On special Rees matrix rings related to the right annihilator of rings

Attila Nagy ${ }^{1}$
Department of Algebra
Budapest University of Technology and Economics
Egry József utca 1, 1111 Budapest, Hungary

Abstract

In this paper we focuse on Rees matrix rings $\mathcal{M}(R ; I, \Lambda ; P)$ in which the set I has exactly one element. For a ring R, let $A n n_{r}(R)$ and $\left(A n n_{r}(R):_{r} R\right)$ denote the right annihilator of R and the right colon ideal of $A n n_{r}(R)$, respectively. The main result of our paper is that, for every choice function P defined on the collection of all cosets of $A n n_{r}(R)$, the factor ring of the Rees matrix ring $\mathcal{M}\left(R ; I, R / A n n_{r}(R) ; P\right)$ modulo its right annihilator is isomorphic to the Rees matrix ring $\mathcal{M}\left(R /\left(A n n_{r}(R):_{r} R\right) ; I, R / A n n_{r}(R) ; P^{\prime}\right)$, in which P^{\prime} is defined by $P^{\prime}: a+A n n_{r}(R) \mapsto a+\left(\operatorname{Ann}_{r}(R):_{r} R\right) ; a \in R$.

Key words: Rings; Rees matrix rings; right annihilator of rings; right colon ideals of rings.

2010 Mathematics Subject Classification: 16S50.

1 Introduction

Let R be a ring, I and Λ be nonempty sets, P be a $\Lambda \times I$ matrix over R. Denote by $\mathcal{M}(R ; I, \Lambda ; P)$ the set of all $I \times \Lambda$-matrices over R having a finite number of nonzero entries endowed with the usual addition of matrices and with a multiplication \circ defined by $A \circ B=A P B$, where the multiplication on the right-hand side is the usual multiplication of matrices. $\mathcal{M}(R ; I, \Lambda ; P)$ is a ring, which is called the Rees matrix ring over R with sandwich matrix P (see [5] (for arbitrary R), or [1] (for R with unit element)). In this paper we only deal with Rees matrix rings $\mathcal{M}(R ; I, \Lambda ; P)$ in which I contains exactly

[^0]one element. These Rees matrix rings will be denoted by $\mathcal{M}(R ; \Lambda ; P)$. In this case the elements of $\mathcal{M}(R ; \Lambda ; P)$ are $1 \times \Lambda$-matrices, and the sandwich matrix P is a $\Lambda \times 1$-matrix. The sandwich matrix P and all of the elements A of $\mathcal{M}(R ; \Lambda ; P)$ can be considered as mappings of Λ into R. The entries of $A \in \mathcal{M}(R ; \Lambda ; P)$ and the entries of P will be denoted by $A(\lambda)$ and $P(\lambda)$, respectively $(\lambda \in \Lambda)$. Thus, for arbitrary $A, B \in \mathcal{M}(R ; \Lambda ; P)$,
$$
(A \circ B)(\lambda)=\left(\sum_{j \in \Lambda} A(j) P(j)\right) B(\lambda) .
$$

Let J be an ideal of a ring R. By the right colon ideal of J we mean the ideal

$$
\left(J:_{r} R\right)=\{r \in R \mid R r \subseteq J\}
$$

of R (see, for example, [4] or [6]). The ideal

$$
A n n_{r}(R)=\{a \in R \mid R a=\{0\}\}
$$

of a ring R is called the right annihilator of R.
The cosets $a+A n n_{r}(R)$ and $a+\left(A n n_{r}(R):_{r} R\right)(a \in R)$ will be denoted by $[a]_{A n n_{r}(R)}$ and $\left.[a]_{\left(\operatorname{Ann}_{r}(R): r\right.} R\right)$, respectively. The factor rings of R by $A n n_{r}(R)$ will be denoted by $R / A n n_{r}$. It is easy to see that, for every ideal J of a ring R,

$$
\begin{equation*}
(R / J) / A n n_{r} \cong R /\left(J:_{r} R\right) . \tag{1}
\end{equation*}
$$

If J is an ideal of a ring R, then a mapping $P: R / J \rightarrow R$ will said to be a choice function indicated by J if $P(r+J) \in r+J$ for every coset $r+J$ of J.

