
Diversity Coding in Two-Connected Networks
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Abstract—In this paper we propose a new proactive recovery
scheme against single edge failures for unicast connections in
transport networks. The new scheme is a generalisation of
diversity coding where the source data AB is split into two parts
A and B and three data flows A, B and their exclusive OR
(XOR) A⊕B are sent along the network between the source and
destination node of the connection. By ensuring that two data
flows out of the three always operate even if a single edge fails, the
source data can be instantaneously recovered at the destination
node. In contrast with diversity coding we do not require the
three data flows to be routed along three disjoint paths; however,
in our scheme a data flow is allowed to split into two parallel
segments and later merge back. Thus, our Generalised Diversity
Coding (GDC) scheme can be used in sparse but still 2-connected
network topologies. Our proof improves an earlier result of
network coding, by using purely graph theoretical tool set instead
of algebraic argument. In particular we show that when the
source data is divided into two parts, robust intra-session network
coding against single edge failures is always possible without any
in-network algebraic operation. We present linear-time robust
code construction algorithms for this practical special case in
minimal coding graphs. We further characterise this question,
and show that by increasing the number of edge failures and
source data parts we lose these desired properties.

Index Terms—robust network coding, diversity coding, single
edge failures, instantaneous recovery

I. INTRODUCTION

Fast recovery of connections from cable cuts is one of
the most important requirements in transport networks, as a
long disruption of the transport service highly degrades the
performance of upper layer protocols, e.g., TCP. Thus, the
main goal is to keep transport network failures transparent for
the applications by restoring the affected connections rapidly
before the upper layer protocols sense and react to it. Although
several recovery approaches exist for providing survivable
connections [1]–[4], most of them are reactive schemes (e.g.,
shared protection approaches), where the traffic is sent along
the secondary path(s) only after reacting to a failure on
the primary path. They provide excellent network resource
utilization, but also rely on excessive control plane signaling
which may increase restoration time in large networks to
an unacceptable level. Hence, in practice proactive schemes
are preferred by network operators, where the traffic is sent
simultaneously along the primary and secondary paths, called
dedicated protection. Although these proactive schemes suffer
from high resource utilization, they provide instantaneous
recovery [5], [6], as switching matrix configurations remain
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Fig. 1. Illustrative example of protection methods for instantaneous recovery.
Duplicated edges forward the whole source data, while simple edges forward
only the half of it.

unchanged after a failure occurs. Thus, signaling is completely
eliminated from the recovery process of the disrupted con-
nections, i.e., no flow rerouting or packet retransmission is
required upon an edge failure, clearly satisfying the strict
recovery time requirement of transport networks.

On one hand, among these single edge failure resilient [7]
dedicated protection approaches 1+1 protection [8] is favored
for its simplicity, because the same data flow AB is sent along
two edge-disjoint paths, and only a single-ended switching is
required at the destination node upon failure of the primary
path. As a result, this approach suffers from high capacity
requirement, which often called 100% redundancy, as the
secondary path carries only redundant data. Fig. 1 shows an
example of 1 + 1 protection between nodes s1 and t1. On
the other hand, in diversity coding (DC) [9]–[11] the source
data AB is split into two parts A and B, and these parts
together with their exclusive OR (XOR) A⊕B are sent along
three edge-disjoint paths (see also the connection between s2
and t2 in Fig. 1). Note that, the two source data parts can
be instantaneously recovered from arbitrary two of the three
flows with XOR coding at the destination node. Although DC
– with so called 50% redundancy – is one of the most capacity
efficient protection approaches in transport networks which
provides instantaneous recovery [6], real network topologies
are rarely 3-edge-connected [12], [13] (referred to as 3-
connected hereafter), which makes its application hard in
practice.

