).

Just like in Bernoulli percolation, the simplest examples of finite graphs to analyze are the complete

graphs. The Curie-Weiss model is the Ising model on the complete graph Kn, with edge weights 1/n,

so that the Hamiltonian is

Hn,h(σ) := −h
n∑
i=1

σi −
1

2n

n∑
i,j=1

σiσj .

The 1/2 factor is to make up for having each pair {i, j} with i ̸= j twice in the sum. The appearance of

the terms i = j causes just a shift of H by a constant, which is not visible in Pβ,h. And the weight 1/n is

to make the effect of the external field to be comparable to the effect of the neighbours.

In terms of the average magnetization M(σ) =
∑
i σi/n, note that we can write

Hn,h(σ) = −
(
hM(σ) +M(σ)2/2

)
n ,

and the number of σ’s with M(σ) = x ∈ {−1, −n+2
n , . . . , n−2n , 1} is

(
n

n(1+x)/2

)
. Thus,

Zn,β,h =
∑
x

cn,β,h(x) , where cn,β,h(x) :=

(
n

n(1 + x)/2

)
exp

(
βn
(
hx+ x2/2

))
.
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We can now perform explicit Large Deviations type calculations to show (SSB) and (LRO) phase transition

at βc = 1, done in the following exercise.

Exercise▷ 13.2.

(a) Show that f(β, h) := limn→∞ fn(β, h) = limn→∞
maxx ln cn,β,h(x)

βn .

(b) Similarly to Exercise 1.9, show that ln cn,β,h(x) = n
(
βhx− Φβ(x)

)
+ o(n), where

Φβ(x) =
1− x

2
ln

1− x
2

+
1 + x

2
ln

1 + x

2
− βx2

2
for x ∈ [−1, 1] .

(c) Sketch the curves Φβ(x) and Φ′β(x) on x ∈ [−1, 1], for some parameters β < 1, β = 1, and β > 1.

(d) By choosing the appropriate root x = x0(β, h) of Φ′β(x) = βh, find limn→∞ arg maxx ln cn,β,h(x).

Note that parts (a) and (b) give

∂

∂h
f(β, h) =

∂

∂h

(
hx0(β, h)− Φβ(x0(β, h))

β

)
= x0(β, h) .

(e) By part (b) of Exercise 13.1, mn(β, h) = ∂
∂hfn(β, h). Assuming that m(β, h) := limn→∞mn(β, h) =

∂
∂hf(β, h) holds for h ̸= 0 (which is indeed the case), deduce from the above that

lim
h→0+

m(β, h) > 0 and lim
h→0−

m(β, h) < 0 for β > 1 ,

while these limits equal 0 for β ≤ 1. Hence m(β, h) is discontinuous at h = 0 iff β > 1.

(f) Show that
1

β

∂2

∂h2
f(β, h) =

1

β

∂

∂h
x0(β, h) =

1− x0(β, h)2

1− β(1− x0(β, h)2)
.

For β = 1, deduce that ∂
∂hx0(β, h) = ∞. That is, m(1, h) is continuous but not analytic at h = 0.

Assuming that the limiting susceptibility χ(β, h) := limn→∞ χn(β, h) equals 1
β
∂2

∂h2 f(β, h), we get that

the limiting susceptibility is χ(1, 0) = ∞. What does that mean for the variance of the average

magnetization?

(g)* Show that ∂
∂hx0(β, 0+) <∞ for β > 1, so that the limiting susceptibility is finite.

Back to exhaustions of bounded degree infinite graph, we can now ask: in the case h = 0, do we

expect a phase transition, in the simplest form of (MGS), for all larger-than-one-dimensional graphs, as

in percolation? And actually, is this question related in any way to the connectivity phase transition in

percolation?

Before starting to answer these questions, let us prove the FKG inequality for the Ising model, as

promised in Section 12.2. This beautiful dynamical proof, applicable to a wide range of models, is due to

Holley [Hol74].
{t.FKGIsing}

Theorem 13.1. Take the Ising model on any finite graph G(V,E), with any boundary condition η on

∂V ⊂ V , and consider the natural partial order on the configuration space {−1,+1}V . Then, any two

increasing events A and B are positively correlated: Pη
β,h[A | B] ≥ Pη

β,h[A].

Proof. Recall that a probability measure µ on a poset (P,≥) is said to stochastically dominate another

probability measure ν if µ(A) ≥ ν(A) for any increasing measurable set A ⊆ P. Strassen’s theorem says

that this domination µ ≥ ν is equivalent to the existence of a monotone coupling ϕ of the measures µ

and ν on P × P; i.e., a coupling such that x ≥ y for ϕ-almost every pair (x, y) ∈ P × P. The simplest
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possible example, which we will actually need in a minute, is the following: for P = {−1,+1}, we have

µ ≥ ν iff µ(+1) ≥ ν(+1), and in this case,

ϕ(+1,+1) := ν(+1), ϕ(+1,−1) := µ(+1)− ν(+1), ϕ(−1,−1) := µ(−1) (13.5) {e.pm1example}{e.pm1example}

is the unique monotone coupling ϕ. (In general, Strassen’s coupling need not be unique. This is one reason

for the issues around Exercise 11.5.)

Now, the FKG inequality says that P[ · | B ] stochastically dominates P[ · ]. We will prove this using the

heat-bath dynamics or Gibbs sampler, which is the most natural Markov chain with the Ising model

at a given temperature as stationary measure: each vertex has an independent exponential clock of rate 1,

and when a clock rings, the spin at that vertex is updated according to the Ising measure conditioned on

the current spins of the neighbours. One can easily check that for β <∞ the chain is reversible. This is an

example of Glauber dynamics, which is the class of Markov chains that use independent local updates

and keep Ising stationary; another example is the Metropolis algorithm, which we do not define here.

We will run two Markov chains, {X+
i }i≥0 and {X−i }i≥0, started from the all-plus and all-minus config-

urations on V \ ∂V , respectively, and fixed to equal η on ∂V forever. {X−i }i≥0 is just standard heat-bath

dynamics, with stationary measure Pη
β,h, while {X+

i }i≥0 is a modified heat-bath dynamics, where steps

in which a +1 would change into a −1 such that the resulting configuration would cease to satisfy B are

simply suppressed (or in other words, replaced by a +1 update). A simple general claim about reversible

Markov chains (immediate from the electric network representation) is that the stationary measure of the

latter chain is simply the stationary measure of the original chain conditioned on the event that we are

keeping: Pη
β,h[ · | B ]. Now, we are not running these two Markov chains independently, but coupled in

the following way: the clocks on the vertices ring at the same time in the two chains, and we couple the

updates such that X+
i ≥ X

−
i is maintained for all i ≥ 0. Why is this possible? If X+

i ≥ X
−
i and the clock

of a vertex v rings, then v has at least as many +1 neighbours in X+
i as in X−i , hence the probability of

the outcome +1 in a standard heat-bath dynamics update would be at least as big for X+
i as for X−i , and

it is even more so if we take into account that some of the −1 moves in {X+
i }i≥0 are suppressed. Hence,

by example (13.5), we can still have X+
i+1 ≥ X

−
i+1 after the update.

The Markov chains {X+
i }i≥0 and {X−i }i≥0 are clearly ergodic, converging to their stationary distribu-

tions. Since X+
i ≥ X

−
i holds in the coupling for i, this stochastic domination also holds for the stationary

measures, and we are done.

An immediate corollary is that if η ≥ η′ on ∂V , then Pη
β,h ≥ Pη′

β,h. In particular, if U ⊂ U ′ ⊂ V (G)

and η and η′ are the all-plus configurations on ∂outU and ∂outU ′, respectively, then η ≥ Pη′

β,h on ∂outU ,

and hence Pη
β,h ≥ Pη′

β,h on U . Consider now an exhaustion Vn ↗ V (G) with η+n ≡ +1∂outVn
, giving rise

to the monotone decreasing (w.r.t. stochastic domination) sequence of measures P
η+n
β,h. Any weak limit

point of this sequence dominates all other possible limits, given by any sequence V ′n ↗ V (G) and any η′n
on ∂outV ′n, since for any Vn there exists an m0(n) such that Vn ⊆ V ′m for all m ≥ m0(n). Therefore (see

Exercise 13.3), this limit point for (Vn, η
+
n ) must be unique, and cannot depend even on the exhaustion. It

will be denoted by P+
β,h. Similarly, there is a unique minimal measure, denoted by P−β,h. It is also natural

to consider limit points of the measures PVn

β,h, which are the Ising measures on the subgraphs spanned by

Vn, without any boundary condition. It is not clear at this point that there is a unique limit measure, but

we will see in Exercise 13.7 that this is in fact the case; this limit measure will be denoted by Pfree
β,h.

{ex.stochdom}
Exercise▷ 13.3.
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(a) Show that if µ and ν are probability measures on a finite poset (P,≥), and both µ ≥ ν and µ ≤ ν, then
µ = ν. Conclude that if two infinite volume limits of Ising measures on an infinite graph dominate

each other, then they are equal.

(b) Let P = {−1,+1}V with coordinatewise ordering. Show that if µ ≤ ν on P, and µ|x = ν|x for all

x ∈ V (i.e., all the marginals coincide), then µ = ν. (Hint: use Strassen’s coupling.)

(c) On any transitive infinite graph, the limit measures P+
β,h and P−β,h are translation invariant. They

are equal iff E+
β,hσ(x) = E−β,hσ(x) for one or any x ∈ V (G).

Exercise▷ 13.4. On any transitive infinite graph, the limit measures P+
β,h and P−β,h are ergodic.

In summary, at given β and h, all infinite volume measures are sandwiched between P−β,h and P+
β,h.

So, to answer the question of the uniqueness of infinite volume measures, we “just” need to decide if

P−β,h ̸= P+
β,h. Ernst Ising proved in 1924 in his PhD thesis that the Ising model on Z has no phase

transition: there is a unique infinite volume limit for any given h ∈ R and β ∈ R≥0. Based on this, he

guessed that there is no phase transition in any dimension. However, he turned out to be wrong: using a

variant of the contour method that we saw in the elementary percolation result 1/3 ≤ pc(Z2,bond) ≤ 2/3,

Rudolph Peierls showed in 1933 that for h = 0 there is a phase transition in β on Zd, d ≥ 2. More

precisely, he proved the existence of some values 0 < β−(d) < β+(d) < ∞ such that if ηn is the all-plus

spin configuration on ∂outZd [−n, n]d, then

lim inf
n→∞

Eηnβ,0
[
σ(0)

]
> 0 for β > β+ ,

lim
n→∞

Eηnβ,0
[
σ(0)

]
= 0 for β < β− .

(13.6) {e.IsingPeierls}{e.IsingPeierls}

In particular, for β > β+(d), there are at least two ergodic translation-invariant infinite volume measures

on Zd, while for β < β−(d) there is uniqueness (see Exercise 13.3 (c)). We will prove (13.6) directly from

1/3 ≤ pc(Z2,bond) ≤ 2/3 once we have defined the FK random cluster measures. A similar result holds

for the Potts(q) models, as well.

In 1944, in one the most fundamental works of statistical mechanics, Lars Onsager showed (employing

partly non-rigorous math, with the gaps filled in during the next few decades) that βc(Z2) = 1
2 ln(1+

√
2) ≈

0.440687 for h = 0: for β ≤ βc, there is a unique infinite volume measure, while there is non-uniqueness

for β > βc. He also computed critical exponents like Eηnβc
[σ(0)] = n−1/8+o(1).

Onsager proved his results by looking at the partition function: the critical points need to occur at

the singularities of the limiting average free energy f∞(β, h) = − lim|Vn|→∞(β|Vn|)−1 logZβ,h, and the

critical behaviour must be encoded in the analytic properties of the singularities. Why is this so? From

Exercise 13.1, we can see that a big change of the free energy corresponds to big changes of quantities

like the total energy and the average magnetization. These quantities are “global”, involving the entire

finite domain Vn, not just a fixed window inside the domain, far from the boundary, hence it is not

immediately clear that “local” quantities that behave well under taking weak limits, like E[σ(0) ] or even

the average magnetization in the infinite limit measure, will also have interesting changes in their behaviour.

Nevertheless, using that Zd is amenable, the contribution of the boundary to these “global” quantities turns

out to be negligible, and it can be proved that the singularities of f∞(β, h) describe the critical points.

That there is no phase transition on Zd for h ̸= 0 was first proved in 1972 by Lebowitz and Martin-

Löf and by Ruelle, using the Lee-Yang circle theorem: if A = (ai,j)
n
i,j=1 is a real symmetric matrix,

then all the roots of the polynomial P (z) :=
∑
S⊆[n] z

|S|∏
i∈S,j ̸∈S ai,j lie on the unit circle. Therefore,

the Ising partition function Zβ,h on any finite graph, as a polynomial in h, can have roots only at purely

179



β = 0.440687 β = 0.45

Figure 13.2: The Ising model with Dobrushin boundary conditions (black on the right side of the box

and white on the left), at the critical and a slightly supercritical inverse temperature. (Vincent Beffara’s

pictures.

imaginary values of h. This can be used to prove that, for any h ̸= 0, any limit f∞(β, h) is differentiable

in β. This works for any infinite graph G(V,E). A different approach (by Preston in 1974) is to use

the so-called GHS concavity inequalities [GHS70] to prove the same differentiability. However, the

connection between differentiability and uniqueness works only on amenable transitive graphs: Jonasson

and Steif proved that a transitive graph is nonamenable iff there is an h ̸= 0 such that P+
β,h ̸= P−β,h for

some β <∞. See [JoS99] and the references there for pointers to the above discussion.

We have hinted a couple of times at the Ising correlation and uniqueness of measure questions being

analogous to the phase transition in the existence of infinite clusters in Bernoulli percolation. Indeed,

correlations between Ising spins can be interpreted as connectivity in a different model, the FK(p, q)

random cluster model with q = 2. Here is the definition of the model, due to Fortuin and Kasteleyn

[ForK72]; see [Gri06] for a thorough treatment of the model, including the history. On a finite graph

G(V,E), with a so-called boundary ∂V ⊂ V together with a partition π of it into disjoint subsets, for any

ω ⊂ E, let

Pπ
FK(p,q)[ω] :=

p|ω| (1− p)|E\ω| qkπ(ω)

ZπFK(p,q)
with ZπFK(p,q) :=

∑
ω⊆E

p|ω| (1− p)|E\ω| qkπ(ω) , (13.7) {e.FK}{e.FK}

where kπ(ω) is the number of clusters of ω/π, i.e., the clusters given by ω in the graph where the vertices

in each part of π are collapsed into a single vertex.

The q = 1 case is clearly just Bernoulli(p) bond percolation. Furthermore, if we let q → 0, then we

punish a larger number of components more and more, so we get a single spanning cluster in the limit,

and then if we let p → 0, then we will have as few edges as possible, but otherwise all configurations will

have the same probability; that is, we recover the Uniform Spanning Tree, see Section 11.2. If G(V,E)

is infinite, and Vn ↗ V is an exhaustion by finite subsets, then taking ∂Vn := ∅ gives FUSF in the limit,

while taking ∂Vn := ∂inV Vn with πn := {∂Vn} gives WUSF.
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For q ∈ {2, 3, . . . }, we can retrieve the Potts(q) model via the Edwards-Sokal coupling, which was

introduced somewhat implicitly in [SwW87] and explicitly in [EdS88]. Given G(V,E) and a boundary

partition π, color each cluster of ω/π in the FK(p, q) model independently with one of q colors, then forget

ω, just look at the q-coloring of the vertices. We will prove in a second that we indeed get the Potts(q)

model, with

β = β(p) = −1

2
ln(1− p) , (13.8) {e.betap}{e.betap}

except that the boundary condition on ∂V , instead of a function η : ∂V −→ {0, 1, . . . , q − 1}, will be only

a partition telling which spins in ∂V have to agree with each other. Note that, in the resulting Potts(q)

model, the correlation between the spins σ(x) and σ(y) is exactly the probability Pπ
FK(p,q)[x←→y], since

if they are connected, they get the same color in the coupling, and if they are not, then their colors will

be independent. In particular, the Ising expectation E+
β(p),2[σ(0)] is the probability of the connection

{0 ←→ ∂[−n, n]d} in the wired FK measure FK(p, 2) on [−n, n]d. (In the Edwards-Sokal coupling, to get

the Ising + measure, we need to condition the measure to have the +1 spin on ∂[−n, n]d, but, by symmetry,

that does not change the probability of the connection.) The interpretation of correlations as connections

also shows that it is more than natural that a larger p gives a higher β in formula (13.8).

Let us denote the Edwards-Sokal coupling of the FK(p, q) configuration ω and the q-coloring σ of its

clusters by

Pπ
ES(p,q)[ω, σ] =

p|ω|(1− p)|E\ω|
∏

(x,y)∈ω∪π 1{σ(x)=σ(y)}

ZπFK(p,q)
, (13.9) {e.ES}{e.ES}

where the formula is clear from the facts that for any given ω, the number of compatible q-colorings is

qkπ(ω), and that we need to arrive at (13.7) after summing over these colorings σ.

So, we need to prove that the marginal on σ is the Potts(q) model with β = β(p) and boundary

partition π. Fix a q-coloring σ; we may assume that it is compatible with π (i.e., σ(x) = σ(y) for all

(x, y) ∈ π), otherwise
∑
ω P

π
ES(p,q)[ω, σ] = 0. If (x, y) ∈ E and σ(x) = σ(y), then the configurations ω with

Pπ
ES(p,q)[ω, σ] ̸= 0 come in pairs: (x, y) can be kept in ω or deleted, leaving other edges intact. On the

other hand, if σ(x) ̸= σ(y), then (x, y) ̸∈ ω whenever Pπ
ES(p,q)[ω, σ] ̸= 0, i.e., such an edge (x, y) always

contributes a factor 1− p to the probability of the configuration. Summarizing,∑
ω

Pπ
ES(p,q)[ω, σ] =

1

ZπFK(p,q)

∏
(x,y)∈E

σ(x)=σ(y)

(p+ 1− p)
∏

(x,y)∈E\π
σ(x) ̸=σ(y)

(1− p)
∏

(x,y)∈π

1{σ(x)=σ(y)}

=
1

ZπFK(p,q)
exp

−2β
∑

(x,y)∈E\π

1{σ(x)̸=σ(y)}

 ∏
(x,y)∈π

1{σ(x)=σ(y)} ,

using the choice (1 − p) = exp(−2β), which is (13.8). This measure on σ is exactly the Potts(q)-

measure (13.2), just with boundary partition π, and with normalization ZFK(p,q) instead of Zβ,q, but

since we are talking about probability measures, these normalizations actually have to agree:

ZπFK(p,q) = Zπβ(p),q . (13.10) {e.PottsFKpart}{e.PottsFKpart}

This concludes the verification of the Edwards-Sokal coupling.

The FK(p, q) model satisfies the FKG-inequality for q ≥ 1. First of all, why is q ≥ 1 important? Well,

PFK(p,q)

[
(x, y) ∈ ω

∣∣∣ω|E\{e}] =

p if {x ω←→ y} in E \ {e}
p

p+(1−p)q otherwise ;
(13.11) {e.FKFKG}{e.FKFKG}
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i.e., an existing connection increases the probability of an edge iff q > 1. Having noted this, the proof

of the FKG inequality becomes very similar to the Ising case, Theorem 13.1: consider the FK heat-bath

dynamics with independent exponential clocks on the edges, and updates following (13.11). For q ≥ 1, this

dynamics {ωi}i≥0 is attractive in the sense that if ωi ≥ ω′i in the natural partial order on {0, 1}E , then

P
[
e ∈ ωi+1

∣∣ ωi ] ≥ P
[
e ∈ ω′i+1

∣∣ ω′i ], and hence we can maintain the monotone coupling of the proof of

Theorem 13.1 for all i ≥ 0, proving the FKG inequality.

For q < 1, there should be negative correlations, but this is proved only for the UST, which is a

determinantal process. This is an open problem that have been bugging quite a few people for quite a long

time; see [BorBL09] for recent results on negative correlations.
{ex.mon2}

Exercise▷ 13.5. For the FK(p, q) model on any finite graph G(V,E) with boundary ∂V ⊂ V , for q ≥ 1,

show the following two types of stochastic domination:

(a) If π ≤ π′ on ∂V , then Pπ
FK(p,q) ≤ Pπ′

FK(p,q) on V .

(b) Given any π on ∂V , if p ≤ p′, then Pπ
FK(p,q) ≤ Pπ

FK(p′,q) on V .

(c) Conclude for the + limit Ising measure on any infinite graph G(V,E) that if E+
β,h[σ(x)] > 0 for some

x ∈ V , then the same holds for any β′ > β. Consequently, the uniqueness of the Ising limit measures

is monotone in β.
{ex.mon3}

Exercise▷ 13.6. Show a third type of stochastic domination for the FK(p, q) model on a finite graph: if

p ∈ (0, 1) and 1 ≤ q ≤ q′, then Pπ
FK(p,q′) ≤ Pπ

FK(p,q).