Let R be a ring, $P: R / A n n_{r} \rightarrow R$ be an arbitrary choice function indicated by $A n n_{r}(R)$ and $P^{\prime}: R / A n n_{r} \rightarrow R /\left(A n n_{r}(R):_{r} R\right)$ be a mapping defined by

$$
P^{\prime}:[a]_{A_{n n_{r}(R)}} \mapsto[a]_{\left.\left(\operatorname{Ann}_{r}(R)\right)_{r} R\right)} ; a \in R .
$$

We can construct the following Rees matrix rings over the factor ring $R / A n n_{r}$:

$$
\mathcal{M}=\mathcal{M}\left(R ; R / A n n_{r} ; P\right), \quad \mathcal{M}^{\prime}=\mathcal{M}\left(R /\left(A n n_{r}(R):_{r} R\right) ; R / A n n_{r} ; P^{\prime}\right)
$$

Conider the following diagram:

In Section 2, we show that diagram (2) can be supplemented by a surjective homomorphism Φ

such that the kernel of Φ is the right annihilator of \mathcal{M}, and so

$$
\mathcal{M} / A n n_{r} \cong \mathcal{M}^{\prime}
$$

In Section 3, we define a property (\star) of sequences of rings. Applying the result of Section 2, we show that, for an arbitrary ring R and an arbitrary ideal J of R, the sequence

$$
\left.R /\left(J:_{r}^{(0)} R\right)\right), R /\left(J:_{r}^{(1)} R\right), \ldots, R /\left(J:_{r}^{(n)} R\right), \ldots
$$

of factor rings has the property (\star), in which sequence $\left(J:_{r}^{(0)} R\right)=J$ and $\left(J:_{r}^{(n)} R\right)=\left(\left(J:_{r}^{(n-1)} R\right):_{r} R\right)$ for every positive integer n.

For notations and notions not defined in this paper, we refer to [2] and [3].

2 On the Rees matrix rings \mathcal{M} and \mathcal{M}^{\prime}

Theorem 2.1 Let R be a ring and P be an arbitrary choice function indicated by $\mathrm{Ann}_{r}(R)$. Then

$$
\mathcal{M}\left(R ; R / A n n_{r} ; P\right) / A n n_{r} \cong \mathcal{M}\left(R /\left(A n n_{r}(R):_{r} R\right) ; R / A n n_{r} ; P^{\prime}\right),
$$

where P^{\prime} is the mapping of $R / A n n_{r}$ into $R /\left(\operatorname{Ann}_{r}(R):_{r} R\right)$ such that

$$
P^{\prime}:[a]_{A n n_{r}(R)} \mapsto[a]_{\left(A n n_{r}(R): r R\right)}
$$

for every $a \in R$.

Proof. Let $R / A n n_{r}$ denoted by Λ. Let

$$
\Phi: \mathcal{M}(R ; \Lambda ; P) \rightarrow \mathcal{M}\left(R /\left(A n n_{r}(R):_{r} R\right) ; \Lambda ; P^{\prime}\right)
$$

be the following mapping. For arbitrary $A \in \mathcal{M}(R ; \Lambda ; P)$, let $\Phi(A)$ be the element of $\mathcal{M}\left(R /\left(A n n_{r}(R):_{r} R\right) ; \Lambda ; P^{\prime}\right)$ such that, for every $\lambda \in \Lambda$,

$$
(\Phi(A))(\lambda)=[A(\lambda)]_{\left(A n n_{r}(R): r R\right)} .
$$

It is clear that Φ is surjective.
We show that Φ is a homomorphism. Let A and B be arbitrary elements of $\mathcal{M}(R ; \Lambda ; P)$. Then, for every $\lambda \in \Lambda$,

