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Codes and gap sequences of Hermitian curves
Gábor Korchmáros, Gábor P. Nagy, Marco Timpanella

Abstract—Hermitian functional and differential codes
are AG-codes defined on a Hermitian curve. To ensure
good performance, the divisors defining such AG-codes
have to be carefully chosen, exploiting the rich combina-
torial and algebraic properties of the Hermitian curves. In
this paper, the case of differential codes CΩ(D,mT) on the
Hermitian curve Hq3 defined over Fq6 is worked out where
supp(T) := Hq3(Fq2), the set of all Fq2 -rational points of
Hq3 , while D is taken, as usual, to be the sum of the points
in the complementary set D = Hq3(Fq6) \Hq3(Fq2). For
certain values of m, such codes CΩ(D,mT) have better
minimum distance compared with true values of 1-point
Hermitian codes. The automorphism group of CL(D,mT),
m ≤ q3 − 2, is isomorphic to PGU(3, q).

Index Terms—AG-code, Weierstrass gap, pure gap,
Hermitian curve; 14H55, 11T71, 11G20, 94B27

I. INTRODUCTION

Algebraic-geometry (AG) codes, also called
Goppa-codes, are certain linear codes arising from
an algebraic curve X defined over a finite field;
see for instance [1], [7], [10], [19]. In this pa-
per, we work on the projective plane PG(2,Fq6)
defined over the finite field Fq6 of order q6 and
equipped with homogeneous coordinates (X, Y, Z).
The points and lines of PG(2,Fq6) with coordinates
in the subfield Fq2 are the points and lines of the
projective subplane PG(2,Fq2) of PG(2,Fq6). We
take X to be the (non-singular) Hermitian curve Hq3

of PG(2,Fq6), with genus g(Hq3) = 1
2
q3(q3−1) and

defined by its canonical homogeneous equation

Xq3+1 − Y q3Z − Y Zq3 = 0, (1)
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and construct a particular family of AG-codes on
the set of all points of Hq3 lying in PG(2,Fq6),
that is, on the set Hq3(Fq6) of its Fq6-rational points.
For this purpose, we take a divisor G whose support
comprises all the points of Hq3 lying in the subplane
PG(2,Fq2), that is, the Fq2-rational points of Hq3 .
They satisfy the equation Xq+1− Y qZ − Y Zq = 0,
and are exactly the Fq2-rational points of the Her-
mitian curve of PG(2,Fq2) given in its canonical
homogenous equation

Xq+1 − Y qZ − Y Zq = 0. (2)

More precisely, we define

T :=
∑

Q∈Hq(Fq2 )

Q

and, for a positive integer m, we put G = mT. Also,
we define the set D by complement, that is,

D := Hq3(Fq6) \Hq(Fq2).

In particular, D has size n := q9− q3. Furthermore,
let D :=

∑
Q∈DQ.

An AG-code arises by evaluating at the points
of D the Fq6-rational functions whose poles are
prescribed by T (each with multiplicity ≤ m). It
is an AG [n, k, d]q6-code with

d ≥ n− deg(mT) = q9 − q3 −m(q3 + 1)

and
k = `(mT)− `(mT− D),

where `(P) stands, as usual, for the dimension of
the Riemann-Roch space associated to a divisor P
on Hq3 . Here, if m(q3 + 1) = deg(mT) > 2g− 2 =
(q3 + 1)(q3 − 2), that is, if m > q3 − 2, then the
Riemann-Roch Theorem yields k = deg(mT) + 1−
1
2
q3(q3 − 1) whence

k = (q3 + 1)(m− 1
2
(q3 − 2)), for m > q3 − 2.

Such an AG-code is the Hermitian functional code
CL(D,mT) whose Goppa’s designed minimum dis-
tance is

δ := n− deg(mT) = (q3 + 1)(q3(q3 − 1)−m).
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The dual code CΩ(D,mT) of CL(D,mT) can also
be obtained by computing residuals in the space of
holomorphic differentials Ω(mT− D). Therefore,

CΩ(D,mT) = {(res(df)Q1 , . . . , res(df)Qn)|
df ∈ Ω(mT− D)}.

For this reason, the latter code is called a differential
code. It is a [n, k′, d′]q6-code where

d′ ≥ deg(mT)− (2g− 2) = (q3 + 1)(m− (q3− 2)),

and k′ ≥ n + g − 1 − deg(mT) when deg(mT) >
2g−2. In particular, equality holds if deg(mT) < n,
that is,

k′ = (q3 + 1)(q3(q3 − 1)−m− 1
2
(q3 − 2))

for

q3 − 2 < m < q3(q3 − 1).

Its Goppa’s designed minimum distance is

δ∗ = deg(mT)− (2g− 2) = (q3 + 1)(m− (q3− 2)).