Similarly to the Ising model, the FKG inequality implies that the fully wired boundary condition (where

π has just one part, ∂V ) dominates all other boundary conditions, and the free boundary (where π consists

of singletons) is dominated by all other conditions. Therefore, in any infinite graph, the limits of free and

wired FK measures along any finite exhaustion exist and are unique, denoted by FFK(p, q) and WFK(p, q).

On a transitive graph, they are translation invariant and ergodic.

However, regarding limit measures, there is an important difference compared to the Ising model. In

formulating the spatial Markov property over finite domains U ⊂ V (G) for an infinite volume measure,

the boundary conditioning is on all the connections in V \ U (just like in (13.11)), which is not as local

as it was for the Potts(q) model. Therefore, it is not clear that any infinite volume limit measure actually

satisfies the spatial Markov property, neither that any Markov measure is a convex combination of limit

measures. Although these statements are expected to hold, they have not been proved; see [Gri06, Chapter

4] for more information. Nevertheless, it is at least known that all Markov measures and all limit measures

are sandwiched between FFK(p, q) and WFK(p, q) in terms of stochastic domination.
{ex.inftyFKIsing}

Exercise▷ 13.7 (Ising and FK limit measures).

(a) Show that the + Ising measure P+
β,0 on any infinite graph is given by taking the WFK(p, 2) measure,

with p = p(β) according to (13.8), then coloring all the vertices in all the infinite WFK-clusters +,

while coloring the finite clusters randomly with a fair coin. The − measure P−β,0 is given analogously,

by coloring the infinite clusters −, while the free measure Pfree
β,0 is given by coloring all the clusters of

FFK(p, 2) measure randomly.

(b) How can we get the +, − and free Ising measures from FK measures in the case h ̸= 0?

Since we are interested in the connectivity properties of the FK model, it is natural to define the

critical point pc(q) in any infinite volume limit measure as the infimum of p values with an infinite

cluster. Fortunately, on any amenable transitive graph, there is actually only one pc(q), independently
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of which limit measure is taken, because of the following argument, see [Gri06]. Using convexity, any of

the limiting average free energy functions has only a countable number of singularities in p, which implies

that, for any q, there is only a countable number of p values where FFK(p, q) ̸= WFK(p, q). It is clear that

pFc (q) ≥ pWc (q), but if this was a strict inequality, then the free and wired measures would differ for the

entire interval p ∈ (pWc (q), pFc (q)), contradicting countability.

We can easily show that 0 < pc(q) < 1 on Zd, for any d ≥ 2 and q ≥ 1. The key is to notice that

(13.11) implies that Pπ
FK(p,q) stochastically dominates Bernoulli(p̃) for p̃ = p

p+(1−p)q , and is stochastically

dominated by Bernoulli(p) bond percolation, for any π, and then the claim follows from 0 < pc(Zd) < 1 in

Bernoulli percolation. The proof of (13.6), namely the existence of a phase transition for the Ising model

on Zd, d ≥ 2, is also clear now: as we noticed above, the Ising expectation E+
β(p),2[σ(0)] is exactly the

probability of the connection {0 ←→ ∂[−n, n]d} in the wired FK measure FK(p, 2) on [−n, n]d. But this

probability is bounded from above and below by the probabilities of the same event in Bernoulli(p) and

Bernoulli(p̃) percolation, respectively, and we are done.

The random cluster model also provides us with an explanation where Onsager’s value βc(Z2) = 1
2 ln(1+√

2) ≈ 0.440687 comes from. Recall that the percolation critical values pc(Z2,bond) = pc(TG, site) = 1/2

came from planar self-duality, plus two main probabilistic ingredients: RSW bounds proved using the

FKG-inequality, and the Margulis-Russo formula; see Theorem 12.28. So, to start with: is there some

planar self-duality in FK(p, q)? Consider the planar dual to a configuration ω on a box with free boundary,

say: we get a configuration ω∗ on a box with wired boundary. See Figure 13.3. What is the law of ω∗?

Figure 13.3: The planar dual of an FK configuration on Z2. {f.FWFK}

Clearly, |ω∗| = |E| − |ω|, and k(ω∗) equals the number of faces in ω (which is 2 in the figure). So, by

Euler’s formula, |V | − |ω|+ k(ω∗) = 1 + k(ω). If we now let y = p/(1− p), then

PFK(p,q)[ω] ∝ y|ω| qk(ω) ∝ y−|ω
∗| qk(ω

∗)+|ω∗| =

(
q

y

)|ω∗|

qk(ω
∗) .

Well, this is a random cluster model for ω∗, with the same q and y∗ = q/y! Or, in terms of p and p∗, we

get
p p∗

(1− p) (1− p∗)
= q .

Therefore, p = psd(q) =
√
q

1+
√
q is the self-dual point on Z2: the planar dual of the free measure becomes

the wired measure at the same value psd. Just as in the case of percolation with p = 1/2, one naturally

expects that this is also the critical point pc(q). This was proved for all q ≥ 1 only rather recently, by
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Vincent Beffara and Hugo Duminil-Copin [BefDC10]. Substituting q = 2 and β(p) = − 1
2 ln(1 − p) gives

Onsager’s value. Note that pc(q) < pc(q
′) for q < q′ is in line with Exercise 13.6.

The main obstacle Beffara and Duminil-Copin needed to overcome was that the previously known

RSW proofs for percolation (e.g., the one we presented in Proposition 12.27) do not work in the presence

of dependencies: an exploration path has two sides, one having positive, the other having negative influence

on increasing events, so we cannot use FKG. Nevertheless, they found an only slightly more complicated

argument, exploring crossings and gluing them, where the information revealed can be easily compared

with symmetric domains with free-wired-free-wired boundary conditions, and hence one can use symmetry,

just as in the percolation case. However, here comes another issue: the dual of the free measure is wired,

so, what measure should we work in to have exact self-duality and the symmetries needed? The solution

is to use periodic boundary conditions, i.e., to work on a large torus, and draw the rectangle that we want

to cross inside there. Finally, the replacement for the sharp threshold results for product measures via the

Margulis-Russo formula or the BKKKL theorem (see (12.17) and Theorem 12.22) is provided by [GraG06].

What about the uniqueness of infinite volume measures for FK(p, q)? On Z2, uniqueness is known

for q = 2 and all p. Non-uniqueness at the single value pc(q) is expected for q > 4, and proved for q > 25.72.

See [DuCS11, Proposition 3.10] and [Gri06]. Note that assuming uniqueness of the measures at the self-

dual point pc(q), Zhang’s argument works again, yielding that there is no percolation at pc(q). Conversely,

non-uniqueness of the measures implies that there is an infinite cluster in the wired measure (basically a

supercritical system), and there is no infinite cluster in the free measure (basically a subcritical system).

Indeed, if there are only finite clusters even in the wired measure, then any finite box B is surrounded by

a dual circuit γ; but the configuration in B conditioned on any specific such γ is dominated by the infinite

volume free measure, implying that in fact we are in the free measure; see [DuC14, Corollary 4.40]. In

summary, non-uniqueness of measures at pc(q) is the same as discontinuity of the phase transition.

How does the intuitive “inherited geometry” argument presented after Conjecture 12.10 on the contin-

uous phase transition in the case of percolation break for these FK(p, q) models with a discontinuous phase

transition? The answer is that, for ωp ⊂ E(Z2) sampled from the WFK(p, q) measure, which has a unique

infinite cluster at pc(q) but no infinite cluster at any p < pc(q), the difference between the edge marginals

of ωpc and ωp does not tend to zero as p↗ pc [Gri06, Proposition 8.59], hence one cannot obtain ωp from

ωpc by deleting a tiny fraction of the edges, and there is no reason why the infinite cluster of ωpc could not

be ruined.

When looking at the FK(p, q) measure for the first time, it is easy to think that p should roughly stand

for edge density, hence this discontinuity in the edge marginals is somewhat hard to believe. However, it

turns out that any Markovian monotone coupling (ωp)p∈[0,1] of the FK(p, q) measures for q > 1 must

be quite different from the standard coupling for q = 1. Here is the only such coupling that I know of;

it was implicit in [Hol74], made explicit in [Gri95], and proved to be Markovian in p in [DuCGP13] (but

maybe this was also known to many people before). Let G(V,E) be any finite graph and Ω be the space

[0, 1]E . The goal is to find a measure µ = µG on Ω in a such a way that all the “projections” ωp(Z) with

Z ∼ µ, defined by

ωp(Z)(e) := 1{Z(e)≤p} , p ∈ [0, 1], e ∈ E ,

follow the random-cluster probability measure of parameters (p, q) on {0, 1}E with some given boundary

conditions. It turns out that it is non-trivial to construct such a measure µ explicitly (although its existence

follows from a generalized Strassen’s theorem). Instead, [Gri95] obtains it as the invariant measure of a
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natural Markov process Zt on the space Ω := [0, 1]E .

Let Zt be a Markov chain on Ω where labels on the edges are updated at rate one according to the

conditional law defined below. For any e = (x, y) ∈ E, let De ⊂ {0, 1}E be the event that there is a path

of open edges in E \ {e} connecting x and y. For any e ∈ E and any Z ∈ Ω, define

Te(Z) := inf{p ∈ [0, 1] s.t. ωp(Z) ∈ De} .

Let Ue = Zt(e) be the new label at e and time t knowing the current configuration Zt− (before the update),

given by the law

P
[
Ue ≤ p

]
:=

{
p if p ≥ T

p
p+(1−p)q if p < T ,

(13.12) {e.Ue}{e.Ue}

where T = Te(Zt−). Note that this is the only possible update rule if we want that the projections

ωp(Zt)t≥0 follow the heat-bath dynamics for FK(p, q) given by (13.11) simultaneously for all p ∈ [0, 1]. The

condition q ≥ 1 implies that this is a valid distribution function, hence we can simply define Ue to be a

sample from this distribution. Note that Ue has an absolutely continuous part plus an atom (for q > 1)

at T , namely [T − T
T+(1−T )q ]δT .

Now, one can get the edge marginal P[ e ∈ ωp(Z) ] from this coupling by first conditioning on all the

labels Z(f) for f ̸= e, then taking the expectation of the conditional probability (13.12). The location T of

the atom turns out to be quite concentrated around pc(q), which makes the edge intensity change faster than

linearly around pc for q ≥ 2, and even produces a discontinuity at pc in the infinite volume limit for q > 4

(proved for q > 25.72), making the discontinuity of the percolation probability possible. An additional

fascinating property of this monotone coupling was discovered in [DuCGP13]: due to the atoms, there are

many edges e sharing the same label Z(e), and these edges arrive not in a roughly uniform Poissonian way

(as the edges in the Gibbs sampler), but under some complicated self-organization scheme. This scheme

is responsible for the fact that near-critical window in the Ising-FK model is not given by the expected

number of pivotal edges at criticality, but is narrower, as already mentioned after (12.39). However, the

details of this self-organization scheme are quite mysterious at present.

The case 0 ≤ q ≤ 1 is even more mysterious, as we already remarked around Exercises 13.5 and 13.6 in

relation with correlation inequalities.

Question 13.2. Is there a monotone coupling (ωp)p∈[0,1] of the FK(p, q) measures for any q ∈ [0, 1)?

Exercise▷ 13.8. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital

display. Consider the UST measure on the 15 spanning trees of G, and the uniform measure UST+1 on the

7 connected subgraphs with 6 edges (one more than a spanning tree). Find an explicit monotone coupling

between the two measures.

Some further results and questions on the FK model will be mentioned in Section 14.2.

13.2 Extremal Gibbs measures and factor of IID processes
{ss.fiid}

On any infinite graph G(V,E), consider the set of Markov random fields, with values in some Ω = SV ,

corresponding to a given set of compatible finite dimensional conditional distributions (sometimes called

local specifications); for instance, think of the set of Gibbs measures corresponding to a given Hamil-

tonian (that is given by a sum over cliques in G, as in the Hammersley-Clifford theorem). This is clearly

a closed convex set in the space of all measures on Ω, hence, by the Krein-Milman theorem, it is given

by the closure of the convex hull of its extremal points. These extremal Markov random fields are also
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called pure states in the statistical physics literature. Clearly, “understanding a model” should typically

include a description of its extremal measures and the main properties of those. The following result says

that extremal measures can be recognized intrinsically:
{pr.extrtail}

Proposition 13.3 (Extremality is tail-triviality [LaRu69]). A Markov random field {Xv}v∈V on some

countable set V is extremal iff its tail-σ-field T is trivial.

Here, similarly to Kolmogorov’s 0-1 Theorem 9.20, the definition is T =
⋂
n≥1 σ{Xv : v ̸∈ Vn}, where

Vn is any exhaustion of V by finite sets, and triviality means that any event in T has probability 0 or 1.

Proof. The key step in the proof is the following lemma:
{l.extrtail}

Lemma 13.4. Let P be a Markov random field on Ω = SV , and assume that µ is another measure on Ω that

is absolutely continuous w.r.t. P. Then µ is a Markov random field (with the same local specifications) iff

the Radon-Nikodym derivative ϕ(ω) = dµ
dP (ω) has a T -measurable version (i.e., a tail-measurable function

ϕ̃(ω) that P-almost surely coincides with ϕ).

From the lemma, the proof of the proposition is simple. On the one hand, if (Ω, T ,P) is non-trivial,

then take any event A ∈ T with P[A ] = p ∈ (0, 1), and write P[ · ] = pP[ · | A ] + (1− p)P[ · | Ac ]. By the

lemma, this is a convex combination of two Markov random fields, hence P is non-extremal.

The reverse direction is similar: if we can write P = pP0 + (1−p)P1, a combination of Markov random

fields, then Pi ≪ P, hence the lemma says that both ϕi = dPi/dP are T -measurable. If T is trivial, then

both ϕi are constant P-a.s., but both are density functions, hence both are constant 1, hence both Pi = P,

and the convex combination was in fact trivial.

To prove the lemma, assume that µ is Markov, with the same local specifications as P. Take an

exhaustion Vn ↗ V by finite sets. If f : Ω −→ R is a function that depends on finitely many coordinates

only, then for large enough n, these coordinates are all contained in Vn. Let µn be the marginal of µ on

V cn . It is clear from µ≪ P that µn ≪ P; denote the Radon-Nikodym derivative by ϕn = dµn/dP. Now,

EP[ϕ(ω)f(ω) ] = Eµ[ f(ω) ] = Eµ
[
Eµ[ f(ω) | ωV c

n
]
]

= Eµn

[
EP[ f(ω) | ωV c

n
]
]

= EP

[
ϕn(ωV c

n
)EP[ f(ω) | ωV c

n
]
]

= EP[ϕn(ω)f(ω) ] ,

where we used the P-Markov-property of µ and the definition of µn to get the second line, the ωcVn
-

measurability of ϕn in the third line, and the definition ϕn(ω) := ϕn(ωV c
n

) at the end. This identity clearly

implies that ϕn(ω) = ϕ(ω) for P-almost all ω. By taking ϕ̃(ω) := lim infn→∞ ϕn(ω), we get a T -measurable

version of ϕ, as desired.

The backward direction of the lemma is again similar to the forward direction: if there is a T -measurable

RN-derivative ϕ, then, for any measurable f : Ω −→ R and finite U ⊂ V ,

Eµ[ f(ω) ] = EP[ϕ(ω)f(ω) ] = EP

[
EP[ϕ(ω)f(ω) | ωUc ]

]
= EP

[
ϕ(ω)EP[ f(ω) | ωUc ]

]
= Eµ

[
EP[ f(ω) | ωUc ]

]
,

which means that µ is indeed Markov, with the same local specifications as P.

We should emphasize that being non-extremal does not automatically mean non-canonical. For instance,

as we will see later, the free Ising measure on the regular tree Td is non-extremal for low temperatures,

but is still a natural and interesting ergodic Aut(Td)-invariant measure; the only strange thing about it is

that, being non-extremal but ergodic, it must be a convex combination of non-translation-invariant Gibbs
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measures. (As opposed to Zd, where it turns out to be simply the average of the + and − measures.)

Another instructive example is the following. It is easy to see that there is a unique Aut(T3)-invariant

measure on perfect matchings on T3. However, a perfect matching configuration outside a finite subset

determines the configuration inside, which easily implies (proved carefully in [Lyo14]) that the measure

cannot be tail trivial; rather, it has full tail. Hence, by Proposition 13.3, it cannot be extremal. Indeed,

the deterministic behavior given the configuration in the complement of any finite subset implies that the

atomic measure on any single configuration is a Markov random field, hence any non-constant measure on

perfect matchings of T3 is in fact non-extremal.

... ... ...

13.3 Bootstrap percolation and zero temperature Glauber dynamics
{ss.bootstrap}

Bootstrap percolation on an arbitrary graph has a Ber(p) initial configuration, and a deterministic spreading

rule with a fixed parameter k: if a vacant site has at least k occupied neighbors at a certain time step,

then it becomes occupied in the next step. Complete occupation is the event that every vertex becomes

occupied during the process. The main problem is to determine the critical probability p(G, k) for complete

occupation: the infimum of the initial probabilities p that make Pp[complete occupation] > 0.

Exercise▷ 13.9 ([vEnt87]). Show that p(Z2, 2) = 0 and p(Z2, 3) = 1. (Hint for k = 2: show that a single

large enough completely occupied box (a “seed”) has a positive chance to occupy everything.)

Exercise▷ 13.10 ([Scho92]). * Show that p(Zd, k) = 0 for k ≤ d and = 1 for k ≥ d + 1. (Hint: use the

d = 2 idea, the threshold result Exercise 12.46, and induction on the dimension.)

Exercise▷ 13.11 ([BalPP06]).* {ex.BPTd}

(a) Show that the 3-regular tree has p(T3, 2) = 1/2. More generally, show that for 2 ≤ k ≤ d, p(Td+1, k)

is the supremum of all p for which the equation

P
[
Binom(d, (1− x)(1− p)) ≤ d− k

]
= x

has a real root x ∈ (0, 1).

(b) Deduce from part (a) that for any constant γ ∈ [0, 1] and a sequence of integers kd with limd→∞ kd/d =

γ,

lim
d→∞

p(Td, kd) = γ.

The previous exercises show a clear difference between the behaviour of the critical probability on Zd

and Td: on Zd, once k is small enough so that there are no local obstacles that obviously make p(Zd, k) = 1,

we already have p(Zd, k) = 0. So, one can ask the usual question:

Question 13.5. Is a group amenable if and only if for any finite generating set, the resulting r-regular

Cayley graph has p(Gr, k) ∈ {0, 1} for any k-neighbor rule?

The answer is known to be affirmative for symmetric generating sets of Z2 on one hand [GraG96], and

for any finitely generated non-amenable group that contains a free subgroup on two elements on the other

[BalPP06].

Exercise▷ 13.12. *** Find the truth for at least one more group (that is not a finite extension of Zd, of
course).
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See [Scho92, BalPP06, BalP07, Holr07, BalBM10, BalBDCM10] and the references there for more on

this model, both on infinite and finite graphs.

Bootstrap percolation results have often been applied to the study of the zero temperature Glauber

dynamics of the Ising model. This Glauber dynamics was already defined in Section 13.1, but the zero

temperature case can actually be described without mentioning the Ising model at all. Given a locally

finite infinite graph G(V,E) with an initial spin configuration ω0 ∈ {+,−}V , the dynamics is that each

site has an independent Poissonian clock, and if the clock of some site x ∈ V rings at some time t > 0,

then ωt(x) becomes the majority of the spins of the neighbours of x, or, if there is an equal number of

neighbours in each state, then the new state of x is chosen uniformly at random. Now let pfix(G) be the

infimum of p values for which this dynamics started from a Ber(p) initial configuration of “+” spins fixates

at “+” (i.e., the spin of each site x will be “+” from a finite time T (x) onwards) almost surely.

From the symmetry of the two competing colours, it is clear that pfix(G) ≥ 1/2. For what graphs is it

equal to 1/2? It is non-trivial to prove that pfix(Z) = 1, see [Arr83].

Question 13.6. Is it true that pfix(Zd) = 1/2 for all d ≥ 2? And pfix(Td) = 1/2 for d ≥ 4?

Here it is what is known. Using very refined knowledge of bootstrap percolation, [Mor10] proved that

limd→∞ pfix(Zd) = 1/2. On the other hand, pfix(T3) > 1/2 [How00]; the reason is that a density 1/2− ϵ for

the “−” phase is just barely subcritical for producing a bi-infinite path, while the “+” phase is just barely

supercritical, so in a short time in the dynamics, bi-infinite “−” paths will form (somewhere in the huge

non-amenable tree), making “+” fixation impossible.

Exercise▷ 13.13. * Show that limd→∞ pfix(Td) = 1/2. (This follows from [CapM06], but here is a hint

for a simpler proof, coming from Rob Morris. Exercise 13.15 (b) says that for p > 1/2 + ϵ, if d is large

enough, then the probability of everything becoming “−” in ⌈d/2⌉-neighbour “−”-bootstrap is zero. Prove

that, moreover, the probability that an initially “+” site ever becomes “−” is tending to 0, as d→∞. This

implies that the probability that a given vertex fixates at “+” is tending to 1. But then, the majority of the

neighbours of any given vertex fixate at “+”, fixing the state of that vertex, as well.)

