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Introduction

Throughout, let p be an odd prime. The concept of p-stability goes back to the middle 
of the 1960s. It was originally defined by D. Gorenstein and J.H. Walter in [14] but, since 
then, it has undergone several modifications. p-stability was investigated by G. Glauber-
man and also played a role in the classification of finite simple groups. In the 1960s, 
several different definitions of p-stability arose and, at a first sight, these definitions ap-
pear not to be equivalent. In Section 1 of the present paper we go around the notion of 
p-stability and examine some basic properties that do not seem to have been considered 
so far. We show that p-stability inherits to subgroups but not to factor groups. The 
smallest group which is not p-stable is the semidirect product of SL2(p) with an elemen-
tary Abelian group of order p2 (acted on by SL2(p) in the natural way). Glauberman 
denoted this group by Qd(p) and showed that a group does not involve Qd(p) if and 
only if all of its sections are p-stable. For further investigation, we define the concept of 
section p-stability and give a new version of Glauberman’s theorem (see 1.20).

Motivated by this result, we ask the question: Which finite simple groups involve 
Qd(p)? The obvious necessary condition for a group G to involve Qd(p) is a Sylow 
p-subgroup of G to be non-Abelian. We discover that this is almost sufficient:

Theorem 1. Let G be a finite simple group whose Sylow p-subgroups are non-Abelian. 
Then G involves Qd(p) unless G is one of the groups (i) PSU3(q) with q a p-power; (ii)
2G2(q) with q = 32m+1 and p = 3; and (iii) G2(q) with q2 − 1 ≡ 3 or 6 (mod 9) and 
p = 3; (iv) J2 or J3 with p = 3; (v) HS, McL, Co2, Co3 with p = 5; and (vi) J4 with 
p = 11.

Furthermore, we prove that if G involves Qd(p), then G contains a subgroup which 
is a perhaps trivial central extension of Qd(p) with the only exception G = He. The 
following theorem refines Glauberman’s result for an arbitrary group to the case where 
G is simple.

Theorem 2. Let G be a finite simple group. Then G is p-stable if and only if it does not 
involve Qd(p). More precisely, G is p-stable if and only if has no subgroup isomorphic 
to Qd(p) or a central extension of Qd(p) by a cyclic group of order p, with exception 
G = He, the sporadic Held group. In this case, G contains an extension of Qd(p) by a 
Klein 4-group.

Our proof of Theorem 1 is divided into three parts: we examine the alternating groups 
and simple groups of Lie type in defining characteristic in Section 2. We investigate simple 
groups of Lie type in non-defining characteristic in Section 3. Finally, in Section 4, the 
sporadic simple groups are discussed.

Several properties of groups can be investigated ‘locally’, that is, within the nor-
malisers of their non-trivial p-subgroups. Moreover, a group acts on its p-subgroups by 
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conjugation. This action was extensively studied and led to the definition of a (saturated) 
fusion system. The concept was introduced by L. Puig in the 1990s and was originally 
called a ‘Frobenius category’ (see [24]). We give the precise definition of a fusion sys-
tem in Section 5. For the last 2 decades, fusion systems have been studied extensively 
and many concepts of group theory (such as solubility or simplicity) were defined in the 
case of fusion systems. Also many group theoretical results have turned out to be true 
for fusion systems. Although p-stability has not been defined for fusion systems so far, 
Qd(p)-free fusion systems were examined in [20]. In Section 6 of the present paper we 
introduce the concept of p-stability for saturated fusion systems and investigate its basic 
properties. It turns out that there are some differences. For example, unlike the case of 
finite groups, solubility does not imply p-stability (not even for p > 5).

In Section 7, we show a fusion theoretic version of Thompson’s maximal subgroup 
theorem (see [12, p. 295, Theorem 8.6.3]). This can be summarised in the following way:

Theorem 3. Let F be a saturated fusion system defined on the p-group P . Let Q be a 
collection of subgroups of P closed under F-morphisms. Let N be the set of normaliser 
systems of subgroups of P that are defined on elements of Q. Assume each element of N
is constrained and p-stable. Then N has a unique maximal element.

Then, in Section 8, we investigate Qd(p)-free fusion systems and show the following:

Theorem 4. A group does not involve Qd(p) if and only if its fusion system is Qd(p)-free.

We define section p-stability for fusion systems and prove a fusion theoretic version 
of Glauberman’s result (see Section 9):

Theorem 5. A fusion system is section p-stable if and only if it is Qd(p)-free.

As a consequence, we give a slight refinement of Glauberman’s theorem, see Theo-
rem 8.12.

As the Sylow p-subgroups of Qd(p) are extraspecial of exponent p and order p3, we 
study the fusion systems defined on this group in Section 10. We show that with trivial 
exceptions all of these fusion systems are non-p-stable and non-soluble.

Finally, we apply our group theoretic results to fusion systems and investigate the 
relationship between solubility, p-stability and section p-stability for fusion systems in 
Section 11.

1. Summary on p-stable groups

In the literature, we can find different definitions of p-stability for groups. The no-
tion of p-stability appears first in [14, Definition 2, p. 171], then in [12, p. 268]. Later, 
Glauberman redefines this notion in [10, Definitions 2.1 and 2.3, p. 1104] and in [11, 
p. 22].
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Unfortunately, the four definitions are (pairwise) different and it is not clear at all 
whether they are equivalent. For the sake of completeness, we cite all four definitions. 
Glauberman proves that the definition in [11] is equivalent to that in [12], but the one in 
a later edition of the same book (see [13]) appears to be non-equivalent to that in [12]. 
Later in the literature the definition in [11] is used (see e.g. in [16] or [26]). However, 
results from [10] have great importance and are oft cited, so the equivalence of these 
definitions might be crucial. In the following, we shall compare the two definitions by 
examining some properties of p-stability.

The original definition of Gorenstein and Walter is the following:

Definition 1.1 (Gorenstein–Walter, 1964). Let G be a finite group. Let S be the 
largest soluble normal subgroup of G. Let p be a prime that divides |S|. Let P be 
a Sylow p-subgroup of Op′,p(S) and Q � P such that (i) Op′(S)Q � G and (ii)
Op

(
NG(Q)/CG(Q)P

)
= 1. We shall say that G is p-stable provided the following condi-

tion holds for any such subgroup Q:

If A is a p-subgroup that normalises Q and satisfies the commutator identity 
[Q, A, A] = 1, then A ⊆ PCG(Q).

Gorenstein’s advanced definition in [12]:

Definition 1.2 (Gorenstein, 1968). Let G be a finite group and p an odd prime. G is 
called p-stable if the following condition is satisfied:

If K is a normal subgroup of G, P is a p-subgroup of K with G = KNG(P ), and A
is a p-subgroup of NG(P ) such that [P, A, A] = 1, then

ACG(P )/CG(P ) ⊆ Op

(
NG(P )/CG(P )

)
.

In [13], the above group K is specified as Op′,p(G).
The definition appearing in [10] is as follows:

Definition 1.3 (Glauberman, 1968). Let G be a finite group, let p > 2 be a prime, and 
let M(G) be the set of subgroups M of G maximal with respect to the property that 
Op(M) �= 1. G is said to be p-stable if for all M ∈ M(G) and for all p-subgroups Q
of M such that Op′(M)Q � M , whenever an element x ∈ NM (Q) has the property that 
if

[Q, x, x] = 1,

then x maps into Op

(
NM (Q)/CM (Q)

)
under the natural homomorphism NM (Q)

→ NM (Q)/CM (Q).
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The revised definition of p-stability in [11] is the following:

Definition 1.4 (Glauberman, 1971). A group G is said to be p-stable if for all p-subgroups 
Q of G whenever an element x ∈ NG(Q) satisfies

[Q, x, x] = 1,

then x maps into Op

(
NG(Q)/CG(Q)

)
under the natural homomorphism NG(Q) →

NG(Q)/CG(Q).

Remark 1.5.

(i) It can be easily checked that Gorenstein’s subgroups A can be substituted by single 
elements x. Moreover, let x = xpxp′ ∈ NG(Q), where xp and xp′ are commuting 
p- and p′-elements, respectively. It is straightforward to check that if [Q, x, x] = 1, 
then xp′ ∈ CG(Q). As a consequence, it can be assumed that x is a p-element.

(ii) By any of the four definitions, every group with an Abelian Sylow p-subgroup is 
trivially p-stable.

(iii) If we set K = G in Definition 1.2, we obtain Definition 1.4, so Gorenstein’s definition 
implies Glauberman’s one.

(iv) It is less obvious, what the connection between the complicated first definition and 
the other ones is. Since this definition was soon revisited by Gorenstein himself, we 
shall not discuss this connection here.

The smallest example for a group not being p-stable (by all four definitions but we 
only check Glauberman’s definitions) is the group usually denoted by Qd(p):

Example 1.6. The group Qd(p) is defined as a semidirect product of a two-dimensional 
vector space V over Fp with the special linear group SL2(p) via the natural action:

Qd(p) = V � SL2(p).

Clearly, Op(Qd(p)) = V �= 1, so M(G) consists solely of the group itself. Since 
Op′(Qd(p)) = 1, the subgroup Q has to be normal in Qd(p). Hence Q = V (or 1, 
but this case is trivial). Now, V is self-centralising, so NQd(p)(V )/CQd(p)(V ) ∼= SL2(p). 
The element

x =
[
1 1
0 1

]
∈ SL2(p)

satisfies the commutator relation [Q, x, x] = 1. Nevertheless, x is not contained in 
Op(SL2(p)) since the latter is trivial. In the literature, this group is of great impor-
tance.
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Note that the Sylow 2-subgroups of Qd(p) are isomorphic to those of SL2(p) and 
hence they are generalised quaternion groups.

The next lemma gives a well-known description of Qd(p) as a matrix group (see 
Example 7.5 in [15, p. 494]):

Lemma 1.7. Qd(p) can be represented as a subgroup of SL3(p), namely, consisting of 
matrices of the form

[
a b t
c d u
0 0 1

]
,

where ad − bc = 1. This subgroup intersects Z(SL3(p)) trivially and hence maps isomor-
phically into PSL3(q).

As already mentioned, we shall focus on the latter two definitions of Glauberman. 
The first question concerning p-stability is whether these two definitions are equivalent. 
This question is important especially as theorems proved with Definition 1.3 in [10] are 
often cited when using Definition 1.4 of p-stability. Nevertheless, this problem does not 
seem to have been dealt with.

A group G with Op(G) �= 1 which is p-stable according to Definition 1.4 also satisfies 
Definition 1.3, simply because more subgroups Q are considered there. There are also 
some natural questions concerning p-stability which do not seem to have been considered 
so far, such as whether a subgroup or a factor group of a p-stable group is necessarily 
p-stable (according to any of the definitions).

In the following, we answer the questions asked above. In [8, p. 82] it is shown that 
the semidirect product of A8 with an elementary Abelian group of order 38 is 3-stable 
according to Definition 1.3 and it contains a subgroup isomorphic to Qd(3). Hence this 
definition does not inherit to subgroups. However, we can prove the following proposition 
using Definition 1.4 of p-stability:

Proposition 1.8. Let G be a group that is p-stable according to Definition 1.4. Let H be 
a subgroup of G. Then H is p-stable according to the same definition.

Proof. Let Q be a p-subgroup of H. Set C = CG(Q), N = NG(Q), N̄ = N/C, NH =
NH(Q), CH = CH(Q) and N̄H = NH/CH . As CH = C ∩NH , we have

N̄H
∼= NHC/C � N̄ ,

so the former can be naturally considered as a subgroup of the latter. Let x ∈ NH

such that [Q, x, x] = 1. By Definition 1.4, xC ∈ Op(N̄) ∩ N̄H ⊆ Op(N̄H), whence the 
lemma. �
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This proposition has three immediate consequences:

Corollary 1.9. A group G satisfying Definition 1.4 also satisfies Definition 1.3.

Proof. Assume G is p-stable according to Definition 1.4. Let M ∈ M(G) and let Q � M

with QOp′(M) � M . By Proposition 1.8 M is p-stable by Definition 1.4. Then for any 
x ∈ NM (Q) such that [Q, x, x] = 1 we have xCM (Q) ∈ Op

(
NM (Q)/CM (Q)

)
, proving G

is p-stable according to Definition 1.3. �
Corollary 1.10. Definition 1.3 does not imply Definition 1.4, hence the two definitions 
are not equivalent.

Proof. By [8, p. 82], the group G = V �A8 is 3-stable according to Definition 1.3, but it 
is certainly not p-stable according to Definition 1.4 as G contains a subgroup isomorphic 
to Qd(3) which is not 3-stable. �
Corollary 1.11. A group G is p-stable according to Definition 1.4 if and only if NG(Q)
is p-stable for all non-cyclic p-subgroups Q of G.

Proof. Note that Aut(Q) is Abelian if Q is cyclic. So cyclic p-subgroups of G satisfy 
the p-stability condition, and hence this only needs to be verified for non-Abelian sub-
groups Q. �

From now on, we use Definition 1.4 for p-stability (unless otherwise stated explicitly).
The next question is about factor groups. In [8, p. 88] it is shown that G/Op′(G) is 

p-stable if G is so. Although Gagen uses Definition 1.3, the proof can be easily carried 
over to Definition 1.4, too.

The next example shows that a factor group of a p-stable group need not be p-stable 
in general. We are thankful to professor O. Yakimova for pointing out this example.

Example 1.12. Let p > 3 and let X and Y be indeterminates over Fp. Then the 
polynomial ring Fp[X, Y ] can be viewed as an FpSL2(p)-module via the action extend-
ing the natural operation on the 2-dimensional vector space 〈X, Y 〉Fp

. Let W be the 
p + 1-dimensional subspace of Fp[X, Y ] generated by the homogeneous polynomials of 
degree p. Then the elements Xp, Xp−1Y , . . . , XY p−1, Y p form a basis of W and W is an 
FpSL2(p)-submodule. W has a single submodule V = 〈Xp, Y p〉Fp

. Note that SL2(p) acts 
on V via its natural representation. Consider the group G = W ∗ � SL2(p), where W ∗

denotes the module contragredient to W . Since W ∗ has a factor module isomorphic to 
V ∗ ∼= V , G has a factor group isomorphic to Qd(p). However, it can be easily computed 
that the group G itself is p-stable.