It is important to observe that DC restricts algebraic op-
erations (i.e., XOR coding and decoding) only to the end-
nodes of the connection, e.g., host computers or edge routers.
However, it was demonstrated that if every node can per-
form involved algebraic operations (network coding), then
the design space can be fully explored [6], [14], [15], as



network coding remedies both the high capacity requirement
and strict topology constraint of previous approaches. For
example, between nodes s3 and t3 in Fig. 1 neither a disjoint
path-pair on duplicated edges for 1+1, nor three edge-disjoint
paths for DC exist. Luckily, with the application of robust
network codes – where the network code remains unchanged
even when some edges fail – instantaneous recovery can be
ensured even for s3 and t3 [16], [17]. For decodability at the
destination node, it is necessary and sufficient to ensure that
after any single edge failure the flow value between the source
and destination node is at least as large as the bandwidth
requirement of the connection, i.e., the connection is fault-
tolerant. For example, the connection between s3 and t3 in
Fig. 1 has flow value at least two, regardless if a duplicated or
a simple edge fails, thus, a robust network code exists which
ensures instantaneous recovery [16].

From the above example it is clear that theoretically network
coding is required to reach larger flexibility and minimal
capacity, but from a practical point of view upgrading all core
switches with coding capabilities is not realistic at this mo-
ment [18], [19]. The main contribution of this paper is filling
this gap between theory and practice by proposing a robust
network coding method, called Generalised Diversity Coding
(GDC), which similar to DC performs simple XOR coding
only at the communication end-nodes while instantaneous re-
covery is maintained for all types of fault-tolerant connections
even in 2-connected topologies [20]. To be specific, the robust
network code of GDC consists of three end-to-end directed
acyclic graphs (called routing DAGs) carrying the two parts
of the source data A, B and redundant data A⊕B, respectively.
For example, for the connection between s3 and t3 the routing
DAGs are EA⊕B : s3 → a → t3, EB : s3 → c → t3 and
EA : s3 → b → a

c → t3, where at node b the same data
is duplicated and sent along two edges b → a and b → c,
while one of the copies (or the one operating upon failure)
is selected at t3 arriving on a → t3 and c → t3. Following
a graph-theoretic approach, we show that such routing DAG
decomposition (i.e., robust network code) always exists for
two data parts if the connection is fault-tolerant.

The rest of the paper is organized as follows. In Section II
we enumerate the related work on robust network coding.
Section III introduces GDC and the preliminaries of the study.
Section IV presents our main theorem proving that for GDC
no in-network coding is required. In Section V we provide
algorithms which work linear time in the input size for
finding the three routing DAGs (i.e., robust network code).
It is demonstrated in Section VI that this simplicity of robust
network codes exists only for this particular special case, i.e.,
single edge failures and two data parts. Section VII provides
our simulation results, while Section VIII concludes the paper.

II. RELATED WORK

Suurballe’s algorithm [21] provides an edge-disjoint path-
pair for 1 + 1 protection – the simplest and most widespread
instantaneous recovery approach – in polynomial-time, which

makes it resilient against single edge failures1. 1 + 1 does not
need any further code construction for instantaneous recovery,
but it allocates an excessive amount of redundant capacity
(at least 100% compared to a single shortest path). Diversity
coding (DC) [5], [6], [9] is a promising approach to reduce
the high redundancy of 1+1 (from 100% to 50%) by applying
XOR coding at the source. Although core network nodes are
intact and only simple coding and decoding is required at the
end-nodes, it is beneficial only in transport networks where
even a third edge-disjoint path exists with a reasonable cost.
However, this is rarely the case.

The importance of network coding in reducing the capac-
ity consumption of 1 + 1 in transport networks has been
demonstrated in several studies [5], [6], [10], [15], [22] in
different network layers (e.g., optical [23], [24], electronic
domain [18], SDN [25], etc.). Most of these works assume
that a matrix of traffic demands are given in advance [6], [15],
[22], [23], thus, inter-session network coding can be applied
on the data of different connections. However, recent transport
network trends point towards that connection demands are
arriving one after another without any knowledge of future
incoming requests. Thus, in these dynamic environments intra-
session network coding is needed for unicast connections,
where coding is performed on different parts of the same
source data [5], [24], [25]. Hence, each connection can be
deployed and released independently, while the routing of the
other connections remain intact.