We exhibit values of m for which the differential
code CΩ(D,mT) has good parameters. Its minimum
distance is larger than the minimum distance of the
one-point Hermitian code with the same length and
dimension. The improvement is O(q4), see Theorem
IV.3. The essential ingredient of the proof is the
gap sequence of Hq3 on T, which we compute
explicitly: see Theorem III.2. We also prove that
the group of permutation automorphisms of the code
CL(D,mT), m < q3−2, is isomorphic to PGU(3, q):
see Theorem V.4. The computer algebra systems
MAGMA [2] and GAP [5] helped us to formulate
the results by computing the gap sequences for
q = 2, 3 and 4. Moreover, we used these programs
to verify that for q = 2, the true minimum distance
of the code of Theorem IV.3 is equal to its designed
minimum distance.

II. PRELIMINARIES

We quote now several geometric and combinato-
rial properties of the Hermitian curves Hq and Hq3 ,
the references are [8], [12].

A. Plane algebraic curves
Our notation and terminology are standard. For

the theory of plane algebraic curves, the reader
is referred to [9, Chapters 1-5]. Let F be a finite
field and fix an algebraic closure K of F, and let
AG(2,K) be the affine plane defined over K. If
F ∈ K[X, Y ], then the affine plane curve F is

F = {P = (x, y) ∈ AG(2,K)|F (x, y) = 0}.
The degree of F is the degree of F . A component
of F is a curve G = va(G) such that G divides
F . A curve F is irreducible if F is irreducible;
otherwise, F is reducible and it splits in irreducible
curves, the components of F . All these defini-
tions are translated from AG(2,K) to its projective
closure PG(2,K) when F is replaced by a form
F ∗ ∈ K[X, Y, Z]. For a form F ∗ ∈ K[X, Y, Z], the
projective plane curve F is

v(F ∗) = {P (x1, x2, x3) ∈ PG(2,K) | F (x1, x2, x3) = 0}.
If F is non-singular, that is, it has no singular
point in PG(2,K), then its genus equals g =
1
2
(deg(F )−1)(deg(F )−2). Basic tools in the the-

ory of plane curves are the theorem of Bézout, see
[9, Theorem 3.14] which state the main properties
of the intersection of two plane curves F and G in
terms of their intersection divisor F · G depending
on the intersection number I(P,F ∩ G ) at a point
P ∈ PG(2,K):

deg(F ) deg(G ) =
∑

P∈F∩G

I(P,F ∩ G ).

B. Riemann-Roch spaces
Let F(F ) be the function field of F with con-

stant field F, regarded as the subfield of the function
field K(F ) of F over K. The divisors are formal
sums of places (or branches) of K(F ). If F is non-
singular, then the places of K(F ) can be identified
with the points of F so that each point is the center
of a unique place. For every non-zero function h
in F(F ), Div(h) stands for the principal divisor
associated to h. For a divisor D on F , the Riemann-
Roch space L (D) is the vector space consisting of
all rational functions which are regular outside D.
The dimension `(D) of L (D) and deg(D) are linked
by the Riemann-Roch Theorem, see for instance [9,
Theorem 6.70]: `(D) = deg(D) − g + 1 + `(W − D)
where W is a canonical divisor. In particular,

`(D) = deg(D)− g + 1 for deg(D) > 2g− 2.
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To compute the dimension of the the Riemann-
Roch space L (D) we use a geometric approach
based on the corresponding complete linear series
|D|; see [7, Chapter 3] and [9, Chapter 6.2]. Since
F is assumed to be non-singular, the divisors of
|D| are cut out on F by certain curves of a given
degree l which are determined as follows. Take any
plane curve G of degree l such that G ·F � D and
let B = G ·F − D. The curves U : U(X, Y ) = 0
with deg(U ) = l such that U · F � B form a
linear system that contains a linear subsystem Λ free
from curves having F as a component. The curves
in Λ cut out the divisors of |D|. The (projective)
dimension of |D| is dim(Λ), that is, the maximum
number of linearly independent curves in Λ. In
terms of the Riemann-Roch space,

L (D) =

{
U(x, y)

G(x, y)
| degU ≤ degG,U ·F � B

}
.

(3)

C. Weierstrass semigroups and gap sequences

For simplicity, assume that F is a non-singular
projective plane curve. For any F-rational point
P ∈ F , a non-gap at P is a non-negative integer g
such that there exists h ∈ F(F ) with pole number
g at P which is regular on the remaining points
of F , that is, Div(h)∞ = gP . The Weierstrass
semigroup at P consists of all non-gaps at P , that
is, of all positive integers other than the gaps at
P . In the study of differential codes it is useful to
consider the generalization of the gap sequence and
the Weierstrass semigroup to several points; see [3],
[4], [11], [13], [14], [15], [16].

For an ordered r-tuple (P1, P2, . . . , Pr) of F-
rational points of F , a non-gap is an ordered r-
tuple of non-negative integers (g1, g2, . . . , gr) ∈ Nr

0

such that there exists h ∈ K(F ) with Div(h)∞ =
g1P1 + g2P2 + . . . + grPr while the Weierstrass
semigroup H(P1, P2 . . . , Pr) consists of all r-tuples
of positive integers other than the gaps, that is, the
Weierstrass semigroup at (P1, P2 . . . , Pr) is

H(P1, P2, . . . , Pr) = Nr
0 \G(P1, P2 . . . , Pr),

where G(P1, P2, . . . , Pr) is the set of all gaps at
(P1, P2, . . . , Pr). An equivalent definition of these
concepts in terms of Riemann-Roch spaces is stated
in the following result.