In [10, Lemma 6.3.], Glauberman proved a characterisation of the groups all of whose 
sections are p-stable:
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Theorem 1.13 (Glauberman). Let G be a finite group. Then the following two conditions 
are equivalent:

(i) All sections of G are p-stable;
(ii) G does not involve Qd(p).

Theorem 1.13 implies that for p � 5 all p-soluble groups are p-stable. The converse is 
obviously false: there are plenty of simple groups whose Sylow p-subgroups are Abelian 
for some prime p.

Unfortunately, there is no nice characterisation of p-stable groups. It is not true that 
a non-p-stable group necessarily has a subgroup isomorphic to Qd(p):

Example 1.14. The group Qd(p) has a central extension with a cyclic group Z of order 
p: Let E = 〈ã, ̃b〉 be an extraspecial group of exponent p. Denote its centre by Z so that 
Z = 〈[ã, ̃b]〉. Then E/Z ∼= V (the normal subgroup of Qd(p) of order p2). Moreover, the 
images a and b under the homomorphism E → V of ã and b̃, respectively, generate V . It 
is well-known that the automorphism group of E has a subgroup isomorphic to SL2(p)
and the action of SL2(p) on ã and b̃ is the same as on a and b. Let Q̃d(p) = E �SL2(p)
with the action just defined. Then Q̃d(p) is non-p-stable as it is proven by the subgroup 
Q = E and x ∈ SL2(p) as in Example 1.6. It is easy to see that Q̃d(p) does not contain 
a subgroup isomorphic to Qd(p).

As we shall see later, Q̃d(p) has a faithful representation as a subgroup of GLp(q) if 
p|q − 1 (see Lemma 3.6.) In order to give some more examples of non-3-stable groups, 
we now construct Q̃d(3) as a subgroup of GL3(C).

Example 1.15. Let � be a (complex) primitive third root of unity. We define the following 
complex matrices:

ã =
[
� 0 0
0 �2 0
0 0 1

]
, b̃ =

[0 1 0
0 0 1
1 0 0

]
,

x =
[1 0 0

0 � 0
0 0 1

]
, t = 1

1 − �
·

⎡⎣ 1 1 1
� �2 1
�2 � 1

⎤⎦ .

A straightforward calculation shows that E = 〈ã, b̃〉 is an extraspecial group of order 27 
and exponent 3, whereas, S = 〈x, t〉 is isomorphic to SL2(3). Moreover, S normalises E
and the operation of the elements x and t with respect to the basis a, b of E/Z(E) is 
represented by the matrices [ 1 0

1 1 ] and [ 0 −1
1 0 ], respectively. Therefore, 〈ã, ̃b, x, t〉 ∼= Q̃d(3).

The group in Example 1.15 can be modified to obtain two more non-3-stable groups 
of the same order:
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Example 1.16. We keep the notation of Example 1.15. Let ϑ be a primitive ninth root of 
unity with ϑ3 = � and let x− = ϑ−1x and x+ = ϑx. Define the groups Q̃d

−
(3) = 〈a, b, 

x−, t〉 and Q̃d
+
(3) = 〈a, b, x+, t〉. As the original group is ‘twisted’ by a scalar matrix, 

all three groups have the same image in PSL3(C) (namely, a subgroup isomorphic to 
Qd(3)). Hence all these groups are central extensions of Qd(3) by a cyclic group of 
order 3. Moreover, the elements x+ and x− together with the subgroup E show that 
Q̃d

+
(3) and Q̃d

−
(3) are non-3-stable.

Remark 1.17. By construction, the group Q̃d
−

(3) is contained in SL3(C) unlike the 
other two groups. An easy calculation shows that the centraliser of a Sylow 2-subgroup 
of Q̃d(3) (a subgroup of order 72) contains an elementary Abelian group of order 9, while 
that in any of the other two groups contains a cyclic group of order 9.

Further investigation shows that Q̃d
−

(3) and Q̃d
+

(3) have non-isomorphic Sylow 
3-subgroups.

Moreover, the Sylow 3-subgroups of all three groups have exponent 9 and the those 

of Q̃d(3) and Q̃d
+
(3) cannot be embedded into (C9 ×C9) �C3, the largest subgroup of 

SL3(C) of exponent 9.
Let q = �s such that 3|q − 1. Then reduction modulo � carries over the construction 

in Example 1.15 to GL3(q). To see this observe that Fq contains primitive third roots of 
unity in this case.

If, moreover, 9|q−1, then Fq contains primitive ninth roots of unity as well, and hence 
the constructions of Example 1.16 are valid in SL3(q) and GL3(q).

Note that the above defined groups are minimal non-3-stable subject to containment. 
The question naturally arises: which groups are minimal non-p-stable? We do not answer 
this question in this paper, but in section 4, we shall see one more example for the prime 
p = 3.

Although Theorem 1.13 was proved with Definition 1.3 of p-stability, the result is 
often used with Definition 1.4. In fact, the theorem is cited in [11], where Definition 1.4
appears, without mentioning that the proof was worked out with another definition. 
However, the next result is clear by the above:

Proposition 1.18. For a group G, the following are equivalent:

(i) All sections of G are p-stable according to Definition 1.3.
(ii) All sections of G are p-stable according to Definition 1.4.

For the proof observe that if G has a non-p-stable section H/K according to Defi-
nition 1.4 proved by the subgroup Q � H/K and the element x ∈ NH/K(Q), then the 
section NH/K(Q) of G is non-p-stable according to Definition 1.3 (proved by the same 
p-subgroup Q and element x).
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After introducing some notation, we define a more general notion. For p-subgroups 
Q, R of G such that R � Q, we let NG(Q/R) be the largest subgroup of G that acts 
by conjugation on Q/R and CG(Q/R) be the largest subgroup of NG(Q/R) that acts 
trivially on Q/R. Note that

NG(Q/R) = NG(Q) ∩NG(R)

and

CG(Q/R) = {x ∈ NG(Q/R) | [Q, x] ⊆ R}.

Definition 1.19. A group G is said to be section p-stable if for all p-subgroups R and Q
of G such that R � Q, whenever an element x ∈ NG(Q/R) satisfies [Q, x, x] ⊆ R, then 
xCG(Q/R) is contained in Op

(
NG(Q/R)/CG(Q/R)

)
.

Clearly, any section p-stable group is p-stable.

Proposition 1.20. For a group G, the following are equivalent:

(i) G is section p-stable.
(ii) All sections of G are p-stable.

(iii) NG(R)/R is p-stable for all p-subgroups R of G.

Proof. The equivalence of (i) and (iii) is clear by the isomorphism theorems. Also, the 
implication (ii) ⇒ (iii) is trivial.

(i) ⇒ (ii): Assume first that G is section p-stable and let H/K be a section of G. Let 
T be a p-subgroup of H/K. Denote by Q a Sylow p-subgroup of the preimage of T under 
the natural homomorphism H → H/K. Let R = Q ∩ K. Then T = KQ/K ∼= Q/R. 
Assume an element x̄ ∈ NH/K(T ) satisfies [T, ̄x, ̄x] = 1.

Let x ∈ H be such that xK = x̄. Observe that Qx ⊆ KQ as T is normalised by x̄. 
Since Q is a Sylow p-subgroup of KQ, we have Qx = Qk for some k ∈ K. Hence 
xk−1 ∈ NH(Q) is also a preimage of x̄, so we may assume x ∈ NH(Q).

By assumption, [Q, x, x] ⊆ K, so [Q, x, x] ⊆ Q ∩K = R as Q is normalised by x. Now, 
as G is section p-stable,

xCG(Q/R) ∈ Op

(
NG(Q/R)/CG(Q/R)

)
∩
(
NH(Q/R) · CG(Q/R)/CG(Q/R)

)
follows. Since

NH(Q/R)/CH(Q/R) ∼= NH(Q/R) · CG(Q/R)/CG(Q/R),

the coset xCH(Q/R) is contained in a normal p-subgroup of the factor group 
NH(Q/R)/CH(Q/R). The claim now follows because
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NH(Q/R)/CH(Q/R) ∼= NH/K(T )/CH/K(T ).

(Observe that NH(KQ/K) = K · NH(Q/R) and CH(KQ/R) = K · CH(Q/R) hold by 
straightforward calculations.) �

By Theorem 1.13, a group is section p-stable if and only if it does not involve Qd(p).

2. Qd(p) as a section of simple groups

We now discuss the problem which simple groups involve Qd(p). More specifically, we 
want to examine how the group Qd(p) is involved in finite simple groups. This question 
is discussed in the next few sections. Besides this, we also determine whether the simple 
group in question is p-stable.

This section is devoted to alternating groups and simple groups of Lie type in defining 
characteristic.

Theorem 2.1. The alternating group An has a subgroup which is isomorphic to Qd(p) if 
and only if n � p2. For n < p2, Qd(p) is not involved in An. Therefore, An is p-stable 
for n < p2 and non-p-stable otherwise.

Proof. As the Sylow p-subgroups of An are Abelian if n < p2, Qd(p) cannot be involved 
in An in this case.

SL2(p) has index p2 in Qd(p). The permutation representation of Qd(p) on the (right) 
cosets of SL2(p) is faithful as Qd(p) has no normal subgroup contained in SL2(p) rather 
than the trivial one. This permutation representation gives an embedding of Qd(p) into 
Ap2 (observe that Qd(p) has no subgroup of index 2) and hence into each An with 
n � p2.

The statement on p-stability follows from the above. �
The description of Qd(p) as in Lemma 1.7 gives the main part of the following theorem:

Theorem 2.2. Let G be a simple group of Lie type of characteristic p. Then Qd(p) is not 
involved in G if and only if G is of type A1, 2A2 or 2G2(32n+1). If G is of type B2 or 
2An with n � 3, then G has a subgroup isomorphic to Q̃d(p). In all other cases and also 
if G is of type 2An with n � 6, G has a subgroup isomorphic to Qd(p). Consequently, G
is p-stable if and only if it does not involve Qd(p).

Proof. Note that the cases of 2B2 and 2F4 are irrelevant because they are defined in 
characteristic 2.

The Ree groups 2G2(32n+1) have Abelian Sylow 2-subgroups, hence they cannot in-
volve Qd(p). The simple groups of type A1 have Abelian Sylow p-subgroups, so they do 
not involve Qd(p).
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For the unitary groups G = PSU3(q) = 2A2(q2), we can use the description of a Sylow 
p-subgroup P of G as in [18, Satz 10.12, p. 242]. A straightforward calculation shows the 
following: If a conjugate of an element (different from 1) of P is contained in P , then the 
conjugating element lies in the normaliser NG(P ). Now, NG(P )/P is cyclic and hence 
does not involve Qd(p). Therefore, no p-local subgroup of G involves Qd(p) and hence 
G does not involve it, either.

Let G = Sp4(q) and let X ∼= Sp4(p) be a subgroup of G. It is well-known that the 
stabiliser in X of a non-zero vector of the natural FpSp4(p)-module is isomorphic to 
Q̃d(p). As |Z(G)| = 2, PSp4(q) has a subgroup isomorphic to Q̃d(p).

Note that SO5(q) is isomorphic to PSp4(q).
For n � 4, the special unitary group SUn(q) contains a subgroup isomorphic to Sp4(q)

and hence it has a subgroup isomorphic to Q̃d(p). Since Z(SUn(q)) is a p′-group, the 
same is true for PSUn(q).

All the other simple groups of Lie type (An for n � 2, Bn, Cn for n � 3, Dn and 
2Dn for n � 4, En for 6 � n � 8, F4, G2, 2E6, and 3D4) and also 2An with n � 6 are 
known to have a subgroup isomorphic to a possibly trivial central factor of SL3(p) (for 
the exceptional groups, see also [22]). Thus they all have subgroups isomorphic to Qd(p)
by Lemma 1.7. �
3. The case of simple groups of Lie type in non-defining characteristic

In this section, we discuss the question how Qd(p) is involved in simple groups of 
Lie type in non-defining characteristic. More precisely, G is a simple group of Lie type 
defined over the field Fq, where q is a power of a prime � �= p. This means p differs from 
the defining characteristic � of G.

The main result of this section is the following:

Theorem 3.1. Let G be a simple group of Lie type of characteristic � �= p. Suppose that 
the Sylow p-subgroups of G are non-Abelian. Then one of the following holds:

(i) G contains a subgroup isomorphic to Q̃d(p);
(ii) Either G ∼= PSLp(q) (with p|q − 1) or G ∼= PSUp(q) (with p|q + 1) or p = 3, 

G ∼= 3D4(q), F4(q), 2F4(q), (with q = 22m+1 m > 0), or 2F 4(2)′ and G contains a 
subgroup isomorphic to Qd(p);

(iii) p = 3, 9|q2 − 1, G = G2(q) and G contains a subgroup isomorphic to Q̃d
−

(3);
(iv) p = 3 and q2−1 is not a multiple of 9, G = G2(q) and G has no section isomorphic 

to Qd(3).

Consequently, G is p-stable if and only if it is section p-stable.

The conditions on a prime p which guarantee that a Sylow p-subgroup of a simple 
group G is Abelian must be known to experts, but we have not found any reference. So 
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we write down these in Proposition 3.2 for cases relevant to Theorem 3.1, that is, for the 
cases where G is a simple group of Lie type defined over the field Fq, q = �s and � �= p. 
Denote by ep(q) the order of q modulo p, that is, the smallest natural number i such 
that p|qi − 1.

Proposition 3.2. Let G be a simple group of Lie type in characteristic � �= p.