It is also interesting what happens at the critical density. By definition, non-fixation can happen in two

ways: either some sites fixate at “+” while some other sites fixate at “−”, or every site changes its state

infinitely often. For p = 1/2 on Z2, it is known that every site changes its state infinitely often [NaNS00],

while, for p = 1/2 on the hexagonal lattice, some sites fixate at “+” while all other sites fixate at “−”

[HowN03]. The reason for the difference is the odd degree on the hexagonal lattice. Of course, these results

do not imply that pfix = 1/2 on these graphs. What happens on Td for d ≥ 4 at p = 1/2 is not known,

either.

13.4 Minimal Spanning Forests
{ss.MSF}

Our main references here will be [LyPS06] and [LyPer16].

While the Uniform Spanning Forests are related to random walks and harmonic functions, the Minimal

Spanning Forests are related to percolation. The Minimal Spanning Tree (MST) on a finite graph is

constructed by taking i.i.d. Unif[0, 1] labels U(e) on the edges, then taking the spanning tree with the

minimal sum of labels. Note that this is naturally coupled to Ber(p) bond percolation for all p ∈ [0, 1] at

once.

Exercise▷ 13.14. Give a finite graph on which MST ̸= UST with positive probability.
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For an infinite graph G, we again have two options: we can try to take the weak limit of the MST

along any finite exhaustion, with free or wired boundary conditions. The limiting measures can be directly

constructed. For any e ∈ E(G), define

ZF(e) := inf
γ

max{U(f) : f ∈ γ} ,

where the infimum is taken over paths γ in G \ {e} that connect the endpoints of e, and define

ZW(e) := inf
γ

sup{U(f) : f ∈ γ} ,

where the infimum is taken over “generalized paths” γ in G \ {e} that connect the endpoints of e, i.e., γ

can also be a disjoint union of two half-infinite paths, one emanating from each endpoint of e. Then, the

Free and Wired Minimal Spanning Forests are

FMSF := {e : U(e) ≤ ZF(e)} and WMSF := {e : U(e) ≤ ZW(e)} .

The connection between WMSF and critical percolation becomes clear through invasion percolation.

For a vertex v and the labels {U(e)}, let T0 = {v}, then, inductively, given Tn, let Tn+1 = Tn ∪ {en+1},
where en+1 is the edge in ∂ETn with the smallest label U . The Invasion Tree of v is then IT(v) :=

⋃
n≥0 Tn.

We now have the following deterministic result:
{ex.IT}

Exercise▷ 13.15. Prove that if U : E(G) −→ R is an injective labelling of a locally finite graph, then

WMSF =
⋃
v∈V (G) IT(v).

Once the invasion tree enters an infinite p-percolation cluster C ⊆ ωp := {e : U(e) ≤ p}, it will not use

edges outside it. Furthermore, it is not surprising (though non-trivial to prove, see [HäPS99]) that for any

transitive graph G and any p > pc(G), the invasion tree eventually enters an infinite p-cluster. Therefore,

lim sup{U(e) : e ∈ IT(v)} = pc for any v ∈ V (G). This already suggests that invasion percolation is a

“self-organized criticality” version of critical percolation.
{ex.ITsparse}

Exercise▷ 13.16.** Show that for G transitive amenable, θ(pc) = 0 is equivalent to IT(v) having density

zero, measured along any Følner exhaustion of G.

Non-percolation at pc also has an interpretation as the smallness of the WMSF trees, which we state

without a proof:
{t.WMSFoneend}

Theorem 13.7 ([LyPS06]). On a transitive unimodular graph, θ(pc) = 0 implies that a.s. each tree of

WMSF has one end.

By Benjamini-Lyons-Peres-Schramm’s Theorem 12.11, in the non-amenable case this gives that each

tree of WMSF has one end. For the amenable case, the following two exercises, combined with the fact

(obvious from Exercise 13.19) that all the trees of WMSF are infinite, almost give this “one end” result:
{ex.deg2}

Exercise▷ 13.17. Show that for any invariant spanning forest F on a transitive amenable G, the expected

degree is at most 2. Moreover, if all trees of F are infinite a.s., then the expected degree is exactly 2.
{ex.end2}

Exercise▷ 13.18. Show that for any invariant spanning forest F on a transitive amenable G, it is not

possible that a.s. all trees of F have at least 3 ends. Moreover, if all the trees are infinite, then each has 1

or 2 ends. (Hint: use the previous exercise.)
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{ex.end1}
Exercise▷ 13.19. *** Show that all the trees in the WMSF on any transitive graph have one end almost

surely.

On the other hand, FMSF is more related to percolation at pu. On a transitive unimodular graph, each

tree in it can intersect at most one infinite cluster of pu-percolation in the standard coupling, moreover,

if pu > pc, then each tree intersects exactly one infinite pu-cluster. Furthermore, adding an independent

Ber(ϵ) bond percolation to FMSF makes it connected. Finally, we have the following:
{t.MSFpcpu}

Theorem 13.8 ([LyPS06]). On any connected graph G, we have a.s. at most one infinite cluster for almost

all p ∈ [0, 1] if and only if FMSF = WMSF a.s. In particular, for transitive unimodular graphs, pc = pu is

equivalent to FMSF = WMSF a.s.

Proof. Since G is countable, WMSF ⊊ FMSF is equivalent to having some e ∈ E(G) with the property

that P[ZW(e) < U(e) ≤ ZF(e) ] > 0. This probability equals to the probability of the event A(e) that the

two endpoints of e are in different infinite clusters of U(e)-percolation on G \ {e}. If this is positive, then,

by the independence of U(e) from other edges, there is a positive Lebesgue measure set of possibilities for

this U(e), and for these percolation parameters we clearly have at least two infinite clusters with positive

probability. Conversely, if there is a positive measure set of p values for which there are more than one

infinite p-clusters with positive probability, then, by insertion tolerance, there is an edge e whose endpoints

are in different infinite p-clusters with positive probability, and hence, by the independence of U(e) from

other edges, there is a positive probability for A(e).

There are many open questions here; see [LyPS06] or [LyPer16]. For instance, must the number of

trees in the FMSF and the WMSF in a transitive graph be either 1 or ∞ a.s.? In which Zd is the MSF a

single tree? The answer is yes for d = 2, using planarity. On the other hand, for d ≥ 19, where the lace

expansion shows θ(pc) = 0 and many other results, one definitely expects infinitely many trees. Regarding

the critical dimension, where the change from one to infinity happens, some contradictory conjectures have

been made: d = 6 [JaR09] and d = 8 [NewS96]. It might also be that both answers are right in some sense:

for Zd, the critical dimension might be 8, but for the scaling limit of the MSF, which is a spanning tree of

Rd in a well-defined sense (very roughly, for any finite collection of points there is a tree connecting them,

with some natural compatibility relations between the different trees), the critical dimension might be 6

[AiBNW99]: in d = 7, say, there could be quite long connections between some points of Zd, escaping to

infinity in the scaling limit.

Finally, on the triangular grid, the scaling limit of a version of the MST (adapted to site percolation)

is known to exist, is rotationally and scale invariant, but is conjectured not to be conformally invariant

[GarPS10b] — a behaviour that goes against the physicists’ rule of thumb about conformal invariance.

13.5 Measurable group theory and orbit equivalence
{ss.MeGrTh}

Consider a (right) action x 7→ g(x) = xg of a discrete group Γ on some probability space (X,B, µ) by

measure-preserving transformations. We will usually assume that the action is ergodic (i.e., if U ⊆ X

satisfies g(U) = U for all g ∈ Γ, then µ(U) ∈ {0, 1}) and essentially free (i.e., µ{x ∈ X : g(x) = x} = 0 for

any g ̸= 1 ∈ Γ). These conditions are satisfied for the natural translation action on bond or site percolation

configurations under an ergodic probability measure, say Ber(p) percolation: ωg(h) := ω(gh), as we did in

the second proof of Corollary 12.20. This action of a group Γ on {0, 1}Γ, or SΓ with a countable S, or

[0, 1]Γ, with the product of Ber(p) or {ps}s∈S or Leb[0, 1] measures, is usually called a Bernoulli shift.
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The obvious notion for probability measure preserving (abbreviated p.m.p.) actions of some groups

Γi (i = 1, 2) on some (Xi,Bi, µi) being the same is that there is a group isomorphism ι : Γ1 −→ Γ2

and a measure-preserving map φ : X1 −→ X2 such that φ(xg) = φ(x)ι(g) for almost all x ∈ X1. There

is a famous theorem of Ornstein and Weiss [OW87] that two Bernoulli shifts of a given f.g. amenable

group (in most cases) are equivalent in this sense iff the entropies (generalizing −
∑
s∈S ps log(ps) from

the case of Z-actions suitably) are equal. We will consider here a cruder equivalence relation, which is the

natural measure-theoretical analogue of the virtual isomorphism of groups, exactly as quasi-isometry was

the geometric analogue — see Exercises 3.7 and 3.8.
{d.measequiv}

Definition 13.9. Two f.g. groups, Γ1 and Γ2 are measure equivalent if they admit commuting (not

necessarily probability) measure preserving essentially free actions on some measure space (X,B, µ), each

with a positive finite measure fundamental domain.

Another natural notion is the following:
{d.orbiteq}

Definition 13.10. Two p.m.p. actions, Γi acting on (Xi,Bi, µi) for i = 1, 2, are called orbit equivalent

if there is a measure-preserving map φ : X1 −→ X2 such that φ(xΓ1) = φ(x)Γ2 for almost all x ∈ X1.

(Note that this is indeed an equivalence relation.)

A small relaxation is that the actions are stably orbit equivalent: for each i = 1, 2 there exists a

Borel subset Yi ⊆ Xi that meets each orbit of Γi and there is a measure-scaling isomorphism φ : Y1 −→ Y2

such that φ(xΓ1 ∩ Y1) = φ(x)Γ2 ∩ Y2 for a.e. x ∈ X1.

A good reason for looking at this notion is the theorem of Feldman and Moore [FeM75] that every

countable Borel equivalence relation on a standard Borel space can be realized as the orbit equivalence

relation of a Borel action of some countable group. Another good reason is that two f.g. groups are measure

equivalent in the sense of Definition 13.14 iff they admit stably orbit equivalent actions. Or, almost the

same claim: they are measure equivalent in such a stronger way that the fundamental domains are actually

the same iff they are orbit equivalent. The proofs, similar to Exercise 3.7, can be found in [Gab02], which

is a great introduction to orbit equivalence.

Of course, if the two actions are equivalent in the usual sense, then they are also orbit equivalent. But

this notion is much more flexible, as shown, for instance, by the following actions of Z and Z2.

Consider the set X = {0, 1}N of infinite binary sequences, with the Ber(1/2) product measure. The

adding machine action of Z on X is defined by the following recursive rule: for the generator a of Z, and

any w ∈ X,

(0w)a = 1w

(1w)a = 0wa .
(13.13) {e.adding}{e.adding}

Note that this definition can also be made for finite sequences w, and the actions on the starting finite

segments of an infinite word are compatible with each other, hence the definition indeed makes sense for

infinite words. For a finite word w = w0w1 . . . wk, if we write β(w) :=
∑k
i=0 wi2

i, then this action has

the interpretation of adding 1 in binary expansion, β(wa) = β(w) + 1, hence the name. (One thing to be

careful about is that for a finite sequence w of all 1’s this β-interpretation breaks down: one needs to add

at least one zero at the end of w to get it right.) The action of Z on X is clearly measure-preserving.

We can similarly define an action of Z2 on X ×X = {0, 1}N×N, simply doing the Z-action coordinate-

wise. Now, these two actions are orbit-equivalent. Why? The orbit of a word w ∈ X by the Z action is

the set of all words with the same tail as w. (Note that we can apply a or a−1 only finitely many times.)

Similarly, the orbit of some (w,w′) ∈ X ×X is the set of all pairs with each coordinate having the correct
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tail. Now, the interlacing map φ : X × X −→ X defined by φ(w0w1 . . . , w
′
0w
′
1 . . . ) = w0w

′
0w1w

′
1 . . . is

clearly measure-preserving and establishes an orbit-equivalence.

An extreme generalization of the previous example is another famous result of Ornstein and Weiss from

1980, using some of the machinery of the entropy/isomorphism theorem, see [KecM04]: any two ergodic

free p.m.p. actions of amenable groups are orbit equivalent to each other. A closely related probabilistic

statement is the following:
{ex.amenZ}

Exercise▷ 13.20. Show that a Cayley graph G(Γ, S) is amenable iff it has a Γ-invariant random spanning

Z subgraph. (Hint: for one direction, produce the invariant Z using coarser and coarser “quasi-tilings” that

come from Exercise 12.34; for the other direction, produce an invariant mean from the invariant Z.)

On the other hand, as a combination of the work of several people, see [Gab10, Section 10], a recent

result is that any non-amenable group has continuum many orbit-inequivalent actions. A key ingredient

is the following theorem, which has a percolation-theoretical proof, to be discussed in a future version of

these notes: {t.GaboLyo}
Theorem 13.11 ([GabL09]). For any non-amenable countable group Γ, the orbit equivalence relation of

the Bernoulli shift action on ([0, 1], Leb)Γ contains a subrelation generated by a free ergodic p.m.p. action

of the free group F2. In other words, the orbits of the Bernoulli shift can be decomposed into the orbits of

an ergodic F2 action. Or more probabilistically, there is an invariant spanning forest of 4-regular trees on

Γ that is a factor of i.i.d. Unif[0, 1] labels on the vertices Γ, and the trees are indistinguishable.

A nice interpretation of this result is that any non-amenable group has an F2 randosubgroup, in the

following sense. Consider the set SG,H := {f : G −→ H, f(1) = 1}. The group Γ acts on this set by

fg(t) := f(g)−1f(gt) ; (13.14) {e.SGH^G}{e.SGH^G}

it is easy to check that this is indeed an action from the right. A group-homomorphism is just a fixed

point of this Γ-action. A randomorphism is a Γ-invariant probability distribution on SG,H . So, Γ is a

randosubgroup of H if there is a Γ-invariant distribution on injective maps in SG,H . (It cannot be called

a “random subgroup”, since it is not a distribution on actual subgroups.)

Exercise▷ 13.21. A randosubgroup of an amenable group is also amenable.

Now, what is the connection to orbit equivalence? If the orbit equivalence relation on X generated by

Γ is a subrelation of the one on Y generated by H, i.e., there is a p.m.p. map φ : X −→ Y such that

φ(xΓ) ⊆ φ(x)H for almost all x ∈ X, then for a.e. x ∈ X and every g ∈ Γ there is an α(x, g) ∈ H such

that φ(xg) = φ(x)α(x,g). Moreover, if the H-action is free, then this α(x, g) is uniquely determined, and it

satisfies the so-called cocycle equation

α(x, gh) = α(x, g)α(xg, h) . (13.15) {e.cocycle}{e.cocycle}

By writing αx(g) = α(x, g), for a.e. x ∈ X we get a map αx ∈ SG,H . Now, what is the action of Γ on such

elements of SG,H? By (13.17), αgx(t) = αx(g)−1αx(gt), which, by (13.18), is αx(g)−1αx(g)αxg (t) = αxg (t).

So, we have a Γ-equivariant action on the set {αx : x ∈ X}, and if we take a random point x ∈ X

w.r.t. the Γ-invariant probability measure µ, then we get a Γ-invariant measure on {αx : x ∈ X}, i.e., a

randoembedding of Γ into H.

Given that all amenable groups are measure equivalent, in order to distinguish non-amenable groups

from each other, one seem to need rather non-trivial invariants. The ℓ2-Betti numbers and the cost of
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groups mentioned in Chapter 11 are such examples. A future version of these notes will hopefully discuss

them in a bit more detail, but see [Gab02, Gab10] for now. Well, let’s try.

Given a probability space (X,B, µ), a graphing on X is simply a measurable oriented graph: a count-

able set of “edges” Φ = {φi : Ai −→ Bi}i∈I , which are measure-preserving isomorphisms between measur-

able subsets Ai and Bi. The cost of a graphing, which we can also think of as the average out-degree of

a random vertex in X, is

cost(Φ) :=
∑
i∈I

µ(Ai) =

∫
X

∑
i∈I

1Ai(x) dµ(x) .

Any graphing Φ generates a measurable equivalence relation RΦ on X: the equivalence classes are the

connected components of Φ, which is the graph obtained from Φ by forgetting the orientations. The cost

of an equivalence relation R ⊆ X ×X is

cost(R) := inf{cost(Φ) : Φ generates R} .

A usual way of obtaining a graphing is to consider the “Schreier graph” of a p.m.p. action of a group Γ

on X, with Φ = {φi : X −→ X}i∈I given by a generating set {γi}i∈I of Γ. Then the equivalence relation

generated by Φ is the orbit equivalence relation of the action. Now, the cost of a group Γ is defined as

cost(Γ) := inf
{

cost(R) : R is the orbit equiv. rel. of some free p.m.p. action Γ ↷ X
}
. (13.16) {e.cost1}{e.cost1}

A group is said to have a fixed price if the orbit equivalence relations of all free p.m.p. actions have the

same cost, and it is not known whether all groups have a fixed price.

Here is a more tangible definition of the cost of a group Γ for probabilists:

cost(Γ) =
1

2
inf
{
Eµ[deg(o)] : µ is the law of a Γ-invariant random spanning graph on Γ

}
. (13.17) {e.cost2}{e.cost2}

How is this the same cost as before? A Γ-invariant random graph is a probability measure µ on Ω =

{0, 1}Γ×Γ that is concentrated on symmetric functions on Γ×Γ and is invariant under the diagonal action of

Γ. A corresponding graphing (which may be called the cluster graphing) is the following. Fix an element

o ∈ Γ, then let ω, η ∈ Ω be connected by γ ∈ Γ if ωγ = η and the edge from o to γo is open in the graph ω.

The domain Aγ of this measurable edge consists of those ω ∈ Ω in which the edge (o, γo) is open, hence the

cost of this graphing (measured in µ) is the µ-expected out-degree of o, or one half of the expected total

degree. (Note here that γ−1 is an edge from η to ω, since ω = ηγ
−1

and ω(o, γo) = η(γ−1o, o) = η(o, γ−1o).)

This is a sub-graphing of the full graphing, in which ω, η are connected by γ iff ωγ = η, and which is just

the Schreier graphing of the action of Γ on Ω. Clearly, the cluster graphing µ-almost surely generates the

orbit equivalence relation of the action iff µ-almost surely the graph spans the entire Γ. Thus, (13.20) is

indeed the infimum of some costs; however, we considered here only some special p.m.p. actions Γ ↷ (Ω, µ),

and only some special graphings generating the corresponding orbit equivalence relations. And we do not

even get that (13.20) is at least as big as (13.19), because some of these actions on (Ω, µ) might not be

essentially free. But all these issues can be easily solved:

If Γ ↷ (X,µ) is a free p.m.p. action, and Φ is a graphing generating its orbit equivalence relation, then

for each x ∈ X we can consider ωx ∈ Ω = {0, 1}Γ×Γ given by

(g, h) is an open edge in ωx ⇔ (xg, xh) is an edge in Φ .

Then the pushforward µΦ of µ under this x 7→ ωx gives an invariant spanning graph on Γ, and EµΦ
[deg o]/2 =

cost(Φ). This shows that (13.20) is not larger than (13.19). For the other direction, given an invariant
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random spanning graph µ on Ω, we can produce a free p.m.p. action by taking a direct product of (Ω, µ)

with a fixed free action (say, a Bernoulli shift) (Y, ν), and considering the natural extension of the cluster

graphing that we had before, to Ω× Y . For the details, see [KecM04, Proposition 29.5].

The notion of cost resembles the rank (i.e., the minimal number of generators) d(Γ) of a group. Here

is an explicit formulation of this idea, which has several nice applications, for hyperbolic groups etc; see

[AbN07].

Let Γ = Γ0 ≥ Γ1 ≥ . . . be a chain of finite index subgroups. Corresponding to such a subgroup

sequence, the right coset tree T has the root Γ = Γ0, and a coset Γn+1y is a child of Γnx if Γn+1y ⊂ Γnx.

The number of children of Γnx is [Γn : Γn+1]. The set of rays Γ = Γ0x0 ⊃ Γ1x1 ⊃ Γ2x2 ⊃ . . . in T is

the boundary ∂T of the tree, equipped with the usual metrizable topology. If we have normal subgroups,

Γn ◁ Γ ∀n, then ∂T can be equipped with a group structure, and is called the profinite completion of Γ

with respect to the series {Γn}n≥0; see e.g., [Wil98].