In network coding based approaches, after calculating and
reserving the capacity for the connection (i.e., compute the
coding graph), in a second phase robust network codes [16],
[17] – where no change in the coding behavior is required
after a failure occurs – have to be constructed in order to
ensure instantaneous recovery. In [24] a Linear Program (LP)
formulation was presented, which provides coding graphs
resilient against single edge failures with minimal capacity.
Although it can serve as theoretical lower bound for instan-
taneous recovery approaches, from a practical point of view
it is not applicable in transport networks as in the resulting
coding graph the source data might be split into arbitrarily
many parts. Furthermore, the required field size for the robust
network codes could be in the range of O(|E|) [16], [17].

In [25] General Dedicated Protection with Network Coding
(GDP-NC) was proposed, which made a step closer to get a
practical approach in transport networks by limiting the num-
ber of data parts to two; however, for the price of an NP-hard
optimization problem to obtain the minimal capacity coding
graph against multiple failures. However, for the special case
of single edge failures polynomial-time capacity allocation
algorithm exists [11]. In [5] the authors made a further step,
and showed that for this practical special case – single edge
failure resilience and two data parts – robust network codes
exist and can be constructed in O(|V |2) time over GF (2), i.e.,
simple XOR coding is sufficient instead of involved algebraic

1Note that, single edge failures are the most dominant failure events in
transport networks [7].



operations over a field of size O(|E|). However, this approach
still requires the upgrade of the core network with XOR coding
capabilities [18], [19].

A. Our Contribution

In this paper we make the following steps towards a
practical transport network coding scenario:
• The algebraic argument of [16] is a powerful tool for

modelling and solving network coding problems. The
work by Rouayheb et al. [5] identifies the graph theoret-
ical nature of the investigated scenario but still focuses
on algebraic properties, such as reducing the field size
to GF (2). Our insight was to revisit the problem with
pure graph theoretical mindset, and show that in-network
coding is actually not required at all.

• The coding algorithm in [5] runs in O(|V |2) time, be-
cause of the computation time of testing the minimality
of the coding graph. Roughly speaking, minimality is
important only to have a “simple” coding graph which
can be efficiently handled. To improve the running time
we use a less strict criteria than minimality2, which can
be verified in linear time and still results a sufficiently
“simple” coding graph. As a result, robust network codes
can be constructed in O(|V |+|E|) time for fault-tolerant
coding graphs.

• The above simplicity and efficiency makes GDC a viable
approach to provide instantaneous recovery. We further
demonstrate that the minimal capacity coding graphs of
GDC can approach the theoretical minimum of capacity
requirement even in 2-connected networks, where DC
already fails for several connection requests. The trick
is that the three data flows A, B and A ⊕ B are routed
on three end-to-end routing DAGs instead of disjoint end-
to-end paths.

III. PROBLEM FORMULATION AND PRELIMINARIES

Let G = (V,E) be a directed coding graph representing
the routes of the data flows of a unicast connection, where
V is the set of nodes and E is the set of edges, and there
are two distinguished nodes s ∈ V and t ∈ V , the source and
the destination node of the connection, respectively. Each edge
has a unit capacity, thus, multiple (parallel) edges are allowed
between two nodes representing communication channels with
higher capacity. Note that, a single failure (e.g., cable cut)
disrupts the whole communications channel, i.e., all parallel
edges between the two nodes fail. We assume that the source
data (without loss of generality with sending rate of two units3)
can be split into two parts of equal (unit) size, denoted as A
and B.

Definition 1. We call a coding graph G = (V,E) fault-
tolerant if there is an s− t flow of value at least 2, even if a
single failure occurs (i.e., the corresponding edge or parallel

2Properties 1-3 in Sec. V-A.
3As each demand is routed independently, the capacities of the coding graph

can be scaled accordingly to the source’s sending rate.

edges are removed from G). We call a fault-tolerant graph
G minimal, if after removal of a single edge (either from a
single edge or multiple parallel edges) the resulting graph is
no longer fault-tolerant.

See Fig. 2a as an example for a minimal coding graph.
An example of a fault-tolerant, but not minimal graph can be
obtained by adding any directed edge to Fig. 2a. We assume
that a fault-tolerant coding graph G is given as the input of
the GDC framework. Furhter note, that an important structural
property of a minimal coding graph is that there are at most
two (parallel) edges between the same pair of nodes [20],
referred to as biedges in the rest of the paper. Thus, if G
is minimal it has edges and biedges only.