Lemma II.1 ([4, Lemma 2.2 and Corollary 2.3]).
Fix (n1, . . . , nm) ∈ Nm

0 and write D = n1Q1 + · · ·+
nmQm.

(a) (n1, . . . , nm) ∈ G(Q1, . . . , Qm) ⇐⇒ ∃ i such
that `(D) = `(D−Qi).

(b) (n1, . . . , nm) ∈ H(Q1, . . . , Qm) ⇐⇒ ∀ i we
have `(D) = `(D−Qi) + 1.

A little bit more general concepts are the Weier-
strass semigroup and the gap sequence at an effec-
tive divisor. Let D be an effective divisor of F(F ).
The Weierstrass semigroup at D is

H(D) = {n ∈ N0 | ∃f ∈ F(F ) s.t. Div(f)∞ = nD}.

The Weierstrass gap sequence at D is

G(D) = {n ∈ N0 | `(nD) = `((n− 1)D)}.

Unfortunately, it is not true that G(D) = N0 \H(D).
However, the following holds.

Lemma II.2. Let D = P1 +P2 + . . .+Pr with points
P1, P2, . . . , Pr of F . The non-negative integer n
is in G(D) if and only if we have (k1, . . . , kr) ∈
G(P1, P2, . . . , Pr) for all integers k1, . . . , kr ∈ {n−
1, n} such that ki = n for at least one index
i ∈ {1, . . . , r}.

D. The geometry of the Hermitian curve Hq

We keep up our notation from Introduction. A
line l of PG(2,Fq2) is either a tangent to Hq at an
Fq2-rational point of Hq or it meets Hq at q + 1
distinct Fq2-rational points. In terms of intersection
divisors, see [9, Section 6.2],

Hq·l =

{
(q + 1)Q, Q ∈Hq;∑q+1

i=1 Qi, Qi ∈Hq, Qi 6= Qj, 1 ≤ i < j ≤ n.

Through every point V ∈ PG(2,Fq2) not in
Hq(Fq2) there are q2− q secants and q+ 1 tangents
to Hq. The arising q + 1 tangency points are the
common points of Hq with the polar line of V
relative to the unitary polarity associated to Hq. Let
V = (1 : 0 : 0). Then the line l∞ of equation Z = 0
is tangent at P∞ = (0 : 1 : 0) while another line
through V with equation Y − cZ = 0 is either a
tangent or a secant according as cq + c is 0 or not.
This gives rise to the polynomial

Rq(X, Y ) = X
∏

c∈Fq2 , c
q+c6=0

(Y − c) (4)
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of degree q2 − q + 1. By [9, Theorem 6.42],

Div(Rq(x, y))∞ = (q2−q+1)(q+1)P∞ = (q3+1)P∞.

The above results can be stated for Hq3 by replacing
q with q3. In particular.

Div(Rq3(x, y))∞ = (q6 − q3 + 1)(q3 + 1)P∞

= (q9 + 1)P∞.

E. Intersection of the Hermitian curves Hq3 and
Hq

As we pointed out in Introduction, since xq
3

=
xq for all x ∈ Fq2 , we have Hq(Fq2) = Hq3(Fq2),
that is, all Fq2-rational points of Hq lie on Hq3 .
Moreover, the curves Hq and Hq3 have the same
tangent line tQ at any point Q ∈ Hq(Fq2). Their
intersection multiplicity at Q is therefore

I(Q,Hq ∩Hq3) = I(Q,Hq ∩ tQ) = q + 1.

By the theorem of Bézout [9, Theorem 3.14], Hq

and Hq3 have no further common points. As in the
Introduction, define the divisors

D =
∑

Q∈Hq3\Hq

Q and T =
∑
Q∈Hq

Q (5)

on Hq3 . Then deg(D) = q9 − q3, deg(T) = q3 + 1
and the intersection divisor is

Hq ·Hq3 = (q + 1)T.

Let Hq(X, Y ) = Xq+1 − Y q − Y be the affine
polynomial of Hq. From [9, Theorem 6.42],

Div(Hq) = (q + 1)T− (q3 + 1)(q + 1)P∞ (6)

in Fq6(Hq3). In particular,

(q + 1)T ≡ (q3 + 1)(q + 1)P∞. (7)

F. Equivalence of functional and differential Her-
mitian codes
Lemma II.3. For any divisor G of Hq3 ,

Ω(G−D) = dxR−1
q3 L (−G−T+(q6−1)(q3+1)P∞).

Proof. The proof is similar to that of [13, Lemma
2.1]. Since x is a separable variable of Fq6(Hq3),
we may write the differential ω as ω = hdx. Then

ω =hdx ∈ Ω(G− D)⇔ Div(ω) � G− D

⇔ Div(h) � G− D−Div(dx)

⇔ Div(Rq3h) � G− D−Div(dx) + Div(Rq3)

⇔ Div(Rq3h) � G + T− (q6 − 1)(q3 + 1)P∞.