One often assumes the so-called Farber condition on the sequence {Γn}n≥0: the natural action of Γ

on the boundary ∂T (Γ, {Γn}) of the coset tree, with the natural Borel probability measure, is essentially

free. {ex.Farber}
Exercise▷ 13.22. The Farber condition holds if each Γn is normal in Γ, and

⋂
n≥1 Γn = {1}.

The rank gradient of a subgroup chain is defined by

RG(Γ, {Γn}) := lim
n→∞

d(Γn)− 1

|Γ : Γn|
. (13.18) {e.rankgrad}{e.rankgrad}

The following exercise shows that this is a good definition. To start with, recall the Schreier index

formula, Theorem 2.18: for any H ≤ Fk of finite index, one has H ≃ Fℓ, hence d(Fk) = k and d(H) = ℓ,

and d(H)− 1 =
(
d(Fk)− 1

)
[Fk : H] .

Exercise▷ 13.23.

(a) Show that for any finitely generated groups H ≤ G with [G : H] <∞, one has

d(H)− 1 ≤
(
d(G)− 1

)
[G : H] .

(b) Conclude that the limit in the definition of RG always exists.

(c) Conclude that, for the free group on k generators, RG(Fk, {Γn}) = k − 1, regardless of Γn.

Theorem 13.12 ([AbN07]). Let R denote the orbit equivalence relation of Γ ↷ ∂T (Γ, {Γn}). Then

RG(Γ, {Γn}) = cost(R)− 1.

We can also obtain a random rooted graph from a graphing: pick a random root x ∈ X according

to µ, and take its connected component Φ(x) in Φ. This random rooted graph will be unimodular (with

a definition more general than what we gave before, which applies to non-regular graphs): by the φi’s

in Φ being measure-preserving, the equivalence relation RΦ is also measure-preserving, i.e., for any

measurable F : X ×X −→ R, we have∫
X

∑
y∈RΦ[x]

F (x, y) dµ(x) =

∫
X

∑
y∈RΦ[x]

F (y, x) dµ(x) ,

where RΦ[x] = Φ(x) is the equivalence class or connected component of x. Now, this can be taken as the

definition of the Mass Transport Principle hence unimodularity for the random rooted graph Φ(x). See

also Definition 14.1 and the MTP (14.1) in Section 14.1.
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14 Local approximations to Cayley graphs
{s.local}

For many probabilistic models, it is easy to think that understanding the model in a large box of Zd is

basically the same as understanding it on the infinite lattice. Well, sometimes the finite problem is actually

harder (for instance, compare Conjecture 12.25 with Lemma 12.5), but they are certainly closely related.

Why exactly is this so? In what sense do the boxes [n]d converge to Zd?

14.1 Unimodularity and soficity
{ss.sofic}

A sequence of finite graphs Gn is said to converge to a transitive graph G in the Benjamini-Schramm

sense [BenS01] (also called local weak convergence [AldS04]) if for any ϵ > 0 and r ∈ N+ there is an

n0(ϵ, r) such that for all n > n0, at least a (1−ϵ)-proportion of the vertices of Gn have an r-neighbourhood

isomorphic to the r-ball of G. We will sometimes abbreviate this as BSch-convergence.

For instance, the cubes {1, . . . , n}d converge to Zd. On the other hand, if we take the balls Bn(o) in

the d-regular tree Td, then the proportion of leaves in Bn(o) converges to (d− 2)/(d− 1) as n →∞, and

more generally, the proportion of vertices at distance k ∈ N from the set of leaves (i.e., on the (n − k)th

level Ln−k) converges to p−k := (d − 2)/(d − 1)k+1. And, for a vertex in Ln−k, the sequence of its r-

neighbourhoods in Bn(o) (for r = 1, 2, . . . ) is not at all the same as in an infinite regular tree, and depends

on the value of k. Therefore, the limit of the balls Bn(o) is certainly not Td, or any other transitive graph.

More generally, we have the following exercise:
{ex.amensofic}

Exercise▷ 14.1. Show that a transitive graph G has a sequence Gn of subgraphs converging to it in the

local weak sense iff it is amenable.

The sequence of balls in a regular tree does not converge to any transitive graph, but there is still a

meaningful limit structure, a random rooted graph. Namely, generalizing our previous definition, we

say that a sequence of finite graphs Gn converges in the local weak sense to a probability distribution on

rooted bounded degree graphs (G, ρ), where ρ ∈ V (G) is the root, if for any r ∈ N, taking a uniform

random root ρn ∈ V (Gn), the distribution we get on the r-neighbourhoods around ρn in Gn converges to

the distribution of r-neighbourhoods around ρ in G. There is a further obvious generalization, for graphs

whose edges and/or vertices are labelled by elements of some finite set, or more generally, of some compact

metric space: two such labelled rooted graphs are close if the graphs agree in a large neighbourhood of the

root and all the corresponding labels are close to each other. These structures are usually called random

rooted networks. So, for instance, we can talk about the local weak convergence of edge-labeled digraphs

(i.e., directed graphs) to Cayley diagrams of infinite groups (see Definition 2.6).

Continuing the previous example, the balls in Td converge to the random rooted graph depicted on

Figure 14.1, which is a fixed infinite tree T ∗d (often called the canopy tree) with infinitely many leaves

(denoted by level L0) and one end, together with a random root that is on level L−k with probability

p−k = (d− 2)/(d− 1)k+1 — the weights that we computed above. It does not matter how this probability

is distributed among the vertices of the level; say, all of it could be given to a single vertex. The reason

for this is that the vertices on a given level lie in a single orbit of Aut(T ∗d ), and our notion of convergence

looks only at isomorphism classes of r-neighbourhoods. So, in fact, the right abstract definition for our

limiting “random rooted graph” is a Borel probability measure on rooted isomorphism classes of locally

finite rooted graphs, denoted by G∗, equipped with the obvious “local” topology.

It is clear how the probabilities p−k for the root ρ in T ∗d arise from the sequence of finite balls in Td.
However, there is also a tempting interpretation in terms of T ∗d itself: if ρ was chosen “uniformly at random
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p0 = d−2
d−1 L0

p−1 = d−2
(d−1)2 L−1 ρ

p−2 = d−2
(d−1)3 L−2

p−3 = d−2
(d−1)4 L−3

Figure 14.1: The “canopy tree” T ∗d with a random root ρ (now on level L−1), which is the local weak limit

of the balls in the d-regular tree Td, for d = 3. {f.2ary1end}

among all vertices of T ∗d ”, then it should have probability p−k to be on level L−k, since “evidently” there

are p−k/p−(k+1) = d− 1 times “more” vertices on level L−k than on L−(k+1). Now, even though with the

counting measure on the vertices this argument does not make sense, there are ways to make it work: one

should be reminded of the definition of unimodularity in Section 12.2, just after Theorem 12.11. In fact,

one can make the following more general definition:
{d.urn}

Definition 14.1 (Unimodular random networks).

(a) A measure µ on the space G∗ of rooted networks is called unimodular if the Mass Transport

Principle holds in the following form. Let G∗∗ be the set of all double-rooted isomorphism-classes

of triples (G, x, y), where G is a locally finite graph and x, y ∈ V (G), equipped with the natural local

topology. For any Borel-measurable function F on G∗∗, we require that∫ ∑
x∈V (G)

F (G, ρ, x) dµ(G, ρ) =

∫ ∑
y∈V (G)

F (G, y, ρ) dµ(G, ρ) . (14.1) {e.MTPgen}{e.MTPgen}

(b) Given a d-regular random rooted graph (or network) (G, ρ) sampled from a measure µ, choose a

neighbour of ρ uniformly at random, call it ρ′, and consider the joint distribution of (G, ρ, ρ′) on G∗∗.
Now “take the step to ρ′ and look back”, i.e., take (G, ρ′, ρ), which is again a random rooted graph,

with root ρ′, plus a neighbour ρ. If the two laws are the same, then the random rooted graph (G, ρ),

or rather the measure µ, is called unimodular.

(c) For non-regular random graphs, if the degrees are µ-a.s. bounded by some d, one can add d− deg(x)

“half-loops” to each vertex x to make the graph d-regular. In other words, in the above definition of the

step from ρ to ρ′, consider the delayed random walk that stays put with probability (d−deg(x))/d.

(This is a natural definition for random subgraphs of a given transitive graph.)

(d) If the degrees are not bounded, one still can take the following limiting procedure: take a large d, add

the half-loops to each vertex with degree less than d to get Gd, and then require that the total variation

distance between (Gd, ρ, ρ
′) and (Gd, ρ

′, ρ), divided by P[ ρ′ ̸= ρ ] (with the randomness given by both

196



sampling (G, ρ) and then making the SRW step; we do this to make up for the laziness we introduced)

tends to 0 as d→∞.

Another possibility in the unbounded case is to truncate (G, ρ) in any reasonable way to have maximal

degree d, and require that the resulting random graph be unimodular, for any d. One reasonable

truncation is to remove uniformly at random the excess number of incident edges for each vertex with

a degree larger than d. (Some edges might get deleted twice, which is fine, and we might get several

components, which is also fine.)

(e) For the case Eµdeg(ρ) < ∞, there is an alternative to using the delayed SRW. Let µ̂ be the proba-

bility measure µ on (G, ρ) size-biased by deg(ρ), i.e., with Radon-Nikodym derivative dµ̂
dµ (G, ρ) =

deg(ρ)/Eµdeg(ρ). Now, if we sample (G, ρ) from µ̂, and then take a non-delayed SRW step to a

neighbor ρ′, then (G, ρ′, ρ) is required to have the same distribution as (G, ρ, ρ′).

It is easy to see that if we take a transitive graph G, then it will be unimodular in our old sense

(|Γxy| = |Γyx| for all x ∼ y, where Γ = Aut(G)) if and only if the Dirac measure on (G, o), with an

arbitrary o ∈ V (G), is unimodular in the sense of Definition 14.1. Indeed, for a double-rooted equivalence

class (G, x, y), with (x, y) ∈ E(G), we will have P
[

(G, ρ, ρ′) ≃ (G, x, y)
]

= |Γxy|/d, where d is the degree

of the graph, while P
[

(G, ρ′, ρ) ≃ (G, x, y)
]

= |Γyx|/d, and these are equal for all pairs (x, y) ∈ E(G) iff

G is unimodular.

We also get back our old Mass Transport Principle (12.9) for transitive graphs. In some sense, the

transitivity of G and the diagonal invariance of f is now replaced by considering rooted networks and

functions on double-rooted isomorphism-classes. Namely, if f is a diagonally invariant random function

on a transitive graph G, then, in (14.1), we can take µ to be a Dirac mass on (G, o), with an arbitrary

o ∈ V (G), and F (G, x, y) := Ef(x, y).

The simplest possible example of a unimodular random rooted graph is any fixed finite graph G with

a uniformly chosen root ρ. Here, the Mass Transport Principle (14.1) holds obviously, and part (e) of

Definition 14.1 is also very transparent: if we size-bias the root ρ by its degree, then the edge (ρ, ρ′) given

by non-delayed SRW is simply a uniform random element of E(G), obviously invariant under ρ↔ ρ′.

The example of finite graphs is in fact a crucial one. It is easy to see that the Benjamini-Schramm

limit of finite graphs is still a unimodular random rooted graph. For instance, the rooted tree (T ∗d , ρ) of

Figure 14.1 was a BSch-limit of finite graphs.
{ex.limisunimod}

Exercise▷ 14.2. If G is a transitive graph with a sequence of finite Gn converging to it in the Benjamini-

Schram sense, then it must be unimodular. Same for random rooted networks that are BSch-limits.
{ex.qtransTunimod}

Exercise▷ 14.3.

(a) Show that the universal covering tree of any finite graph, with a natural root measure, is unimodular.

On the other hand, give an example of a quasi-transitive tree that is not unimodular. (More precisely,

there exists no unimodular root measure on it). Compare with Exercise 2.3.

(b)** Is it true that every unimodular quasi-transitive tree is the universal covering tree of a finite graph?

One is often interested in the local behaviour of large finite random graphs; for instance, for the giant

cluster phase transition of the Erdős-Rényi random graph in Theorem 12.23, a key idea was that G(n, λ/n)

is locally similar to a Galton-Watson tree with Poisson(λ) offspring distribution. Thus, one should clearly

expect that the local weak limit is this GW-tree, denoted by PGW(λ) from now on. However, since the

sequence of finite graphs Gn is itself random, there are two possibilities what local convergence may actually
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mean. In the weaker sense (sometimes called “annealed”), we want that in the joint distribution of the

randomness in Gn and of picking a uniform random vertex of Gn, the r-ball around this vertex converges

in law to the r-ball of G. In other words, the distribution of the r-ball around ρn converges in the average

over Gn. In the stronger sense (sometimes called “quenched”), we want that the distribution of the r-ball

around ρn converges in probability, again over Gn. A pair of simple-minded examples to compare these

two notions is the following: Gn is the square box [0, n]2 or the path [0, n], with probability 1/2 each; Hn

is a disjoint union of [0, n]2 and [0, n2]. In both cases, the limit is the 1/2-1/2 random mixture of Z2 and

Z, but Gn converges only on average, while Hn also converges in probability (obviously, since this sequence

is not even random). Of course, in the most natural examples, both convergences hold:
{ex.ERPGW}

Exercise▷ 14.4. Let Gn be the Erdős-Rényi random graph G(n, λ/n), with any λ ∈ R+ fixed.

(a) Show that the local weak limit of Gn on average is the PGW(λ) tree, rooted as normally.

(b) Let Xk(n) be the number of degree k vertices in Gn. Show that Xk(n)/n converges in probability,

as n → ∞, to P[Poisson(λ) = k ]. (Hint: calculate the 2nd moment, or use the small variance

Azuma-Hoeffding, Proposition 1.9, for the edge exposure martingale from Section 6.3.)

(c) Using part (b), strengthen part (a) to convergence in probability.

Rather famous examples of truly random unimodular random rooted graphs are the Uniform Infinite

Planar Triangulation and Uniform Infinite Planar Quadrangulation, which are the local weak limits of

uniform planar maps with n triangle or quadrangle faces, respectively, see [Ang03] and [BenC10], and the

references there.

Unimodularity is clearly a strengthening of the stationarity of the delayed random walk, i.e., that

the Markov chain (G, ρ) 7→ (G, ρ′) given by the delayed SRW is stationary on (G∗, µ). This strengthening

is very similar to reversibility, and one could try an alternative description of “looking back” from ρ′ and

working with G∗∗: namely, one could require that the Markov chain (G, ρ) 7→ (G, ρ′) given by the delayed

SRW be reversible on (G∗, µ). This does not always work: e.g., if (G, ρ) is a deterministic transitive

graph, then reversibility holds even without unimodularity. Nevertheless, we have the following simple

equivalences:

Exercise▷ 14.5. * Consider Ber(p) percolation with 0 < p < 1 on a transitive graph G. Show that the {ex.percunimod}
following are equivalent:

(a) G is unimodular;

(b) the cluster of a fixed vertex ρ is a unimodular random graph with ρ as its root;

(c) the delayed SRW on the cluster generates a reversible chain on G∗.

Formulate a version for general invariant percolations on G.

Exercise▷ 14.6. If the previous exercise was too hard for you, just show that delayed SRW on the Ber(p)

percolation cluster of the origin of the grandparent graph is not stationary on G∗ (regardless of the cluster

being finite or infinite).

Let us remark that a random rooted graph (G, ρ) is called stationary in [BenC10] if (non-delayed) SRW

generates a stationary chain on G∗, and is called reversible if the chain generated on G∗∗ by the “looking

back” procedure is stationary. In other words, using the inverse of Definition 14.1 (e): if we bias the

distribution by 1/ deg(ρ), then we get a unimodular random rooted graph. Using this reweighting, one can

often easily translate results between reversible random graphs and unimodular random graphs with finite

expected degree; for different problems, one or the other may be the more natural setting.
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{ex.PGW}
Exercise▷ 14.7.

(a) Show that the Poisson Galton-Watson tree PGW(λ), rooted as normally, is unimodular. (One possi-

bility is to just quote Exercises 14.2 and 14.4, but you are encouraged to check the Mass Transport

Principle or the “looking back in the delayed random walk” definition directly.)

(b) Show that if we size-bias PGW(λ) by deg(ρ), we get a rooted tree given by connecting the roots of two

i.i.d. copies of PGW(λ) by an edge, then choosing the root uniformly from the two.

We have seen so far two large classes of unimodular random rooted networks: Cayley graphs (and their

percolation clusters) and local weak limits of finite graphs and networks. We have also seen that amenable

Cayley graphs are actually local weak limits of finite graphs. Here comes an obvious fundamental question:

can we get all Cayley graphs and unimodular random rooted networks as local weak limits of finite graphs

and networks? To start with, can we get regular trees as limits?
{ex.bipgirth}

Exercise▷ 14.8. Fix d ∈ Z+, take d independent uniformly random permutations π1, . . . , πd on [n], and

consider the bipartite graph V = [2n], E = {(v, n+ πi(v)) : 1 ≤ i ≤ d, 1 ≤ v ≤ n}.
(a) Show that the number of multiple edges remains tight as n→∞.

(b) Show that the local weak limit of these random bipartite graphs is the d-regular tree Td.

It is also true that the sequence of uniformly chosen random d-regular graphs converges to the d-regular

tree; this follows from Corollary 2.19 of [Bol01]. This model is usually handled by proving things for the

so-called configuration model (which is rather close to a union of d independent perfect matchings), and

then verifying that the two measures are not far from each other from the point of view of what we are

proving.

Now that we know that amenable transitive graphs and regular trees are local weak approximable

(Exercises 14.1 and 14.8), it is not completely ridiculous to ask the converse to Exercise 14.2:
{q.sofic}

Question 14.2 ([Gro99, Wei00],[AldL07]). Is every f.g. group sofic, i.e., does every Cayley diagram have

a sequence of labelled finite digraphs Gn converging to it in the Benjamini-Schramm sense? In particular,

is every Cayley graph a local weak limit of finite graphs? And more generally, is every unimodular random

rooted graph or network a local weak limit?

We need to clarify a few things about these three questions. First of all, a group being sofic has a

definition that is independent of its Cayley diagram, i.e., of the generating set considered. This definition

is that the group Γ has a sequence of almost-faithful almost-actions on finite permutation groups: a sequence

{σi}∞i=1 of maps σi : G −→ Sym(ni) with ni →∞ such that

∀f, g ∈ Γ : lim
i→∞

1

ni

∣∣{1 ≤ p ≤ ni : pσi(f)σi(g) = pσi(fg)
}∣∣ = 1 ;

∀f ̸= g ∈ Γ : lim
i→∞

1

ni

∣∣{1 ≤ p ≤ ni : pσi(f) ̸= pσi(g)
}∣∣ = 1 .

(14.2) {e.soficperm}{e.soficperm}

{ex.sofic}
Exercise▷ 14.9. Show that a f.g. group is sofic in the “almost-action by permutations” sense (14.2) if and

only if one or any Cayley diagram of it is local weak approximable by finite labelled digraphs.

If we have a convergent sequence of labelled digraphs, we can just forget the edge orientations and

labels, and get a convergent sequence of graphs. The converse is false: a result of Ádám Timár [Tim12]

says that there is a sequence of graphs Gn converging to a Cayley graph G of the group (Z ∗ Z2)× Z4 for

which the edges of Gn cannot be oriented and labelled in such a way that the resulting networks converge
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to the Cayley diagram that gave G. The construction uses Theorem 14.15 below: although the vertex

set of the 3-regular tree T3, the standard Cayley graph of Z ∗ Z2, can trivially be decomposed into two

independent sets in an alternating manner, there exists a sequence {Hn} of finite 3-regular graphs with

girth going to infinity (hence locally converging to T3), for which the density of any independent set is

less than 1/2− ϵ for some absolute constant ϵ > 0. Timár constructed a Cayley diagram of (Z ∗ Z2)× Z4

that “sees” the alternating decomposition of T3, hence can be locally approximated by the graphs Hn×C4

only if one forgets the labels. Nevertheless, the Cayley diagram is still sofic: for a local approximation, one

needs to use finite 3-regular bipartite graphs with high girth, for which the alternating decomposition into

two independent sets does exist.

This example of Timár shows that going from the local approximability of graphs to the soficity of

groups might be a complicated issue. Indeed, answering both of the following questions with “yes” is

expected to be hard:
{q.GraphsToGroups}

Question 14.3.

(a) Does the local weak approximability of one Cayley graph of a group implies the local weak approx-

imability of all its Cayley graphs? (Note that the answer to the same question for approximations of

Cayley diagrams by labelled digraphs is an easy “yes”, by Exercise 14.9 above.)

(b) Is it true that if all finitely generated Cayley graphs of a group are local weak approximable, then the

group is sofic?

A probably simpler version of this question is the following:

Exercise▷ 14.10.*** By encoding edge labels by finite graphs, is it possible to show that every Cayley graph

of every group being local weak approximable would imply that every group is sofic?