(1) Suppose that p = 3 and the Sylow 3-subgroups of G are Abelian. Then one of the 
following holds:

(i) G ∼= PSL2(q), where q > 2;
(ii) G ∼= PSL3(q), where q − 1 ≡ 3 or 6 (mod 9);

(iii) G ∼= PSLn(q), where 3|q + 1 and 2 < n < 6;
(iv) G ∼= PSU3(q), where q > 2 and q + 1 ≡ 3 or 6 (mod 9);
(v) G ∼= PSUn(q), where 3|q − 1 and 2 < n < 6;

(vi) G ∼= B2(q);
(vii) G ∼= 2B2(q), where q = 22m+1 and m > 0;

(2) Suppose that p > 3 and the Sylow p-subgroups of G are Abelian. Then one of the 
following holds:

(i) G ∼= 2B2(q), where q = 22m+1, m > 0;
(ii) G ∼= G2(q);

(iii) G ∼= 2G2(q), where q = 32m+1, m > 0;
(iv) G ∼= 2F4(2)′ or 2F4(q), where q = 22m+1, m > 0;
(v) G ∼= 3D4(q);

(vi) G ∼= F4(q);
(vii) G ∼= E6(q), where p > 5 or p = 5 � | q − 1;

(viii) G ∼= 2E6(q), where p > 5 or p = 5 � | q + 1;
(ix) G ∼= E7(q), where p > 7 or p = 5 or 7 and p � | q2 − 1;
(x) G ∼= E8(q), where p > 7 or p = 7 � | q2 − 1 or p = 5;

(xi) G ∼= PSLn(q), where n < ep(q)p;
(xii) G ∼= PSUn(q), where 2 < n < 2ep(q)p if ep(q) is odd, 2 < n < ep(q)p if 

ep(q) ≡ 0 (mod 4) and n < ep(q)p/2 if ep(q) ≡ 2 (mod 4);
(xiii) G ∼= Bn(q), where q is odd and 1 < n < ep(q)p if ep(q) is odd, 1 < n <

ep(q)p/2 if ep(q) is even;
(xiv) G ∼= Cn(q), where 2 < n < ep(q)p if ep(q) is odd, 2 < n < ep(q)p/2 if ep(q) is 

even;
(xv) G ∼= Dn(q), where 3 < n < ep(q)p if ep(q) is odd and 4 < n � ep(q)p/2 if 

ep(q) is even;
(xvi) G ∼= 2Dn(q), where 3 < n � ep(q)p if ep(q) is odd and 4 < n < ep(q)p/2 if 

ep(q) is even.

The proof of these two results occupies the rest of the section.
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Lemma 3.3. Let m, n be positive integers, and let c = gcd(m, n), the greatest common 
divisor of m and n. Then qc − 1 is the greatest common divisor of qm − 1, qn − 1. 
Furthermore, p divides qn − 1 if and only if ep(q) divides n.

Proof. The first statement is Hilfsatz 2(a) in [17]. The second is an elementary conse-
quence of the first as ep(q) is the order of q in the multiplicative group F∗

p of the field of 
p elements. �
Linear and unitary groups

Lemma 3.4. Let E be an extraspecial group of order p3. If p divides q − 1 (resp. q + 1), 
then E is isomorphic to a subgroup of GLp(q) (resp., GUp(q)).

Proof. The statement on GLp(q) is well known. Let p divide q+1. Then E is isomorphic 
to a subgroup of GLp(q2). As p > 2, a Sylow p-subgroup of GUp(q) is a Sylow p-subgroup 
in GLp(q2), see [27, p. 532], whence the statement. �
Lemma 3.5. Let G = GUn(q), and P a Sylow p-subgroup of G. If ep(q) ≡ 2 (mod 4), then 
P is a Sylow p-subgroup of GLn(q2), otherwise P is isomorphic to a Sylow p-subgroup 
of GLl(q2), where l is the integral part of n/2.

Proof. If e = ep(q) ≡ 2 (mod 4), then this is in stated in [27, p. 532]. So we may assume 
that either 4|e or e is odd.

Note that GUn(q) contains a subgroup X isomorphic to GLl(q2). It suffices to prove 
the result for n = 2l + 1. As

|GUn(q)| = (q + 1)(q2 − 1) · · · (qn + 1)qa

and

|GLl(q2)| = (q2 − 1) · · · (q2l − 1)qb

for some integers b > a > 1, the index of GLl(q2) in GUn(q) equals

(q + 1)(q3 + 1) · · · (qn + 1)qa−b.

We show that this number is coprime to p. For this it suffices to observe that qi + 1 is 
coprime to p for i odd. Suppose the contrary that p|qi +1 for some i. Then p|q2i− 1. By 
Lemma 3.3, e|2i.

Let first e be odd. Then e|i and hence p|qi − 1, so p � | qi + 1.
Now let e = 2m, where m is even. Then m|i as e|2i. This is a contradiction as m is 

even, whereas, i is odd. �
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The statement on the general linear group of Lemmas 3.6 and 3.11 can also be found 
in [1, (3B), p. 12]. For the sake of being self-contained and also because it is short, we 
present the entire proof.

Lemma 3.6. Let G = GLp(q) (resp., GUp(q)), so that G′ = SLp(q) (resp., SUp(q)). 
Suppose p|q − 1 (resp. p|q + 1). Then G contains a subgroup isomorphic to Q̃d(p). If 
p > 3, then this subgroup is contained in G′. Consequently, Qd(p) is isomorphic to a 
subgroup of PGLp(q) (resp. PGUp(q)) and is contained in PSLp(q) (resp., PSUp(q)) if 
p > 3.

Proof. Set Z = Z(G). Let E be the extraspecial group of order p3 and exponent p. By 
Lemma 3.4, there is a faithful representation ϕ: E → G. Then the character χ of ϕ
vanishes on E \ Z(E) [5, 9.20]. Then (χ, χ) = 1, and hence ϕ is absolutely irreducible. 
(As q is coprime to |E|, the representation theory of E over Fq is paralleled with that 
over the complex numbers.)

For g ∈ SL2(p) � Q̃d(p), the characters of representations ϕ and ϕg coincide, so ϕ and 
ϕg are equivalent. Therefore, there is h ∈ GLp(Fq) such that ϕg = ϕh. As ϕ is absolutely 
irreducible, the Fq-envelope of ϕ(E) is Matp(Fq), and h induces an automorphism of 
Matp(Fq). By the Skolem–Noether theorem, h can be chosen in G = GLp(q). By Schur’s 
lemma, h is unique up to a scalar multiple. So g �→ h is a projective representation 
of SL2(q) → G. As the Schur multiplier of PSL2(p) is of order 2, every projective 
representation of SL2(q) arises from an ordinary one, so h can be chosen so that g �→ h

is an ordinary representation. If p > 3, then Q̃d(p) has no non-trivial Abelian quotient. 
Since G/G′ is Abelian, it follows that G′ contains a subgroup H isomorphic to Q̃d(p).

Let us now consider the case G = GUp(q). Assume first p > 3. By the previous 
paragraph, we can assume that Q̃d(p) ∼= H � SLp(q2) and E � G. It is well known that 
there exists an involutive automorphism τ , say, of GLp(q2) such that GUp(q) is exactly 
the fixed point subgroup of τ . Let g ∈ H, x ∈ E. Then gxg−1 = τ(gxg−1) = τ(g)xτ(g)−1, 
whence g−1τ(g)x(g−1τ(g))−1 = x. As E is absolutely irreducible, by Schur’s lemma, 
g−1τ(g) is a scalar matrix, zg, say, so τ(g) = zgg. One easily observes that the mapping 
g �→ zg is a homomorphism of H ∼= Q̃d(p) into the group of scalar matrices of GLp(q2). 
As Q̃d(p) is perfect for p > 3, we have zg = 1, and hence τ(g) = g, that is, g ∈
SUp(q).

The above argument has to be refined for p = 3. In this case, GL3(q2) has a subgroup 
H isomorphic to Q̃d(3). Recall that a Sylow 3-subgroup of GL3(q2) coincides with one 
of U3(q) and hence H can be assumed to have a Sylow 3-subgroup contained in GU3(q). 
The kernel of the mapping g �→ zg as in the previous paragraph contains both the derived 
subgroup H ′ and the Sylow 3-subgroup of H contained in GU3(q). As H is generated by 
these subgroups, zg = 1 follows for all g ∈ H. Hence H � GU3(q).

Finally, let again p > 3. Observe that the centre of H is contained in Z(G′). Therefore, 
its image in PSLp(q) (resp. PSUp(q)) is isomorphic to Qd(p). �
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Next we examine the case p = 3 not discussed completely in Lemma 3.6.

Lemma 3.7. Let p = 3 and G = PSL3(q). Suppose that 3|q − 1.

(i) If q − 1 is not a multiple of 9, then the Sylow 3-subgroups of G are Abelian, and G
has no section isomorphic to Qd(3).

(ii) If q − 1 is a multiple of 9, then Qd(3) is isomorphic to a subgroup of G. Moreover, 
SL3(q) has a subgroup isomorphic to Q̃d

−
(3) but not one isomorphic to Q̃d(3) or 

Q̃d
+
(3).

Proof.

(i) The order of G is q3(q−1)2(q+1)(q2 + q+1)/3. One easily observes that the 3-part 
of |G| is 9, so the Sylow 3-subgroups of G are Abelian. Then Qd(3) is not a section 
of G.

(ii) Assume 9|q−1. By Lemma 3.6, GL3(q) contains a subgroup X isomorphic to Q̃d(3)
whose image in PGL3(q) is isomorphic to Qd(3). Now, X ∼= E � (Q8 � C3), where 
Q8 is a quaternion group. Moreover, X ′ ∼= E � Q8 is contained in SL3(q) and 
X = X ′ � 〈x〉, where x3 = 1.
Let 3ϑ be the 3-part of q − 1. Then a Sylow 3-subgroup P of SL3(q) is isomorphic 
to (C3ϑ ×C3ϑ) �C3. A straightforward calculation shows that any subgroup of P of 
exponent 9 is contained in a subgroup isomorphic to (C9 ×C9) �C3 obtained from 
P in the obvious way. However, this group does not contain a Sylow 3-subgroup of 
Q̃d(3) (see also Remark 1.17). Thus x /∈ SL3(q) and hence det(x)3 = 1 �= det(x). 
Let α ∈ Fq such that α3 = det(x) and set y = α−1x. Let Y = 〈X ′, y〉. Then Y is 
contained in SL3(q) and the image of Y in PGL3(q) is equal to that of X whence 
the claim on G.
Finally, Remark 1.17 implies that SL3(q) does not contain a subgroup isomorphic 

to Q̃d
+

(3) and hence Y ∼= Q̃d
−

(3) whence the claim. �
Lemma 3.8. Let p = 3 and G = PSU3(q). Suppose that q + 1 is a multiple of 3. Then 
Qd(3) is isomorphic to a subgroup of G if and only if q + 1 is a multiple of 9. In this 
case, SU3(q) has a subgroup isomorphic to Q̃d

−
(3) but not one isomorphic to Q̃d(3) or 

Q̃d
+
(3). If 3 � | q + 1, then Qd(3) is not a section of G.

Proof. Suppose 9|q+1. We have shown in the proof of Lemma 3.7 that SL3(q2) contains a 
subgroup Y such that Y/Z(Y ) ∼= Qd(3). Note that |Z(SL3(q2))| = |Z(SU3(q))| = 3. Let 
τ be as in the proof of Lemma 3.6, so by the argument there zg := g−1τ(g) ∈ Z(SL3(q2)), 
and hence zg ∈ SU3(q). Then, applying τ to τ(g) = zgg, we have g = τ2(g) = zgτ(g) =
z2
gg, whence z2

g = 1, zg = 1. Therefore, g = τ(g) and hence g ∈ SU3(q). The statement 
on Q̃d

±
(3) follows from Lemmas 3.7 and 3.5.
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Conversely, let G = PSU3(q), where q + 1 is not a multiple of 9. The order of G is 
q3(q + 1)2(q − 1)(q2 − q + 1)/3. One easily observes that the 3-part of |G| is 9, so the 
Sylow 3-subgroups of G are Abelian, whence the result. �
Lemma 3.9. Let n > p and G = PSLn(q) (resp., PSUn(q)), where p|q−1 (resp. p|q+1). 
Then G contains a subgroup isomorphic to Q̃d(p).

Proof. Consider the embedding ν : SLp(q) → SLn(q), x �→ diag(x, Idn−p). Then 
ν(SLp(q)) ∩Z(SLn(q)) = 1. This provides an embedding SLp(q) → PSLn(q). So G has 
a subgroup isomorphic to Q̃d(p) for p > 3.

This can be refined to the case p = 3 by using the embedding

μ : GL3(q) → SLn(q), x �→ diag(x,detx−1, Idn−4).

If the matrix diag(x, detx−1, Idn−4) is scalar, then either x = Idn or n = 4 and 
x = a · Id3 ∈ GL3(q). Moreover, in the latter case detx−1 = a−3 = a must hold, so 
a4 = 1. As such, if x �= Id, then it is not contained in Q̃d(3) � GL3(q). Therefore, the 
homomorphism GL3(q) → PSL4(q) is faithful when restricted to Q̃d(3), so G contains 
a subgroup isomorphic to Q̃d(3).

The proof for the case of unitary groups is similar. �
Lemma 3.10.

(i) Let g ∈ GLn(q), gp = 1 �= g. Suppose that g is irreducible. Then n = ep(q).
(ii) Let g ∈ GLn(q), where n = ep(q). Then the Sylow p-subgroups of G are cyclic.

(iii) Let 2n = ep(q). Then GUn(q) contains an element of order p if and only if n is 
odd.

Proof.

(i) It follows from the formula for |GLn(q)| that e := ep(q) � n, otherwise p does 
not divide the group order. As g is irreducible, the enveloping algebra [g] of g is a 
field (by Schur’s lemma). In addition, the natural FqGLn(q)-module V is of shape 
[g] · v for some v ∈ V , so dim[g] � n. In fact, dim[g] = n as the matrix algebra 
Matn(Fq) is well known to contain no subfield of dimension greater than n over Fq. 
It follows that [g] ∼= Fqn , and hence p divides qn − 1. By Lemma 3.3, e divides n. 
Then Fqn contains a subfield F isomorphic to Fqe . As the multiplicative group of 
Fqn is cyclic, we have g ∈ F , and hence [g] ∼= F , which means F ∼= Fqn , that is, 
e = n.