In the last step, we used the following facts:
Div(dx) = (2g− 2)P∞, Div(Rq3) = D + T− (q9 +
1)P∞, and q9−2g+1 = (q6−1)(q3 +1). Therefore

ω = hdx ∈ Ω(G− D)⇔
h ∈ R−1

q3 L (−G− T + (q6 − 1)(q3 + 1)P∞),

which proves the lemma.

Proposition II.4. Let G be an effective divisor on
Hq3 , with supp(G) ∩ supp(D) = ∅. The differential
code CΩ(D, G) and the functional code CL(D,−G−
T+ (q6−1)(q3 + 1)P∞) are monomially equivalent.

Proof. By Lemma II.3, every differential in Ω(G−D)
can be written as ω = R−1

q3 fdx with f ∈ L (−G −
T + (q6 − 1)(q3 + 1)P∞). As G and T are effective,
f only has poles at infinity. From the Horizon
Theorem [18, Section 4.3] f is a polynomial in
x and y. Also, P∞ is not a pole of ω. Hence
resP∞(ω) = 0.

Take a point S(a, b) ∈ Hq3 \ {P∞}. Then, bq3 +
b = aq

3+1, t = x− a is a local parameter at S, and
the local expansion of y at S is y(t) = b + taq

3
+

tq
3+1[. . .]. Therefore f(a+ t, y(t)) = f(a, b) + t[. . .]

while Rq3(a, b) = 0 and Rq3(a + t, y(t)) = ut +
t2[. . .] with nonzero u = u(S) given by

u =


∏

c∈Fq6 , c
q3+c6=0

(b− c), for a = 0.

aq
3+1

∏
c∈Fq6 , c

q3+c6=0, c 6=b

(b− c), for a 6= 0.

Thus,

g(a+ t, y(t)) = Rq3(a+ t, y(t))−1f(a+ t, y(t))

= u−1f(a, b)t−1 + · · · ,

whence

resS(gdx) = rest(u
−1f(a, b)t−1 + · · · ) = u−1f(S),

showing the monomial equivalence between the
codes CΩ(D, G) and CL(D,−G − T + (q6 − 1)(q3 +
1)P∞).

Proposition II.5. Let m be a positive integer. The
codes CΩ(D,mT) and CL(D, (q6 − m − 2)T) are
monomially equivalent.

Proof. Since a = (q6 − 1)/(q + 1) is an integer,
Equation (7) implies (q6 − 1)(q3 + 1)P∞ = a(q +
1)(q3 + 1)P∞ ≡ a(q + 1)T = (q6 − 1)T. By
Proposition II.4, our claim follows.
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III. THE GAP SEQUENCE OF Hq3 AT supp(T)

In this section we prove some results on the
Riemann-Roch space L (mT) of Hq3 . We keep
our notation of the previous section. Moreover Rq

stands for the completely reducible plane curve with
affine equation Rq(X, Y ) = 0. For Q ∈ supp(T),
we have I(Q,Rq ∩Hq3) = 1. In particular, for the
intersection divisor Rq ·Hq3 = T + T′ � T.

Lemma III.1. Let 0 < m ≤ q3−2 be an integer and
write m = m0(q+ 1) +m1, 0 ≤ m1 ≤ q. Define the
polynomial G(X, Y ) = Hq(X, Y )m0Rq(X, Y )m1 .
Then

degG = m0(q + 1) +m1(q2 − q + 1)

and

v(G) ·Hq3 = m0(Hq ·Hq3) +m1(Rq ·Hq3)

= mT +m1T
′

� mT.

Furthermore, for the Riemann-Roch space,

L (mT) =

{
F (x, y)

G(x, y)
| degF ≤ degG and

v(F ) ·Hq3 � m1T
′
}
.

Proof. This follows from Equation (3), applied to
F = Hq3 and D = mT.

Theorem III.2. Let 0 < m ≤ q3 − 2 be an integer
and write m = m0(q + 1) +m1, 0 ≤ m1 ≤ q.

(a) If (m0 + 1)(q+ 1) < (q+ 1−m1)(q2− q+ 1)
then

L (mT) = L (m0(q + 1)T)

=

{
F (x, y)

Hq(x, y)m0
| degF ≤ m0(q + 1)

}
.

In particular, `(mT) = `(m0(q + 1)T) =(
m0(q+1)+2

2

)
.

(b) If (m0 + 1)(q+ 1) ≥ (q+ 1−m1)(q2− q+ 1)
then

Rq+1−m1
q

Hm0+1
q

∈ L (mT) \L ((m− 1)T).

Proof. (a) We use the notation of Lemma III.1. Let
F (X, Y ) be a polynomial with degF ≤ degG and
v(F ) ·Hq3 � m1T

′. By assumption,

degF ≤ m0(q + 1) +m1(q2 − q + 1) < q3 − q.

We prove that Rm1
q | F . Otherwise m1 ≥ 1 and

there is a linear component ` : L = 0 of Rq such
that F = F0L

k, L - F0 and k < m1. As ` is not a
tangent of Hq3 , for all points Q in ` \Hq we have

I(Q,v(F0) ∩Hq3) ≥ m1 − k ≥ 1.