It is also important to be aware of the fact that local approximability by Cayley diagrams of finite groups

is a strictly stronger notion than soficity. This is called the LEF property, locally embeddable into finite

groups, because, similarly to (14.2), it can be formalized as follows: for any finite subset F ⊆ Γ, there is a

finite symmetric group Sym(n) and an injective map σn : F −→ Sym(n) such that σn(fg) = σn(f)σn(g)

whenever f, g, fg ∈ F . Now, there are groups that are known to be sofic but not LEF: there exist

solvable non-LEF groups [GoV97]. Furthermore, the Burger-Mozes group (a nice non-trivial lattice in

Aut(Tm)×Aut(Tn) [BurgM00]) is a finitely presented infinite simple group, hence cannot be LEF by the

following exercise. (In fact, it might even be a non-sofic group.)
{ex.LEF}

Exercise▷ 14.11.

(a) Show that any residually finite group (defined in Exercise 2.8) has the LEF property.

(b) Show that a finitely presented LEF group is residually finite. Conclude that a finitely presented infinite

simple group cannot have the LEF property.

Exercise▷ 14.12.

(a) Let Γ = Γ0 > Γ1 > . . . be a sequence of subgroups, and S a finite generating set of Γ. Consider the

action of Γ on the corresponding coset tree T as defined just before (13.21). Recall also the Farber

condition, defined just before Exercise 13.26.

Note that the Schreier graphs of the action of Γ on the nth level of T is just the Schreier graph Gn :=

G(Γ,Γn, S), as defined just before Exercise 2.11. Show that {Gn}n≥0 converges in the Benjamini-

Schramm sense to the Cayley graph G(Γ, S) iff the sequence {Γn}n≥0 satisfies the Farber condition.
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(b) Using the residual finiteness of F2 (see Exercise 2.9), give a sequence of finite transitive graphs

converging locally to the tree T4.

In part (b) of the previous exercise, we obtained a sequence of finite groups that resemble the free group

F2 not just locally but in many other senses: indeed, we used there that F2 is a finite index subgroup of

the residually finite SL2(Z), and the finite groups SL2(Zp) resemble SL2(Z) in almost any possible sense.

However, the local structure does not reveal in general the global shape of the group:
{ex.NonExpLocTree}

Exercise▷ 14.13 (High girth non-expanders).

(a) Let the free d-step solvable group on r generators be Sr,d := Fr/F
(d)
r , where F

(d)
r is the dth

element in the derived series of the free group Fr. Consider its natural Cayley graph. What is its

girth?

(b) Let Γ be some finite group with large girth and two generators. Let φ1 : F2 −→ Γ be a quotient map.

Let K1 := φ−1(e) be its kernel. Now let φ2 : F2 −→ Z be some quotient map, and let K2 be its kernel.

Consider the group F2/(K1 ∩K2). Show that it is an infinite group with linear volume growth and

high girth. (I learnt this example from Gady Kozma.)

(c) From either of the two infinite examples above, produce a sequence of finite non-expander Cayley

graphs converging locally to F2.

(d) On the other hand, show that if an expander sequence {Gn} converges in the Benjamini-Schramm

sense to a transitive infinite graph G, then G is non-amenable.

And here is an example where the local structure has a huge global influence:
{ex.Zloc}

Exercise▷ 14.14.**

(a) Show that if G is the Cayley graph of a group that has Z as a finite index subgroup, then there is

some r ∈ N such that BG
′

r (o′) ≃ BGr (o) for any infinite transitive graph G′ implies that G′ ≃ G.
(b) Are there less trivial examples? Say, a finitely presented infinite simple group? (See also Exer-

cise 14.11.)

Based on the isoperimetric and spectral characterizations of expanders and non-amenability, one may

think that these two notions are the exact analogues of each other. However, from Exercise 14.13 (c)

and (d), and also from Exercise 7.20, it may also seem that being an expander sequence must be strictly

stronger than non-amenablity; in fact, Section 7.4 suggests that Kazhdan’s property (T) might be the right

infinite group-theoretical analogue. The following conjecture states that this should be the case also from

the point of view of Benjamini-Schramm convergence:
{c.BowenKazhdan}

Conjecture 14.4 (Lewis Bowen). Any Cayley graph G of a Kazhdan (T) group can be approximated in the

Benjamini-Schramm sense only with essential expander graphs Gn: there is a c > 0 such that for any ϵ > 0

if n > n0(ϵ), then there is a way to erase at most ϵ|V (Gn)| vertices from Gn such that all the remaining

connected components are c-expanders.

As we mentioned in Section 11.1, regular trees, the group SL2(Z), and locally finite circle packings

of the hyperbolic plane all have non-trivial harmonic Dirichlet functions. On the other hand, Kazhdan

(T) groups, such as SLd(Z) with d ≥ 3, do not have such functions. What is the apparent importance of

planarity here? One possible semi-answer is that planar graphs cannot be expanders:
{t.LipTar}

Theorem 14.5 (Lipton-Tarjan planar separator theorem [LipT79]). Any planar graph G on n vertices

has a subset S ⊂ V (G) of at most 2
√

2
√
n vertices such that every connected component of G \ S has at

most 2n/3 nodes.
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Instead of proving this theorem, here is an exercise of a similar flavor, due to [Ths83]:

Exercise▷ 14.15.

(a) Show that there exists an absolute constant γ > 0 such that, for any k ∈ Z+, if a graph G has

minimum degree at least 3 and girth at least γk, then G can be contracted into a multigraph H that

has minimum degree k and no two vertices are joined by more than two edges.

(b) Using Euler’s formula 1 − |V | + |E| − |F | + 1 = 0 for finite planar graphs, give an upper bound on

the average degree of finite planar graphs. From this and part (a), deduce that there is an absolute

constant g > 0 such that a finite planar graph cannot have minimum degree at least 3 and girth at

least g.

(c)** What is the smallest possible g in part (b)?

As usual, Theorem 14.5 and the previous exercise have generalizations from planarity to other excluded

minors: see [KrSu09].

Having discussed the right graph sequence analogue of non-amenability and Kazhdan’s property (T),

a more than natural question arises: what is the graph sequence analogue of amenability?
{d.hyperfin}

Definition 14.6 ([KecM04, Ele07]). A sequence of finite graphs Gn is called hyperfinite if for every

ϵ > 0 there is a K < ∞ such that, for all large enough n, one can remove at most ϵ|V (Gn)| edges from

E(Gn) so that each connected component of the resulting graph has at most K vertices.

The boxes [−n, n]d in Zd clearly form a hyperfinite sequence. Using the Lipton-Tarjan Separator

Theorem 14.5, it was shown in [LipT80] that any bounded degree sequence of planar graphs is hyperfinite.

On the other hand, an expander sequence is clearly not hyperfinite. Two further simple examples are given

in the next exercise: {ex.hypfinX}
Exercise▷ 14.16.

(a) Show that any sequence of finite trees with a uniform bound on the degrees is hyperfinite.

(b) Give a sequence of finite graphs that has neither a hyperfinite nor an expander subsequence.

We saw in Exercise 14.13 (d) that if an expander sequence BSch-converges to a transitive graph, then

the limit must be non-amenable. Similarly, if a hyperfinite sequence converges to a transitive graph, then

the limit must be amenable: {ex.hypfintrans}
Exercise▷ 14.17. Show that a transitive graph G has a hyperfinite graph sequence Gn converging to it in

the local weak sense iff G is amenable.

We should of course go beyond the world of transitive graphs, and define amenability for unimodular

random rooted networks, as well:
{d.hyperfinurn}

Definition 14.7 ([Schr08, AldL07]). A unimodular random graph (G, ρ) is called amenable or hyper-

finite if for every ϵ > 0 there is a K and a subset S ⊂ E(G) such that (G,S, ρ) is unimodular (as a

0/1-labeling of (G, ρ)), every component of G \ S has size at most K, and the expected number of edges of

S adjacent to ρ in G is at most 2ϵ.

This notion is obviously the right generalization of hyperfiniteness of finite graphs; the reason for using 2ϵ

is that an (ϵ,K)-hyperfinite finite graph G with a uniform random root thus becomes an (ϵ,K)-hyperfinite

random rooted graph, since each edge in S contributes to the degree of two vertices. On the other hand,

this is also the right generalization of amenability by Theorem 12.12. Another “proof” is the following

exercise:
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Exercise▷ 14.18. Assume that a sequence {Gn} of finite graphs BSch-converges to a unimodular random

graph (G, ρ). Prove the following generalizations of Exercises 14.13 (d) and 14.17:

(a) If the sequence {Gn} is hyperfinite, then (G, ρ) is amenable.

(b) If {Gn} is an expander sequence, then (G, ρ) is non-amenable.

Given that non-amenability has turned out to be in some sense weaker than being an expander (losing

against Kazhdan’s property (T)), one may ask if amenability is not weaker than hyperfiniteness. The answer

is no, by the following analogue of Conjecture 14.4; the proof is explained well in [Lov12, Section 21.1]:
{t.hyperfinurn}

Theorem 14.8 ([Schr08]). If a sequence {Gn} BSch-converges to an amenable unimodular random graph

(G, ρ), then {Gn} is hyperfinite.

Amenability and residual finiteness are two very different reasons for soficity. One can also combine

them easily:

Exercise▷ 14.19. Define a good notion of residual amenability, and show that residually amenable

groups are sofic.

There are examples of sofic groups that are not residually amenable [ElSz06]. Further sources of provably

sofic groups can be found in [Ele15].

Most people think that the answer to Question 14.2 is “no” (maybe everyone except for Russ Lyons,

but he also has some good reasons). For instance, Gromov says that if a property is true for all groups,

then it must be trivial. (A counterexample to this meta-statement is the Erschler-Lee-Peres theorem about

the c
√
n escape rate, Exercise 10.4 and Theorem 10.7, but maybe quantitative results do not count. But

the θ(pc) = 0 percolation conjecture is certainly a serious candidate. Maybe probability does not count?

Or these questions are not really about groups, but, say, transitive graphs? Note that these two things are

not the same — see Chapter 16.) One reason that this is an important question is that there are many

results known for all sofic groups.

Yet another view on soficity is Gottschalk’s surjunctivity question [Got73]. A group Γ is called sur-

junctive if for any integer k ≥ 2, whenever a continuous self-map φ of the colouring space {1, 2, . . . , k}Γ

that commutes with the Γ-action is injective, it is automatically surjective, as well. To start digesting this

notion, do the following exercise:
{ex.surj}

Exercise▷ 14.20.

(a) Consider Γ = Z and k = 2, and the map φ(f)(i) := f(i) + f(i + 1) (mod 2). Show that this is

surjective, but not injective.

(b) Show that the set of all periodic k-colourings of Z are dense in {1, 2, . . . , k}Z. Note that any φ that

commutes with the Z-action preserves the property of having a certain period p. Since the set of

colourings of period p is a finite set, if φ is injective, then it is surjective on periodic colourings.

Conclude that an injective φ is surjective on {1, 2, . . . , k}Z, hence Z is surjunctive.

(c) Similarly to part (b), show that any residually finite group is surjunctive.

It was proved in [Wei00] that all sofic groups are also surjunctive; the converse is not known. Con-

structing any non-surjunctive group would also give a non-sofic one, and it might be easier to think about

why a specific injective φ is not surjective than to think about why there cannot exist any local approx-

imation to the group by finite graphs. Also, Benjy Weiss [Wei00] used surjuncitvity to support his guess

that non-sofic groups must exist: he showed that although any mixing subshift of finite type for Γ = Z is

surjunctive, this already fails for Γ = Z2. Here, subshift of finite type means a closed Γ-invariant subset
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X of {1, 2, . . . , k}Γ that is given by a list of how any finite window of ℓ consecutive symbols may look like,

while mixing means that for any open sets U, V ⊂ X, there is a finite set F ⊂ Γ such that U ∩ g(V ) ̸= ∅
for all g ∈ Γ \ F .

Exercise▷ 14.21. Show that the full shift {1, 2, . . . , k}Γ for any infinite group Γ and any integer k ≥ 2 is

mixing.

Exercise▷ 14.22. Show that the subshift of finite type X ⊂ {0, 1, 2}Z given by the list of ℓ = 2-windows

{00, 01, 11, 12, 22} is not mixing and not surjunctive. (Hint: let φ rewrite the single appearance of 12222 . . . ,

if it exists, to 11222 . . . .)

In [Wei00], the mixing non-surjunctive example for Z2 is given as a subshift of {0, 1, 2, ∗}Z2

. The non-∗
symbols form infinite paths of width one, going diagonally from (−∞,−∞) to (+∞,+∞), with no more

than three consecutive steps to the right or up, with the sequence of symbols belonging to the Z-subshift of

the previous exercise. These paths are then separated by some arbitrary width ≥ 5 corridors of ∗-symbols.

It is easy to see that this is a subshift of finite type, while the variable width of the ∗-corridors ensures

the mixing property. This example supports the guess that non-surjenctive groups may exist because a

strange mixing finite subshift of a certain group might possibly be modelled by the full shift of another,

strange, group.

For the groundbreaking survey on local weak convergence and unimodularity, see [AldL07]; for a survey

on soficity, see [Pes08]. In the next section, we will discuss the relevance of local weak convergence to

probability on groups.

14.2 Spectral measures and other probabilistic questions
{ss.spectral}

Although the question of local weak convergence is orthogonal to being quasi-isometric (in the sense that

the former cares about local structure only, while the latter cares about global structure), it still preserves a

lot of information about probabilistic behaviour. There are also examples where the information preserved

is not quite what one may first expect. In fact, the Benjamini-Schramm paper where local weak convergence

was introduced is about such an example:
{t.BSrec}

Theorem 14.9 ([BenS01]). Let Gn be a local weak convergent sequence of finite planar graphs with uni-

formly bounded degrees. Then the limiting unimodular random rooted graph (G, o) is almost surely recurrent.

For instance, the balls in a hyperbolic planar tiling converge locally to a recurrent unimodular random

graph that is somewhat similar to the one-ended tree of Figure 14.1. The proof of the theorem is based on

two theorems on circle packings. The first is Koebe’s theorem that any planar graph can be represented as a

circle packing; moreover, for triangulated graphs the representation is unique up to Möbius transformations.

This helps normalize the circle packing representations of Gn such that we get a circle packing for the limit

graph G. Then one needs to show that this limiting circle packing has at most one accumulation point of

centres, which implies by a result of He and Schramm that the graph is recurrent; see Theorem 11.1.

Exercise▷ 14.23. Prove that any local weak limit of bounded degree finite trees is almost surely recurrent.

(Hint: using a version of the Burton-Keane argument of Theorem 12.6, show that the root in the limit is

a trifurcation point with probability 0, hence the limit tree has 1 or 2 ends.)

A generalization of Theorem 14.9 is that if that there exists a finite graph such that none of Gn contains

it as a minor (e.g., planar graphs are characterized by not having either K5 or K3,3), then the limit is

almost surely recurrent [AngSz]. The converse is false:
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Exercise▷ 14.24. Construct a local weak convergent sequence of uniformly bounded degree finite graphs

Gn such that for any finite graph F , if n > nF , then Gn contains F as a minor, but the limit is almost

surely recurrent. (Hint 1: decorate large finite pieces of Z with copies of the possible F ’s. Hint 2: You

get a probabilistically trivial but graph theoretically harder example by showing that the Z2 lattice with the

diagonals added as edges contains any finite graph as a minor.)

An extension of Theorem 14.9 in a different direction is to relax the condition on uniformly bounded de-

grees to sequences where the degree of the uniform random root has at most an exponential tail [GuGN13].

The importance of this result is that it shows that the uniform infinite planar triangulation and quadran-

gulation (UIPT and UIPQ, mentioned shortly after Definition 14.1) are recurrent.

What other properties are preserved by local weak convergence?
{d.testable}

Definition 14.10. Let p(G) be a graph parameter: a number or some more complicated object assigned to

isomorphism classes of finite (or sometimes also infinite) graphs. It is said to be locally approximable, or

simply local, or testable, if it is continuous w.r.t. local weak convergence: whenever {Gn} is a convergent

sequence of finite graphs, {p(Gn)} also converges in distribution.

A simple but important example is the set of simple random walk return probabilities pk(o, o) =

P[Xk = o | X0 = o ]: if the r-neighbourhood of a vertex o in a graphG is isomorphic to the r-neighbourhood

of o′ in G′, and r is at least k/2, then obviously pGk (o, o) = pG
′

k (o′, o′) in the two graphs. In particular,

if a sequence of finite graphs Gn, with a uniform random root ρn, converges to a unimodular random

rooted graph (G, ρ), then, for any k ∈ Z+ fixed, {pGn

k (ρn, ρn)}∞n=1 converges in distribution to pGk (ρ, ρ).

A fancy reformulation of this observation is that the spectral measure of the random walk is locally

approximable. Here is what we mean by this; a standard reference is [MohW89].

For any reversible Markov chain, e.g., simple random walk on a graph G(V,E), the Markov operator

P is self-adjoint w.r.t. (·, ·)π, and hence we can take its spectral decomposition P =
∫ 1

−1 t dE(t), where E

is a projection-valued measure on ℓ2(V, π), a resolution of the identity, I =
∫ 1

−1 dE(t). (If G is a finite

graph on n vertices, then P has n eigenvalues −1 ≤ λi ≤ 1, with orthogonal eigenvectors fi with ℓ2(V, π)-

norm 1, for each of them we have the projection Ei(f) := (f, fi)πfi on the eigenline spanned by fi, and

P =
∑n
i=1 λiEi.) Now consider the unit vectors φx := δx/

√
π(x) for each x ∈ V , and define, for any

measurable S ⊂ [−1, 1],

σx,y(S) := (φx, E(S)φy)π =

∫
S

d(φx, E(t)φy)π , (14.3) {e.Kestenmeas}{e.Kestenmeas}

sometimes called the Kesten spectral measures or Plancherel measures. For x = y, these are

probability measures on [−1, 1], while, for x ̸= y, are signed measures with zero total mass.
{ex.specmeas}

Exercise▷ 14.25.

(a) If G(V,E) is a finite graph on n vertices, it is natural to take the average of the above spectral

measures: σG := 1
n

∑
x∈V σx,x. On the other hand, it is also natural to take the normalized counting

measure on the eigenvalues of the Markov operator, 1
n

∑n
i=1 δλi

, and call that the spectral measure

of G. Show that σx,x({λi}) = fi(x)2π(x) with the unit eigenvectors fi, and deduce that the two

definitions give the same spectral measure σG.

(b) ** One may also consider taking the weighted average σ̂G :=
∑
x∈V σx,x π(x), similarly to the size-

biasing in Definition 14.1 (e). Is there a nice way to express σ̂G using the eigenvalues {λi}?

Now notice that √
π(x)√
π(y)

pn(x, y) = (φx, P
nφy)π =

∫ 1

−1
tn dσx,y(t) , (14.4) {e.Kestenmom}{e.Kestenmom}
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hence the return probabilities are given by the moments of the Kesten spectral measures σx,x. Since these

measures have compact support, they are determined by their moments, and the local approximability of

the return probabilities (and of the ratio π(x)/π(y) = deg(x)/deg(y)) implies that the spectral measures

are also locally approximable. More precisely:
{ex.localspectral}

Exercise▷ 14.26. Let Gn be finite graphs converging to (G, ρ) in the local weak sense. Then the spectral

measure of Gn, as defined in Exercise 14.25 (a), converges weakly (weak convergence of measures) to the

Kesten spectral measure Eσρ,ρ of (G, ρ), averaged w.r.t. the randomness in the limit (G, ρ).

However, note that this does not mean that the supports of these measures also converge: for instance,

each finite Gn has 1 in its spectrum, while, if G is a non-amenable transitive graph, then its spectral

measure is bounded away from 1. And the eigenvalue 1 is not just a singular exception: as we saw in

Exercise 14.13, one can find finite Cayley graphs that are very far from being expanders (that is, they have

eigenvalues close to 1), nevertheless converge locally to the free group.

Although the supports of the spectral measures do not necessarily converge, more is true than just the

weak convergence of measures proved in Exercise 14.26:
{t.Luck}

Theorem 14.11 (Lück approximation for combinatorialists [Lüc94]). Let {Gn}∞n=1 be a sequence of finite

graphs with degrees at most D, with edges labelled by integers from {−D, . . . ,D}. Assume that {Gn}
converges in the local weak sense (with the obvious generalization handling the labels.) Let An = Adj(Gn)

be the adjacency matrices with the labels being the entries. Then dim
(

kerQAn
)
/|V (Gn)| converges.

Proof. First of all, note that dim kerQAn/|V (Gn)| = σn({0}), where σn is the spectral measure of An.

Consider now all the nonzero eigenvalues λi ∈ R of An. Their product is a coefficient of the characteristic

polynomial, hence is a nonzero integer. But all the absolute values |λi| are at most D2, hence not too

many of them can be very small. More precisely, the spectral measure of An satisfies σn
(
[−ϵ, ϵ] \ {0}

)
<

D′/ log(1/ϵ) for any ϵ > 0, with some D′ depending on D. Together with the weak convergence of the

spectral measures, this implies that σn({0}) also converges, and we are done.