(ii) The assumption n = ep(q) is equivalent to saying that Fqn contains an element 
of order p, whereas Fqi for i < n contains no such element. As F∗

qi embeds into 
GLi(q), it follows that a subgroup of GLn(q) isomorphic to F∗

qn contains a Sylow 
p-subgroup of GLn(q), which is cyclic.
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(iii) Recall that

|GUn(q)| = (q + 1)(q2 − 1) · . . . · (qn ± 1)

according to whether n is even or odd. As ep(q) = 2n, no term of the form qi − 1
in the above formula is divisible by p. If some qi + 1 is divisible by p, then so is 
q2i − 1 and hence 2i = 2ep(q) must hold. Then i = n is an odd number and the 
claim is proved. �

Lemma 3.11. Let e = ep(q).

(i) If n � pe, then GLn(q) has a subgroup isomorphic to Q̃d(p). If n > 3, then this 
subgroup is contained in SLn(q).

(ii) If n � 2pe, then SUn(q) has a subgroup isomorphic to Q̃d(p).
(iii) If e is even and n � ep, then SUn(q) has a subgroup isomorphic to Q̃d(p).
(iv) If e ≡ 2 (mod 4) and n � pe/2, then SUn(q) has a subgroup isomorphic to Q̃d(p)

except for the case e = 2, p = 3 and n = 3.

Proof.

(i) Suppose first that n = pe. Set Y = GLp(qe). By Lemma 3.6, Y contains a subgroup 
isomorphic to Q̃d(p). So it suffices to show that there is a homomorphism Y →
GLn(q) faithful on restriction to Q̃d(p). First, observe that, viewing Fqe as a vector 
space of dimension e over Fq, we obtain an embedding of Fqe into Mate(Fq), which 
yields an embedding of Matp(Fqe) into Matpe(Fq). Therefore, Y = GLp(qe) embeds 
into GLpe(q).
Note that n = 3 if and only if p = 3, e = 1 and n = ep. If p > 3, then Q̃d(p) is 
perfect, so Q̃d(p) embeds into SLpe(q). If p = 3 and e > 1, then p|q + 1, so e = 2. 
Let Y be the image of Y in GL6(q). Then the index of Y ∩ SL6(q) in Y divides 
q−1. So either Q̃d(3) embeds into SL6(q) or Q̃d(3) has a proper normal subgroup, 
whose index in Q̃d(3) divides q − 1. So the index is coprime to 3, and hence is a 
2-power as |Q̃d(3)| = 34 · 8. It is well known that SL2(3), and hence Q̃d(3), has 
no proper quotient group of 2-power order. It follows that SL6(q) has a subgroup 
isomorphic to Q̃d(3).
Finally, let n > pe. The case p = 3, e = 1 has already been handled in the proof 
of Lemma 3.9. Otherwise SLn(q) has a subgroup isomorphic to SLpe(q) and (i)
follows from the above.

(ii) Suppose first that (e, p) �= (1, 3). By part (i), SLpe(q) contains a subgroup isomor-
phic to Q̃d(p). There is an embedding SLpe(q) → SU2pe(q), whence the result.
Let e = 1, p = 3, so 3|q − 1. Then Q̃d(3) is a subgroup of GL3(q) (see Lemma 3.6) 
and there is an embedding GL3(q) → GU6(q). Note that GU6(q)/SU6(q) is of or-
der q + 1, which is coprime to 3. So either Q̃d(3) embeds into SU6(q) or Q̃d(3)
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has a proper normal subgroup, whose index in Q̃d(3) divides q + 1. So the index 
is coprime to 3, and hence a 2-power as above. As Q̃d(3) has no proper quo-
tient group of 2-power order, it follows that SU6(q) has a subgroup isomorphic to 
Q̃d(3).
Consequently, (ii) holds for n = 2pe and hence for n > 2pe, too.

(iii) Let e be even and let e′ = ep(q2). Then e′ = e/2. By part (i), SLpe′(q2) =
SLep/2(q2) has a subgroup isomorphic to Q̃d(p) unless n = 3. As there is an em-
bedding SLpe/2(q2) → SUep(q), the statement follows. For n = 3 we proceed as in 
part (ii).

(iv) Let e = 2m, where m is odd. Then p divides qm + 1. By Lemma 3.6, Q̃d(p) is 
isomorphic to a subgroup of SUp(qm), provided p > 3. By [17, Hilfsatz 1], there 
is an embedding SUp(qm) → SUpm(q), whence the result follows for p > 3. If, 
however, p = 3 and hence e = 2, then Q̃d(3) is isomorphic to a subgroup of GU3(q)
by Lemma 3.6. Since there is an embedding GU3(q) → SUn(q) for n > 3, the result 
follows. �

Next we show that if the assumptions of Lemma 3.11 fail, then the Sylow p-subgroups 
of G are Abelian.

Lemma 3.12. Let e = ep(q).

(i) If n < ep, then the Sylow p-subgroups of GLn(q) and hence of PSLn(q) are Abelian.
(ii) If e is odd and n < 2ep, then the Sylow p-subgroups of GUn(q) and hence of 

PSUn(q) are Abelian.
(iii) If e ≡ 0 (mod 4) and n < ep, then the Sylow p-subgroups of GUn(q) and hence of 

PSUn(q) are Abelian.
(iv) If e ≡ 2 (mod 4) and n < ep/2, then the Sylow p-subgroups of GUn(q) and hence 

of PSUn(q) are Abelian.

Proof.

(i) As |GLn(q)| = (q − 1) · . . . · (qn − 1)qa, the order of a Sylow p-subgroup of GLn(q)
equals the p-part of (q − 1) · . . . · (qn − 1). By Lemma 3.3, p divides qj − 1 if and 
only if e divides j. Therefore, the p-part of (q − 1) · · · (qn − 1) coincides with that 
of (qe − 1)(q2e − 1) · . . . · (qke − 1) for some k < p.
We claim that p is coprime to q

ie−1
qe−1 for i < p. Indeed,

qie − 1
qe − 1 = (q(i−1)e − 1) + · · · + (qe − 1) + i,

whence the claim follows. Therefore, if pd is the p-part of qe − 1, then the p-part of 
|GLn(q)| equals pdk, and coincides with that of GLk(qe). In addition, pdk coincides 
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with the p-part of the order of the group of diagonal matrices of GLk(qe). Hence 
the latter is one of the Sylow p-subgroups of GLk(qe) and these are Abelian.
Now, there is an embedding GLk(qe) → GLn(q) and the p-parts of the orders of 
these groups are the same. So the Sylow p-subgroups of GLk(qe) are isomorphic to 
those of GLn(q), whence the result.

(ii) By Lemma 3.5, the Sylow p-subgroups of GUn(q) are isomorphic to those of 
GLl(q2), where l is the integral part of n/2. By assumption n < 2ep, so l < ep. 
Moreover, ep(q) = ep(q2) as this number is odd. Therefore, the Sylow p-subgroups 
of GLl(q2) are Abelian by part (i) and the claim follows.

(iii) We proceed in a similar way as in part (ii). By Lemma 3.5, the Sylow p-subgroups 
of GUn(q) are isomorphic to those of GLl(q2) with the same l. But now we have 
l < ep/2 and ep(q2) = ep(q)/2 = e/2, so part (i) applies again and the Sylow 
p-subgroups under consideration are Abelian.

(iv) Now the Sylow p-subgroups of GUn(q) are isomorphic to those of GLn(q2) and 
ep(q2) = e/2, so the assumption n < ep/2 ensures that part (i) can be applied and 
the result follows. �

Proposition 3.13.

(i) Let G = GLn(q) or GUn(q). If the Sylow p-subgroups of G are non-Abelian, then G
contains a subgroup isomorphic to Q̃d(p).

(ii) Let G = PSLn(q) or PSUn(q). If the Sylow p-subgroups of G are non-Abelian, then 
G contains a subgroup isomorphic to Q̃d(p) or Qd(p).

Proof.

(i) This follows from Lemmas 3.6, 3.11 and 3.12.
(ii) Suppose first that p = n = 3 and 3|q−1 (resp., 3|q+1). Then the Sylow 3-subgroups 

of G are Abelian if and only if q − 1 (resp., q + 1) is not a multiple of 9. So in this 
case the result follows from Lemmas 3.7 and 3.8 for G = PSL3(q) and PSU3(q), 
respectively.
Assume p > 3 or n �= 3. If by Lemma 3.12 the Sylow p-subgroups of G are non-
Abelian, then we are in one of the situations in Lemma 3.11 whence the result. �

Symplectic groups

Lemma 3.14. Let G = Sp2n(q) and let P be a Sylow p-subgroup of G.

(i) If ep(q) is odd, then P is isomorphic to a Sylow p-subgroup of GLn(q).
(ii) If ep(q) is even, then P is a Sylow p-subgroup of GL2n(q). If, in addition, e di-

vides 2n, then a Sylow p-subgroup of G is contained in a subgroup isomorphic to 
GU2n/e(qe/2).
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Proof.

(i) Note that G contains a subgroup X isomorphic to GLn(q). Recall that

|Sp2n(q)| = (q2 − 1)(q4 − 1) · . . . · (q2n − 1)qa

and

|GLn(q)| = (q − 1)(q2 − 1) · . . . · (qn − 1)qb

for some integers a > b > 0. So the index of GLn(q) in Sp2n(q) is equal to qa−b(q +
1)(q2 + 1) · . . . · (qn + 1). We show that the index is coprime to p. If p|qi + 1, then 
p | q2i − 1. Then, by Lemma 3.3, e divides 2i and hence i as e is odd. It follows that 
p|qi − 1, which is impossible since p is odd.

(ii) For the first statement, see [27, p. 531].
Let e = ep(q). To prove the second statement, we start by showing that G contains 
a subgroup isomorphic to GUl(qm), where m = e/2 and l = 2n/e.
Observe first that Spe(q) contains an element g, say, of order p since p|qe − 1 |
|Spe(q)|. Then g is irreducible as an element of GLe(q) by the very definition of e. 
As e|2n, it follows that the natural FqG-module V is a direct sum of 2n/e non-
degenerate subspaces of dimension e. One observes that there is a homogeneous 
element h ∈ G of order p (in other words, h = diag(g, . . . , g) under a suitable basis 
of V ). Then CG(h) ∼= GU2n/e(qm), see for instance [6, Lemma 6.6].
Furthermore, observe that p|qm + 1 as p|q2m − 1 = (qm − 1)(qm + 1) and p � | qm − 1. 
Note that p|q2i − 1 implies e|2i, and hence m|i. Therefore, the p-part of |G| divides

(qe − 1)(q2e − 1) · . . . · (q2n − 1).

Consider the term

qie − 1 = q2im − 1 = (qim − 1)(qim + 1)

with i odd. As p|qm+1, and hence p|qim+1, we observe that p is coprime to qim−1. 
Similarly, if i = 2j is even, then

qie − 1 = q2je − 1 = (qje − 1)(qje + 1).

As p divides qje − 1 = qim − 1, it is coprime to qje + 1. Therefore, the p-part of |G|
divides

(qm + 1)(q2m − 1)(q3m + 1)(qme − 1) · . . . · (qle ± 1)

according to whether l is odd or even.
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Recall that

|GUl(qm)| = qb(qm + 1)(q2m − 1)(q3m + 1) · . . . · (qlm − (−1)l)

for some integer b > 0. Therefore, the p-part of |G| is equal to that of |GUl(qm)|
and the lemma is proven. �

Proposition 3.15. Let G = Sp2n(q) and set e = ep(q). The following are equivalent:

(1) G contains a subgroup isomorphic to Q̃d(p);
(2) a Sylow p-subgroup of G is non-Abelian;
(3) n � ep if e is odd, and 2n � ep if e is even.

Proof. By Lemma 3.14, the equivalence of (2) and (3) follows from a corresponding result 
for GLm(q) for m = n or 2n, see Lemmas 3.6, 3.11 and 3.12. The implication (1) ⇒ (2)
is trivial. If e is odd, then (3) implies (1) by Lemma 3.11 as GLn(q) is a subgroup of G.

Let e = 2m be even, so p|qm + 1. Suppose first 2n = pe. By part (ii) of Lemma 3.14, 
some Sylow p-subgroup of G is contained in a subgroup X isomorphic to GUp(qm). As 
p|qm + 1, by Lemma 3.6, X contains a subgroup isomorphic to Q̃d(p). If 2n > pe, then 
G contains a subgroup isomorphic to Sppe(q), so the result follows. �
Orthogonal groups

Lemma 3.16. Let G = O−
2n(q) or O2n+1(q), e = 2m and 2n = de, where d is odd. Then 

a Sylow p-subgroup of G is contained in a subgroup X isomorphic to GUd(qm).

Proof. We first show that G = O−
2n(q) contains a subgroup isomorphic to GUd(qm). 

Note that O−
e (q) contains an element g, say, of order p as p|qm +1 which divides |O−

e (q)|
by the order formula. Observe that g is irreducible as an element of GLe(q) by the 
very definition of e. As e|2n, it follows that V , the natural FqG-module, is a direct 
sum of d = 2n/e non-degenerate subspaces of dimension e. As d is odd, these can be 
chosen of Witt index 1 (see [19, 2.5.11] and use Witt’s theorem). One observes that 
there is a homogeneous element h ∈ G of order p (under a suitable basis of V we have 
h = diag(g, . . . , g)). Then CG(h) ∼= GUd(qm), see for instance [6, Lemma 6.6]. So O−

2n(q)
and hence O2n+1(q) contains a subgroup X isomorphic to GUd(qm).

So it suffices to show that the p-part of G does not exceed that of GUd(qm), and in turn 
that the p-part of O2n+1(q) does not exceed that of GUd(qm). However, |SO2n+1(q)| =
|Sp2n(q)|, and the p-part of |Sp2n(q)| equals the p-part of |GUd(qm)| by Lemma 3.14. So 
the result follows. �
Lemma 3.17. Let G = O2n+1(q), q odd, and let P be a Sylow p-subgroup of G. If e is 
even, then P is isomorphic to a Sylow p-subgroup of GL2n+1(q). If e is odd, then P is 
isomorphic to a Sylow p-subgroup of GLn(q).
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Proof. For the first statement see [27, p. 532]. Let e be odd. Then |G|/2 coincides with 
|Sp2n(q)|, and G contains a subgroup X isomorphic to GLn(q).