Our goal is to create a robust network code in a minimal
coding graph G when source data can be split into two parts in
order to survive any single edge failure, using simple network
coding operations (XOR) at the end-nodes while coding is
avoided in the core. These requirements essentially boil down
to finding three disjoint edge-sets (routing DAGs) in graph
G for data flows A (along edges E1), B (along E2) and
redundant data A⊕B (along E3) from s to t, i.e., decompose
the minimal coding graph into routing DAGs, from which at
least two remain s−t connected (refer to Fig. 2) after a single
edge failure to ensure decodability. Although coding is avoided
at intermediate nodes, two additional network functions are
required in the core. The first one is called splitter node, which
duplicates the packets arriving on its incoming edge, and sends
the two copies on different outgoing edges (p in Fig. 2a). The
second one is called merger node, which is able to switch (in
a failureless state) between two identical copies of data and
forward only one of them on its outgoing edge (m in Fig. 2a).
After a failure occurs, the merger forwards the intact signal
on its outgoing edge [25], [26].

For simpler arguments in the proofs, we follow the idea
from [5] and introduce an auxiliary graph called the reduced
capacity graph Ḡ = (V, Ē, c̄). The node set of Ḡ is the same
as the node set of G. There are only simple edges in Ē, each
corresponds to a simple edge or to a biedge in E. Furthermore,
in Ḡ each edge e ∈ Ē is assigned with a capacity function c̄(e),
called reduced capacity, depending whether it was a simple
edge (c̄(e) = 1) or it was a biedge (c̄(e) = 1.5) in the coding
graph G (shown in Fig. 2b).

Finally, we define a cut C ⊆ V as a set of nodes that
contains s but does not contain t. The edges of a cut C are
the edges from C to V \ C.

Definition 2. A cut C in G is called 2-biedge-cut if it consists
of two biedges from C to V \ C. A cut C in G is called 3-
edge-cut if it consists of three edges from C to V \ C.

Note that both 2-biedge-cut and 3-edge-cut has a cut value
of 3 in the reduced capacity graph Ḡ.

A. Preliminaries

Here we summarise previous results on robust code con-
struction for single edge failure resilience and two data parts,
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(a) A minimal coding graph and the robust network code (i.e., routing
DAGs) on it: edge-set E1 is shown with broken, E2 with dotted, and
E3 with solid lines.
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(b) The reduced capacity graph Ḡ = (V, Ē, c̄) is defined as follows:
the biedges in G have c̄(e) = 1.5 unit of capacity (duplicated edges
in the figure), while simple edges have c̄(e) = 1.

Fig. 2. A minimal coding graph G and its corresponding reduced capacity
graph Ḡ.

and discuss the relationship between the coding and reduced
capacity graphs.

Theorem 1. [5, Theorem 2] G is fault-tolerant if and only if
Ḡ has an s− t flow of value at least 3.

Theorem 1 gives an elegant characterisation of fault-tolerant
coding graphs, which is very useful both for theoretical and
algorithmic purposes.

Lemma 1. If G is minimal, then a maximum s− t flow in Ḡ
has value exactly 3.

Proof: G is fault-tolerant, hence by Theorem 1 Ḡ has
a flow of value at least 3. It suffices to show that it cannot
have a flow with higher value. Indeed, otherwise by the Ford-
Fulkerson theorem the capacity of minimal s − t cuts in Ḡ
would be at least 3.5. Consider one such cut, and let e be an
edge of the cut with c̄(e) = 1.5. We can then decrease the
capacity of e to c̄(e) = 1 and still have a fault-tolerant coding
graph by Theorem 1. If minimal cuts do not contain edges
with reduced capacity 1.5 then every cut has capacity at least
4 in Ḡ. Hence, an arbitrary edge can be removed while still
retaining fault-tolerance.

Lemma 2. [5, Lemma 3] Suppose that G is minimal. Then
Ḡ has a maximum flow whose value on the edges of Ḡ is from
{0.5, 1, 1.5}. In particular no edge can have flow value 0.