$$
(A+B)(\lambda)=A(\lambda)+B(\lambda)
$$

and

$$
(\Phi(A)+\Phi(B))(\lambda)=(\Phi(A))(\lambda)+(\Phi(B))(\lambda) .
$$

Thus, for every $\lambda \in \Lambda$,

$$
\begin{gathered}
(\Phi(A+B))(\lambda)=[A(\lambda)+B(\lambda)]_{\left(A n n_{r}(R): r R\right)}= \\
=[A(\lambda)]_{\left(A_{A_{r}(R): r} R\right)}+[B(\lambda)]_{\left.\left(A_{n n}(R)\right)_{r} R\right)}=(\Phi(A))(\lambda)+(\Phi(B))(\lambda)= \\
=(\Phi(A)+\Phi(B))(\lambda) .
\end{gathered}
$$

Thus

$$
\Phi(A+B)=\Phi(A)+\Phi(B) .
$$

For every $\lambda \in \Lambda$,

$$
(A \circ B)(\lambda)=\left(\sum_{j \in \Lambda} A(j) P(j)\right) B(\lambda)
$$

and so

$$
\begin{align*}
& (\Phi(A \circ B))(\lambda)=\left[\left(\sum_{j \in \Lambda} A(j) P(j)\right) B(\lambda)\right]_{\left(A n n_{r}(R): r R\right)}= \\
= & \left(\sum_{j \in \Lambda}[A(j)]_{\left(A n n_{r}(R): r R\right)}[P(j)]_{\left(A n n_{r}(R): r r\right)}\right)[B(\lambda)]_{\left(A n n_{r}(R): r R\right)} . \tag{3}
\end{align*}
$$

If $j=[a]_{A n n_{r}(R)}$, then $[a]_{A_{n n_{r}(R)}}=[P(j)]_{A_{n n_{r}(R)}}$, because P is a choice function indicated by $A n n_{r}(R)$ and so $P(j) \in[a]_{A n n_{r}(R)}$. Thus

$$
P^{\prime}(j)=P^{\prime}\left([a]_{A_{n n_{r}(R)}}\right)=P^{\prime}\left([P(j)]_{A n n_{r}(R)}\right)=[P(j)]_{\left(A_{n n_{r}(R): r} R\right)}
$$

and so (3) equals

$$
\left.\left(\sum_{j \in \Lambda}[A(j)]_{\left(A n n_{r}(R): r\right.} R\right) P^{\prime}(j)\right)[B(\lambda)]_{\left(A n n_{r}(R): r R\right)}=(\Phi(A) \circ \Phi(B))(\lambda) .
$$

Hence

$$
\Phi(A \circ B)=\Phi(A) \circ \Phi(B) .
$$

Consequently Φ is a homomorphism.
We show that the kernel of Φ is the right annihilator of $\mathcal{M}(R ; \Lambda ; P)$. Let $A \in \mathcal{M}(R ; \Lambda ; P)$ be an arbitrary element. $A \in k e r_{\Phi}$ if and only if

$$
\Phi(A)=0 \quad \text { in } \quad \mathcal{M}\left(R /\left(A n n_{r}(R):_{r} R\right) ; \Lambda ; P^{\prime}\right)
$$

if and only if

$$
\left.(\forall \lambda \in \Lambda)[A(\lambda)]_{\left(\operatorname{Ann}_{r}(R): r\right.} R\right)=0 \quad \text { in } \quad R,
$$

that is,

$$
\begin{equation*}
(\forall x, y \in R, \lambda \in \Lambda) \quad x y A(\lambda)=0 \tag{4}
\end{equation*}
$$