By Lemma 3.14, the order of a Sylow p-subgroup of GLn(q) coincides with that of 
Sp2n(q), and hence with |P |. So the result follows. �
Proposition 3.18. Let G = O2n+1(q) and e = ep(q). The following are equivalent:

(i) G contains a subgroup isomorphic to Q̃d(p);
(ii) a Sylow p-subgroup of G is not Abelian;

(iii) n � ep if e is odd, and n � ep/2 if e is even.

Proof. Note that if q is even, then SO2n+1(q) ∼= Sp2n(q) and the result follows from 
Proposition 3.15, so we can assume that q is odd.

By Lemma 3.17, the equivalence of (ii) and (iii) follows from a corresponding result 
for GLm(q) for m = n or 2n, see Lemma 3.12. The implication (i) ⇒ (ii) is trivial. If e
is odd, then (iii) implies (i) by Lemma 3.11 as G has a subgroup isomorphic to GLn(q).

Let e = 2m be even. Then a Sylow p-subgroup of O−
pe(q) and of G is contained in a 

subgroup X isomorphic to GUp(qm) (see Lemma 3.16). As p|qm+1, by Lemma 3.11 (iv), 
X contains a subgroup isomorphic to Q̃d(p). If 2n � pe, then G contains a subgroup 
isomorphic to O−

pe(q), so the result follows. �
Lemma 3.19. Let G = O±

2n(q), n > 3 and let P be a Sylow p-subgroup of G.

(i) P is isomorphic to a Sylow p-subgroup of O2n+1(q) or of O2n−1(q).
(ii) If p � | q2n − 1 (equivalently, e � | 2n), then P is isomorphic to a Sylow p-subgroup of 

both O2n+1(q) and O2n−1(q).
(iii) P remains a Sylow p-subgroup of O2n+1(q) if and only if either e � | 2n or e|n for 

G = O+
2n(q) and e � | n for G = O−

2n(q).
(iv) If q is even, the above statements remain true if one replaces O2i+1(q) by Sp2i(q)

for i = n, n − 1.

Proof. Recall that p divides qi − 1 if and only if e divides i (see Lemma 3.3).
For (i), see [27, p. 533] or observe that the statement easily follows from the formulas 

for the orders of these three groups. Recall that

|O+
2n(q)| = 2qn(n−1)(q2 − 1) · . . . · (q2(n−1) − 1)(qn − 1),

|O−
2n(q)| = 2qn(n−1)(q2 − 1) · . . . · (q2(n−1) − 1)(qn + 1)

and

|O2n+1(q)| = 2qn
2
(q2 − 1) · . . . · (q2n − 1).

(ii) follows from that the orders of O2n+1(q) and O2n−1(q) differ in a factor q2n−1(q2n−1).
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For (iii) observe that P remains a Sylow p-subgroup of O2n+1(q) if and only if p
does not divide the index |O2n+1(q) : G|, which is qn + 1 for G = O+

2n(q) and qn − 1 for 
G = O−

2n(q). This happens if either e � | 2n (so p � | q2n−1) or e|n for G = O+
2n(q) and e � | n

for G = O−
2n(q).

Finally, (iv) follows from the fact that SO2n+1(q) ∼= Sp2n(q) for q even. �
Lemma 3.19 (iii) together with Propositions 3.15 (for q even) and 3.18 implies:

Proposition 3.20. Let G = O±
2n(q). Then G contains no subgroup isomorphic to Q̃d(p) if 

and only if the Sylow p-subgroups of G are Abelian.

Proof. It suffices to show that G contains Q̃d(p) if the Sylow p-subgroups of G are 
non-Abelian. By Proposition 3.18, this is true if the Sylow p-subgroups of O2n−1(q)
are non-Abelian. Assume that this is not the case. Then, by Lemma 3.19(i), the Sylow 
p-subgroups of O2n+1(q) are non-Abelian, and Proposition 3.18 implies that n = ep (for 
e odd) or n = ep/2 (for e even). By part (iii) of Lemma 3.19 we have G = O+

2n(q) if e
is odd, and G = O−

2n(q) if e is even. In the former case G contains GLn(q) = GLep(q)
which contains Q̃d(p) by Lemma 3.11. The latter case has been already dealt with in the 
proof of Proposition 3.18 (iii). �
Proposition 3.21.

(i) Let G = O+
2n(q) and let P be a Sylow p-subgroup of G. If e is odd, then P is Abelian 

if and only if n < ep. If e is even, then P is Abelian if and only if n − 1 < ep/2.
(ii) Let G = O−

2n(q) and let P be a Sylow p-subgroup of G. If e is odd, then P is Abelian 
if and only if n − 1 < ep. If e is even, then P is Abelian if and only if n < ep/2.

Proof. Suppose first that e is odd. By Proposition 3.18, the Sylow p-subgroups of G
are Abelian if n < ep (since those of O2n+1(q) are Abelian). Furthermore, the Sylow 
p-subgroups of G are non-Abelian if n > ep (since those of O2n−1(q) are so). If, however, 
n = ep, then e|n and hence by part (iii) of Lemma 3.19 the Sylow p-subgroups of O+

2n(q)
are non-Abelian while those of O−

2n(q) are Abelian.
Let now e be even. By Proposition 3.18, the Sylow p-subgroups of G are Abelian 

if n < ep/2. Furthermore, the Sylow p-subgroups of G are non-Abelian if n > ep/2. 
If, however, n = ep/2, then e|2n and e � | n, so by part (iii) of Lemma 3.19 the Sylow 
p-subgroups of O−

2n(q) are non-Abelian while those of O+
2n(q) are Abelian and the result 

follows. �
Exceptional groups of Lie type We first recall that for p > 2 the Sylow p-subgroups of 
the simple groups 2B2(q), q > 2 are Abelian and the group 2B2(2) is soluble. Therefore, 
these groups are not to be considered.

We use information provided in [9, p. 111]. For p > 2, a Sylow p-subgroup P of a 
simple group G of Lie type has an Abelian normal subgroup A and the order of the 
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quotient group PW = P/A can be computed from the table in [9, p. 111]. In particular, 
if PW = 1, then P is Abelian.

Write |G| = qab, where b is coprime to q. Let Φm be the m-th cyclotomic polynomial, 
that is, an (over the rationals) irreducible polynomial whose roots are precisely the 
primitive m-th roots of unity. Then Φm divides xm − 1 but does not divide xi − 1 for 
i < m. The table in [9, p. 111] provides the expressions of b = b(G) in terms of the Φm’s. 
For instance, for the twisted group 2E6(q), we have b = Φ4

1Φ6
2Φ2

3Φ2
4Φ3

6Φ8Φ10Φ12Φ18. 
Write each expression as 

∏
m Φrm

m . Let m0 be the least number m such that p divides 
Φm(q). In fact, m0 = ep(q), but we prefer to keep here notation of [9]. In a given 
expression for b, let M be the set of numbers m of the form m = pkm0 for some integer 
k > 0 such that rm > 0. Then |PW | = pd, where d =

∑
m∈M rm. In particular, PW = 1

if and only if M is empty (see [9, p. 111]).
We illustrate this with the example G = 2E6(q). If p > 5, then M is empty, so P is 

Abelian. If m0 = 1 and p = 5, then again P is Abelian, but if m0 = 2, then |PW | = 5. 
(In this case P is non-Abelian but this is not explicitly mentioned in [9].)

We first consider the groups of type E. The analysis of the table in [9, p. 111] yields 
the following conclusion:

Lemma 3.22. Let G = E6(q), E7(q), E8(q) or 2E6(q) and let P be a Sylow p-subgroup 
of G.

(i) P is Abelian if p > 7 and non-Abelian if p = 3;
(ii) if p = 7, then P is Abelian unless G = E7(q) and m0 = 1 or 2 or G = E8(q) and 

m0 = 1 or 2;
(iii) if p = 5, then P is Abelian unless one of the following holds:

(a) G = E6(q), m0 = 1;
(b) G = 2E6(q), m0 = 2;
(c) G = E7(q), m0 = 1 or 2;
(d) G = E8(q), m0 = 1, 2 or 4.

Note that m0 �= 6 in case (d) as m0 = ep(q) < p.
We have to decide whether Q̃d(p) is a subgroup of G whenever the Sylow p-subgroups 

of G are non-Abelian. The following lemma is an extraction from [22, Table 5.1].

Lemma 3.23. Let G = E6(q), E7(q), E8(q) or 2E6(q). Suppose that the Sylow p-subgroups 
of G are non-Abelian. Then Q̃d(p) is a subgroup of G.

Proof. We use information from [22, Table 5.1].
Suppose first that G ∼= E6(q) (resp., 2E6(q)). Then two primes: p = 3 and p = 5

have to be considered. Set X = SL6(q) (resp., X = SU6(q)) and X1 = SL5(q) (resp., 
X1 = SU5(q)). By [22, Table 5.1], G contains a subgroup isomorphic to X/Z, where Z is 
a central subgroup of X. Let first p = 3. Then by Lemma 3.11, X and X/Z(X) and hence 
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also X/Z contain a subgroup isomorphic to Q̃d(3). Let now p = 5, so m0 = 1 (resp., 2). 
The natural embedding X1 → X yields an embedding X1 → X/Z. By Lemma 3.6 X1
contains a subgroup isomorphic to Q̃d(5) whence the result.

Suppose now that G = E7(q). Then p = 3, 5 and 7 have to be considered. By [22, 
Table 5.1], G has a subgroup X isomorphic to Ω+

12(q). We use Propositions 3.20 and 
3.21. Since n = 6 > 3 = 1 · 3 = 2 · 3/2 and 6 > 5, X contains subgroups isomorphic to 
Q̃d(3) and Q̃d(5). Let now p = 7, so m0 = 1 or 2. By [22, Table 5.1], G contains sub-
groups isomorphic to a central quotient of SL8(q) and of SU8(q). Therefore, G contains 
subgroups isomorphic to SL7(q) and SU7(q). So the result follows from Lemma 3.6.

Finally, let G = E8(q). Then G has a subgroup isomorphic to Ω+
16(q), so we have n = 8

in Propositions 3.20 and 3.21. Then ep or ep/2 in question are 3 (for p = 3), 5, 5 and 10
(for p = 5) and 7 (for p = 7). Since only 10 exceeds 8, we are left with the case p = 5
and m0 = 4. Again by Table 5.1 in [22], G has a subgroup isomorphic to SU5(q2). As 
m0 = 4, p|q2 + 1. So SU5(q2), and hence G, has a subgroup isomorphic to Q̃d(5). This 
completes the proof. �

Using [9, p. 111], we conclude that for p > 3, the Sylow p-subgroups of the groups 
3D4(q), F4(q), 2F4(q) (q = 22m+1), 2F4(2)′, G2(q), 2G2(q), (q = 32m+1) are Abelian. As 
we assume that q is not a p-power, the groups 2G2(q) for p = 3 are not to be considered 
here.

Lemma 3.24. Let p = 3, 3 � | q.

(i) If G = 3D4(q), F4(q), 2F4(q) (with q = 22m+1, m > 0) or 2F 4(2)′, then G contains 
a subgroup isomorphic to Qd(3).

(ii) If G = G2(q) and 9 � | q2 − 1, then the Sylow 3-subgroups of G are non-Abelian and 
G contains no section isomorphic to Qd(3).

(iii) If G = G2(q) and 9|q2 − 1, then G contains a subgroup isomorphic to Q̃d
−

(3).

Proof. Let G = 3D4(q). By [21, p. 182], G contains a subgroup X isomorphic to PGL3(q)
(resp., PGU3(q)) if 3|q− 1 (resp., 3|q + 1). By Lemma 3.6 X has a subgroup isomorphic 
to Qd(3) whence the claim.

Let G = F4(q). Then G contains a subgroup isomorphic to 3D4(q) (see [22, Table 5.1]), 
so the result follows from that for 3D4(q).

Let G = 2F 4(2)′. Then G contains a subgroup isomorphic to PSL3(3) by [3]. By 
Lemma 1.7, the latter and hence G has a subgroup isomorphic to Qd(3).

Let now G = 2F4(q), q = 22m+1 > 2, m > 0. By Lemma 2.2(6) in [23], G contains a 
subgroup isomorphic to 2F 4(2)′, so the result follows from the previous paragraph.

Let G = G2(q). Then there are two maximal subgroups D1, D2 of G with non-Abelian 
Sylow 3-subgroups; moreover, D1 contains SL3(q), D2 contains SU3(q) as a subgroup 
of index 2 (see [22, Table 5.1]). If 9|q − 1 (resp., 9|q + 1), then SL3(q) (resp., SU3(q)) 
has a subgroup isomorphic to Q̃d

−
(3) by Lemmas 3.7 and 3.8. If, however, 9 � | q2 − 1, 
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then a Sylow 3-subgroup E of G is extraspecial of order 27 and exponent 3. Therefore, 
if Qd(3) is involved in G, then it must be involved either in the normaliser of E or 
in the normaliser of some elementary Abelian subgroup V of E. Let Z = Z(E). Then 
NG(E) ⊆ NG(Z), which has a subgroup of index 2 isomorphic to either SL3(q) or SU3(q)
according to whether 3|q − 1 or 3|q + 1 (see [7, p. 461]). By Lemmas 3.7 and 3.8, these 
groups do not involve Qd(3). Let us consider the other case. As V is normal in E, it 
must contain Z. Now, all elements of E \ Z are conjugate in CG(Z) and they are not 
conjugate to an element of Z in G (see [7, p. 461]). Thus NG(V ) ⊆ NG(Z), which has 
been proved not to involve Qd(3) whence the claim. �

Thus, we can sum the above arguments to get

Proposition 3.25. Let G be a simple group of exceptional Lie type. Suppose that a Sylow 
p-subgroup of G is not Abelian. If p > 3, then Q̃d(p) is a subgroup of G.

If p = 3, this is true if G ∼= E6(q), E7(q), E8(q) or 2E6(q). Otherwise G contains 
a subgroup isomorphic to Qd(3) unless G ∼= G2(q). In the latter case G contains a 

subgroup isomorphic to Q̃d
−

(3) if 9|q2 − 1 and has no section isomorphic to Qd(3) if 
9 � | q2 − 1.