Clearly we have q3 − q choices for Q, and since
degF0 ≤ degF < q3 − q, our assumption L - F0

is inconsistent with the theorem of Bézout. Hence,
F = F1R

m1
q and F/G = F1/H

m0
q is the generic

element of L (mT), with degF1 ≤ m0(q + 1).
(b) Equation (6) together with

Div(Rq) = T + T′ − (q3 + 1)(q2 − q + 1)P∞

yield

Div

(
Rq+1−m1

q

Hm0+1
q

)
=−mT + (q + 1−m1)T′

+ (q3 + 1)((m0 + 1)(q + 1)

− (q + 1−m1)(q2 − q + 1))P∞.

Our assumption (m0 +1)(q+1) ≥ (q+1−m1)(q2−
q + 1) implies the claim.

Since 2g − 2 = (q3 + 1)(q3 − 2), if m > q3 − 2
then deg(mT) > 2g− 2 and

`(mT) = deg(mT) + 1− g = (q3 + 1)(m− q3 − 2

2
).

Corollary III.3. The Weierstrass gap sequence at T
is

G(T) = {m0(q + 1) +m1 |

1 ≤ m1 < q + 1− (m0 + 1)(q + 1)

q2 − q + 1
}.

Proof. The claim follows from Theorem III.2, ex-
cept for m1 = 0. In this case, 1/Hm0

q ∈ L (mT) \
L ((m− 1)T), which shows that m = m0(q + 1) 6∈
G(T).

IV. HERMITIAN CODES CΩ(D, kT)

In this section we exhibit some values of m which
produce good Hermitian codes. We compare our
code with the one-point Hermitian code of the same
length and dimension. We rely on the following
result by Carvalho and Torres [4, Theorem 3.4].

Proposition IV.1. Suppose that α, α + 1, . . . , β is
a sequence of consecutive numbers in G(T). Let
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k := α+ β − 1. Then, the minimum distance of the
differential code CΩ(D, kT) satisfies

d ≥ k(q3 +1)−(q3−2)(q3 +1)+(β−α+1)(q3 +1),

where the last term is the improvement on the
designed minimum distance.

Proof. With notation of [4, Section 3], ni = α, pi =
β for i = 1, . . . , q3 + 1, m = q3 + 1 and T = Q1 +
· · ·+Qm.

Lemma IV.2. Let q ≥ 3 be a prime power and
define the integer

k′ =

{(
q6 − q3 − q2 − 1

2
q − 1

)
(q3 + 1) for q even,(

q6 − q3 − q2 + 1
2
(q − 1)

)
(q3 + 1) for q odd.

Then the one-point functional code CL(D, k′P∞) has
parameters[

q9 − q3,

(
q6 − 3

2
q3 − q2 − q

2

)
(q3 + 1),

≤
(
q2 +

q

2
+ 1
)

(q3 + 1) + q3
]

for q even, and[
q9 − q3,

(
q6 − 3

2
q3 − q2 +

q + 1

2

)
(q3 + 1),

≤
(
q2 − q − 1

2

)
(q3 + 1) + q3

]
for q odd.

Proof. We give the proof for q even, the odd case
is similar. It is straightforward to see that the length
is n = q9 − q3, the dimension is as given, and

δ = n− k′ = (q2 +
q

2
+ 1)(q3 + 1)

is the designed minimum distance. For

a = q3 − q2 − 1

2
q − 3

b = q3 − q2 − 1

2
q − 1

we compute k′ = q9−q6+aq3+b. Let D′ be the sum
of the affine points of Hq3 . As a < b = a+ 2, [21,
line 4) of Table 1] implies that the true minimum
distance of CL(D′, k′P∞) is

q9 − k′ = δ + q3 = (q2 +
q

2
+ 1)(q3 + 1) + q3.

Since CL(D, k′P∞) is obtained from CL(D′, k′P∞)
by deleting q3 positions, the minimum distance of
CL(D, k′P∞) is at most δ + q3.

Theorem IV.3. Let q ≥ 3 be a prime power and
define the integer

k =

{
q3 + q2 + q

2
− 1 for q even,

q3 + q2 − q+1
2
− 1 for q odd.

Then the differential code CΩ(D, kT) has parameters[
q9 − q3,

(
q6 − 3

2
q3 − q2 − q

2

)
(q3 + 1),

≥ δ +
(q

2
− 1
)

(q3 + 1)
]

for q even, and[
q9 − q3,

(
q6 − 3

2
q3 − q2 +

q + 1

2

)
(q3 + 1),

≥ δ +
q − 1

2
(q3 + 1)

]
for q odd, where

δ = deg(kD)− 2g + 2 = (q3 + 1)(k − q3 + 2)

is the designed minimum distance of CΩ(D, kT).

Proof. Let q ≥ 4 be even and m0 := q2/2. Then

(m0 + 1)(q + 1)

q2 − q + 1
=
q3 + q2 + 2q + 2

2(q2 − q + 1)

=
q

2
+ 1 +

3q

2(q2 − q + 1)
.