Because of the integrality property [27, Theorem 9.10] there
exists such a flow with respect to the reduced capacity function
c̄. Furthermore, an edge with flow value 1.5 in Ḡ corresponds
to a biedge carrying two data flows in G, while edges with
0.5 and 1 are simple edges in G forwarding a single data flow.
Based on Lemma 1 and Lemma 2, we have the following:

Corollary 1. Suppose that G is minimal, and C is a minimal
cut in Ḡ. Then cut C is either a 2-biedge-cut or a 3-edge-cut
in G.

Lemma 3. Suppose that G is minimal, and e is a biedge. Then
e is part of a 2-biedge-cut.

Proof: It suffices to show that e is a part of a minimal cut
in Ḡ. This holds because otherwise we could decrease c̄(e) to
1 while still having fault-tolerance.

Lemma 4. [5, Proposition 4] Suppose that G is minimal.
Then G is a directed acyclic graph (DAG).

Armed with these results, we are ready to present our main
structure theorem in Section IV.

IV. ROUTING DAG DECOMPOSITION THEOREM

Building on the definitions and preliminaries of Section III,
here we prove the existence of three routing DAGs in a
minimal coding graph G using simple flow techniques, which
shows feasibility of GDC [20]. We formulate the routing DAG
decomposition theorem which provides the robust network
code for GDC as follows:

Theorem 2. Suppose that G is minimal4. Then there are
disjoint edge-sets (actually DAGs) E1, E2, E3 of G such that
after removing an arbitrary edge or biedge of G at least two
edge-sets Ei connect s to t.

If Theorem 2 holds, source data can be reconstructed with
XOR coding at the destination from the remaining two data
flows without any coding or routing change in the network,
i.e., instantaneous recovery is maintained.

Proof of Theorem 2: Let C1, C2, . . . , Ck denote a max-
imal chain5

C1 ⊂ C2 ⊂ · · · ⊂ Ck

of minimum s − t cuts in Ḡ, where k is the number of cuts
in the chain and k is maximal. See Fig. 3 as an example, and
also Section V-A for the algorithm finding such chain of cuts.

For easier understanding, we will use a set of coding
subgraphs, denoted by G1, . . . ,Gk−1. Each Gi = (V i, Ei) has
a source node si and a destination node ti besides the nodes
of Ci+1 \Ci, for i = 1, . . . , k−1. Please note, that C1 = {s},
Ck = V \ {t}. The edges of Gi are the edges among the
nodes Ci+1 \Ci and the edges of Ci and Ci+1. However, the
source nodes of the edges of Ci are replaced by the common
source node si. Also, the target nodes of the edges of Ci+1 is
replaced by the common destination node ti. Note that there
may be edges connecting si to ti. See also Fig. 3b for the
transformation.

Next, for each graph Gi we define 3 disjoint edge sets
Ei

1, E
i
2, E

i
3, such that every Ei

1, E
i
2, E

i
3 carries 1 unit of flow

from si to ti. We next show that the edge sets Ei
1, E

i
2, E

i
3

are fault-tolerant in the sense that after removing an edge or
biedge of Gi, at least two of the Ei

1, E
i
2, E

i
3 still connect si to

4For the sake of simplicity we are proving the theorem for minimal graphs.
However, as every fault-tolerant graph contains a minimal one, Theorem 2 can
be applied to any fault-tolerant coding graph, by first removing some edges
to make it minimal.

5This chain might not be unique.
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Fig. 3. Illustrative example for the proof of Theorem 2.

ti. Finally we indicate how to piece together E1, E2, E3 from
the local pieces Ei

j .
Our argument takes G1,G2, . . . ,Gk−1 one by one, and

proves the existence of a fault-tolerant solution for each.
According to Corollary 1, Ci is either a 3-edge-cut or a
2-biedge-cut in G, therefore for Gi we have four cases to
consider:

Type (i) Both Ci and Ci+1 are 3-edge-cuts.
Type (ii) Both Ci and Ci+1 are 2-biedge-cuts.
Type (iii) Ci is 2-biedge-cut and Ci+1 is 3-edge-cut.
Type (iv) Ci is 3-edge-cut and Ci+1 is 2-biedge-cut.
We note beforehand that every graph Gi inherits a flow

of value 3 from Ḡ, and they have only two minimum cuts
with respect to the reduced capacities, namely {si} and
{si} ∪ Ci+1 \ Ci (as we have a maximal chain of minimum
cuts). Also they are minimal coding graphs (otherwise G
would not be minimal). These together with Lemma 3 imply
that except for the edges incident to si and ti they can not
have edges corresponding to edges with reduced capacity
c̄(e) = 1.5 (i.e., there will be no biedges in the interior of
Gi).