4. The case of the sporadic groups

Having a look at the orders of the sporadic groups, we find only few primes to consider 
as a group having a Qd(p)-section must have a Sylow p-subgroup of order at least p3. 
The primes together with the relevant groups are the following:

• For p = 3: M12, M24, J2, J3, J4, Co1, Co2, Co3, Fi22, Fi23, Fi′24, McL, He, Ru, 
Sz, O′N , HN , Ly, Th, B, M .

• For p = 5: Co1, Co2, Co3, HS, McL, Ru, HN , Ly, Th, B, M .
• For p = 7: Fi′24, He, O′N , M .
• For p = 11: J4.
• For p = 13: M .

A non-trivial section of a simple group is a section of one of its maximal subgroups. In 
the following examination we use the results listed in the Atlas of finite simple groups, 
see [3], or [28]. Since we employ results of the Atlas, it seems to be reasonable to keep 
Atlas notation in this section.

• p = 3:
The maximal subgroups of J2 with order divisible by 27 are U3(3) and 3.A6.2. As none 
of them involves Qd(3), J2 does not either. Similarly, the only maximal subgroups 
of J3 with order divisible by 27 are (3 × A6) : 22 and 32+1+2 : 8. As none of them 
involves Qd(3), J3 is section 3-stable.
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M12 has a maximal subgroup of type 32:2S4. Note that 32 is self-centralising and 
2S4 = GL2(3) here. Hence this maximal subgroup contains a subgroup isomor-
phic to Qd(3). Therefore, the simple groups M12, M24, J4, Co1, Co3, Fi22, Fi23, 
Fi′24, Sz, HN , B, M all contain subgroups isomorphic to Qd(3) and hence they are 
non-3-stable.
McL contains a maximal subgroup of type U4(3). By Theorem 2.2, U4(3) has a 
subgroup isomorphic to Qd(3). Hence each of the groups McL, Co2 and Ly contains 
a subgroup isomorphic to Qd(3), as they are overgroups of McL. Consequently, all 
these groups are non-3-stable.
The derived subgroup of the normaliser of 3A2 in He has structure (22×32).SL2(3). 
This is a non-split extension 22.Qd(3) = 32:(22.SL2(3)). This group is a new example 
for a minimal non-3-stable group.
Ru has a maximal subgroup of type 2F 4(2)′.2. By Proposition 3.2 the Sylow 
3-subgroups of the latter are non-Abelian. Thus by Theorem 3.1 2F 4(2)′.2 and hence 
Ru contains a subgroup isomorphic to Qd(3). As a consequence, Ru is non-3-stable.
The Sylow 3-subgroups of O′N are elementary Abelian. Hence O′N has no section 
isomorphic to Qd(3) and hence it is section 3-stable.
Th has a maximal subgroup of type U3(8):6. By Proposition 3.2, the Sylow 
3-subgroups of U3(8) are non-Abelian. Thus by Theorem 3.1, U3(8) and hence Th
contains a subgroup isomorphic to Qd(3). Therefore, Th is non-3-stable.

• p = 5:
The only maximal subgroup of HS with order divisible by 125 is U3(5) : 2. By 
Theorem 2.2, this group and hence HS have no section isomorphic to Qd(5). Thus 
it is section 5-stable.
The only non-soluble maximal subgroup of McL with the required order is U3(5), 
so McL has no section isomorphic to Qd(5) whence it is section 5-stable.
The maximal subgroups of Co2 with adequate order are McL and HS : 2. Those 
for Co3 are McL.2, HS, and U3(5) : S3. Hence none of these groups has a section 
isomorphic to Qd(5), so they are all section 5-stable.
Co1 has a maximal subgroup 52:2A5 which is nothing else but Qd(5). We remark 
that Co1 has a maximal subgroup 51+2:GL2(5), which has a subgroup isomorphic to 
Q̃d(5). As a consequence, Co1 is non-5-stable.
Ru has a maximal subgroup of type 52:4S5, which contains a subgroup isomorphic 
to Qd(5) and hence Ru is non-5-stable.
Th has a maximal subgroup of type 52:GL2(5). Therefore, Th and its overgroups, B
and M have subgroups isomorphic to Qd(5). Thus they are non-5-stable.
HN has a maximal subgroup of type 52.51+2

+ : 4A5. Here, 4A5 contains SL2(5), 
which operates on 52 on the natural way. Hence HN has a subgroup isomorphic to 
Qd(5), so it is not 5-stable.
Ly has a maximal subgroup of type G2(5), which has a subgroup isomorphic to 
Qd(5) by Theorem 2.2. Therefore, Ly is non-5-stable.
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• p = 7:
He has a maximal subgroup of type 72:2.L2(7), which is isomorphic to Qd(7). Hence 
He, Fi′24 and M all have subgroups isomorphic to Qd(7) and they are not 7-stable.
The group O′N has a maximal subgroup of type L3(7):2. Hence by Lemma 1.7, it 
also has a subgroup isomorphic to Qd(7) and is therefore non-7-stable.

• p = 11:
J4 has two maximal subgroups of order divisible by 113. These are U3(11):2 and 
111+2:(5 × 2S4). None of them has a section isomorphic to Qd(11), so J4 has no one 
either. Therefore, L4 is section 7-stable.

• p = 13:
We find that the monster group M has a maximal subgroup with structure 
132:2L2(13).4, so Qd(13) is a subgroup of M and hence it is not 13-stable.

We summarise the above considerations as follows:

Theorem 4.1. Let G be a sporadic simple group. Then G is p-stable if and only if it is 
section p stable. Otherwise, either G = He, p = 3 and G contains a subgroup of type 
32:(22.SL2(3)) or G contains a subgroup isomorphic to Qd(p) and one of the following 
holds:

(i) G = M12, M24, J4, Co1, Co2, Co3, Fi22, Fi23, Fi′24, McL, Ru, Sz, HN , Ly, Th, 
B or M and p = 3;

(ii) G = Co1, Ru, HN , Ly, Th, B or M and p = 5;
(iii) G = Fi′24, He, O′N or M and p = 7;
(iv) G = M and p = 13.

5. Summary on fusion systems

In this section we recall the basic facts on fusion systems especially those we need 
later. First of all, we give the definition of a saturated fusion system following [20]. All 
fusion systems we deal with are saturated, so we shall omit the word ‘saturated’ in the 
sequel.

Let p be a prime and let P be a finite p-group. A fusion system F on P is a category 
whose objects are the subgroups of P and whose morphisms are certain injective group 
homomorphisms which will be written from the right.

The main example of a fusion system is that of a finite group G with Sylow p-subgroup 
P . If Q and R are subgroups of P such that Qg � R for some element g ∈ G (that is, 
Q is subconjugate to R), then conjugation with g gives rise to a map cg,Q,R: Q → R

defined by x �→ g−1xg for x ∈ Q. The morphisms in the fusion system FP (G) of G on P
are exactly these maps so that

HomFP (G)(Q,R) = {cg,Q,R | g ∈ G s.t. Qg � R}.
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The definition of an abstract fusion system F extracts the properties of FP (G). To 
give the exact definition, we need some more notions.

• A subgroup Q of P is called fully F-normalised if |NP (Q)| � |NP (Qϕ)| for every 
morphism ϕ ∈ F with domain Q.

• For an isomorphism ϕ: Q → R we let

Nϕ = {a ∈ NP (Q) | there is b ∈ NP (R) such that (a−1xa)ϕ = b−1(xϕ)b

for all x ∈ R}.

This means that the following diagram commutes:

Q
ϕ

R

ca,Q,Q cb,R,R

Q
ϕ R

Note that if ϕ can be extended to a subgroup H of NP (Q), then H � Nϕ.

Definition 5.1 (Fusion system). A fusion system on the p-group P is a category F with 
the subgroups of P as objects. Morphisms are injective group homomorphisms with the 
usual composition of functions such that the following hold:

(i) For all Q, R � P the set HomP (Q, R) consisting of the P -conjugations from Q into 
R is contained in HomF (Q, R).

(ii) For all morphisms ϕ ∈ HomF (Q, R), the isomorphism ϕ̄: Q → Qϕ with x �→ xϕ

(for all x ∈ Q) and ϕ̄−1: Qϕ → Q, xϕ → x are morphisms in F .
(iii) AutP (P ) is a Sylow p-subgroup of AutF (P ).
(iv) If Q is fully F-normalised, then each F-isomorphism ϕ: R → Q (where R � P ) 

extends to an F-morphism ϕ̃: Nϕ → P .

We now collect some notions concerning fusion systems that we shall use in this paper.

• A subgroup Q of P is called strongly F-closed if for all subgroups R of Q and for all 
morphisms ϕ with domain R, the image Rϕ is contained in Q.

• The normaliser of a fully F-normalised subgroup Q of P is the subsystem NF (Q)
of F defined on NP (Q) such that for R, T � NP (Q) the morphism ϕ ∈ HomF (R, T )
is in HomNF (Q)(R, T ) if ϕ extends to a morphism ϕ̃: RQ → TQ such that the 
restriction ϕ̃Q is an F-automorphism of Q.
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• Q is normal in F , denoted by Q � F , if F = NF (Q).
• If Q is normal in F , a quotient fusion system F/Q can be defined on P/Q with 

morphisms ϕ̄: T/Q → R/Q induced by morphisms ϕ: T → R.
• F is called soluble if there is a sequence

1 = Q0 < Q1 < Q2 < . . . < Qr = P

with Qi/Qi−1 � F/Qi−1 for all 1 � i � r.
• Op(F) is the largest normal subgroup of P that is normal in F .
• A subgroup Q of P is called F-centric if CP (Qϕ) is contained in Qϕ for all morphisms 

ϕ with domain Q.
• F is said to be constrained if CP (Op(F)) ⊆ Op(F).
• A model of a constrained fusion system F is a p-constrained and p′-reduced group 

L (i.e. CL(Op(L)) ⊆ Op(L) and Op′(L) = 1) with Sylow p-subgroup P such that 
F = FP (L). Note that each constrained fusion system has a model which is unique 
up to isomorphism, see [2, Proposition C].

6. Definition of p-stability for fusion systems

In this section, we define p-stable fusion systems and investigate their properties.
Observe first that the commutator of two group elements can be written in terms 

of inner automorphisms as [a, x] = a−1ax. For a general automorphism we make the 
following definition:

Definition 6.1. Let Q be a p-group and let χ be an automorphism of Q. For a ∈ Q the 
commutator of a and χ is

[a, χ] = a−1(aχ).

According to Definition 6.1 we have the following:

[a, χ, χ] = [[a, χ], χ] = (a−1(aχ))−1(a−1(aχ))χ = (a−1χ)a(a−1χ)(aχ2).

Note that this applies to inner automorphisms and we have

[a, x, x] = (a−1)xa(a−1)xax
2

for any group G with a ∈ Q � G and x ∈ NG(Q).
Now we are ready to define p-stability for fusion systems.

Definition 6.2. Let F be a fusion system on the p-group P . Then F is said to be p-stable
if for all fully F-normalised subgroups Q of P whenever χ ∈ AutF (Q) satisfies

[a, χ, χ] = (a−1χ)a(a−1χ)(aχ2) = 1

for all a ∈ Q, then χ ∈ Op(AutF (Q)).
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Next we prove that Definition 6.2 is a generalisation of the notion of p-stability of 
groups to the case of fusion systems.

Theorem 6.3. A group G is p-stable if and only if its fusion system FP (G) on a Sylow 
p-subgroup P of G is p-stable.

Proof. Let Q � P , a ∈ Q and x ∈ NG(Q). Furthermore, let χ ∈ NG(Q)/CG(Q) =
AutF (Q) be the image of x under the natural homomorphism. Then [a, χ, χ] = 1 if 
and only if [a, x, x] = 1 by the remark preceding Definition 6.2. Moreover, xCG(Q) ∈
Op(NG(Q)/CG(Q) if and only if χ ∈ Op(AutF (Q) as the elements and the sets coincide.

Note that as x ranges over the elements of NG(Q), its image χ ranges over the elements 
of AutF (Q) and vice versa. �
Proposition 6.4. Let F be a p-stable fusion system. Then all subsystems of F are p-stable.

Proof. Let G be a subsystem of F on a subgroup S of P . Let Q be a subgroup of S. 
Assume some χ ∈ AutG(Q) satisfies [a, χχ] = 1 for all a ∈ Q. As AutG(Q) � AutF (Q), 
χ ∈ Op(AutF (Q)) follows. But then

χ ∈ Op(AutF (Q)) ∩ AutG(Q) � Op(AutG(Q)).

So G is p-stable. �
We can prove a theorem for fusion systems similar to Corollary 1.11:

Theorem 6.5. Let F be a fusion system on a p-group P . Then F is p-stable if and only 
if NF (R) is p-stable for all non-cyclic fully F-normalised subgroups R of P .

Proof. One direction is clear by Proposition 6.4.
To show the converse let Q � P . Assume χ ∈ AutF (Q) satisfies [a, χ, χ] = 1 for all 

a ∈ Q. If Q is cyclic, then χ ∈ Op(AutF (Q)) automatically follows, so we may assume 
Q is non-cyclic. Let ϕ: Q → R be an F-isomorphism such that R is fully F-normalised. 
Then ϕ−1χϕ ∈ AutF (R) = AutNF (R)(R) satisfies [b, ϕ−1χϕ, ϕ−1χϕ] = 1 for all b ∈ R. 
As NF (R) is p-stable by assumption, ϕ−1χϕ is contained in Op(AutNF (R)(R)) =
Op(AutF (R)). Since AutF (Q) = ϕ AutF (R)ϕ−1, it follows that χ ∈ Op(AutF (Q)). �

As mentioned before, p-soluble groups are p-stable for p > 3. Now we examine the 
relationship between p-stability and solubility for fusion systems.

Lemma 6.6. The fusion system of Qd(p) is soluble.

Proof. The Sylow p-subgroups P of Qd(p) have structure V�C, where V is an elementary 
Abelian group of rank 2 and C is a cyclic group of order p. Now, V = Op(Qd(p)) and 
the quotient system is defined on C, a cyclic group, so the sequence
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1 = Q0 < Q1 = V < Q2 = P

proves the solubility of FP (Qd(p)). �
Proposition 6.7. There are soluble fusion systems which are non-p-stable.