This was generalized by [Thm08] to atoms not only at 0, but at any x ∈ R. In particular, this holds for

the atoms in the spectral measure of the Markov operator of regular graphs. Note that this implies that

the atoms in the spectral measure of a sofic Cayley graph are always located at algebraic integers.

After these convergence results, let us see some examples for the spectral measures of infinite graphs.

Exercise▷ 14.27.

(a) Show that the d-regular tree Td with d ≥ 2 (i.e., including Z) has no eigenvectors λf = Pf with

f ∈ ℓ2(Td), for any λ ∈ R. (Hint: assuming there is one, show that there would also be one whose

values depend only on the distance from the root; then exclude this by direct computation.)

(b) Show that the quasi-transitive tree T on the left hand side of Figure 12.5, which is unimodular by

Exercise 14.3, has an ℓ2(T )-eigenvector, with eigenvalue 0.
{ex.Zspec}

Exercise▷ 14.28 (The spectral measure of Z).

For SRW on Z, the Kesten spectral measure is dσx,x(t) = 1
π
√
1−t21[−1,1](t) dt. (Hint: you could do this in at

least two ways: either from the spectrum of the cycle Cn, i.e., a combination of Exercises 7.5 and 14.26, or

from (14.4), computing return probabilities and moments explicitly, and arguing that the spectral measure

is determined by its moments.)
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{ex.prodspec}
Exercise▷ 14.29.

(a) Show that for the spectral measures σGi
x,y associated to the adjacency matrices (as opposed to the

Markov operators) of two graphs Gi, i = 1, 2, if u = (u1, u2) and v = (v1, v2) are two vertices in the

direct product G1 ×G2, then σ
G1×G2
u,v = σG1

u1,v1 ∗ σ
G2
u2,v2 , a convolution of measures.

(b) Note that the previous statement can be easily translated to the spectral measures of the Markov

operators only when both Gi are regular graphs. Deduce, for instance, that the direct product of two

amenable groups is amenable.

Exercise▷ 14.30 (The spectral measure of Td).* {ex.Tspec}
(a) Consider the Kesten spectral measure σ = σx,x of a Cayley graph. Its Stieltjes transform is

S(z) :=

∫
1

t− z
dσ(t) ,

a finite integral for any ℑz > 0. Show that

S(z) =

∞∑
k=0

−mk

zk+1
,

where mk :=
∫
tkdσ(t) is the kth moment of the spectral measure.

(b) Prove the following nice interpretation of the Stieltjes transform (which I learnt from Charles Borde-

nave): for any continuous real function f with bounded support,

1

π

∫
f(t) · ℑS(t+ iϵ) dt = Ef(X + ϵY ) ,

where X is distributed according to σ, and Y is an independent Cauchy variable. Deduce the inversion

formula
dσ(t)

dt
= lim
ϵ→0+

ℑS(t+ iϵ)

π
,

whenever the right hand side exists and is continuous in t.

(c) Using the strategy of Section 1.1, find S(z) for the tree Td. Using the previous part, find the density

of the Kesten spectral measure of Td.
(d) Note that the spectral measure of Td you have just computed is supported on [− 2

√
d−1
d , 2

√
d−1
d ], and,

as d → ∞, it converges to Wigner’s semicircle law (which is the n → ∞ limit of the normalized

counting measure on the eigenvalues of the n× n classical β = 1, 2, 4 random matrix ensembles).

Exercise▷ 14.31 ([Kai80]). * Show that for any symmetric finitely supported µ on an amenable group, {ex.amenspecmeas}
the associated random walk has not only ρ(P ) = 1, but 1 also lies in the support of the spectral measure

dσx,x(t). In fact, for any h < 1 and ϵ > 0,

σx,x[1− h, 1] ≥ 1− 2ϵ/h2

|Aϵ|
,

where Aϵ is any Følner set with |Aϵg∆Aϵ| < ϵ|Aϵ| for all g ∈ suppµ.

For a long while, it was not known if simple random walk on a group can have a spectral measure not

absolutely continuous with respect to Lebesgue measure. Discrete spectral measures are usually associated

with random walk like operators on random underlying structures, e.g., with the adjacency or the transition
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matrices of random trees [BhES12], or with random Schrödinger operators ∆ + diag(Vi) on Zd or Td,
with Vi being i.i.d. random potentials on the vertices [Kir07]. Note that the latter is a special case of the

former in some sense, since the Vi can be considered as loops with random weights added to the graph. Here,

Anderson localization is the phenomenon that for large enough randomness in the potentials, the usual

picture of absolutely continuous limiting spectral measure, with repulsing (or even lattice-like) eigenvalues

and spatially extended eigenfunctions in the finite approximations, disappears, and Poisson statistics for the

eigenvalues appears, with localized eigenfunctions, giving L2-eigenfunctions, hence atoms, in the limiting

spectral measure. However, the exact relationship between the behaviour of the limiting spectral measure

and the eigenvalue statistics of the finite approximations has only been partially established, and it is also

unclear when exactly localization and delocalization happen. Assuming that the random potentials have a

nice distribution, localization is known for arbitrary small (but fixed) variance on Z, and very large variance

on other graphs, while delocalization is conjectured for small variance on Zd, d ≥ 3, proved on Td. The

case of Z2 is unclear even conjecturally. In the context of our present notes, it looks like a strange handicap

for the subject that the role of the Benjamini-Schramm convergence was discovered as a big surprise only

in [AiW06], but still without realizing that this local convergence has a well-established theory, e.g., for

random walks.

Nevertheless, deterministic groups can also exhibit discrete spectrum: Grigorchuk and Żuk showed

that the lamplighter group Z2 ≀ Z has a self-similar action on the infinite binary tree (see Section 15.1,

around (15.7)), and, with the corresponding generating set, the resulting Cayley graph G has a pure

discrete spectral measure. They used the finite Schreier graphs Gn for the action on the nth level of the

tree converging locally to G. See [GriŻ01]. An alternative proof was found in [DicS02], later extended by

[LeNW07], which interpret the return probabilities of SRW on the lamplighter group F ≀Zd as the averaged

return probabilities of a SRW on a p-percolation configuration on Zd, with parameter p = 1/|F |, where the

walk is killed when it wants to exit the cluster of the starting vertex. (So, in a certain sense, the picture

of a random walk on a random underlying structure is somehow still there.)

On the other hand, the following is still open. For a rough intuitive “definition” of the von Neumann

dimension dimΓ, see the paragraph before Theorem 11.3.
{c.Atiyah}

Conjecture 14.12 (Atiyah 1976). Simple random walk on a torsion-free group Γ cannot have atoms in

its spectral measure dσx,x, and more generally, any operator on ℓ2(Γ) given by multiplication by a non-

zero element of the group algebra CΓ has a trivial kernel. Even more generally, the kernel of any matrix

A ∈Mn×k(CΓ), as a linear operator ℓ2(Γ)n −→ ℓ2(Γ)k, has integer Γ-dimension

dimΓ(kerA) :=

n∑
i=1

(πkerAei, ei)ℓ2(Γ)n ,

where πH is the orthogonal projection onto the subspace H ⊆ ℓ2(Γ)n and ei is the standard basis vector of

ℓ2(Γ)n, with a Kronecker δe(g) function (where e ∈ Γ is the identity) in the ith coordinate.

How is the claim about the trivial kernel a generalization of the random walk spectral measure being

atomless? The Markov operator P , generated by a finitely supported symmetric measure µ, can be repre-

sented as multiplication of elements φ =
∑
g∈Γ φ(g)g ∈ ℓ2(Γ) by µ =

∑
g∈Γ µ(g)g ∈ R≥0Γ. Now, because of

group-invariance, having an atom in dσx,x(t) at t0 ∈ [−1, 1] is equivalent to having an atom at dE(t0), and

that means there is a non-trivial eigenspace in ℓ2(Γ) for P with eigenvalue t0. Indeed, dimΓ(ker(µ− t0e))
is exactly the size σx,x({t0}) of the atom.

The conjecture used to have a part predicting the sizes of atoms for groups with torsion; a strong

version was disproved by the lamplighter result [GriŻ01], while all possible weaker versions have recently
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been disproved by Austin and Grabowski [Aus13, Grab10]. The proof of Austin is motivated by the above

percolation picture.

Here is a nice proof of the Atiyah conjecture for Z that I learnt from Andreas Thom (which might well

be the standard proof). The Fourier transform

a = (an)n∈Z 7→ a(t) =
∑
n∈Z

an exp(2πitn), t ∈ S1

is a Hilbert space isomorphism between ℓ2(Z) and L2(S1), and also identifies multiplication in CZ (which

is a convolution of the coefficients) with pointwise multiplication of functions on S1. So, the kernel Ha for

multiplication by a ∈ CZ in ℓ2(Z) is identified with Ha = {f(t) ∈ L2(S1) : a(t)f(t) = 0}, and projection

on Ha is just multiplication by 1Za(t), the indicator function of the zero set of a(t). Then, by the Hilbert

space isomorphism,

dimZ(Ha) = (πHa
e, e)ℓ2(Z) =

∫
S1

1Za(t) dt = Leb(Za) = 0 , (14.5) {e.LebZa}{e.LebZa}

since a(t) is a nonzero trigonometric polynomial, and we are done.
{ex.arcsine}

Exercise▷ 14.32. ** A variable X ∈ [0, 1] follows the arcsine law if P[X < x ] = 2
π arcsin(

√
x), or, in

other words, has density (π
√
x(1− x))−1. This distribution comes up in several ways for Brownian motion

Bt on R, the scaling limit of SRW on Z: the location of the maximum of {Bt : t ∈ [0, 1]}, the location of

the last zero in [0, 1], and the Lebesgue measure of {t ∈ [0, 1] : Bt > 0} all have this distribution. Is there

a direct relation to the spectral measure density in Exercise 14.28? A possibly related question: is there a

quantitative version of (14.5) relating the return probabilities ≍ n−1/2 on Z to the dimension 1/2 of the

zeroes of Brownian motion? This relationship is classical, but can you formulate it using projections? See

[MöPe10] for background on Brownian motion.

To see a probabilistic interpretation of atoms in the spectral measure, note that for SRW on a group

Γ, by (14.4), there is no atom at the spectral radius ±ρ(P ) iff pn(x, x) = o(ρn). And this bound is

actually true, even in a stronger form, proved using random walks and harmonic functions: Theorem 7.8 of

[Woe00], a result originated in the work of Guivar’ch and worked out by Woess, says that whenever a group

is transient (i.e., not quasi-isometric to Z or Z2), then it is also ρ-transient, meaning that G(x, y | 1/ρ) <∞,

for Green’s function evaluated at the spectral radius ρ = ρ(P ). This clearly implies that there is no atom

at ±ρ.

Let us turn for a second to the question what types of spectral behaviour are robust under quasi-

isometries, or just under a change of generators. The spectral radius ρ being less than 1 is of course robust,

since it is the same as non-amenability. On the other hand, the polynomial correction in pn(x, x) = o(ρn)

can already be sensitive: for the standard generators in the free product Zd ∗ Zd, for d ≥ 5, we have

pn(x, x) ≍ n−5/2ρn, while, if we take a very large weight for one of the generators in each factor Zd, then

random walk in the free product will behave like random walk on a regular tree, giving pn(x, x) ≍ n−3/2ρn,

see Exercise 1.7. This instability of the exponent was discovered by Cartwright, see [Woe00, Section 17.B].

Exercise▷ 14.33. Explain why the strategy of Exercises 1.5, 1.6, 1.7 to prove the exponent 3/2 in the free

group does not necessarily yield the same 3/2 in Zd ∗ Zd.

In a work in progress, Grabowski and Virág show that the discreteness of the spectral measure can be

completely ruined by a change of variables: in the lamplighter group, by changing the generators, they can

set the spectrum to be basically anything, from purely discrete to absolutely continuous.
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The locality of the spectral measure suggests that if a graph parameter can be expressed via simple

random walk return probabilities on the graph, then it might also be local. We have seen in Section 11.2

that the Uniform Spanning Tree measure of a finite graph is closely related to random walks. This motivates

the following result of Russ Lyons:
{t.treeent}

Theorem 14.13 (Locality of the tree entropy [Lyo05]). For any finite graph G(V,E), let τ(G) be the

number of its spanning trees, and let htree(G) := log τ(G)
|V (G)| be its tree entropy. If Gn converges in the

Benjamini-Schramm sense to the unimodular random rooted graph (G, ρ), then, under mild conditions on

the unimodular limit graph (e.g., having bounded degrees suffices),

lim
n→∞

htree(Gn) = E
[

log deg(ρ)−
∑
k≥1

pGk (ρ, ρ)

k

]
, (14.6) {e.treeentlim}{e.treeentlim}

where pGk (ρ, ρ) is the SRW return probability on G.

Sketch of the proof for a special case. Let LG = DG − AG be the graph Laplacian matrix: DG is the

diagonal matrix of degrees and AG is the adjacency matrix. (For a d-regular graph, this is just d times our

usual Markov Laplacian I − P .) The Matrix-Tree Theorem says that τ(G) equals det(LiiG), where the

superscript ii means that the ith row and column are erased. By looking at the characteristic polynomial

of LG, it is easy to see that this truncated determinant is the same as 1
n

∏n
i=2 κi, where |V (G)| = n and

0 = κ1 ≤ · · · ≤ κn are the eigenvalues of LG.

Assume for easier notation that |V (Gn)| = n. A less trivial simplification is that we will assume that

each Gn is d-regular. Then κi = d(1 − λi), where −1 ≤ λn ≤ · · · ≤ λ1 = 1 are the eigenvalues of the

Markov operator P . Thus

log τ(Gn)

n
=
− log n

n
+
n− 1

n
log d+

1

n

n∑
i=2

log(1− λi) . (14.7) {e.treeentn}{e.treeentn}

Consider the Taylor series log(1−λ) = −
∑
k≥1

1
kλ

k, for λ bounded away from 1. Recall that, for the uniform

random root ρ in Gn, the invariance of trace w.r.t. the choice of basis implies that E pGn

k (ρ, ρ) = 1
n

∑n
i=1 λ

k
i .

Putting these ingredients together,

1

n

n∑
i=2

log(1− λi) = −
∑
k≥1

1

k

(
E pGn

k (ρ, ρ)− 1

n

)
. (14.8) {e.treeentm}{e.treeentm}

We are on the right track towards formula (14.6) — just have to address how to interchange the infinite

sum over k and the limit n→∞.

For lazy SRW in a fixed graph, the distribution after a large k number of steps converges to the

stationary one, which is constant 1/n in a d-regular graph with n vertices. Let us therefore consider the

lazy walk in Gn, with Markov operator P̃ = (I + P )/2 and return probabilities p̃Gn

k (·, ·). Any connected

graph is at least 1-dimensional in the sense that any finite subset of the vertices that is not the entire

vertex set has at least one boundary edge. Thus, Theorem 8.2 implies that∣∣∣∣E p̃Gn

k (ρ, ρ)− 1

n

∣∣∣∣ ≤ Cd√
k
, (14.9) {e.pkspeed}{e.pkspeed}

for all n. So, if we had p̃k instead of pk on the RHS of (14.8), then we could use the summability of k−3/2

to get a control in (14.8) that is uniform in n. But how could we relate the lazy SRW to the original walk?
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If we add d half-loops at each vertex, so that we get a 2d-regular graph G̃n, then SRW on this graph

is the same as the lazy SRW on Gn, hence we can again write down the identities (14.7) and (14.8), now

with G̃n and p̃k. On the other hand, we obviously have τ(G̃n) = τ(Gn). Thus,

log τ(Gn)

n
=
− log n

n
+
n− 1

n
log(2d)−

∑
k≥1

1

k

(
E p̃Gn

k (ρ, ρ)− 1

n

)
. (14.10) {e.treeentlazy}{e.treeentlazy}

Now (14.9) implies that for any ϵ > 0, if K and n are large enough, then∣∣∣∣∣ log τ(Gn)

n
− log(2d)−

K∑
k=1

1

k

(
E p̃Gn

k (ρ, ρ)− 1

n

)∣∣∣∣∣ < ϵ .

Take n→∞ and then K →∞. For each fixed k, we have E p̃Gn

k (ρ, ρ)→ E p̃Gk (ρ, ρ), which yields

lim
n→∞

log τ(Gn)

n
= log(2d)−

∞∑
k=1

1

k
E p̃Gk (ρ, ρ) .

Note here that the infinite sum is finite either by taking the limit n→∞ in (14.9) or by the infinite chain

version of the same Theorem 8.2.

This already shows the locality of the tree entropy, but we still would like to prove formula (14.6). This

is accomplished by Exercise 14.34 below, the infinite graph version of the identity

log 2−
∑
k≥1

1

k

(
E p̃Gn

k (ρ, ρ)− 1

n

)
= −

∑
k≥1

1

k

(
E pGn

k (ρ, ρ)− 1

n

)

that we get for any finite graph Gn by comparing (14.7, 14.8) with (14.10).

{ex.pkqk}
Exercise▷ 14.34. Let P be the transition matrix of any infinite Markov chain. For α ∈ [0, 1], define the

lazy transition matrix Q := αI+(1−α)P . For a state x, let pk(x) and qk(x) denote the return probabilities

to x after k steps in the two chains. Then
∑
k≥1 q(x)/k = − log(1 − α) +

∑
k≥1 p(x)/k. (Hint: For any

z ∈ (0, 1), write
∑
k qk(x)zk/k as an inner product using the operator log(I − zQ), then let z ↗ 1.)

The tree entropy limn htree(Gn) = htree(G, ρ) can actually be calculated sometimes. From the connec-

tion between spanning trees and domino tilings in planar bipartite graphs, one can show that htree(Z2) =

4G/π ≈ 1.166, where G :=
∑
k≥0(−1)k/(2k + 1)2 is Catalan’s constant; see the examples after Theorem

6.1 of [BurtP93]. For the 4-regular tree, from Theorem 14.13 and the tree’s Green function (1.9), Lyons

deduced htree(T4) = 3 log(3/2) in [Lyo05].

A similarly defined notion of entropy is the q-colouring entropy hq-col(G) := log ch(G,q)
|V (G)| , where ch(G, q)

is number of proper colourings of G with q colours (i.e., colourings of V (G) such that neighbours never get

the same colour). This ch(G, q) is called the chromatic polynomial of G, for the following reason:
{ex.chpoly}

Exercise▷ 14.35.

(a) Show that, for any q ∈ Z+ and any e ∈ E(G), we have ch(G, q) = ch(G \ e, q) − ch(G/e, q), where

G \ e is the graph obtained from G by deleting e, and G/e is obtained by gluing the endpoints of e

and erasing the resulting loops.

(b) Deduce that ch(G, q) is a polynomial in q, of the form qn + an−1(G)qn−1 + · · · + a1(G)q, where

|V (G)| = n.
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(c) Show that
∑
S⊆V (G) ch(G[S], x) ch(G[V \S], y) = ch(G, x+y), where G[S] is the subgraph of G induced

by S.

The roots of the chromatic polynomial ch(G, q) =
∏n
i=1(q − λi) are called the chromatic roots of

G(V,E), and (analogously to the spectral measure) the counting measure on the roots normalized to have

total mass 1 is called the chromatic measure µcol
G . We can express the q-colouring entropy using this

measure:

hq-col(G) =
1

n
log ch(G, q) =

∫
C

log(q − z) dµcol
G (z) , (14.11) {e.qcolorint}{e.qcolorint}

whenever q ̸∈ {λ1, . . . , λn}. Note that the 4-colour theorem says that any planar graphG satisfies ch(G, q) >

0 for all integers q ≥ 4. A certain generalization has been proved by Alan Sokal [Sok01]: there exists an

absolute constant C < 8, such that if G has maximal degree d, then all roots of ch(G, q) in C are contained

in the ball of radius Cd. There is a huge body of work on the chromatic polynomial by Sokal and coauthors

(just search the arXiv).

What about locality? It was proved in [BorChKL13] that hq-col(G) is local for graphs with degrees

bounded by d, whenever q > 2d. They used the Dobrushin uniqueness theorem: with this many

colours, the effect of any boundary condition decays exponentially fast with the distance, and hence there

is only one Gibbs measure in any infinite volume limit (i.e., on any limiting unimodular random rooted

graph). It should not be surprising that this has to do with the locality of how many different colourings

are possible, but the proof is somewhat tricky.

Now, in light of (14.11) and the locality of the random walk spectral measure (Exercise 14.26), it is

natural to ask about the locality of the chromatic measure. This was addressed by Abért and Hubai

[AbH15]; then Csikvári and Frenkel [CsF16] found a simpler argument that generalizes to a wide class of

graph polynomials. We start with the definitions needed.

