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Bolyai Institute of the University of Szeged
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Abstract. Subfield subcodes of algebraic-geometric codes are good candi-
dates for the use in post-quantum cryptosystems, provided their true parame-

ters such as dimension and minimum distance can be determined. In this paper

we present new values of the true dimension of subfield subcodes of 1–point
Hermitian codes, including the case when the subfield is not binary.

1. Introduction

The oldest and best known proposal for post-quantum cryptography schemes are
the cryptosystems due to McEliece and Niederreiter. Their security is based on
the NP-completeness of the decoding of binary linear codes. Hence, an essential
ingredient of their schemes is a binary linear code C which has an efficient decoding
algorithm and which cannot be distinguished from the random linear code. McEliece
originally proposed the class of extended binary Goppa codes, which are subfield
subcodes of the generalized Reed-Solomon codes. Recently, some other classes of
codes have been proposed as well, such as LDPC codes and algebraic-geometric
codes over larger fields. However, these classes turned out to have serious security
flows, see [2, 4, 10, 11, 25]. For the background of code based cryptography we refer
to [12, 18, 19], for quantum attacks see [26], and on digital signature schemes based
on the Niederreiter scheme see [5].

The Berlekamp-Massey algorithm [7] and its variants provide an efficient de-
coding for Reed-Solomon codes, which can be used to decode subfield subcodes of
generalized Reed-Solomon codes, as well. For the binary linear code C in use, the
error correcting bound is determined by these algorithms. Beyond this bound, list-
decoding methods are known, cf. [1, 3, 13]. Therefore, it is an important problem
to find the true minimum distance and the true dimension of subfield subcodes of
generalized Reed-Solomon codes, cf. [6] and the series of papers [22, 23, 24]. The
class of algebraic-geometry (AG) codes was introduced by V.D. Goppa. This class
is a natural generalization of Reed-Solomon codes. The famous Riemann-Roch The-
orem provides theoretical bounds for the dimension and minimum distance of AG
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codes. The ideas of the Berlekamp-Massey algorithm can be used to design efficient
decoding algorithms up to the half of the designed minimum distance of AG codes,
and beyond [9, 15, 17]. Hence, the subfield subcodes of AG codes are also good
candidates for the McEliece and Niederreiter cryptosystems. The determination
of the true dimension and the true minimum distance of the subfield subcodes of
AG codes seems to be a hard problem, the attempts so far focused mainly at 1-
point Hermitian codes and their subcodes, with some further restrictions on the
parameters [16, 20, 21].

In this paper, we prove new results on the true dimension of the subfield subcodes
of 1-point Hermitian codes. Our approach deals also with non-binary subfields. The
paper is structured as follows. In section 2, we describe the backgrounds with some
important properties of Hermitian curves, their function fields and Riemann-Roch
spaces. In section 3, we present AG codes and 1-point Hermitian codes. Section
4 summarizes the definition of the subfield subcodes of AG codes and techniques
used to improve the bounds on the dimensions of subfield subcodes of Reed-Solomon
codes, these techniques include Delsarte’s seminal result on subfield subcodes and
trace codes. Section 5 is dedicated to prove our result concerning the true dimension
of the subfield subcodes of 1-point Hermitian codes for specific parameters.

2. Hermitian curves, their divisors and Riemann-Roch spaces

Our notation and terminology on algebraic plane curves over finite fields, their
function fields, divisors and Riemann-Roch spaces are standard, see for instance
[8, 12, 19].

Let PG(2,Fq2) be the projective plane over the finite field of order q2 equipped
with homogeneous coordinates (X,Y, Z). The Hermitian curve in its canonical form
is the non-singular plane curve Hq with equation Y qZ + Y Zq = Xq+1. The genus
of Hq equals g = q(q − 1)/2 and the set Hq(Fq2) of Fq2-rational points, that is,
its points with coordinates over Fq2 has size q3 + 1. It is also useful to regard
PG(2,Fq2) as the projective closure of the affine plane AG(2,Fq2) with respect to
the line Z = 0 at infinity, so that the Hq has affine equation Y q + Y = Xq+1. In
particular, Hq has just one point at infinity, namely (0, 1, 0), denoted by P∞. We
remark that Hermitian curves have the maximum number of rational points allowed
by the Hasse-Weil bound [8, Theorem 9.18], [12, Theorem 9.10].