Proof. The fusion system FP (Qd(p)) is soluble by Lemma 6.6 and not p-stable by The-
orem 6.3. �

A counterpart of Proposition 6.7 is the following:

Theorem 6.8. Let G be a group with Sylow p-subgroup P . If Qd(p) is not involved in G, 
then the fusion system FP (G) is soluble.

Proof. Let G be a group not involving Qd(p) and assume the theorem holds for all 
groups smaller than G. Let Q = Z(J(P )), the centre of the Thompson subgroup2 of P . 
Then the normaliser N = NG(Q) controls strong fusion by Theorem B in [10, p. 1105]. 
It follows that FP (G) = FP (N).

Therefore, Q � FP (N) = FP (G) and hence

FP (G)/Q = FP/Q(N/Q)

by Theorem 5.20 due to Stancu in [4, p. 145].
FP (G)/Q, being the fusion system of the Qd(p)-free group N/Q is soluble as |N/Q| <

|G|. Therefore, FP (G) is soluble. �
7. The maximal subgroup theorem

Our next goal is to prove a fusion theoretic version of Thompson’s maximal subgroup 
theorem, see in [12, p. 295, Theorem 8.6.3]. For this purpose, we first state and prove a 
lemma that might have its own interest.

Lemma 7.1. Let N be a subsystem of F and assume the subgroup Q of P is normal 
in N . Let R be a fully F-normalised subgroup of P that is F-isomorphic to Q. Let 
ϕ: NP (Q) → NP (R) be an F-homomorphism such that Qϕ = R. Then ϕ induces an 
injective functor

Φ: N → NF (R)

so that N can be embedded into NF(R).

2 The Thompson subgroup is the subgroup of P generated by the Abelian subgroups of P of maximal 
order.
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Proof. Note first that such a ϕ exists for all R (see e.g. [20, Lemma 2.2]). For an object 
T of N we define Φ(T ) = Tϕ. Observe that T � NP (Q) so this definition makes sense. 
Let now ψ: T → S be a morphism in N . Then Φ(ψ): Φ(T ) → Φ(S) is defined as

Φ(ψ) = ψϕ = ϕ−1
T ψϕS ,

where ϕT and ϕS denote the restrictions of ϕ to T and S, respectively.

T
ψ

S

ϕ ϕ−1
T

ϕ

Tϕ
ψϕ

Sϕ

We claim Φ(ψ) is an NF (R)-morphism. Indeed, as ψ is an N -morphism and Q �N , ψ
extends to a morphism ψ̃: TQ → SQ with Qψ̃ = Q. Now, TQ � NP (Q) and hence ψ̃ϕ

is defined. We have (TQ)ϕ = (Tϕ)R and (SQ)ϕ = (Sϕ)R. By construction ψ̃ϕ extends 
ψϕ. Moreover,

Rψϕ = Rϕ−1
Q ψϕ = Qψϕ = R,

so ψ̃ϕ extends ψϕ in the required manner. Therefore, Φ(ψ) is indeed a morphism in 
NF (R).

T
ψ

S

ϕ
ϕ−1
T

ϕ

Tϕ
ψϕ

Sϕ

TQ
ψ̃

SQ

ϕ ϕ−1
TQ

ϕ

TϕR
ψ̃ϕ

SϕR

It is straightforward that Φ preserves compositions and also that Φ is injective. �
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Theorem 7.2 (Maximal subgroup theorem). Let F be a fusion system defined on the 
p-group P . Let Q be a non-empty collection of non-trivial subgroups of P satisfying 
the following property:

If Q ∈ Q, and ϕ: Q → R is an F-homomorphism, then R ∈ Q.

Set

N = {NF (R) | 1 < R � P, R fully F-normalised and NP (R) ∈ Q}.

Assume each element of N is constrained and p-stable. Then NF(Z(J(P ))) is the unique 
maximal element of N.

Proof. We prove that each element of N is contained in M = NF (Z(J(P ))). First 
assume R � P . Then NF (R) is defined on P . As NF (R) is constrained and p-stable 
by assumption, it has a model L which is p-constrained, p′-reduced and p-stable. Then 
CL(Op(L)) ⊆ Op(L) and Theorem A of [10] applies. Therefore, Z(J(P )) is normal in L, 
whence Z(J(P )) �NF (R). So NF (R) ⊆ M.

Let now R � P and assume NF(S) ⊆ M for all fully F-normalised subgroups S of 
P satisfying NP (S) ∈ Q and |NP (S)| > |NP (R)|. Now, NF (R) is defined on NP (R)
and by the above argument Z = Z(J(NP (R))) �NF (R). Let Z∗ be a fully F-normalised 
subgroup of P that is F-isomorphic to Z. Let ϕ: NP (Z) → NP (Z∗) be an F-morphism. 
By Alperin’s fusion theorem for fusion systems (see e.g. [4, Theorem 4.51]), there is a 
sequence

NP (Z) = S0 ∼ S1 ∼ . . . ∼ St ∼ St+1 ⊆ NP (Z∗)

of subgroups of P , there are fully F-normalised (and essential) subgroups L1, . . ., Lt

of P such that Si−1, Si � Li for all 1 � i � t, there are morphisms αi ∈ AutF (Li)
with Si−1αi = Si (for all 1 � i � t) and there is a morphism σ ∈ AutF (P ) such that 
ϕ = α1α2 . . . αtσ. Now,

|NP (Li)| � |Li| � |Si| = |NP (Z)| > |NP (R)|

as Z is characteristic in NP (R) < P . Moreover, Li contains Si, a subgroup of P which 
is F-isomorphic to NP (Z). Hence Li ∈ Q. Therefore, by assumption NF(Li) ⊆ M holds 
for all relevant i. Observe that σ ∈ M is trivial. Thus

ϕ = α1 . . . αt ∈ M

also holds.
By Lemma 7.1 for each ψ ∈ NF (R) we have ψϕ ∈ NF (Z∗), because Z is normal in 

NF (R). Now, |NP (Z∗)| � |NP (Z)| > |NP (R)| and by construction NP (Z∗) ∈ Q. Hence 
ψϕ ∈ NF (Z∗) ⊆ M by assumption. Therefore,
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ψ = ϕTψ
ϕϕ−1

S ∈ M

and so NF (R) ⊆ M which proves the theorem. �
Theorem 7.2 has the following consequence:

Proposition 7.3. Let F be a fusion system and assume NF (Q) is constrained and p-stable 
for all fully F-normalised subgroups Q �= 1 of P . Then Z(J(P )) �F , so Op(F) �= 1 and 
hence F is constrained and p-stable.

Proof. Let Z = Z(J(P )). With the set Q = {1 < Q � P} the conditions of Theorem 7.2
are certainly satisfied. Hence NF (Z) is the unique maximal element of the set

N = {NF (R) | 1 < R � P, R fully F-normalised}.

We show F = NF (Z). To this end, let ϕ: T → S be a morphism in F . By Alperin’s 
fusion theorem, there are subgroups

T = T0 ∼ T1 ∼ . . . ∼ Tt ∼ Tt+1 = Tϕ � S

of P and for all i = 1, . . ., t, there are fully F-normalised essential subgroups Li � P with 
Ti−1, Ti � Li and automorphisms τi ∈ AutF (Li) with Ti−1τi = Ti and an automorphism 
σ ∈ AutF (P ) such that ϕ = τ1τ2 . . . τtσ. By assumption, for each 1 � i � t we have

τi ∈ NF (Li) ⊆ NF (Z)

as Li �= 1 is fully F-normalised. On the other hand, σ ∈ NF (Z) trivially holds. It follows 
then that ϕ ∈ NF (Z) and hence Z � F = NF (Z), whence Op(F) ⊇ Z �= 1. �

Concerning groups, we have the following corollary:

Corollary 7.4. Let G be a p-stable group with Sylow p-subgroup P . Assume all p-local 
subgroups NG(Q) of G (with Q �= 1) are p-constrained. Then the subgroup NG(Z(J(P )))
controls strong fusion in P .

Proof. Let F = FP (G). Then NF (Q) = FNP (Q)(NG(Q)) is p-stable and constrained 
for all non-trivial fully F-normalised subgroups of P . Hence Proposition 7.3 applies, so 
Op(F) � Z(J(P )) � F . As Z(J(P )) is fully F-normalised, F = NF (Z(J(P ))) is the 
fusion system of NG(Z(J(P ))), that is, NG(Z(J(P ))) controls strong fusion in P . �
Remark 7.5.

(i) The assumptions in Proposition 7.3 and Corollary 7.4 are strict in the following 
sense: The condition that the normaliser systems (or the normalisers in the group) 
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are p-stable cannot be omitted even if it is assumed that the normalisers are soluble 
(instead of being constrained). Let namely G = L3(3), P a Sylow 3-subgroup of G. 
Then G is a minimal simple group so that the local subgroups of G are soluble and 
hence so are the normaliser systems in FP (G). However, the fusion system FP (G)
has no non-trivial normal subgroups it follows from Theorem 1.2 in [7, p. 455].

(ii) If G is p-soluble (for p > 3), then Theorem C in [10, p. 1105] asserts that 
NG(Z(J(P ))) controls strong fusion in P . It follows from the results of Sec-
tions 2-3 that the fusion system of a finite simple group G is soluble if and only 
if Z(J(P )) �FP (G), that is, if and only if NG(Z(J(P ))) controls strong fusion in P . 
The same is not true in general: the fusion system of G = Qd(p) is soluble. A Sy-
low p-subgroup P of G satisfies J(P ) = P , so Z(J(P )) = Z(P ) has order p. With 
the notation of Example 1.6, NG(Z(J(P ))) = V , the elementary Abelian normal 
subgroup of G of order p2. As such, V does not control strong fusion in P .

8. On Qd(p)-free fusion systems

For groups, there is a strong connection between p-stability and not involving Qd(p). 
A corresponding notion for fusion systems is defined in [20, Definition 1.1].

Let Q be a fully F-normalised F-centric subgroup of P . We examine the normaliser 
N = NF (Q) of Q in F . We claim N is constrained. Indeed, Q � Op(N ), so

Op(N ) � Q � CP (Q) � CP (Op(N ))

as Q is F-centric. Therefore, N has a model.

Definition 8.1. Let F be a fusion system on the p-group P . F is called Qd(p)-free if 
Qd(p) is not involved in the models of NF (Q), where Q runs over the set of F-centric 
fully F-normalised subgroups of P .

We shall also call a group Qd(p)-free if it does not involve Qd(p).

Remark 8.2. Though it is not stated explicitly there, it follows from [20] that a Qd(p)-free 
fusion system F is soluble. Indeed, Theorem B asserts that Z(J(P )) is normal in F . Now, 
by Proposition 6.4, F/Z(J(P )) is also Qd(p)-free. Since Z(J(P )) is non-trivial, the claim 
follows by induction.

As the next example shows, a soluble fusion system need not be Qd(p)-free.

Example 8.3. The fusion system of Qd(p) is not Qd(p)-free: the subgroup V (as in Exam-
ple 1.6) is certainly fully F-normalised and F-centric, its normaliser is the whole fusion 
system. The model of the fusion system is the group Qd(p) itself, being p-constrained 
and p′-reduced.

Being soluble, a Qd(p)-free fusion system F is constrained and hence it has a model. 
By definition, a model of F = NF (Op(F)) is Qd(p)-free. Not only is a model of F



290 L. Héthelyi et al. / Journal of Algebra 492 (2017) 253–297
Qd(p)-free, but also every group G such that F = FP (G) is Qd(p)-free, as the next 
result shows.

Theorem 8.4. Let G be a group, P a Sylow p-subgroup of G and F = FP (G) the fusion 
system of G on P . Then F is Qd(p)-free if and only if G does not involve Qd(p).

In order to prove this theorem, we need some preparation.

Definition 8.5. A p-subgroup Q of G is called p-centric if every p-element centralising Q
is contained in Q.

Note that Q is p-centric if and only if CP (Q) � Q for all Sylow p-subgroups P of 
G containing Q. In this case, Z(Q) is a Sylow p-subgroup of CG(Q) and by Burnside’s 
normal p-complement theorem it follows that CG(Q) = Z(Q) ×Op′(CG(Q)).

Lemma 8.6. Let G be a group with Sylow p-subgroup P and let F = FP (G) be its fusion 
system on P . Let furthermore Q be a fully normalised subgroup of P . Then Q is F-centric 
if and only if it is p-centric.

Proof. Q is F-centric if and only if CP (Qt) ⊆ Qt holds whenever Qt � P . This means 
that Q ⊇ CP∗(Q) for all Sylow p-subgroups P ∗ of G containing Q. This is equivalent to 
saying that Q is p-centric. �
Lemma 8.7. Let G be a group, P a Sylow p-subgroup of G. Then

FP (G) = FP (G/Op′(G)).

Here, we identify Op′(G)P/Op′(G) with P .

Proof. Denote images in Ḡ = G/Op′(G) by bar. The assignment cg,Q,R �→ cḡ,Q̄,R̄ defines 
a map FP (G) → FP̄ (Ḡ). We have to show it is a bijection.

We first prove it is surjective. Let Q̄, R̄ � P̄ and ḡ ∈ Ḡ such that Q̄ḡ � R̄. Then 
conjugation by g maps Q into ROp′(G) and hence Qgt � R for some t ∈ Op′(G). 
Therefore, the image of cgt,Q,R is cḡ,Q̄,R̄ and surjectivity is proved.

To prove injectivity, assume cḡ,Q̄,R̄ = ch̄,S̄,T̄ . Then, first of all, Q = S and R = T as P
maps isomorphically to P̄ . By the same reason, the operation of g and h coincides on Q. 
Thus cg,Q,R = ch,S,T and injectivity is proven. �
Proposition 8.8. Let F = FP (G). Furthermore, let Q be a fully F-normalised and 
F-centric subgroup of P . Then the model of NF(Q) is isomorphic to NG(Q)/Op′(NG(Q)).