A graph polynomial f(G, z) =
∑n
k=0 ak(G)zk is called isomorphism invariant if it depends only on

the isomorphism class of G. It is called multiplicative if f(G1 ⊔ G2, z) = f(G1, z) f(G2, z), where ⊔
denotes disjoint union. It is of exponential type if it satisfies the identity of Exercise 14.35 (c). It is of

bounded exponential type if there is a function R : N −→ R≥0 not depending on G such that, for any

graph G with all degrees at most d, any v ∈ V (G), and any t ≥ 1, we have∑
v∈S⊆V (G)
|S|=t

|a1(G[S])| ≤ R(d)t−1. (14.12) {e.boundedexp}{e.boundedexp}

Besides the chromatic polynomial, here are some further examples that satisfy all these properties (see

[CsF16] for proofs and references):

(1) The Tutte polynomial of G(V,E) is defined as

T (G, x, y) :=
∑
ω⊆E

(x− 1)k(ω)−k(E)(y − 1)k(ω)+|ω|−|V | , (14.13) {e.Tutte}{e.Tutte}

where k(ω) is the number of connected components of (V, ω). This is almost the same as the partition

function ZFK(p, q) of the FK model in (13.7); the exact relation is

T (G, x, y) =
y|E|

(x− 1)k(E)(y − 1)|V |
ZFK

(
y − 1

y
, (x− 1)(y − 1)

)
. (14.14) {e.TutteFK}{e.TutteFK}

A third common version is F (G, q, v) :=
∑
ω⊆E q

k(ω)v|ω|. The variable v corresponds to p/(1− p) in

FK(p, q). This third form is the best now, since its degree in q is |V |. In fact, it satisfies the above

properties for any fixed v. Note that ch(G, q) = F (G, q,−1).
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(2) The Laplacian characteristic polynomial L(G, z) is the characteristic polynomial of the Laplacian

matrix LG = DG −AG, featured in the proof of Theorem 14.13.

(3) The (modified) matching polynomial is M(G, z) := zn−m1(G)zn−1+m2(G)zn−2−m3(G)zn−3+

. . . , where mk(G) is the number matchings of size k.

Sokal’s theorem above about the chromatic roots of bounded degree graphs generalizes rather easily

to graph polynomials of bounded exponential type: Theorem 1.6 of [CsF16] says that if f(G, z) has a

bounding function R in (14.12), and G has degrees less than d, then the absolute value of any root is less

than cR(d), where c < 7.04. In other words, the polynomial then has bounded roots. Now, the main

result of [CsF16], generalizing the case of chromatic polynomials from [AbH15] is the following:

Theorem 14.14 (Csikvári-Frenkel [CsF16]). Let f(G, z) be an isomorphism-invariant monic multiplicative

graph polynomial of exponential type. Assume that it has bounded roots. Let Gn be a sequence that converges

in the Benjamini-Schramm sense, and K ⊂ C a compact domain that contains all the roots of f(Gn, z).

Let µfG be the uniform distribution on the roots of f(G, z). Then the holomorphic moments
∫
K
zkdµfGn

(z)

converge for all k ∈ N. In particular, if we define the f-entropy or free energy at ζ ∈ C \K by

hf,ζ(G) :=
1

|V (G)|
log |f(G, ζ)| =

∫
C
| log(ζ − z)| dµfG(z) , (14.15) {e.fentint}{e.fentint}

then the Taylor series of log |z| shows that hf,ζ(Gn) converges to a harmonic function locally uniformly on

C \K. That is, for ζ ∈ C \K, the f -entropy at ζ is local.

As opposed to moments of a compactly supported measure on R, the holomorphic moments do not

characterize uniquely a compactly supported measure on C. And, somewhat surprisingly, the chromatic

measure itself is in fact not local, as shown by the following exercise:
{ex.chcycle}

Exercise▷ 14.36.

(a) Show that the chromatic polynomial of the path on n vertices is ch(Pn, q) = q(q − 1)n−1, while the

chromatic polynomial of the cycle on n vertices is ch(Cn, q) = (q − 1)n + (−1)n(q − 1).

(b) Deduce that the chromatic measure of Cn converges weakly to the uniform distribution on the circle

of radius 1 around z = 1, while the chromatic measure of Pn converges weakly to the point mass at

z = 1.

(c) *** Is one of the limiting measures more canonical than the other?

Non-trivially, but it follows from the locality of the matching polynomial root moments that the match-

ing ratio, i.e., the maximal size of a disjoint set of edges, divided by the number of vertices is a local

parameter. See also [ElL10]. Surprisingly at first sight, the analogous notion with independent subsets of

vertices instead of edges behaves very differently. The independence ratio of a finite graph G(V,E) is the

size of the largest independent set (i.e., a subset of the vertices such that no two of them are neighbours)

divided by |V |. For instance, the independence ratio of a balanced bipartite graph (i.e., the two parts have

the same size) is 1/2.
{t.indepratio}

Theorem 14.15 (The independence ratio is not local [Bol81]). For any d ≥ 3, there exists an ϵ > 0

and a sequence of d-regular graphs with girth tending to infinity (i.e., converging locally to Td) for which

the independence ratio is less than 1/2 − ϵ. Basically, random d-regular graphs will do. Since uniformly

random d-regular balanced bipartite graphs also converge to Td in the local weak sense (see Exercise 14.8),

this shows that the independence ratio of d-regular graphs is not local.
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What is then the independence ratio of random d-regular graphs? This seems to be intimately related

to the question of how dense an invariant independent set can be defined on the d-regular tree Td that is

a factor of an i.i.d. process. One direction is clear: given any measurable function of an i.i.d. process on

Td that produces an independent set, we can approximate that by functions depending only on a bounded

neighbourhood, then we can apply the same local functions on any sequence of finite graphs with girth

going to infinity. Several people (Balázs Szegedy, Endre Csóka, maybe David Aldous) have independently

arrived at the conjecture that on random d-regular graphs, the optimal density (in fact, all possible limit

densities) can be achieved by such a local construction:

Conjecture 14.16 (Balázs Szegedy). The possible values for the densities of independent sets in random

d-regular graphs coincides with the possible densities of independent sets as i.i.d. factors in d-regular trees.

(This is part of a much more general conjecture on the so-called local-global limits that I plan to discuss

in a later version; see [HatLSz12] for now.)

The ideology is that random d-regular graphs have no global structure, hence all limit processes can be

constructed locally (i.e., as a factor of i.i.d.) on the local limit graph (the regular tree).

It is an important question what kind of processes can be realized as a factor of an i.i.d. process. See

[LyNaz11, HatLSz12, Mes11], for instance. And here is another beautiful conjecture:
{c.AbSzeg}

Conjecture 14.17 (Abért-Szegedy). Let Gn be a Benjamini-Schramm-convergent sequence of finite graphs,

ωn an i.i.d. process on Gn, and F (Gn, ωn) a factor process. Let h(F,Gn) be the entropy of the resulting

measure. (For simplicity, we can assume that there are finitely many possible configurations of F (Gn, ωn).)

Then limn→∞ h(F,Gn)/|Gn| exists.

We have mentioned in Section 13.5 that Ornstein-Weiss have developed a very good entropy theory for

amenable groups. An affirmative answer to Conjecture 14.17 would say that there is a good entropy notion

also for i.i.d. factor processes on all sofic groups.

Another interesting corollary would be the (mod p) version of the Lück Approximation Theorem 14.11:

if An’s are the adjacency matrices of a convergent sequence of finite graphs Gn, then dim kerFp
An/|V (Gn)|

converges. Indeed, this is equal to 1 − dim ImFp
An/|V (Gn)|, and the normalized dimension of the image,

times log p, is the normalized entropy of the uniform measure on the image space. And we can easily get

this uniform distribution as a factor of an i.i.d. process: assign i.i.d. uniform random labels to the vertices

of Gn from {0, 1, . . . , p− 1}, then write on each vertex the (mod p) sum of its neighbouring labels.

Let us turn to a locality question that is quite different from spectral measures and entropies: the

critical parameter in Bernoulli percolation:
{c.pcloc}

Conjecture 14.18 (Locality of pc, O. Schramm). If Gn are infinite transitive graphs locally converging to

G, with supn pc(Gn) < 1, then pc(Gn)→ pc(G).

Exercise▷ 14.37. Show that the supn pc(Gn) < 1 condition in Conjecture 14.18 is necessary.

This conjecture appears to be quite hard: the case of Zd was proved in [GriMar90], one of the key

papers of classical percolation. This was recently extended by [MaTa17] to Cayley graphs of Abelian

groups, by making the Grimmett-Marstrand argument more robust. At the other end, for highly non-

amenable transitive graphs with high girth, the conjecture was proved in [BenNP11].
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We are going to prove now one direction of Conjecture 14.18, which is clearly the easier one, but we

are not aware that it has been done anywhere else:

pc(G) ≤ lim inf
n→∞

pc(Gn) . (14.16) {e.locinf}{e.locinf}

Assume that this fails, hence there exists ϵ > 0 such that pc(Gn) < pc(G) − ϵ for infinitely many n. For

easier notation, we relabel this subsequence to be {Gn}∞n=1. Now, fixing p = pc(G)−ϵ/2, for any δ > 0 there

exists a large radius R > 0 such that PG
p [o←→ ∂BR(o)] < δ. If n is large enough, then BGR (o) ≃ BGn

R (o),

hence PGn
p [o ←→ ∂BR(o)] < δ, as well. On the other hand, p > pc(Gn) + ϵ/2, and pc(Gn) < 1− ϵ, hence

Theorem 12.29 on the linear lower bound for θ(pc + ϵ) says that PGn
p [o ←→ ∞] > c(ϵ) for all n. Taking

δ > 0 less than c(ϵ), then n large enough, we have arrived at a contradiction.

For the other direction, one would need to show that the existence of p with pc(G) < p < pc(Gn) < 1−δ
for infinitely many n is impossible. I imagine there would be two main steps in this (not at all independent

of each other). Firstly, the content of Questions 12.34 and 12.35 in Section 12.5 is that doing percolation

at p > pc(G) should be somehow visible for large enough R in the cluster structure restricted to BGR (o).

In the case of amenable G, it is probably better to take a large Følner set, and in that case, the Følner

set should be really well-connected internally. Secondly, for large enough n, we have BGR (o) ≃ BGn

R (o), so

one could try to show that it is impossible to glue these large balls or Følner sets globally in a way that

the quite large clusters inside these large sets do not get connected, forming an infinite cluster. Here the

condition pc(Gn) < 1 − δ is really important: the graph Zn × Z has large large well-connected pieces at

scale n, provided that p > 1/2 and n > n0(p), but they do not form globally an infinite cluster. However,

the condition pc(Gn) < 1−δ should imply that the “renormalized graph” that has the large balls or Følner

sets as vertices, together with some natural neighbor structure, should have some version of pc that is

(a) either close to zero (e.g., large balls of a regular tree form a regular tree of huge degree),

(b) or is at least still bounded away from 1, but this weaker case should occur only for amenable graphs,

where the large sets should be really well-connected internally with high probability (as in renormal-

ization on Abelian graphs), again producing a super-critical situation globally.

A joint corollary to Conjecture 14.18 on locality and Conjecture 12.7 on pc < 1 would be that 1 is an

isolated point in each of the sets Pd := {pc(G) : G is an infinite d-regular transitive graph}. Indeed, if we

had a sequence of d-regular graphs with pc(Gn) < 1 but pc(Gn) → 1, then by compactness there would

be a subsequence Gnk
converging locally to some G. By locality of pc, we would have pc(G) = 1. By

Conjecture 12.7, this G would be a finite extension of Z. Then, by Exercise 14.14, there is a finite nk such

that Gnk
= G, hence pc(Gnk

) = 1, a contradiction. One expects that 1 is also isolated in
⋃
d∈Z+

Pd, since

with large degrees it seems harder to get large pc values, but I do not see a proof for this stronger version.

Of course, one can also ask about the locality of pc(q) in the FK(p, q) random cluster measures. But

there is an even more basic question:

Question 14.19. If Gn converges to a non-amenable transitive G in the local weak sense, is it true for all

FK(p, q) random cluster models (especially for the much more accessible q > 1 case) that the limit measure

from the Gn’s is the wired measure on G?

This is easy to see for the WUSF (the q = p = 0 case) using Wilson’s algorithm. For the q = 2

Ising case, when G is a regular tree, it is proved in [MonMS12] that the Ising measure converges to the

symmetric mixture of the + and − extremal measures, which strongly suggests a positive answer. In the

amenable case, it is clear that both the free and the wired measures can be achieved by local limits. In the

non-amenable case, the question is if the limit could be strictly dominated by the wired measure.
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15 Some more exotic groups
{s.exotic}

We now present some less classical constructions of groups, which have played a central role in geometric

group theory in the last two decades or so, and may provide or have already provided exciting examples

for probability on groups.

15.1 Self-similar groups of finite automata
{ss.automata}

This section shows some natural ways to produce group actions on rooted trees, which come up indepen-

dently in complex and symbolic dynamical systems and computer science. A key source of interest in this

field is Grigorchuk’s construction of groups of intermediate volume growth (1984). The main references

are [GriNS00, BartGN03, Nek05].

In Section 13.5 we already encountered the adding machine action of Z: the action of the group on

finite and infinite binary sequences was

(0w)a = 1w

(1w)a = 0wa .
(15.1) {e.adding2}{e.adding2}

By representing finite and infinite binary sequences as vertices and rays in a binary tree, we clearly get an

action by tree automorphisms. The first picture of Figure 15.1 shows this action, with the Schreier graphs

of the first few levels. The second picture is called the “profile” of the action of the generator a; the picture

should be self-explanatory once one knows that the switches of the subtrees are to be read off from bottom

to top, towards the root.

0 1
0 1

00 01 11

000 010 111

id aa−1

0/0

1/1

0/11/0
1/0

Figure 15.1: The adding machine action of Z: (a) the Schreier graphs on the levels (b) the profile of the

generator a’s action (c) the Moore diagram of the automaton {f.adding}

Finally, the third picture of Figure 15.1 is called the Moore diagram of the automaton generating the

group action. This automaton is a directed labeled graph G(V,E), whose vertices (the states) correspond

to some tree automorphisms, as follows. Given any initial state s0 ∈ V , for any infinite binary sequence

x1x2 . . . the automaton produces a new sequence y1y2 . . . : from s0 we follow the arrow whose first label

is x1, we output the second label, this will be y1, and then we continue with the target state of the arrow

(call it s1) and the next letter x2, and so on. The group generated by the tree automorphisms given by

216



the states V is called the group generated by the automaton. There is of course a version with labels from

{0, 1, . . . , b− 1} instead of binary sequences, generating an action on the b-ary tree Tb.
{d.ss}

Definition 15.1. The action of a group Γ on the b-ary tree Tb (b ≥ 1) is called self-similar if for any

g ∈ Γ, any letter x ∈ {0, 1, . . . , b− 1}, and any finite or infinite word w on this alphabet, there is a letter y

and h ∈ Γ such that (xw)g = y(wh). If S ⊆ Γ generates Γ as a semigroup, and ∀s ∈ S and word xw there

is a letter y and t ∈ S such that (xw)s = y(wt), then S is called a self-similar generating set. Then the

group can clearly be generated by an automaton with states S. If there is a finite such S, then Γ is called

a finite-state self-similar group.

For a self-similar action by Γ, for any g ∈ Γ and finite word v there is a word u of the same length

and h ∈ Γ such that (vw)g = u(wh) for any word w. This h is called the restriction h = g|v, and we get

an action of Γ on the subtree starting at v. The action of the full automorphism group of Tb is of course

self-similar, and there is the obvious wreath product decomposition

Aut(Tb) ≃ Aut(Tb) ≀ Symb , (15.2) {e.treathA}{e.treathA}

corresponding to the restriction actions inside the b subtrees at the root and then permuting them. (But,

of course, Aut(Tb) is not finitely generated.) For a general self-similar action by Γ ≤ Aut(Tb), the isomor-

phism (15.2) gives an embedding

Γ ↪→ Γ ≀ Symb . (15.3) {e.treathG}{e.treathG}

Using this embedding, we can write the action of any g ∈ Γ recursively as (g0, . . . , gb−1)πg, where gi = g|i
are the restrictions to the children at the first level, πg is the permutation of these children (together with

the subtrees below them), and the order of the multiplication is dictated by having a right action on the

tree: first apply the restrictions, then apply πg. For instance, the adding machine action (13.16) can be

written very concisely as the recursion a = (1, a)ϵ, where ϵ is the involution switching the two subtrees

starting at the first level.

There is also a nice geometric way of arriving at the adding machine action of Z (and other self-similar

actions). Consider φ : x 7→ 2x, an expanding automorphism of the Lie group (R,+). Since φ(Z) = 2Z ⊆ Z,

we can consider φ : R/Z −→ R/Z, a twofold self-covering of the circle S1. Pick a base point x ∈ S1,

and a loop γ : [0, 1] −→ S1 starting and ending at x, going around S1 once. Now, φ−1(x) consists of

two points, call them x0 and x1. Using Proposition 2.11, we can lift γ starting from either point, getting

γ0 and γ1, respectively. Clearly, γi ends at γ1−i, i = 0, 1. Following these γi’s we get a permutation on

φ−1(x), the transposition (x0x1) in the present case. (For a general, possibly branched, b-fold covering

φ : X −→ X, we should start with one γ for each generator of π1(X), and then would get an action

of π1(X) on φ−1(x), as in Section 2.2.) We can now iterate this procedure, taking the preimage set

φ−2(x) = φ−1(x0) ∪ φ−1(x1) = {x00, x01, x10, x11}, etc., and we get an action of π1(S1) = Z on the entire

binary tree. It is easy to see that the lifts γ0, γ1, γ00 etc. will be geometric representations of the edges

in the Schreier graph of the adding machine action. For a general b-fold covering, it is possible that the

resulting action on the b-ary tree is not faithful, so the actual group of tree-automorphisms that we get

will be a factor of π1(X). This is called the Iterated Monodromy Group IMG(φ) of the covering map.

A particularly nice case is when X is a Riemannian manifold, and φ : X1 −→ X is a locally expanding

partial b-fold self-covering map for some X1 ⊆ X (we typically get X1 by removing the branch points

from X in the case of a branched covering). Then the resulting action of Γ = IMG(φ) on Tb is finite state

self-similar, moreover, contracting: there is a finite set N ⊂ Γ such that for every g ∈ Γ there is a k ∈ N
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such that the restriction g|v is in N for all vertices v ∈ Tb of depth at least k. Moreover, if in addition,

X1 = X is a compact Riemannian manifold, like X = S1 in our running example, then the action of π1(X)

is faithful, so IMG(φ) = π1(X). See [Nek03] or [Nek05] for proofs.
{ex.nucleus}

Exercise▷ 15.1. Show that, for any contracting self-similar action of some Γ on Tb, there is a unique

minimal set N ⊆ Γ giving the contraction property. It is called the nucleus of the self-similar action.

Show that N is a self-similar generating set of ⟨N⟩. Give an example where ⟨N⟩ ̸= Γ.

At this point, the Reader might feel a bit uneasy: we have been talking about countable groups acting

on trees, so where do these continuum objects R and S1 and Riemannian manifolds come from? Well, their

appearance in the story is not accidental: it is possible to reconstruct X and φ, at least topologically, from

the action itself. (Or, in less perfect situations when φ is not expanding and the resulting tree-action is

not contracting, some φ-invariant subset of X, the Julia set of φ.) Given any contracting action by Γ on

Tb, one can define the limit space JΓ as the quotient of the set of left-infinite sequences {0, . . . , b− 1}−N

by the following asymptotic equivalence relation: the sequences (. . . , x−1, x0) and (. . . , y−1, y0) are

equivalent iff there exists a finite subset K ⊂ Γ such that for all k ∈ N there is some gk ∈ K with

(x−k, . . . , x0)gk = (y−k, . . . , y0) with the action of Γ on Tb, i.e., with x−k on the first level, (x−k, x−k+1) on

the second level, etc. (In particular, this equivalence is very different from two rays in ∂Tb = {0, . . . , b−1}N

being in the same Γ-orbit.) A similar notion is the limit solenoid SΓ, the quotient of {0, . . . , b−1}Z by the

equivalence relation that (. . . , x−1, x0, x1, . . . ) ∼ (. . . , y−1, y0, y1, . . . ) iff there is a finite K ⊂ Γ such that

∀k ∈ N ∃gk ∈ K with (x−k, x−k+1, . . . )
gk = (y−k, y−k+1, . . . ) in ∂Tb. On JΓ we take the topology to be the

image of the product topology under the equivalence quotient map, while on SΓ it will be the image of the

topology on {0, . . . , b− 1}Z that is product topology on the left tail but discrete on the right; to emphasize

the asymmetric topology, we can denote this space by S◁Γ. Now, given a finite word w = xkxk+1 . . . x0,

with k ∈ −N, we can consider the tile

Tw :=
{
. . . xk−2xk−1w : xk−i ∈ {0, 1, . . . , b− 1}, i ≥ 1

}
,

a subset of JΓ after the factorization. Similarly, given an infinite word w = xkxk+1 . . . , k ∈ Z, the tile

Tw will be a subset of S◁Γ. Because of the factorization, these tiles are not at all disjoint for different w’s

with the same starting level k = k(w). However, if the action of Γ is nice enough, then their interiors are

disjoint, and the intersections of the boundaries are given by the action of N : Twg ∩Twh ̸= ∅ iff g−1h ∈ N .