The action of the Frobenius automorphism Frobq2 : x 7→ xq
2

can be extended to
the points of Hq by applying Frobq2 on the coordinates. We denote the extended
action by Frobq2 as well. A point P of Hq is Fq2-rational if and only if P =
Frobq2(P ).

As usual, we also look at the curve Hq as the curve defined over the algebraic
closure F̄q2 . Then, there is a one-to-one correspondence between the points of Hq

and the places of the function field F̄q2(Hq) of Hq.
For a divisor D = λ1P1+· · ·+λkPk with P1, . . . , Pk ∈Hq and integers λ1, . . . , λk,

its Frobenius image is

Frobq2(D) = λ1 Frobq(P1) + · · ·+ λk Frobq(Pk).

A divisor D is Fq2 -rational if D = Frobq2(D). In particular, if P1, . . . , Pk are in
Hq(Fq2) then D is Fq2-rational, but the converse does not hold in general. The
degree of D is deg(D) = λ1 + · · · + λk, while the support of D is the set of points
Pi with λi 6= 0.
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For a non-zero function f in the function field F̄q2(Hq) and a point P , vP (f)
stands for the order of f at P . If vP (f) > 0 then P is a zero of f , while if vP (f) < 0,
then P is a pole of f with multiplicity −vP (f). The principal divisor of a non-zero
function f is (f) =

∑
P vP (f)P .

For an Fq2 -rational divisor D, the Riemann-Roch space L (D) is the vector space

L (D) = {f ∈ Fq2(Hq) | (f) < −D}.

For the dimension `(D) of L (D) the Riemann-Roch Theorem states

`(D) = deg(D) + 1− g + `(W −D),

where W is a canonical divisor of the Hermitian curve, for example W = (q −
2)(q + 1)P∞ is such a canonical divisor. Moreover, if deg(D) > 2g − 2 then the
Riemann-Roch Theorem reads `(D) = deg(D) + 1 − g. Let s be a positive integer
and D = sP∞ a 1-point divisor of Hq. Then the set{

xiyj | 0 ≤ i ≤ q2 − 1, 0 ≤ j ≤ q − 1, vP∞(xiyj) ≤ s
}

of functions forms a basis of the Riemann-Roch space L (sP∞), see [12, Theorem
10.4]. Notice that vP∞(x) = q, vP∞(y) = q + 1, and hence the order of xiyj at P∞
is

(1) vP∞(xiyj) = qi+ (q + 1)j.

3. Algebraic geometry codes (briefly AG codes)

Algebraic geometry codes are a type of linear error correcting block codes, aris-
ing from algebraic curves defined over a finite field, see [19]. Here we outline the
construction when the underlying curve is the Hermitian curve Hq.

Fix a divisor D = P1 + ... + Pn where all Pi are pairwise distinct Fq2–rational
points of Hq. Also, take another Fq2-rational divisor G whose support is disjoint
from supp D. The functional AG code CL(D,G) associated with the divisors D
and G is a subspace of the vector space Fnq2 , and defined by

CL(D,G) = {(f(P1), ..., f(Pn)) | f ∈ L (G)} ⊆ Fnq2 .

In other words, CL(D,G) is the image of L (G) under the evaluation map

L (G) 3 f 7→ (f(P1), ..., f(Pn)) ∈ Fnq2 .

Indeed, determining the functions field and the divisors in a pertinent way can
make Reed-Solomon codes viewed as particular AG codes, see [19, Section 2.3]. The
most fascinating feature of AG codes is that the Riemann-Roch Theorem determines
its dimension k and provides a useful bound for its minimum distance d.

Theorem 3.1 ([12, Theorem 10.1]). CL(D,G) is a linear [n, k, d] code over F with
parameters:

• k = `(G)− `(G−D),
• d ≥ n− degG.

Notice that the condition n > degG implies the evaluation map L (G)→ Fn to
be injective. If n ≤ degG, then it is possible that CL(D,G) has dimension less than
n and positive true minimum distance. However, this case cannot be described only
by the Riemann-Roch Theorem.

By using the differential space Ω(G) instead of the Riemann-Roch space L (G),
one can define another AG codes, namely the differential AG codes CΩ(D,G). It
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should be noted that the differential code CΩ(D,G) is the dual of the functional
AG code CL(D,G).

