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Abstract

In this paper we focuse on Rees matrix rings M(R; I,Λ;P ) in
which the set I has exactly one element. For a ring R, let Annr(R)
and (Annr(R) :r R) denote the right annihilator of R and the right
colon ideal of Annr(R), respectively. The main result of our pa-
per is that, for every choice function P defined on the collection
of all cosets of Annr(R), the factor ring of the Rees matrix ring
M(R; I,R/Annr(R);P ) modulo its right annihilator is isomorphic
to the Rees matrix ring M(R/(Annr(R) :r R); I,R/Annr(R);P ′), in
which P ′ is defined by P ′ : a+Annr(R) 7→ a+(Annr(R) :r R); a ∈ R.
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1 Introduction

Let R be a ring, I and Λ be nonempty sets, P be a Λ × I matrix over R.
Denote byM(R; I,Λ;P ) the set of all I ×Λ-matrices over R having a finite
number of nonzero entries endowed with the usual addition of matrices and
with a multiplication ◦ defined by A ◦ B = APB, where the multiplication
on the right-hand side is the usual multiplication of matrices. M(R; I,Λ;P )
is a ring, which is called the Rees matrix ring over R with sandwich matrix P
(see [5] (for arbitrary R), or [1] (for R with unit element)). In this paper we
only deal with Rees matrix rings M(R; I,Λ;P ) in which I contains exactly
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one element. These Rees matrix rings will be denoted by M(R; Λ;P ). In
this case the elements of M(R; Λ;P ) are 1 × Λ-matrices, and the sandwich
matrix P is a Λ× 1-matrix. The sandwich matrix P and all of the elements
A of M(R; Λ;P ) can be considered as mappings of Λ into R. The entries
of A ∈ M(R; Λ;P ) and the entries of P will be denoted by A(λ) and P (λ),
respectively (λ ∈ Λ). Thus, for arbitrary A,B ∈M(R; Λ;P ),

(A ◦B)(λ) = (
∑
j∈Λ

A(j)P (j))B(λ).

Let J be an ideal of a ring R. By the right colon ideal of J we mean the ideal

(J :r R) = {r ∈ R| Rr ⊆ J}

of R (see, for example, [4] or [6] ). The ideal

Annr(R) = {a ∈ R| Ra = {0}}

of a ring R is called the right annihilator of R.
The cosets a+Annr(R) and a+(Annr(R) :r R) (a ∈ R) will be denoted by

[a]Annr(R) and [a](Annr(R):rR), respectively. The factor rings of R by Annr(R)
will be denoted by R/Annr. It is easy to see that, for every ideal J of a ring
R,

(R/J)/Annr
∼= R/(J :r R). (1)

If J is an ideal of a ring R, then a mapping P : R/J → R will said to be a
choice function indicated by J if P (r+ J) ∈ r+ J for every coset r+ J of J .

Let R be a ring, P : R/Annr → R be an arbitrary choice function
indicated by Annr(R) and P ′ : R/Annr → R/(Annr(R) :r R) be a mapping
defined by

P ′ : [a]Annr(R) 7→ [a](Annr(R):rR); a ∈ R.
We can construct the following Rees matrix rings over the factor ringR/Annr:

M =M(R;R/Annr;P ), M′ =M(R/(Annr(R) :r R);R/Annr;P
′).

Conider the following diagram:

R
P←− R/Annr

P ′−→ R/(Annr(R) :r R)
⇓ ⇓
M M′

(2)
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In Section 2, we show that diagram (2) can be supplemented by a surjec-
tive homomorphism Φ

R
P←− R/Annr

P ′−→ R/(Annr(R) :r R)
⇓ ⇓
M −→

Φ
M′

such that the kernel of Φ is the right annihilator of M, and so

M/Annr
∼=M′.

In Section 3, we define a property (?) of sequences of rings. Applying the
result of Section 2, we show that, for an arbitrary ring R and an arbitrary
ideal J of R, the sequence

R/(J :(0)
r R)), R/(J :(1)

r R), . . . , R/(J :(n)
r R), . . .

of factor rings has the property (?), in which sequence (J :
(0)
r R) = J and

(J :
(n)
r R) = ((J :

(n−1)
r R) :r R) for every positive integer n.