We show that condition (4) is equivalent to the condition that A is in the right annihilator of $\mathcal{M}(R ; \Lambda ; P)$. Assume (4). Then, for every $C \in \mathcal{M}(R ; \Lambda ; P)$, we have

$$
(C \circ A)(\lambda)=\left(\sum_{j \in \Lambda} C(j) P(j)\right) A(\lambda)=\sum_{j \in \Lambda} C(j) P(j) A(\lambda)=0
$$

and so A is in the right annihilator of $\mathcal{M}(R ; \Lambda ; P)$.
Conversely, assume that A is in the right annihilator of $\mathcal{M}(R ; \Lambda ; P)$. Let $r \in R$ and $j \in \Lambda$ be arbitrary elements. Let $C_{j, r}$ be the $1 \times \Lambda$ matrix over R, in which $C_{j, r}(j)=r$ and the other entries are the zero of R. Then, for every $\lambda \in \Lambda$,

$$
0=\left(C_{j, r} \circ A\right)(\lambda)=r P(j) A(\lambda) .
$$

Thus

$$
\begin{equation*}
(\forall r \in R)(\forall j, \lambda \in \Lambda) r P(j) A(\lambda)=0 \tag{5}
\end{equation*}
$$

Let $a_{1}, a_{2} \in R$ be arbitrary elements. Then there are $j_{1}, j_{2} \in \Lambda$ such that

$$
a_{1} \equiv P\left(j_{1}\right) \bmod A n n_{r}(R), \quad a_{2} \equiv P\left(j_{2}\right) \bmod \operatorname{Ann}_{r}(R),
$$

and so

$$
a_{1}=P\left(j_{1}\right)+\xi_{1} \quad \text { and } \quad a_{2}=P\left(j_{2}\right)+\xi_{2}
$$

for some elements $\xi_{1}, \xi_{2} \in A n n_{r}(R)$. Applying (5) and the fact that $\xi_{1}, \xi_{2} \in$ $A n n_{r}(R)$, we have

$$
a_{1} a_{2} A(\lambda)=P\left(j_{1}\right) P\left(j_{2}\right) A(\lambda)+P\left(j_{1}\right) \xi_{2} A(\lambda)+\xi_{1} P\left(j_{2}\right) A(\lambda)+\xi_{1} \xi_{2} A(\lambda)=0
$$

and so

$$
A(\lambda) \in\left(A n n_{r}(R):_{r} R\right) .
$$

Hence $\Phi(A)=0$ in $\mathcal{M}\left(R /\left(A n n_{r}(R):_{r} R\right) ; R / A n n_{r} ; P^{\prime}\right)$ and so $A \in k e r_{\Phi}$. Consequently $\operatorname{ker}_{\Phi}$ is the right annihilator of $\mathcal{M}\left(R ; R / A n n_{r} ; P\right)$. By the homomorphism theorem,

$$
\mathcal{M}\left(R ; R / A n n_{r} ; P\right) / A n n_{r} \cong \mathcal{M}\left(R /\left(A n n_{r}(R):_{r} R\right) ; R / A n n_{r} ; P^{\prime}\right)
$$

3 Sequences of rings with a special property

Definition 3.1 We shall say that a sequence

$$
R_{0}, R_{1}, \ldots, R_{n}, \ldots
$$

of rings $R_{i}(i=0,1,2, \ldots)$ has the property (\star) if, for every positive integer n, there are mappings

$$
P_{n, n-1}: R_{n} \mapsto R_{n-1} \quad \text { and } \quad R_{n, n+1}: R_{n} \mapsto R_{n+1}
$$

such that

$$
\mathcal{M}\left(R_{n-1} ; R_{n} ; P_{n, n-1}\right) / A n n_{r} \cong \mathcal{M}\left(R_{n+1} ; R_{n} ; R_{n, n+1}\right)
$$

In the next theorem, we shall use the following notations. For an ideal J of a ring R, let

$$
\left(J:_{r}^{(0)} R\right)=J,
$$

and let

$$
\left(J:_{r}^{(n)} R\right)=\left(\left(J:_{r}^{(n-1)} R\right):_{r} R\right)
$$

for arbitrary positive integer n.
Theorem 3.1 For an arbitrary ring R and an arbitrary ideal J of R, the sequence

$$
\left.R /\left(J:_{r}^{(0)} R\right)\right), R /\left(J:_{r}^{(1)} R\right), \ldots, R /\left(J:_{r}^{(n)} R\right), \ldots
$$