The main result of this paper deals with 1-point Hermitian codes. Let n = q3

and the divisor D = P1 + P2 + ... + Pn be the sum of Fq2–rational affine points
of Hq. For a positive integer s, we denote by H(q2, s) the 1-point functional AG
code CL(D, sP∞). This has length n = q3. If 2g − 2 < s < n, then the dimension
of H(q2, s) is k = s − g + 1 which is equal to the dimension of the Riemann-Roch
space L (sP∞). Under these assumptions, we have equality in Theorem 3.1, hence
the minimum distance of H(q2, s) is d = q3 − s.

Theorem 3.2 (Dual codes [12, Theorem 10.5]). For s > 0 and s̃ = q3+q2−q−2−s,
the codes H(q2, s) and H(q2, s̃) are dual to each other. In particular, if q is even
and s = (q3 + q2 − q − 2)/2, then the code H(q2, s) is self-dual.

4. Subfield subcodes of linear codes

Let Fr be a subfield of a finite field Fl, that is, l = rh for a positive integer h.
Let C be a linear [n, k, d] code over Fl. The subfield subcode C|Fr consists of all
codewords of C whose coordinates are in Fr, that is,

C|Fr = C ∩ Fnr .

This is a linear [n, k0, d0] code over Fr with d ≤ d0 ≤ n and n − k ≤ n − k0 ≤
h(n− k). Therefore for the dimension over Fr

(2) k0 ≥ n− h(n− k).

A parity check matrix of C over Fl yields at most h(n − k) linearly independent
parity check equations over Fr for the subfield subcode C|Fr.

In general the true minimum distance of a subfield subcodes is bigger than the
minimum distance of the original code. This makes the subfield subcodes very
important, especially in the binary case r = 2, see [6, Theorem 4].

The trace polynomial Tr(X) ∈ Fr[x] with respect to Fl is given by

TrFl/Fr
(x) = x+ xr + ...+ xr

h−1

.

Clearly, the trace polynomial determines the Fr-linear trace map Fl → Fr. For a
linear code C over Fl, Delsarte defined the trace code Tr(C) = TrFl/Fr

(C) by

Tr(C) =
{(

TrFl/Fr
(c1), ...,TrFl/Fr

(cn)
)
| (c1, . . . , cn) ∈ C

}
,

and showed that Tr(C) is a linear [n, k1, d1] code over Fr, with 1 6 d1 6 d and
k 6 k1 6 hk. As for subfield subcodes, the most useful case occurs for r = 2.

The following important result by Delsarte relates the class of subfield subcodes
to trace codes:

Theorem 4.1 (Delsarte [6]). Let C be a linear code over an extension field Fl of
Fr. Then (C|Fr)⊥ = Tr(C⊥) holds.

In [24], Véron pointed out that Delsarte’s theorem can be used to compute from
(2) the exact dimension

(3) k0 = n− h(n− k) + dimFr
ker(Tr)

of the subfield subcode.
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5. Main result

With the above notation, let l = q2 and h = 2m. As before, let Fr be a subfield
of Fq2 , q = rm, s be a positive integer and D be the sum of affine points of the
Hermitian curve Xq+1 = Y + Y q over the finite field Fq2 . Define Cq,r(s) to be the
subfield subcode H(q2, s)|Fr of the 1-point Hermitian code H(q2, s).

In [16], an algorithm for dimCq,r(s) is presented. Using this algorithm, the
authors explicitly compute the dimension of C4,2(s) for each s = 0, . . . , 71.

From [21, Proposition 3.2],

dim(Tr(H(q2, q))) = 2m+ 1,

where q = 2m. In our notation, this reads

dimCq,r(q
3 + q2 − 2q − 2) = q3 − (2m+ 1).

In particular, dimC4,2(70) = 59, which is confirmed by [16, Table 2]. In the same
table, we find dimC4,2(s) = 1 for s = 0, . . . , 31 and dimC4,2(32) = 5. These values
for dimC4,2(s) are particular cases of the general formula given by the following
theorem.