Proof. We prove that the group L = NG(Q)/Op′(NG(Q)) satisfies the three condi-
tions on a model. First of all, a Sylow p-subgroup of NG(Q) is NP (Q) as Q is fully 
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F-normalised. The fusion system of NG(Q) on NP (Q) is NF (Q) by Theorem 4.27 in [4, 
p. 108]. Now, the fusion system of NG(Q) is the same as that of L by Lemma 8.7.

Obviously, L is p′-reduced by construction.
It only remained to show that L is p-constrained, that is,

CL(Op(L)) � Op(L).

Denote the image of Q in L by Q̄. Then Q̄ � Op(L) as Q is normal in NG(Q), so 
CL(Op(L)) � CL(Q̄).

Assume cOp′(NG(Q)) is contained in CL(Q̄) for some c ∈ NG(Q). Then [c, x] ∈
Op′(NG(Q)) for all x ∈ Q. But [c, x] = x−cx ∈ Q, so it must be equal to 1 and hence 
c centralises Q. Now, CNG(Q)(Q) = CG(Q) = Op′(CG(Q)) × Z(Q) as Q is p-centric by 
Lemma 8.6. As Op′(CG(Q)) � Op′(NG(Q)), we have CL(Q̄) = Z(Q̄) and hence

CL(Op(L)) � CL(Q̄) � Q̄ � Op(L),

whence the claim follows. �
Lemma 8.9. Let G be a group. G involves Qd(p) if and only if NG(Q) also does for an 
appropriate non-cyclic p-subgroup Q of G.

Proof. Assume G involves Qd(p), so there are K � H � G such that H/K = V � S ∼=
Qd(p). Here, V is an elementary Abelian group of order p2 and S ∼= SL2(p). Let Ṽ be 
a Sylow p-subgroup of the preimage of V under the natural homomorphism H → H/K. 
Then KṼ � H is the preimage of V and hence H = KṼ NH(Ṽ ) = KNH(Ṽ ) by Frattini 
argument. Now,

Qd(p) ∼= H/K = KNH(Ṽ )/K ∼= NH(Ṽ )/NH(Ṽ ) ∩K

by the second isomorphism theorem. Therefore, NH(Ṽ ) and so NG(Ṽ ) involves Qd(p). 
Finally, Ṽ is non-cyclic as it has a non-cyclic homomorphic image V .

The other implication is clear. �
Lemma 8.10. Let Q be a p-subgroup and P a Sylow p-subgroup of G containing a Sylow 
p-subgroup of NG(Q). Then any p-subgroup of G that contains QCP (Q) is p-centric.

Proof. By construction, CP (Q) is a Sylow p-subgroup of CG(Q). Let c ∈ CG(QCP (Q))
be a p-element. Then c centralises Q and CP (Q), so 〈c〉CP (Q) is a p-group centralising 
Q. Hence c ∈ CP (Q) � QCP (Q) by the maximality of CP (Q). �
Proposition 8.11. Let G be a group that involves Qd(p). Then NG(Q) involves Qd(p) for 
a p-centric subgroup Q of G.
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Proof. Let K �H � G such that H/K = V �S ∼= Qd(p). By the proof of Lemma 8.9 we 
may assume H � NG(Ṽ ) for a p-subgroup Ṽ of G and W = K ∩ Ṽ is a normal subgroup 
of H.

As S ∼= SL2(p), S = 〈x, a〉 for some x, a ∈ S such that xp = a4 = 1 and [V, x, x] = 1. 
Let moreover x̃ and ã be preimages of x and a under the natural homomorphism H →
H/K, respectively.

Let Q be a Sylow p-subgroup of Ṽ CG(Ṽ /W ). Then Q is p-centric by Lemma 8.10. 
Let H1 = HCG(Ṽ /W ) and K1 = KCG(Ṽ /W ) = CG(Ṽ /W ). The latter equality holds 
because [K, Ṽ ] ⊆ K∩ Ṽ = W . Observe that H1 is a subgroup of G because H normalises 
both Ṽ and W . Note that V can be identified with Ṽ /W and we do identify them.

Now, K1 = Ṽ K1 �H1 and Q is a Sylow p-subgroup of K1. Hence by Frattini argument 
we have

H1 = NH1(Q) ·K1.

Then x̃ = nx · kx and ã = na · ka for appropriate elements nx, na ∈ NH1(Q) and kx, 
ka ∈ K1.

Consider the factor group N̄ = NH1(Q)/W . By construction, V = Ṽ /W � N̄ . Let 
x̄ and ā be the images under the natural homomorphism NH1(Q) → N̄ , of nx and na, 
respectively. Then the operations of x and x̄ on V coincide, just as those of a and ā, 
because K1 centralises V .

Therefore, [V, ̄x, ̄x] = 1, where x̄ ∈ NN̄ (V ) = N̄ . The image of 〈x̄, ̄a〉 in N̄/CN̄ (V ) is 
isomorphic to SL2(p) and hence

x̄ /∈ Op(N̄/CN̄ (V )).

This means that N̄ is not p-stable, so it involves Qd(p) by Glauberman’s Theorem 1.13. 
It follows that NH1(Q) and hence NG(Q) involve Qd(p). �

Now we are ready to prove the theorem.

Proof of Theorem 8.4. Assume G involves Qd(p). Then Qd(p) is involved in NG(Q) for 
some p-centric subgroup Q of P by Proposition 8.11. Observe that some conjugate of 
Q is fully F-normalised and also F-centric (the latter by Lemma 8.6). Since Qd(p) has 
no normal p′-subgroups, it is also involved in NG(Q)/Op′(NG(Q)). As this group is the 
model of NF (Q) by Lemma 8.8, F is not Qd(P )-free.

For the converse, assume F is not Qd(p)-free. Then Qd(p) is involved in
NG(Q)/Op′(NG(Q)) for some F-centric subgroup Q of p by definition. Therefore, Qd(p)
is also involved in G. �

The following corollary is a slight refinement of Glauberman’s Theorem 1.13:
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Corollary 8.12. The following are equivalent:

• All sections of G are p-stable.
• NG(Q) does not involve Qd(p) for any p-centric p-subgroup Q of G.

9. Section p-stability in fusion systems

We have seen in the case of groups that p-stability in itself is not enough: one needs 
the notion of section p-stability. Two possible definitions seem to be natural:

Definition 9.1. Let F be a fusion system on the p-group P . F is called section p-stable
if NF (R)/R is p-stable for all fully F-normalised subgroups R of P .

Definition 9.2. Let F be a fusion system on the p-group P . F is called section p-stable if 
the model of NF (R) is section p-stable for all F-centric and fully F-normalised subgroups 
R of P .

Clearly, Definition 9.2 is equivalent to Definition 8.1 of a Qd(p)-free fusion system.
We show that Definitions 9.1 and 9.2 are equivalent.

Theorem 9.3. A fusion system F is section p-stable according to Definition 9.1 if and 
only if it is section p-stable according to Definition 9.2.

Proof. Assume F is section p-stable according to Definition 9.1. Let R be an F-centric 
and fully F-normalised subgroup of P . Let L be the model of NF (R) with Sylow 
p-subgroup S = NP (R). We have to show that NL(Q)/Q is p-stable for all subgroups 
of S. We can assume Q is fully NF (R)-normalised. Then a Sylow p-subgroup of NL(Q)
is NS(Q) and the corresponding fusion system is

FNS(Q)(NL(Q)) = NNF (R)(Q).

Let N = NNF (R)(Q). By Theorem 5.20 in [4, p. 145], we have

FNS(Q)/Q
(
NL(Q)/Q

)
= N/Q

follows. In view of Theorem 6.3 we have to show that N/Q is p-stable.
Let Q1 be a fully F-normalised member of the F-isomorphism class of Q. Then there 

is an F-morphism ϕ: NP (Q) → NP (Q1) extending an isomorphism Q → Q1 (see e.g.
Lemma 2.2 in [20]). Then by Lemma 7.1, ϕ induces an injective functor

Φ : N → NF (Q1)

and hence N can be identified with a subsystem of NF (Q1).
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We now claim that Φ induces an injective functor

Φ : N/Q → NF (Q1)/Q1.

Indeed, for all objects T � Q of N we have Φ(T ) = Tϕ ⊇ Qϕ = Q1, so we may define 
Φ(T/Q) = Tϕ/Q1. Let ψ: T → S be a morphism in N which induces the morphism ψ̄: 
T/Q → S/Q of N/Q. Then ψϕ induces a morphism ψϕ in NF (Q1)/Q1. What we have 
to show is the following: ψ̄1 = ψ̄2 if and only if ψϕ

1 = ψϕ
2 . In other words, tψ1Q = tψ2Q

for all t ∈ T if and only if (tϕ)ψϕ
1 Q1 = (tϕ)ψϕ

2 Q1 for all t ∈ T . But this is clear by the 
definition of ψϕ

1 and ψϕ
2 .

Identified with a subsystem of the p-stable fusion system NF (Q1)/Q1, the system 
NNF (R)(Q)/Q is p-stable. Hence F is section p-stable according to Definition 9.2.

Assume now that F is section p-stable according to Definition 9.2. Then F is 
Qd(p)-free and hence constrained by Remark 6.8. Its model G is Qd(p)-free, therefore 
section p-stable by Theorem 8.4. Now, NF (Q)/Q is the fusion system of NG(Q)/Q for 
all fully F-normalised subgroups Q of P . As NG(Q)/Q is p-stable, so is NF (Q)/Q. �
Proposition 9.4. The fusion system F is section p-stable if and only if for all subsystems 
G of F and all subgroups Q of P such that Q � G the quotient system G/Q is p-stable.

Proof. If all subquotients are p-stable, then so are the fusion systems NF(R)/R for all 
fully F-normalised subgroups R of P . Hence we only have to prove the other implication.

Let F be section p-stable and let G be an arbitrary subsystem of F with Q � G. Let 
Q1 be a fully F-normalised subgroup of P that is F-isomorphic to Q. By the same line 
of arguments as in Theorem 9.3, G/Q is isomorphic to a subsystem of NF(Q1)/Q1 and, 
as such, it is p-stable. �
10. On fusion systems on extraspecial p-groups of order p3 and exponent p

Let E be an extraspecial group of order p3 and exponent p. All fusion systems over E
were classified by A. Ruiz and A. Viruel in [25]. A complete description of these fusion 
systems can be found in [4, pp. 218–226], which we shall follow here.

We examine the following questions: Which of these fusion systems are p-stable? 
Which of these fusion systems are section p-stable (equivalently, Qd(p)-free)? Which of 
these fusion systems are soluble?

These might be crucial in the study of p-stability since E is the Sylow p-subgroup of 
Qd(p).

By Alperin’s fusion theorem, a fusion system is completely determined by the groups 
AutF (E) and AutF (R), where R ranges over the set of essential subgroups of E. Our 
first observation is that essential subgroups of E in our case are precisely the radical 
subgroups and they are elementary Abelian of order p2. By this, F is p-stable if and 
only if SL2(p) is not contained in AutF (R) for any radical subgroup R of p. Having 
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a look at the tables describing the fusion systems on E (see Tables 9.1 and 9.2 in [4, 
pp. 321, 323]), we obtain the result:

Proposition 10.1. Let E be an extraspecial group of order p3 and exponent p. Then all 
fusion systems defined on E are non-p-stable except for the fusion system of G = E�H

(p � | |H|), which is section p-stable.

Concerning solubility, we can establish that F is soluble if and only if E has a non-
trivial strongly closed Abelian subgroup. By Proposition 4.61 in [4, p. 129] applied to 
this case, Q is normal in F if and only if it is contained in every radical subgroup of E.

Therefore, if E has at least two radical subgroups, then the only possibility for an 
F-normal subgroup is Z(E). However, SL2(p) is contained in AutF (R) for all fusion 
systems with at least two radical subgroups. Hence Z(E) is not fixed under the action 
of AutF (R), so (Z(E)) � F in this case.

If E has exactly one radical subgroup R, then certainly R �F , so F is soluble in this 
case. Since the group E �H with p � | |H| is p-soluble (in which case there are no radical 
subgroups), its fusion system is trivially soluble.

Summarising this, we obtain:

Proposition 10.2. Let E be an extraspecial group of order p3 and exponent p and let F be 
a fusion system on E. Then F is soluble if and only if E has at most one radical subgroup, 
that is, if F is the fusion system G ∼= E�H with p � | |H| or G ∼= R� (SL2(p) �Cr) with 
r|p − 1.

11. Concluding remarks and questions

In Sections 2 to 4 we have shown that a finite simple group is p-stable if and only if it 
is section p-stable. Moreover, we have proved that a non-p-stable simple group contains 
a subgroup isomorphic to either Qd(p) or Q̃d(p), or, if p = 3, Q̃d

−
(3) or 32:(22.SL2(3)). 

Also, we have determined the complete list of finite simple groups with this property by 
showing that one of the above groups is contained in them. We emphasise, however, that 
we did not try to decide when a simple group contains only one of the above groups. Also, 
it may contain a minimal non-p-stable group not listed here. By all these, the question 
naturally arises:

Question 1 Which groups are minimal non-p-stable?

By the results presented here, these groups have a factor group isomorphic to Qd(p), 
but this is not a sufficient condition: Example 1.12 provides a p-stable group with Qd(p)
as a factor group. It might be a reachable project to determine all minimal non-p-stable 
groups that occur as subgroups of finite simple groups.

By an old result, if a group is soluble, then it is section p-stable, but section p-stability 
does not imply solubility. For fusion systems, the converse is true: if a fusion system is 
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section p-stable, then it is soluble, but a soluble fusion system need not be section p-stable 
(as for the fusion system of Qd(p) itself).

Also, for fusion systems of finite simple groups we have seen that p-stability and 
section p-stability are equivalent notions. However, this is not a general phenomenon 
as the fusion system of the group in Example 1.12 is p-stable but not section p-stable. 
Nevertheless, all of our examples of p-stable fusion systems are soluble as well. So the 
question arises:

Question 2 Are there p-stable fusion systems that are not soluble?

As soluble fusion systems have models, we can also ask:

Question 3 Are there exotic p-stable fusion systems?

Recall that in Section 10, the exotic ones were all non-p-stable, so we do not have any 
examples for that at the moment.
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