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The aim of this note is to establish a somewhat surprising connection between functions on
Newton–Okounkov bodies and Seshadri constants of line bundles on algebraic surfaces.
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1 Introduction

The aim of the short note is to study the connection between functions on Newton–Okounkov bodies
defined by filtrations imposed by orders of vanishing, and Seshadri-type invariants.

Seshadri constants first arose as a tool created by Demailly in order to understand Fujita’s conjec-
ture [5] and they soon became an area of independent research. Given a smooth projective variety
X and a nef line bundle L on X , the Seshadri constant of L at a point P ∈ X is defined to be the
real number

ε(L;P ) =def inf
C

L · C
multP C

, (1)

where the infimum is taken over all irreducible curves C containing the point P . In this note we
are interested in the case of surfaces. Although it is not going to be explicit in what follows, our
motivation for this note is to investigate arithmetic properties of Seshadri constants.

Rationality of Seshadri constants has been an intriguing question ever since they entered the scene
about thirty years ago. Although the general expectation is that irrational Seshadri constants should
abound, to this day there is no example of such behaviour. This is quite striking as in a closely related
setting one can easily find irrational s-invariants as presented in [4, Example 1.7]. Nevertheless, the
case of Seshadri constants, especially in dimension two, when many asymptotic invariants end up
taking on only rational values, is wide open (see [9, Remark 5.1.13]).

The recent work [6] links the rationality of Seshadri constants on blow-ups of P2 to Nagata’s
conjecture (and the more general SHGH conjecture), which certainly adds some extra significance
to the issue. In this paper we open a new line of attack in that we relate one-point Seshadri constants
to invariants of functions on Newton–Okounkov bodies.

It is an immediate consequence of their definition that whenever a Seshadri constant is irrational
then it must be ε(L;P ) =

√
L2, see e.g. [1, Theorem 2.1.5].

Our main result is the following.

Theorem. Let X be a smooth projective surface, Y• an admissible flag, L a nef and big line bundle
on X , and let P ∈ X be an arbitrary point. Furthermore let ordP be the geometric valuation
defined by the order of vanishing at P and let ϕordP

(x) be the associated Okounkov function.

If max
x∈∆Y• (L)

ϕordP
(x) ∈ Q, then ε(L;P ) ∈ Q .

2 Rationality of Seshadri constants and functions on Okounkov bodies

The theory of Newton–Okounkov bodies has emerged recently with work by Okounkov [12], Kaveh–
Khovanskii [7], and Lazarsfeld–Mustaţă [10]. Shortly thereafter, Boucksom–Chen [2] and Witt-
Nyström [11] have shown ways of constructing geometrically significant functions on Okounkov
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bodies, that were further studied in [3]. In the context of this note the study of Okounkov functions
was pursued by Boucksom and the last three authors in [3]. We refer to [3] for the construction and
properties of Okounkov functions.

In this section we consider an arbitrary smooth projective surface X and an ample line bundle L
on X . Let P ∈ X be an arbitrary point and let π : Y → X be the blow up of P with the exceptional
divisor E. Recall that the Seshadri constant of L at P can equivalently be defined as

ε(L;P ) = sup {t > 0 |π∗L− tE is nef } .

There is a related invariant

µ(L;P )
def
= sup {t > 0 |π∗L− tE is pseudo-effective}
= sup {t > 0 |π∗L− tE is big} .

The invariant ε(L;P ) is the value of the parameter λ where the ray π∗L − λE meets the boundary
of the nef cone of Y , and µ(L;P ) is the value of λ where that ray meets the boundary of the pseudo-
effective cone. The following relation between the two invariants is important in our considerations.

Remark 2.1 It follows from [1, Theorem 2.1.5 and Theorem 6.1.1] that if ε(L;P ) is irrational,
then

ε(L;P ) = µ(L;P ) .

In particular, if µ(L;P ) is rational, then so is ε(L;P ).
Thus rationality of µ(L;P ) implies the rationality of the corresponding Seshadri constant. This

invariant appears in the study of the concave function ϕordP
associated to the geometric valuation

on X defined by the order of vanishing ordP at P . We fix some flag Y• : X ⊇ C ⊇ {x0} and con-
sider the Okounkov body ∆Y•(L) defined with respect to that flag. We define also a multiplicative
filtration determined by the geometrical valuation ordP on the graded algebra V = ⊕k>0Vk with
Vk = H0(X, kL) by

Ft(V ) = {s ∈ V : ordP (s) > t} .

(All the above remains valid in the more general context of graded linear series.) There is an induced
filtration F•(Vk) on every summand of V and one defines the maximal jumping numbers of both
filtrations as

emax(V,F•) = sup {t ∈ R : ∃ k FktVk 6= 0}

and
emax(Vk,F•) = sup {t ∈ R : FtVk 6= 0}

respectively. Let ϕordP
(x) = ϕF•(x) be the Okounkov function on ∆Y•(L) determined by the

filtration F•, see [2, Definition 1.8]. It turns out that µ(L;P ) is the maximum of the Okounkov
function ϕordP

.
Proposition 2.2 With notation as above we have that

µ(L;P ) = lim sup
m→∞

max{ordP (s) | s∈H0(X,OX(mL))}
m

= maxx∈∆Y• (L) ϕordP
(x).