This implies⌊
q + 1− (m0 + 1)(q + 1)

q2 − q + 1

⌋
=

⌊
q

2
− 3q

2(q2 − q + 1)

⌋
=
q

2
− 1

for q > 2. By Corollary III.3,

α =
q2(q + 1)

2
+ 1, . . . , β =

q2(q + 1)

2
+
q

2
− 1

is a sequence of consecutive gap numbers. More-
over, k = α + β − 1. As deg(kT) > 2g − 2, we
have

dim(CΩ(D, kT)) = n+ g− deg(kT)− 1

= (q6 − 3

2
q3 − q2 − 1

2
q)(q3 + 1).
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Proposition IV.1 improves the designed minimum
distance

δ = deg(kT)− 2g + 2 = (q2 +
q

2
+ 1)(q3 + 1).

of CΩ(D, kT) by

(β − α + 1) deg(T) = (
q

2
− 1)(q3 + 1).

This proves the theorem for q ≥ 4 even. Similar
computation applies for q ≥ 3 odd with m0 = (q2−
1)/2.

Remark IV.4. (a) Lemma IV.2 and Theorem IV.3
show that the code CΩ(D, kT) performs much
better than the one-point Hermitian code of
the same length and dimension; the improve-
ment is approximatively q4/2.

(b) In [20, Theorem 2.5], the authors show the
existence of a divisor G such that CΩ(D, kT)
and CΩ(D, G) have the same length and dimen-
sion, and CΩ(D, G) has a minimum distance
δ+O(q6). While the parameter of CΩ(D, G) is
better, no explicit construction for G is known.

(c) We compare the parameters of our code with
the bound given by Matthews and Michel;
see [17, Theorem 3.5]. The Matthews-Michel
bound improves the designed minimum dis-
tance of AG-codes when the support of the
defining divisor consists of a unique place P
of higher degree. The improvement is given
in term of the Weierstrass gap sequence at
P . In [13], this sequence was computed for
degree 3 places of the Hermitian curve, and
the arising Matthews-Michel bound was spec-
ified. It should be noticed that the case of
higher degree places is open and appears to
be more difficult. In [13, Theorem 4.1] the
improvement is shown to be at most 3q for the
Hermitian curve over Fq2 . In our context, this
means an improvement of 3q3 for the designed
minimum distance, which is asymptotically
worse than the improvement q4/2 of the codes
in Theorem IV.3.

(d) When q = 2 then k = 12 and C = CΩ(D, 12 T)
is a [504, 423]64-code with designed minimum
distance δ = 54. Theorem IV.3 gives no
improvement for the minimum distance, and
indeed, the true minimum distance of C is 54.
To see this, consider the equivalent functional
code C ′ = CL(D, 50 T), together with the

polynomial R8(X, Y ) of degree 57 introduced
in (4). Take any 51 linear factors of R8(X, Y )
including X, Y − τ, Y − τ 2, where τ is the
primitive element of F4, Then their product
R∗(X, Y ) defines a (totally reducible) curve
of degree 51 that covers the 9 points of
H2(F4), and as many as 9 · (51−3) + 3 · (9−
3) = 450 further points of H8(F64). More-
over, let g = R∗(x, y)/(x3 − y − y2)17. Then
g ∈ L (50 T) and g determines a codeword of
C ′ with weight 504− 450 = 54.

V. THE PERMUTATION AUTOMORPHISMS OF
CL(D,mT)

Definition V.1. Let X be a smooth irreducible
curve over Fq, Q1, . . . , Qn ∈ X (Fq), D = Q1 +
· · ·+Qn, and C be an Fq-rational divisor on X with
supp(D)∩ supp(C) = ∅. A monomial automorphism
of CL(D, C) is a triple (α, β, γ), where α is an
automorphism of L (C), β is a permutation of
{Q1, . . . , Qn} and γ is a {Q1, . . . , Qn} → Fq map.
Moreover, for all P ∈ {Q1, . . . , Qn} and f ∈ L (C)
yields

α(f)(P ) = γ(P )f(β(P )). (8)

If γ = 1 is constant then (α, β) is called a permu-
tation automorphism of CL(D, C). If α and β are the
identity maps then one speaks of a pure monomial
automorphism.

With the notation of the previous definition, let
τ be an automorphism of the function field Fq(X )
and assume that τ preserves the divisors D and C.
Then, τ induces an automorphism α of L (C) and
a permutation β of Q1, . . . , Qn. In fact, α is the
restriction of τ to L (C), and β is defined in such a
way that (8) holds. We say that (α, β) is an inherited
permutation automorphism of CL(D, C), induced by
τ .

The following proposition generalizes [15, The-
orem 4.1] in such a way, that it can be applied
to certain codes CL(D,mT) of the Hermitian curve
Hq3 .

Proposition V.2. Let X : F (X, Y ) = 0
be a smooth irreducible plane curve over Fq,
Q1, . . . , Qn ∈ X (Fq), D = Q1 + · · · + Qn, and
C be an Fq-rational divisor on X with supp(D) ∩
supp(C) = ∅. Let x, y be generators of the function
field Fq(X ) satisfying F (x, y) = 0. Assume that the
following hold:
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(a) The points Q1, . . . , Qn are affine.
(b) There is a curve G : G(X, Y ) = 0 and an

effective divisor B, defined over Fq, such that
X · G = C + B.