For notations and notions not defined in this paper, we refer to [2] and
[3].

2 On the Rees matrix rings M and M′

Theorem 2.1 Let R be a ring and P be an arbitrary choice function indi-
cated by Annr(R). Then

M(R;R/Annr;P )/Annr
∼=M(R/(Annr(R) :r R);R/Annr;P

′),

where P ′ is the mapping of R/Annr into R/(Annr(R) :r R) such that

P ′ : [a]Annr(R) 7→ [a](Annr(R):rR)

for every a ∈ R.
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Proof. Let R/Annr denoted by Λ. Let

Φ :M(R; Λ;P )→M(R/(Annr(R) :r R); Λ;P ′)

be the following mapping. For arbitrary A ∈ M(R; Λ;P ), let Φ(A) be the
element of M(R/(Annr(R) :r R); Λ;P ′) such that, for every λ ∈ Λ,

(Φ(A))(λ) = [A(λ)](Annr(R):rR).

It is clear that Φ is surjective.
We show that Φ is a homomorphism. Let A and B be arbitrary elements

of M(R; Λ;P ). Then, for every λ ∈ Λ,

(A+B)(λ) = A(λ) +B(λ)

and
(Φ(A) + Φ(B))(λ) = (Φ(A))(λ) + (Φ(B))(λ).

Thus, for every λ ∈ Λ,

(Φ(A+B))(λ) = [A(λ) +B(λ)](Annr(R):rR) =

= [A(λ)](Annr(R):rR) + [B(λ)](Annr(R):rR) = (Φ(A))(λ) + (Φ(B))(λ) =

= (Φ(A) + Φ(B))(λ).

Thus
Φ(A+B) = Φ(A) + Φ(B).

For every λ ∈ Λ,

(A ◦B)(λ) =

(∑
j∈Λ

A(j)P (j)

)
B(λ)

and so

(Φ(A ◦B))(λ) =

[(∑
j∈Λ

A(j)P (j)

)
B(λ)

]
(Annr(R):rR)

=

=

(∑
j∈Λ

[A(j)](Annr(R):rR)[P (j)](Annr(R):rR)

)
[B(λ)](Annr(R):rR). (3)
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If j = [a]Annr(R), then [a]Annr(R) = [P (j)]Annr(R), because P is a choice func-
tion indicated by Annr(R) and so P (j) ∈ [a]Annr(R). Thus

P ′(j) = P ′([a]Annr(R)) = P ′([P (j)]Annr(R)) = [P (j)](Annr(R):rR)

and so (3) equals(∑
j∈Λ

[A(j)](Annr(R):rR)P
′(j)

)
[B(λ)](Annr(R):rR) = (Φ(A) ◦ Φ(B))(λ).

Hence
Φ(A ◦B) = Φ(A) ◦ Φ(B).

Consequently Φ is a homomorphism.
We show that the kernel of Φ is the right annihilator ofM(R; Λ;P ). Let

A ∈M(R; Λ;P ) be an arbitrary element. A ∈ kerΦ if and only if

Φ(A) = 0 in M(R/(Annr(R) :r R); Λ;P ′)

if and only if
(∀λ ∈ Λ)[A(λ)](Annr(R):rR) = 0 in R,

that is,
(∀x, y ∈ R, λ ∈ Λ) xyA(λ) = 0. (4)

We show that condition (4) is equivalent to the condition that A is in the right
annihilator of M(R; Λ;P ). Assume (4). Then, for every C ∈ M(R; Λ;P ),
we have

(C ◦ A)(λ) =

(∑
j∈Λ

C(j)P (j)

)
A(λ) =

∑
j∈Λ

C(j)P (j)A(λ) = 0

and so A is in the right annihilator of M(R; Λ;P ).
Conversely, assume that A is in the right annihilator ofM(R; Λ;P ). Let

r ∈ R and j ∈ Λ be arbitrary elements. Let Cj,r be the 1×Λ matrix over R,
in which Cj,r(j) = r and the other entries are the zero of R. Then, for every
λ ∈ Λ,

0 = (Cj,r ◦ A)(λ) = rP (j)A(λ).