Proof. Observe that

ordP (s) = ordE(π∗s) = max {m ∈ N | div(π∗s)−mE is effective} .

Consequently,

µ(L;P ) = sup {t ∈ R>0 |π∗L− tE is pseudo-effective}

= lim sup
m→∞

max
{

ordP (s) | s ∈ H0 (X,OX(mL)
}

m
,

which gives the first equality.
For the second equality, we observe first that

max
{

ordP (s) | s ∈ H0 (X,OX(mL))
}

= emax(Vm,F•) ,
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and hence

lim sup
m→∞

max
{

ordP (s) | s ∈ H0 (X,OX(mL))
}

m
= emax(V,F•) .

Since

emax(V,F•) = max
x∈∆Y• (L)

ϕordP
(x)

by Theorem 2.4, we are done.

2.1 Independence of the maximum of an Okounkov function on the flag

In the course of this section the projective variety X can have arbitrary dimension.
Boucksom and Chen proved that though ϕF• and ∆(V•) depend on the flag Y•, the integral of

ϕF• over ∆(V•) is independent of Y•, [2, Remark 1.12 (ii)]. We prove now that the maximum of the
Okounkov function does not depend on the flag. This fact is valid in the general setting of arbitrary
multiplicative filtration F defined on a graded linear series V•.

Remark 2.3 Note that in general the functions ϕF• are only upper-semicontinuous and concave,
but not necessarily continuous on the whole Newton–Okounkov body as explained in [3, Theorem
1.1]. They are however continuous provided the underlying body ∆(V•) is a polytope (see again [3,
Theorem 1.1]), which is the case for complete linear series on surfaces [8].

Theorem 2.4 (Maximum of Okounkov functions) With the above notation, we have that

max
x∈∆Y• (L)

ϕF•(x) = emax(V,F•).

In particular the left hand side does not depend on the flag Y•.

Proof. For any real t > 0, we consider the partial Okounkov body ∆t,Y•(L) associated the graded
linear series Vt,k ⊂ H0(X, kL) given by

Vt,k
def
= Fkt(H

0(X, kL)) .

Note that by definition

emax(V,F•) = sup

{
t ∈ R|

⋃
k

Vt,k 6= 0

}
.

In other words,

emax(V,F•) = sup {t ∈ R| ∆t,Y•(L) 6= ∅} .

Recall that by definition

ϕF•(x) = sup{t ∈ R| x ∈ ∆t,Y•(L)}.

and it is therefore immediate that for all x

ϕF•(x) 6 emax(V,F•)

from which it follows that

max
x∈∆Y• (L)

ϕF•(x) 6 emax(V,F•).

Since the bodies ∆t,Y•(L) form a decreasing family of closed subsets of Rd, we have that⋂
t| ∆t,Y• (L)6=∅

∆t,Y•(L) 6= ∅.

Consider a point y ∈
⋂

t| ∆t,Y• (L)6=∅
∆t,Y•(L). We have then

y ∈ ∆t,Y•(L)⇔ ∆t,Y•(L) 6= ∅
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and hence

sup{t ∈ R| y ∈ ∆t,Y•(L)} = sup{t ∈ R| ∆t,Y•(L) 6= ∅}

or in other words

ϕF•(y) = emax(V,F•)

from which it follows that

max
x∈∆Y• (L)

ϕF•(x) 6 emax(V,F•).

This completes the proof of the Theorem.

We conclude this note with an example illustrating the application of the Theorem and with a
challenge heading in the direction of potentially irrational Seshadri constants. The example is an
easy modification of [3, Example 3.4], therefor we omit all arguments and merely state facts.

Example 2.5 Let f : X = BlQ P2 → P2 be the blow up of the projective plane in a point Q with
the exceptional divisor E. Let H = f∗(OP2(1)) and let the flag Y• be given by X ⊃ L 3 P0, where
L is (proper transform of) a line not passing through the point Q and P0 is an arbitrary point on L.
For positive integers a > b consider the ample line bundle La,b = aH − bE on X . Let P ∈ X be
a point not on the total transform of the line passing through Q and P0. Then the Okounkov body
∆Y•(La,b) is the trapezoid indicated in Figure 2.5. The function ϕordP

is then given by

a− b0

a

∆Y•(La,b)

Fig. 1 The Newton-Okounkov body of La,b

ϕordP
(x1, x2) =

{
a− x1 for x1 + x2 6 a− b
2a− 2x1 − x2 − b for a− b 6 x1 + x2 6 a

Hence µ(La,b;P ) = a. On the other hand it is easy to see that

ε(La,b;P ) = a− b,

the constant being computed by the proper transform of the line passing through P and Q.

Challenge. Similarly as in Example 2.5 we consider now f : X = BlP1,...,P9
P2 → P2 the blow

up of P2 at 9 general points P1, . . . , P9. Let L = 22H − 7E be an ample line bundle on X , where
E = E1 + . . .+E9 is the union of the exceptional divisors Ei of f . Let P be a general point on X .
Compute ϕordP

with respect to a flag as in Example 2.5.
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[6] Dumnicki, M., Küronya, A., Maclean, C., Szemberg, T.: Rationality of Seshadri constants and the Segre-Harbourne-

Gimigliano-Hirschowitz Conjecture, preprint 2015.
[7] Kaveh, K., Khovanskii, A.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection

theory. Annals of Mathematics 176 (2012), 1–54
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