of factor rings has the property (\star).
Proof. Let n be a positive integer, and let

$$
T_{n-1}=R /\left(J:_{r}^{(n-1)} R\right) .
$$

Using (1), we have

$$
\begin{aligned}
T_{n} & =R /\left(J:_{r}^{(n)} R\right) \cong R /\left(\left(J:_{r}^{(n-1)} R\right):_{r} R\right) \cong \\
& \cong\left(R /\left(J:_{r}^{(n-1)} R\right)\right) / A n n_{r} \cong T_{n-1} / A n n_{r}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{n+1}= & R /\left(J:_{r}^{(n+1)} R\right) \cong R /\left(\left(J:_{r}^{(n)} R\right):_{r} R\right) \cong\left(R /\left(J:_{r}^{(n)} R\right)\right) / A n n_{r} \cong \\
& \cong\left(T_{n-1} / A n n_{r}\right) / A n n_{r} \cong T_{n-1} /\left(A n n_{r}\left(T_{n-1}\right):_{r} T_{n-1}\right) .
\end{aligned}
$$

Consider the diagram (2) in that case when $R=T_{n-1}$:

$$
\begin{array}{cccc}
\substack{T_{n-1} \\
\Downarrow \\
\mathcal{M}=\mathcal{M}\left(T_{n-1} ; T_{n} ; P\right)} & \stackrel{P}{\longleftarrow} T_{n-1} / A n n_{r} \xrightarrow{P^{\prime}} & T_{n-1} /\left(A n n_{r}\left(T_{n-1}\right):_{r} T_{n-1}\right) \\
\Downarrow \\
& \mathcal{M}^{\prime}=\mathcal{M}\left(T_{n+1} ; T_{n} ; P^{\prime}\right)
\end{array}
$$

in which P is a choice function indicated by $A n n_{r}\left(T_{n-1}\right)$ and P^{\prime} is defined by

$$
P^{\prime}:[a]_{A n n_{r}\left(T_{n-1}\right)} \mapsto[a]_{\left(A n n_{r}\left(T_{n-1}\right): r T_{n-1}\right)} ; a \in T_{n-1} .
$$

By Theorem 2.1,

$$
\mathcal{M}\left(T_{n-1} ; T_{n} ; P\right) / A n n_{r} \cong \mathcal{M}\left(T_{n+1} ; T_{n} ; P^{\prime}\right)
$$

Let

$$
P_{n, n-1}=P \quad \text { and } \quad P_{n, n+1}=P^{\prime} .
$$

Then

$$
\mathcal{M}\left(T_{n-1} ; T_{n}, P_{i, i-1}\right) / A n n_{r} \cong \mathcal{M}\left(T_{n+1} ; T_{n} ; P_{i, i+1}\right)
$$

which proves that the sequence

$$
T_{0}, T_{1}, \ldots, T_{n}, \ldots
$$

has the property (\star). Thus the sequence

$$
R /\left(J:_{r}^{(0)} R\right), R /\left(J:_{r}^{(1)} R\right), \ldots, R /\left(J:_{r}^{(n)} R\right), \ldots
$$

of factor rings has the property (\star).

References

[1] P.N. Anh and L. Márki, Rees Matrix Rings. Journal of Algebra, 81-2 (1983), 340-369.
[2] I.N. Herstein, Noncommutative Rings, The Mathematical Association of America, 1968.
[3] N. Jacobson, The Theory of Rings, American Mathematical Society, New York, 1943.
[4] E. Jespers and J. Okniski, Noetherian Semigroup Algebras, SpringerVerlag, Dordrecht, 2007.
[5] A.V. Kelarev, Ring Constructions and Applications, Word Scientific Publishing Co. Pte. Ltd., New Jersey /London/Singapore/Hong Kong, 2002.
[6] T. Mora, Solving Polinomial Equation System IV, Cambridge University Press, 2016.

[^0]: ${ }^{1}$ e-mail:nagyat@math.bme.hu
 This work was supported by the National Research, Development and Innovation Office NKFIH, 115288.