We remark also that the three edges of a 3-edge-cut Ci must
be in one-to-one correspondence with Ei

1, E
i
2, E

i
3, whereas for

a 2-biedge-cut we must have a dominating edge set (i.e., which
has an edge from both biedges of G). This dominating edge
set will always be denoted by Ei

1. We now consider Types (i)-
(iv) one by one. The only complicated cases are Type (iii) and
Type (iv).

In Type (i), Gi can not have edges corresponding to reduced
capacity 1.5 hence the reduced capacities in Gi are integral.
This implies that there are three edge disjoint paths P1, P2, P3

from si to ti in Gi and these 3 paths can be set as Ei
1, E

i
2, E

i
3.

For Type (ii) there must be four edge disjoint paths
P1, P2, P3, P4 between si to ti, because the value of minimal

cuts in coding subgraph Gi is 4, and the edges in Ci+1 \Ci all
have c̄(e) = 1 in this setting by Lemma 3. We intend to form
Ei

1, E
i
2, E

i
3 by taking the union of a suitably chosen path pair

Pa, Pb, (a 6= b) as Ei
1, and Ei

2, E
i
3 will be the remaining two

paths. We have to make sure that for the selected pair (a, b)
Pa and Pb do not contain the two edges of the same biedge,
because in this case Ei

2, E
i
3 has to traverse the other biedge

in the 2-biedge-cut, and the failure of the latter biedge would
disconnect both Ei

2, E
i
3. There are at most 4 such edges, the

edges of Ci and Ci+1, and one such edge rules out at most
one pair (a, b). Thus, among the 6 possible path-pairs there
will be a suitable one.

For Type (iii) the biedges f, g are adjacent to si, and
e1, e2, e3 are the edges adjacent to ti. See also G3 on Fig. 3b
for illustration. There are three edge-disjoint routing DAGs in
a Type (iii) coding subgraph (see Lemma 5 and its proof in
the Appendix), such that two of them are simple paths (Ei

2

traverses f and ex, and Ei
3 passes through g and ey , where

x 6= y), while the third routing DAG is composed of three
path segments (si → m traversing edge f , si → m containing
edge g, and m→ ti passing through ez , where m is a merger
node, z 6= y and z 6= x), which will be the dominant edge set
as Ei

1.
Type (iv) is similar to Type (iii), essentially the argument

of Lemma 5 works with a (reverse) flow of value 3 from ti
to si. This finishes the local parts of the construction.

We claim next that the edge sets Ei
j and Ei+1

j (j = 1, 2, 3)
can be meaningfully glued together to obtain E1, E2 and E3.
This is done as follows: an edge of the form (si, v) or (v, ti) is
replaced by the respective edges of G they are obtained from.
There is one ambiguity here when the cut is a 2-biedge-cut
with edges f and g. Then Ei

1 and Ei+1
1 are joined along an

edge from f and along an edge from g. By doing this at every
i, finally we have 3 edge-disjoint edge-sets E1, E2, E3 in G,
which connect s to t. This finishes the proof.

Theorem 2 proves that to find a robust network code in a
minimal coding graph G against single edge failures and two
data parts is equivalent with finding three routing DAGs in
G, where none of the Ej edge sets contain biedges. Built on
this observation, we improve the O(|V |2) time complexity of
previous XOR coding based robust code construction of [5]
to linear in Section V.

V. LINEAR-TIME ROBUST CODE CONSTRUCTION
ALGORITHMS

In this section we present linear time robust network code
construction (i.e., routing DAG decomposition) algorithms for
the GDC problem. In Section V-A we use the construction
of the proof in Section IV to obtain the three routing DAGs
in fault-tolerant coding graphs. In Section V-B a more direct
and more intuitive algorithm is introduced for minimal coding
graphs, which highly builds on the properties of the investi-
gated scenario.