In particular, if ⟨N⟩ = Γ, then the adjacencies are given by the Schreier graph on that level. In JΓ, as we

take the level k → −∞, the tiles are getting smaller and smaller, and hence the Schreier graphs, drawn on

the tiles, approximate the structure of JΓ more and more. The situation in S◁Γ is a bit more complicated: it

is a highly disconnected space, so we need to restrict our attention to the leaves LO(w) :=
⋃
g∈Γ Twg ⊆ S◁Γ

corresponding to Γ-orbits O(w) in ∂Tb. Finally, consider the shift action s on {0, . . . , b− 1}−N that deletes

the last (the 0th) letter, hence is b-to-1, or that moves the origin in {0, . . . , b − 1}Z to the left. In both

cases, s preserves the asymptotic equivalence relation, and thus we get the dynamical systems (JG, s) and

(S◁Γ, s).
The upshot (proved by Nekrashevych) is that when the contracting action is obtained from a locally

expanding map φ : X1 −→ X, then, under mild additional assumptions, (JG, s) is topologically conjugate

to (J (X,φ), φ) (i.e., there is a homemorphism between the spaces that interchanges the actions), where

J (X,φ) :=

{
accumulation points of

∞⋃
n=0

φ−n(x)

}
⊆ X
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Figure 15.2: Schreier graphs of the Basilica group, and the Julia set in C. Pictures taken from [DDMN10].

is the Julia set of φ, easily shown to be independent of x ∈ X. For instance, if X1 = X is a compact

Riemannian manifold, then J (X,φ) = X. Recall that π1(X) = IMG(φ) in this case, so, Γ = IMG(φ) and

the limit space construction X = JΓ are true inverses of each other.

Exercise▷ 15.2. For the adding machine action, give a homeomorphism between JZ and S1 that inter-

changes the actions x 7→ 2x on S1 and s on JZ. Show that for any w ∈ ∂T2, the leaf LO(w) is homeomorphic

to R.

Exercise▷ 15.3. Show that the limit set JΓ for the self-similar action

a = (a, 1, 1)(12) b = (1, b, 1)(02) c = (1, 1, c)(01)

on the alphabet {0, 1, 2} is homeomorphic to the Sierpiński gasket.

Exercise▷ 15.4 (Basilica group).* {ex.Basil}
(a) Consider the complex polynomial φ(z) = z2 − 1 as a covering map from X1 = Ĉ \ {1, 0,−1,∞} to

X = Ĉ \ {0,−1,∞}. Show that it is locally expanding in a neighbourhood of its Julia set J (X,φ).

(b) Show that IMG(φ) is the self-similar group Bas generated by the finite automaton

a = (1, b) , b = (1, a)ϵ . (15.4) {e.Basil}{e.Basil}

By the last exercise, the theorem of Nekrashevych mentioned above applies to the Basilica group

Bas = IMG(z2 − 1): the limit space JBas is homemorphic to the Julia set J (X,φ), and in fact, the Julia

set could be considered as a scaling limit of the Schreier graphs of Bas on the levels. (Has it been done,

metrically, anywhere?)

Expanding endomorphisms of the real and integer Heisenberg group H3(R) and H3(Z) were used in

[NekP09] to produce nice contracting self-similar actions, with the tiles and the shift map s leading to

scale-invariant tilings in some Cayley graphs of H3(Z), as defined in Question 12.33. The same paper used

the self-similar actions of several groups of exponential growth to show that they are scale-invariant (see

Theorem 4.17): the lamplighter group Z2 ≀Z, the solvable Baumslag-Solitar groups BS(1,m), and the affine

groups Zd ⋊ GL(d,Z).

When a group turns out to have a finite state self-similar action, a huge box of great tools opens up

— but it is far from obvious if a given group has such an action. The lamplighter group G = Z2 ≀ Z is a

famous unexpected example, whose self-similarity was first noticed and proved by Grigorchuk and Żuk in

[GriŻ01], but there is a much simpler proof, found by [GriNS00], using Z2[[t]], which we will present below.

The self-similar action of G was used in [GriŻ01] to show that the spectrum of the simple random walk
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on the Cayley graph generated by the self-similar generators a and b below is discrete — see Section 14.2,

just before Conjecture 14.12, for a bit more on this. The scale-invariance of G proved in [NekP09] is

closely related to the way how the spectrum was computed, even though the way we found it followed an

orthogonal direction of thought, namely, that the Diestel-Leader graph DL(2, 2) is the Cayley graph of

G with the generators ⟨R,Rs⟩ on one hand, and of the index two subgroup Γ1 = ⟨Rs, sR⟩ on the other.

We now show G can be generated by a finite automaton.

Let H be the additive subgroup of the group Z2[[t]] of formal power series over Z2 consisting of finite

Laurent polynomials of (1+t), and consider the injective endomorphism ψ(F (t)) := tF (t) for F (t) ∈ Z2[[t]].

Since tF (t) = (1 + t)F (t) − F (t), we have that ψ(H) ⊆ H. Observe that (1 + t)k − 1 ∈ ψ(H) for any

k ∈ Z; this easily implies that ψ(H) is exactly the subgroup of H of power series divisible by t, with index

[H : H1] = 2. We then let Hn := ψ◦n(H), a nested sequence of finite index isomorphic subgroups.

Consider now the right coset tree T corresponding to the subgroup sequence (Hn)n≥0, as defined

before (13.21). We have T = T2, and the boundary ∂T is a topological group: the profinite additive group

Z2[[t]], via the identification

Φ : x1x2 · · · 7→
∑
i≥1

xit
i−1 , (15.5) {e.Phi}{e.Phi}

where x = x1x2 . . . is the shorthand notation for the ray H = H0x0 ⊃ H1x1 ⊃ H2x2 ⊃ . . . in T .

Let A be the cyclic group Z acting on H by multiplication by (1 + t). Thus the semidirect product

G = A⋉H is the group of the following transformations of Z2[[t]]:

F (t) 7→ (1 + t)mF (t) +
∑
k∈Z

f(k)(1 + t)k , (15.6) {e.trafo}{e.trafo}

where m ∈ Z and f : Z −→ Z2 is any function with finitely many non-zero values.

This group G =
(
⊕Z Z2

)
⋊ Z = Z2 ≀ Z is the standard lamplighter group; for each element (m, f),

one can think of m ∈ Z as the position of the lamplighter, while f : Z −→ Z2 is the configuration of the

lamps. We can represent f by the finite set supp f ⊂ Z. The usual wreath product generators are s and

R, representing “switch” and “Right”; we will also use L = R−1. So, for example, Rs = (1, {1}). In terms

of the representation (15.6), the action of s is F (t) 7→ F (t) + 1, while the action of R is F (t) 7→ (1 + t)F (t).

The action of G on the infinite binary tree T can now be described by the combination of (15.5)

and (15.6), and it turns out to be a finite-state self-similar action. Namely, consider the following new

generators of the lamplighter group: a = Rs, b := R. Note that s = b−1a = a−1b. Then, the action of

these generators on the binary tree T can be easily checked to be

(0w)a = 1wb (0w)b = 0wb

(1w)a = 0wa (1w)b = 1wa,
(15.7) {e.GZ}{e.GZ}

for any finite or infinite {0, 1} word w. Hence {a, b} is a finite self-similar generating set. Another usual

notation for this self-similar action, using (15.3), is

a = (b, a)ϵ , b = (b, a) , (15.8) {e.LLselfsim}{e.LLselfsim}

We note that in the literature there are a few slightly different versions of (15.8) to describe the lamplighter

group. This is partly due to the fact that interchanging the generators a and b induces an automorphism

ι of G, see e.g. [GriŻ01].

One can easily write down a couple of formulas like (15.8), but the resulting group might be very

complicated. We will briefly discuss two famous examples, Grigorchuk’s group of intermediate growth and

the Basilica group.
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Grigorchuk’s first group G is defined by the following self-similar action on the binary tree:

a = ϵ, b = (a, c) , c = (a, d) , d = (1, b) . (15.9) {e.chuk}{e.chuk}

If this looks a bit ad hoc, writing down the profiles of the generators will make it clearer, see Figure 15.3.

Figure 15.3: The profiles of the generators b, c, d in Grigorchuk’s group. {f.chuk}

Now, we have the following easy exercise:

Exercise▷ 15.5. For Grigorchuk’s group (15.9), check that the stabilizer Gv of any vertex in the binary

tree is isomorphic to the original group, hence G has G×G as an index 2 subgroup.

Moreover, using the third level stabilizers, one can show that there is an expanding virtual isomorphism

from the direct product of eight copies of G to itself, hence, by Lemma 4.21, G has intermediate growth.

See [GriP08] for more details.

Most of our course has been about how algebraic and geometric properties of a group influence the

behaviour of SRW on it, though Kleiner’s proof of Gromov’s theorem was already somewhat in the other

direction, probabilistic ideas giving algebraic results, see Section 10.1. But the first example of SRW applied

to a group theory problem was by Bartholdi and Virág [BartV05]: they showed that the so-called Basilica

group, introduced in Exercise 15.4, is amenable by finding a finite generating system on it for which they

were able to compute that the speed is zero. At that point this was the furthest known example of an

amenable group from abelian groups, namely, it cannot be built from groups of subexponential growth via

group extensions.

Continuations of this Basilica work include [BartKN10] and [AmAV09]. The activity growth ActG(n)

of a finite state self-similar group Γ is the number of length n words w such that the section g|w is not the

identity for some of the self-similar generators g.

Exercise▷ 15.6. Show that any finite state self-similar group Γ with bounded activity growth is contracting

(as defined just before Exercise 15.1).

Exercise▷ 15.7. Show that the activity growth ActG(n) is either polynomial or exponential. (Hint: we get

exponential growth iff the Moore diagram contains at least two directed cycles that can be reached from each

other.)

Exercise▷ 15.8. Construct finite groups with exponential activity growth.

Sidki [Sid00] showed that a polynomial activity self-similar group cannot contain a free subgroup F2.

Are they always amenable? [BartKN10] showed this for bounded activity groups, while [AmAV09] for

linear activity groups. For at most quadratic activity, the Poisson boundary is conjectured to be trivial
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(proved for at most linear growth), but not for larger activity. This is quite analogous to the case of

lamplighter groups Z2 ≀ Zd. Furthermore, it is not known if all contracting groups are amenable.

15.2 Constructing monsters using hyperbolicity
{ss.monsters}

15.3 Thompson’s group F
{ss.ThompF}

A very famous example of a group whose amenability is not known is the following. See [CanFP96] for

some background, and [Cal09] for more recent stories.
{d.Thompson}

Definition 15.2. Consider the set F of orientation preserving piecewise linear homeomorphisms of [0, 1]

to itself whose graphs satisfy the conditions that

a) All slopes are of the form 2a, a ∈ Z.
b) All break points have first coordinate of the form k

2n , k, n ∈ N.
Clearly, F is a group with composition of maps as a multiplication operation and this group is called

Thompson’s group F .

Question 15.3. Determine whether Thompson’s group F is amenable or not.

Kaimanovich has proved that SRW has positive speed on Thompson’s group F for some generating set,

hence this probabilistic direction of attack is not available here.

16 Quasi-isometric rigidity and embeddings
{s.qirigid}

It is a huge project posed by Gromov (1981) to classify groups up to quasi-isometries. One step towards

such a classification would be to describe all self-quasi-isometries of a given group. Certain groups, e.g.,

fundamental groups of compact hyperbolic manifolds of dimension n ≥ 3) are quite rigid: all quasi-

isometries come in some sense from group automorphisms. A similar, more classical, result is:
{t.Mostow}

Theorem 16.1 (Mostow rigidity 1968). If two complete finite volume hyperbolic manifolds M,N have

π1(M) ≃ π1(N), then they are isometric, moreover, the group isomorphism is induced by an isometry of

Hn.

Let us give here the rough strategy of the proof. The group isomorphism induces a quasi-isometry of

Hn, which then induces a quasi-conformal map on the ideal boundary Sn−1. This turns out (because of

what?) to be a Möbius map, i.e., it comes from an isometry of Hn.

An application of the Mostow rigidity theorem that is interesting from a probabilistic point of view,

related to Theorem 11.1, was by Thurston, who proved that any finite triangulated planar graph has an

essentially unique circle packing representation. However, there is also a simple elementary proof, due to

Oded Schramm, using a maximal principle argument [Wik10a].

On the other end, the quasi-isometry group of Z is huge and not known.

Here is a completely probabilistic problem of the same flavor. See [Pel07] for details.

Question 16.2 (Balázs Szegedy). Take two independent Poisson point processes on R. Are they quasi-

isometric to each other a.s.?
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This is motivated by the probably even harder question of Miklós Abért (2003): are two independent

infinite clusters of Ber(p) percolation on the same transitive graph quasi-isometric almost surely?

Gromov conjectured that if two groups are quasi-isometric to each other, then they are also bi-Lipschitz

equivalent, i.e., there is a bijective quasi-isometry. The following proof of a special case I learnt from Gábor

Elek:

Exercise▷ 16.1. * Using wobbling paradoxical decompositions, show that if two non-amenable groups are

quasi-isometric to each other, then they are also bi-Lipschitz equivalent.

However, the conjecture turned out to be false for solvable groups [Dym10]. But it is very much open

for nilpotent groups, a favourite question of mine:

Question 16.3. Are quasi-isometric nilpotent groups also bi-Lipschitz equivalent?

I think the answer is yes, Bruce Kleiner thinks it’s no. It is known to be yes if one of the groups is Zd,
see [Sha04].

For a long while it was not known if all transitive graphs are quasi-isometric to some Cayley graph.

For instance, transitive graphs of polynomial growth are always quasi-isometric to a nilpotent group. This

is an interesting question from the percolation point of view, since we expect most properties to be quasi-

isometry invariant, while a key tool, the Mass Transport Principle (12.9), works only for unimodular ones

(including Cayley graphs). So, an affirmative answer would mean that percolation theory is somehow on the

wrong track. Fortunately, Eskin-Fisher-Whyte proved as a byproduct of their work [EsFW07] on the quasi-

isometric rigidity of the lamplighter groups F≀Z, where F is a finite Abelian group, that the non-unimodular

Diestel-Leader graphs DL(k, ℓ) with k ̸= ℓ, see [Woe05] for their definition, are counterexamples.

Question 16.4. Is every unimodular transitive graph quasi-isometric to a Cayley graph?

The Eskin-Fisher-Whyte proof introduces something called ”coarse metric differentiation”, a technique

similar to the one used by Cheeger and Kleiner to prove that the Heisenberg group does not have a Lipschitz

embedding into L1, see [ChKN09], and by Lee and Raghavendra to show that there are finite planar graphs

needing at least a Lipschitz constant 2 − ϵ [LeeRa10]. It is conjectured that a universal constant suffices

for all planar graphs.

In general, it is a huge subject what finite and infinite metric spaces embed into what Lp space with

how much metric distortion. One motivation is from theoretical computer science: analyzing large data

sets (equipped with a natural metric, like the number of disagreements in two DNA sequences) is much

easier if the data set is a subset of some nice space. We have also used nice harmonic embeddings into L2

to gain algebraic information (in Kleiner’s proof of Gromov’s theorem) and to analyze random walks (in

the Erschler-Lee-Peres results). There are a lot of connections between random walks and embeddings, see

[NaoP08]. The target case of L2 is easier, L1 is more mysterious.

Exercise▷ 16.2. Show that any finite subset of L2 embeds isometrically into L1.
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[AjKSz87] M. Ajtai, J. Komlós, and E. Szemerédi. Deterministic simulation in LOGSPACE. In Proc. of

the 19th Ann. ACM Symp. on Theory of Computing, pp. 132–140, 1987.

[Ald91] D. Aldous. The continuum random tree II: an overview. In Stochastic Analysis (ed. M.T. Bar-

low and N.H. Bingham), pages 23–70. Cambridge University Press, 1991. http://www.stat.

berkeley.edu/~aldous/Papers/me55.pdf

[Ald97] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann.

Probab. 25 (1997), 812–854.

http://www.stat.berkeley.edu/~aldous/Papers/me73.ps.Z

[AldL07] D. Aldous and R. Lyons. Processes on unimodular random networks. Electron. J. Probab. 12

(2007), Paper 54, 1454–1508.

http://128.208.128.142/~ejpecp/viewarticle.php?id=1754

[AldS04] D. Aldous and J. M. Steele. The objective method: probabilistic combinatorial optimization and

local weak convergence. In Probability on Discrete Structures, vol. 110 of Encyclopaedia Math.

Sci., pages 1–72. Springer, Berlin, 2004. http://www.stat.berkeley.edu/~aldous/Papers/

me101.pdf

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica 6 (1986), 83–96.

224

http://arxiv.org/abs/math.GR/0701361
http://arxiv.org/abs/math.PR/9809145
http://arxiv.org/abs/1311.1937
http://arxiv.org/abs/math-ph/0607021
http://www.stat.berkeley.edu/~aldous/Papers/me55.pdf
http://www.stat.berkeley.edu/~aldous/Papers/me55.pdf
http://www.stat.berkeley.edu/~aldous/Papers/me73.ps.Z
http://128.208.128.142/~ejpecp/viewarticle.php?id=1754
http://www.stat.berkeley.edu/~aldous/Papers/me101.pdf
http://www.stat.berkeley.edu/~aldous/Papers/me101.pdf


[AloBS04] N. Alon, I. Benjamini and A. Stacey. Percolation on finite graphs and isoperimetric inequalities.

Ann. Probab. 33 (2004), 1727–1745. [arXiv:math.PR/0207112]

[AloM85] N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators.

J. Combin. Theory Ser. B 38 (1985), no. 1, 73–88.

[AloS00] N. Alon and J. H. Spencer. The Probabilistic Method. 2nd edition. Wiley, 2000.

[AmAV09] G. Amir, O. Angel and B. Virág. Amenability of linear-activity automaton groups. Preprint,

arXiv:0905.2007 [math.GR].

[Ang03] O. Angel. Growth and percolation on the uniform infinite planar triangulation. Geom. Funct.

Anal. 13 (2003), no. 5, 935–974. [arXiv:math.PR/0208123]

[AngB07] O. Angel and I. Benjamini. A phase transition for the metric distortion of percolation on the

hypercube. Combinatorica 27 (2007), 645–658. [arXiv:math.PR/0306355]

[AngSz] O. Angel and B. Szegedy. On the recurrence of the weak limits of discrete structures. In prepa-

ration.

[AntP96] P. Antal and A. Pisztora. On the chemical distance in supercritical Bernoulli percolation. Ann.

Probab. 24 (1996), 1036–1048.
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[ErdR60] P. Erdős and A. Rényi. On the evolution of random graphs. Mat. Kutató Int. Közl. (1960) 5,
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[Tim12] Á. Timár. Approximating Cayley diagrams versus Cayley graphs. Combin., Probab. & Comput.

21 (2012), 635–641. arXiv:1103.4968 [math.CO]

[Tit72] J. Tits. Free subgroups in linear groups. J. Algebra 20 (1972), 250–270.

[Tro85] V. I. Trofimov. Graphs with polynomial growth. Math. USSR Sbornik 51 (1985), 405–417.

[Var85a] N. Th. Varopoulos. Isoperimetric inequalities and Markov chains. J. Funct. Anal. 63 (1985),

215–239.

242

http://arxiv.org/abs/1005.5584
http://arxiv.org/abs/cond-mat/9904146
http://arxiv.org/abs/math.PR/0801.4153
http://www.jstor.org/stable/2959462
http://www.jstor.org/stable/2959462
http://terrytao.wordpress.com/2010/02/18/a-proof-of-gromovs-theorem/
http://terrytao.wordpress.com/2010/02/18/a-proof-of-gromovs-theorem/
http://arxiv.org/abs/math.FA/0701294
http://arxiv.org/abs/math.PR/0702873
http://arxiv.org/abs/math.PR/0702875
http://arxiv.org/abs/0711.1711
http://arxiv.org/abs/1103.4968


[Var85b] N. Th. Varopoulos. Long range estimates for Markov chains. Bull. Sci. Math. (2) 109 (1985),

no. 3, 225–252.

[VarSCC92] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon. Analysis and geometry on groups. Cam-

bridge University Press, Cambridge, 1992.

[Ver00] A. M. Vershik. Dynamic theory of growth in groups: Entropy, boundaries, examples. Russ.

Math. Surveys 55 (2000), 667–733.

[Vir02] B. Virág. Fast graphs for the random walker. Probab. Theory Related Fields 124 (2002), 50–74.

[arXiv:math.PR/0102200]

[Wag93] S. Wagon. The Banach-Tarski paradox. With a foreword by Jan Mycielski. Corrected reprint of

the 1985 original. Cambridge University Press, Cambridge, 1993.

[Wei00] B. Weiss. Sofic groups and dynamical systems. Ergodic theory and harmonic analysis (Mumbai,
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