(c) There is a polynomial S(X, Y ) ∈ Fq[X, Y ]
such that 1

S(x,y)
, x
S(x,y)

, y
S(x,y)

∈ L (C).
(d) n > (degG)(degF )2.

Then all permutation automorphisms of CL(D, C)
are inherited.

Proof. Let (α, β) be a permutation automorphism
of CL(D, C). By (a) we can set Qi = (ai, bi) and
β(Qi) = Qi′ = (ai′ , bi′) with ai, bi, a

′
i, b
′
i ∈ Fq.

Equation (3), (b) and (c) imply the existence of
polynomials u(X, Y ), v(X, Y ), w(X, Y ) of degree
at most deg(G) such that

α

(
1

S(x, y)

)
=
w(x, y)

G(x, y)
,

α

(
x

S(x, y)

)
=
u(x, y)

G(x, y)
,

α

(
y

S(x, y)

)
=
v(x, y)

G(x, y)
.

By α(f)(P ) = f(β(P )) we have

u(ai, bi)

G(ai, bi)
= α

(
x

S(x, y)

)
(ai, bi)

=

(
x

S(x, y)

)
(ai′ , bi′)

=
ai′

S(ai′ , bi′)

for all i = 1, . . . , n. Similarly, w(ai,bi)
G(ai,bi)

= 1
S(ai′ ,bi′ )

and v(ai,bi)
G(ai,bi)

=
bi′

S(ai′ ,bi′ )
. This implies

ai′ =
u(ai, bi)

w(ai, bi)
, bi′ =

v(ai, bi)

w(ai, bi)
. (9)

Define the polynomial

F ∗(X, Y ) = w(X, Y )deg(F )F

(
u(X, Y )

w(X, Y )
,
v(X, Y )

w(X, Y )

)
.

Clearly, deg(F ∗) ≤ deg(F ) deg(G), and

F ∗(ai, bi) = w(ai, bi)
deg(F )F (ai′ , bi′) = 0

holds for i = 1, . . . , n. In particular X ∗ :
F ∗(X, Y ) = 0 and X have at least n points in
common. The theorem of Bézout and (d) imply
F | F ∗.

Since w(x, y) 6= 0, the curve W : w(X, Y ) = 0
has a finite number of points in common with X .
Take an arbitrary affine point (a, b) ∈ X (F̄q), not
on W . We have

0 = F ∗(a, b) = w(a, b)deg(F )F

(
u(a, b)

w(a, b)
,
v(a, b)

w(a, b)

)
,

which implies

F

(
u(a, b)

w(a, b)
,
v(a, b)

w(a, b)

)
= 0.

This means that the rational map

τ̄(X, Y ) =

(
u(X, Y )

w(X, Y )
,
v(X, Y )

w(X, Y )

)
maps any point of X (F̄q) to X , up to a finite
number of exceptions. Since τ̄ is defined over Fq,
we obtain that

τ : x 7→ u(x, y)

w(x, y)
, y 7→ v(x, y)

w(x, y)

extends to a homomorphism of the function field
Fq(X ) to itself. We show that τ is surjective. Notice
that we identified the places of Fq(X ) and the
points of X , and, the action of τ on the places
and the action of τ̄ on the points are equivalent.

By Equation (9), τ induces β on Q1, . . . , Qn.
For all f ∈ L (C) we have τ(f)(Qi) = f(Qi′) =
α(f)(Qi). As n > deg(C), the evaluation map
f → (f(Q1), . . . , f(Qn)) is injective and α(f) =
τ(f) holds. In particular, 1/S(x, y), x/S(x, y) and
y/S(x, y) are in the image of τ , hence x, y ∈
Im(τ), which shows that τ is indeed an auto-
morphism of Fq(X ). We have also seen that τ
induces the permutation automorhism (α, β), which
is therefore inherited.

We can extend this method to monomial auto-
morphisms.

Proposition V.3. Under the hypothesis of Propo-
sition V.2, if deg(G) < deg(F ) and (α, β, γ) is
a monomial automorphism of CL(D, C), then γ is
constant. In particular, the monomial automorphism
group of CL(D, C) is the direct product of the permu-
tation automorphism group by the pure monomial
automorphism group.

Proof. With the notation of Proposition V.2, we
have

α(f)(ai, bi)) = γ(ai, bi)f(ai′ , bi′),
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for all i = 1, . . . , n. Therefore, as in the
proof of that proposition, there exist polynomials
u(X, Y ), v(X, Y ) and w(X, Y ) of degree at most
deg(G) such that

w(ai, bi)

G(ai, bi)
= γ(ai, bi)

1

S(ai′ , bi′)
,

u(ai, bi)

G(ai, bi)
= γ(ai, bi)

ai′

S(ai′ , bi′)
,

v(ai, bi)

G(ai, bi)
= γ(ai, bi)

bi′

S(ai′ , bi′)
.

for all i = 1, . . . , n. Then (9) holds and as shown
in the proof of Proposition V.2

τ : x 7→ u(x, y)

w(x, y)
, y 7→ v(x, y)

w(x, y)

is an automorphism of Fq(X ). Let (α′, β−1) be the
inverse of the permutation automorphism (α, β) in-
duced by τ . Then (α∗, β∗, γ) = (α, β, γ) ◦ (α′, β−1)
is a pure monomial automorphism and