A. Routing DAG Decomposition of Feasible Graphs
A closer inspection of the proof of Theorem 2 reveals that

we do not use in full force the fact that G is minimal. In fact,



the following three properties are sufficient to carry out the
construction of the edge-sets E1, E2, E3 in G:
1) G is a fault-tolerant coding graph such that Ḡ has a

maximum flow of value 3.
2) The maximum flow has a value 0.5, or 1 or 1.5 for every

edge of Ḡ.
3) We have a maximal chain C1 ⊂ C2 ⊂ · · · ⊂ Ck of

minimum s − t cuts in Ḡ in such a way that there is no
edge e = (u, v) of capacity c̄(e) = 1.5 with both u and v
belonging to Cj+1 \ Cj for some j.

We claim that from arbitrary fault-tolerant G we can
construct a subnetwork with Properties 1-3 in linear time.
Thus, an initial and expensive (quadratic time, to be specific)
computation of a minimal coding graph can be dispensed with.
The algorithm is built on the following two observations.
• First, finding a fixed number of edge-disjoint paths can be

done in O(|V |+ |E|) time. It is because, the augmenting
paths in the residual graph can be found with breadth-
first search (BFS) [27, Chap. 3]6. By always selecting
the minimum hop augmenting path we can achieve the
graph supporting the flow is actually a DAG.

• Second, finding a maximal chain of minimum s− t cuts
Ci in Ḡ can be done in linear time, if the max flow
of Ḡ has value 3. Let Ḡr denote the residual graph
Ḡ built up by the Ford-Fulkerson algorithm, after the
flow of value 3 is found. Let S1, S2, · · · , Sk be the
strongly connected components of the residual graph,
listed in an order reverse to the topological ordering of
the components. Then there may be an edge from Si

to Sj with i 6= j only if j < i. This implies that
Ci = ∪ij=1Sj , i = 1, . . . , k − 1 is a maximal chain
of minimal s − t cuts in Ḡ. Indeed, please note that if
a strong component Si intersects a minimal cut C non-
trivially, then necessarily Si ⊆ C holds. We observe also,
that the strong components and their topological ordering
can be computed in O(|V |+ |E|) time [28].

Based on these observations, the construction works as
follows. First, search for 3 disjoint s− t paths in Ḡ. If such a
solution exists, then DC is a feasible solution, as three disjoint
paths exist in graph G. As a consequence of Definition 1 a
fault-tolerant coding graph has 2 disjoint s − t paths in Ḡ.
Thus, in the rest of this subsection we assume that the maximal
number of disjoint s− t paths in Ḡ is 2. Note that, Menger’s
theorem [27, Thm. 6.7] states that the maximal number of
disjoint s − t paths in Ḡ equals to the size of the minimum
s− t cut of Ḡ. Thus, Ḡ has a cut with 2 edges, which in any
fault tolerant coding graph must be a 2-biedge s− t cut with
capacity 3. In other words the maximal flow in Ḡ is exactly
3.

Next we find a maximal chain {Ck} of cuts in time O(|V |+
|E|) as indicated previously. We delete edges with flow 0, and
scan the edges e = (u, v) of Ḡ which violate Property 3, and

6BFS is a graph traversal algorithm, which starting at a node, first visits
its neighbour nodes, then the unvisited neighbours of these neighbours, etc.
Finally, it will find the minimum hop path to every node in linear time.

decrease the reduced capacity of e to c̄′(e) = 1 in one round
for all such edge e. Now, we have to show that the resulting
graph Ḡ′ = (V, Ē, c̄′) (with the same node and edge set as
Ḡ but with the modified reduced capacities c̄′) still allows an
s− t flow of value 3 (i.e., satisfies Property 1). It does indeed,
otherwise G had a cut consisting of two biedges, one of them
(say e) with capacity lowered to c̄′(e) = 1. These two edges
must form a cut of value 3 in Ḡ. This is impossible, because in
the residual graph for the 3 value flow of Ḡ there is a directed
path from u to v. Hence, e cannot be the part of a minimum
cut there.