Thus
(∀r ∈ R)(∀j, λ ∈ Λ) rP (j)A(λ) = 0. (5)

5



Let a1, a2 ∈ R be arbitrary elements. Then there are j1, j2 ∈ Λ such that

a1 ≡ P (j1) mod Annr(R), a2 ≡ P (j2) mod Annr(R),

and so
a1 = P (j1) + ξ1 and a2 = P (j2) + ξ2

for some elements ξ1, ξ2 ∈ Annr(R). Applying (5) and the fact that ξ1, ξ2 ∈
Annr(R), we have

a1a2A(λ) = P (j1)P (j2)A(λ) + P (j1)ξ2A(λ) + ξ1P (j2)A(λ) + ξ1ξ2A(λ) = 0

and so
A(λ) ∈ (Annr(R) :r R).

Hence Φ(A) = 0 in M(R/(Annr(R) :r R);R/Annr;P
′) and so A ∈ kerΦ.

Consequently kerΦ is the right annihilator of M(R;R/Annr;P ). By the
homomorphism theorem,

M(R;R/Annr;P )/Annr
∼=M(R/(Annr(R) :r R);R/Annr;P

′)

u

3 Sequences of rings with a special property

Definition 3.1 We shall say that a sequence

R0, R1, . . . , Rn, . . .

of rings Ri (i = 0, 1, 2, . . . ) has the property (?) if, for every positive integer
n, there are mappings

Pn,n−1 : Rn 7→ Rn−1 and Rn,n+1 : Rn 7→ Rn+1

such that

M(Rn−1;Rn;Pn,n−1)/Annr
∼=M(Rn+1;Rn;Rn,n+1).

In the next theorem, we shall use the following notations. For an ideal J
of a ring R, let

(J :(0)
r R) = J,
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and let
(J :(n)

r R) = ((J :(n−1)
r R) :r R)

for arbitrary positive integer n.

Theorem 3.1 For an arbitrary ring R and an arbitrary ideal J of R, the
sequence

R/(J :(0)
r R)), R/(J :(1)

r R), . . . , R/(J :(n)
r R), . . .

of factor rings has the property (?).

Proof. Let n be a positive integer, and let

Tn−1 = R/(J :(n−1)
r R).

Using (1), we have

Tn = R/(J :(n)
r R) ∼= R/((J :(n−1)

r R) :r R) ∼=

∼= (R/(J :(n−1)
r R))/Annr

∼= Tn−1/Annr

and

Tn+1 = R/(J :(n+1)
r R) ∼= R/((J :(n)

r R) :r R) ∼= (R/(J :(n)
r R))/Annr

∼=

∼= (Tn−1/Annr)/Annr
∼= Tn−1/(Annr(Tn−1) :r Tn−1).

Consider the diagram (2) in that case when R = Tn−1:

Tn−1
P←− Tn−1/Annr

P ′−→ Tn−1/(Annr(Tn−1) :r Tn−1)
⇓ ⇓

M =M(Tn−1;Tn;P ) M′ =M(Tn+1;Tn;P ′)

in which P is a choice function indicated by Annr(Tn−1) and P ′ is defined by

P ′ : [a]Annr(Tn−1) 7→ [a](Annr(Tn−1):rTn−1); a ∈ Tn−1.

By Theorem 2.1,

M(Tn−1;Tn;P )/Annr
∼=M(Tn+1;Tn;P ′).
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Let
Pn,n−1 = P and Pn,n+1 = P ′.

Then
M(Tn−1;Tn, Pi,i−1)/Annr

∼=M(Tn+1;Tn;Pi,i+1)

which proves that the sequence

T0, T1, . . . , Tn, . . .

has the property (?). Thus the sequence

R/(J :(0)
r R), R/(J :(1)

r R), . . . , R/(J :(n)
r R), . . .

of factor rings has the property (?). u
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