α∗(f)(ai, bi) = γ(ai, bi)f(ai, bi), (10)

for all i = 1, . . . , n. Now, Equation (3) applied
to the functions α∗

(
1

S(x,y)

)
and 1

S(x,y)
implies the

existence of polynomials r∗(X, Y ) and s∗(X, Y ) of
degree at most deg(G) such that

1

S(X, Y )
=
s∗(X, Y )

G(X, Y )
and

α∗
(

1

S(X, Y )

)
=
r∗(X, Y )

G(X, Y )
. (11)

Then equations (10) and (11), give γ(ai, bi) =
r∗(ai,bi)
s∗(ai,bi)

for all i = 1, . . . , n. Therefore we define
γ(X, Y ) = r∗(X,Y )

s∗(X,Y )
. The same argument applied to

each f ∈ L (C) yields

f(X, Y ) =
s(X, Y )

G(X, Y )
, α∗(f)(X, Y ) =

r(X, Y )

G(X, Y )
,

(12)
where s(X, Y ) and r(X, Y ) are polynomials of
degree at most deg(G). Then, by equations (10) and
(12) we have

r(ai, bi)

G(ai, bi)
= γ(ai, bi)

s(ai, bi)

G(ai, bi)
,

for all i = 1, . . . , n. In particular,

r(ai, bi)s
∗(ai, bi)− r∗(ai, bi)s(ai, bi) = 0

for all i = 1, . . . , n. Since
r(X, Y ), r∗(X, Y ), s(X, Y ), s∗(X, Y ) have degree
at most deg(G), and

(deg(G))2(deg(F )) ≤ (deg(G))(deg(F ))2 < n,

Bézout’s theorem yields rs∗ = r∗s. In other words,
α(f) = r∗/s∗f for all f ∈ L (C). We show that
this only holds when r∗/s∗ is a constant. Since
α is an endomorphism of the finite dimensional
vector space L (C) over Fq, α is represented by
a matrix A with respect to a fixed basis. By the
classical Cayley-Hamilton Theorem, there exists a
polynomial u(T ) over Fq such that u(A) is the zero
matrix. Since Ai(f) = αi(f) = (r∗/s∗)if , this
yields u(A)(f) = u(r∗/s∗)f for all f ∈ L (C).
Therefore, u(r∗/s∗) = 0 in K(X ). In particular,
for any (ai, bi), u(r∗/s∗) valuated in (ai, bi) equals
zero. On the other hand, since r∗/s∗ valuated in
(ai, bi) gives an element, say k, in Fq, T − k is a
factor of u(T ). Therefore, u(T ) = (T − k)iv(T ).
This factorization, interpreted in K(X )[T ], gives
u(r∗/s∗) = (r∗/s∗ − k)iv(r∗/s∗). If r∗/s∗ 6= k,
then v(r∗/s∗) = 0, and the above argument can
be repeated for v(T ). Since deg v(t) < deg u(T ),
this ends up with r∗/s∗ = k, a constant. To con-
clude the proof observe that every pure monomial
automorphism with constant γ commutes with any
permutation automorphism.

Now, we are able to compute the group of
monomial automorphisms of the functional code
CL(D,mT) for several values of m.

Theorem V.4. Let q+1 ≤ m ≤ q3−2 be an integer
and write m = m0(q + 1) + m1, 0 ≤ m1 ≤ q. If
m1 ≤ q3−2−m

q(q+1)
, then the following hold:

(a) The group of permutation automorphisms of
CL(D,mT) is isomorphic to the projective
unitary group PGU(3, q).

(b) The group of monomial automorphisms of
CL(D,mT) is isomorphic to the direct product
of the projective unitary group PGU(3, q) by
a cyclic group of order q6 − 1.

Proof. We apply Proposition V.2 for the curve Hq3

over Fq6 . Condition (a) is immediate. Conditions (b)
and (c) follow from Lemma III.1 with G(X, Y ) =
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Hm0
q Rm1

q and S(X, Y ) = Hm0
q , m0 > 0. Hence,

deg(G) = m0(q + 1) +m1(q2 + q + 1)

= m+m1q(q + 1)

≤ q3 − 2

and

deg(G) deg(Hq3)
2 ≤ (q3−2)(q3+1)2 < q9−q3 = n.

This means that Condition (d) of Proposition
V.2 holds, and all permutation automorphisms
of CL(D,mT) are inherited. It is known that
Aut(Fq6(Hq3)) ∼= PGU(3, q3), and the action of
Aut(Fq6(Hq3)) on the Fq6-rational places is equiv-
alent to the action of PGU(3, q3) on the points
of Hq3 . Clearly, if τ ∈ Aut(Fq6(Hq3)) induces
a permutation automorphism of CL(D,mT), then τ
preserves D. Thus, it preserves supp(T) = Hq and
τ ′ ∈ PGU(3, q). This finishes the proof of (a).
Since deg(G) < deg(Hq3) = q3 + 1, Proposition
V.3 implies (b).
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