Theorem 5.1. Let Cq,r(s) be a subfield subcode of the Hermitian code H(q2, s),
where q = rm is a prime power. Then

dimCq,r(s) =

{
1 for 0 ≤ s < q3

r

2m+ 1 for s = q3

r

Proof. Since the constant polynomials are in L (sP∞) for all s ≥ 0, we have

dimCq,r(s) ≥ 1. We first show that dimCq,r(s) = 1 for 0 ≤ s < q3

r . Fix an integer

0 < s < q3

r and take an arbitrary element (c1, . . . , cq3) ∈ Cq,r(s). Then there is an

element f ∈ L (sP∞) such that for all i = 1, . . . , q3, one has ci = f(Pi) ∈ Fr. There
is an element γ ∈ Fr such that ci = γ for at least q3/r indices i. In other words,
f − γ ∈ L (sP∞) has at least q3/r zeros on the Hermitian curve Hq. ( This follows
from the fact that for a positive divisor G, a non-zero element of L (G) cannot have
more than degG zeros.) Therefore, f − γ must be the constant zero polynomial,
and ci = γ for all i. In particular, Cq,r(s) consists of the constant vectors.

Now, we suppose that s = q3/r. Recall that

Tr(X) = X +Xr + · · ·+Xr2m−1

is the trace polynomial of Fq2 over Fr. We define the polynomial

fd,α(X) = d+ Tr(αX)

where d ∈ Fr, α ∈ Fq2 . As a polynomial in one variable, fd,α maps Fq2 to Fr.
For a point P with affine coordinates (x, y), we write fd,α(P ) = fd,α(x). For the
Fq2-rational points Pi(ai, bi), i = 1, . . . , q3, we have fd,α(Pi) ∈ Fr. In other words,
the evaluation vector

cd,α = (fd,α(P1), . . . , fd,α(Pq3)) ∈ Fnr .

We claim that fd,α(x) ∈ L
(
q3

r P∞

)
. In fact, by (1),

vP∞(xr
k

) = qrk,

which is at most qr2m−1 = q3/r for k ≤ 2m − 1. Hence, all monomials of fd,α(x)

are in L
(
q3

r P∞

)
, and the claim follows.
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From the last two properties of fd,α follows that the evaluation vector cd,α ∈
Cq,r(q

3/r). Since the map (d, α) 7→ cd,α is linear over Fr, and injective, we have
dimCq,r(q

3/r) ≥ 2m+ 1.
In the last step we show that the elements cd,α exhaust the subfield subcode

Cq,r(q
3/r).

Take an element g ∈ L
(
q3

r P∞

)
whose evaluation vector

(g(P1), . . . , g(Pq3)) ∈ Fnr .

We can reduce the high y-degree terms by the Hermitian equation xq+1 = y + yq.
Thus, we can write g in this form:

g(x, y) =
∑
j<q

ai,jx
iyj .

By (1), the order of xiyj at P∞ satisfies vP∞(xiyj) ≡ j (mod q). Therefore, if
j ≤ q − 1 then the order vP∞(xiyj) determines i and j uniquely. Hence, different
terms of g =

∑
j≤q−1

ai,jx
iyj have different orders at P∞. The order of g at P∞ is

vP∞(g) = vP∞

(∑
ai,jx

iyj
)

= max
ai,j 6=0

(
vP∞(xiyj)

)
,

where the last equality holds since the orders vP∞(xiyj) are different. If g ∈
L
((

q3

r − 1
)
P∞

)
then g = fd,0 for some d ∈ Fr as seen above. Assume now

g ∈ L

(
q3

r
P∞

)∖
L

((
q3

r
− 1

)
P∞

)
.

Then, vP∞(g) = q3/r and g has a unique term βx
q2

r with order q3/r at P∞, β ∈ F∗q2 .

Define α ∈ Fq2 by αr
2m−1

= β. Then, g − f0,α ∈ L
(
q3

r P∞

)
and arguing as in the

first part of the proof, shows that g − f0,α is again a constant d ∈ Fr. This means
g = fd,α, and the result follows.

Similar computation gives that for α ∈ Fq2 ,

Tr(αy) ∈ L

(
(q + 1)q2

r
P∞

)
.

Hence, dimCq,r((q + 1)q2/r) ≥ 4m + 1. By [16, Table 2], we have equality for
q = 4 and r = 2. Using our GAP package HERmitian [14], we computed the true
dimension of C8,2(s) for all values s from 256 = q3/r to 511 = q3 − 1, see Table 1.
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