Next, we have to compute a 3 value flow in Ḡ′ and possibly
a new chain of minimal cuts {C ′j}. Note that minimal cuts
{Ck} of Ḡ we obtained earlier will still remain minimal cuts,
but there may be new ones. Essentially we may refine the
original chain. We discard the edges with 0 flow. Note that, in
Ḡ′ an arbitrary edge of capacity c̄′(e) = 1.5 is in a minimal
cut, because all the edges with c̄′(e) = 1.5 capacity belong to
a 2-biedge-cut7.

Thus, the graph Ḡ′ and the new {C ′j} chain of cuts sat-
isfies Properties 1-3, i.e., using Ḡ′ one can construct edge
sets E1, E2, E3 by following the theoretical construction of
Theorem 2 along the chain of cuts {C ′j} in time O(|V |+ |E|).

B. Routing DAG Decomposition of Minimal Graphs

In dynamic routing, where demands arrive one after the
other, an efficient algorithm for intra-session code construction
has utmost importance. Given a minimal coding graph G, in
this section we provide a linear time algorithm to perform
robust network code construction, i.e., to obtain the three
routing DAGs in G.

We build the construction on the following observation. In
the proof of Theorem 2, the graph G is divided into subgraphs
based on a maximal chain of minimal s−t cuts {Ck}, denoted
by Gi, i = 1, . . . , k − 1 (shown in Fig. 3), and in each coding
subgraph segments of Ei

1, Ei
2, and Ei

3 are defined. As G was
minimal, the coding graph has no edges other than Ei

1, Ei
2,

and Ei
3, thus, Gi satisfies the following properties:

• In Type (i)-(ii) Gi there are no splitter or merger nodes.
• In Type (iii) Gi there is a single merger m and no splitter.
• In Type (iv) Gi there is a single splitter p and no merger.
Note that, a Type (iii) Gi can be followed by zero or a

series of Type (i) subgraphs until a Type (iv) Gj subgraph,
and similarly, a Type (iv) Gj subgraph can be followed by
zero or a series of Type (ii) subgraphs until a Type (iii) Gi
subgraph. Thus, {Ck} defines a unique sequence of splitter
and merger nodes in G. We further define s as a splitter if it
has 2 outgoing biedges, and similarly, we define t as merger if
it has 2 incoming biedges. As a result, we have a well-defined
sequence of pl −ml splitter-merger pairs (Fig. 4a).

Based on the above argument, the method to find the disjoint
edge-sets E1, E2, E3 is provided in Algorithm 1. In Step (2) a
maximal chain of minimal s− t cuts {Ck} in Ḡ is calculated,

7It is easy to see that in Ḡ there are no edges e = (u, v) of capacity
c̄(e) = 1.5 for which u ∈ Ci, v ∈ Cj , and j < i.



s p1 m1

p2
t = m2

(a) The splitter-merger pairs and the disjoint paths in Iteration (4).

s p1 m1

e1 p2
t = m2

e2

(b) The auxiliary graph in Step (8).

Fig. 4. An example of the network code construction in Algorithm 1.

Algorithm 1: Robust Code Construction
Input: G = (V,E), where G is minimal, nodes s, t
Result: Edge sets E1, E2, E3

1 begin
2 With a max-flow algorithm in Ḡ create maximal chain

of minimal s− t cuts C1 ⊂ C2 ⊂ . . . ⊂ Ck in G.
3 Identify the l splitter merger pairs pj −mj .
4 for j = 1, 2, . . . l do
5 Find a biedge-disjoint path-pair in G between pj −mj

(edges are stored in set Sj).
6 Add edge ej = (pj ,mj) to G.
7 ∀e ∈ Sj : remove e from G.
8 Find three disjoint paths containing edges E1, E2, E3,

respectively in G between s− t.
9 for k = 1, 2, 3 do

10 if Ek contains ej , j = 1, 2, . . . l then
11 Replace ej ∈ Ek with the edges in Sj .

which can be done in linear time as discussed in Section V-A.
In Step (3) the splitter-merger pairs are identified in the
subsequent subgraphs Gi by inspecting each node once. It is
easy to see that in Step (5) there exists a biedge-disjoint pair of
paths (i.e., the path-pair cannot traverse both edges of a biedge
to maintain resilience) between a splitter and its corresponding
merger in coding graph G. Note that, Step (5) runs on disjoint
parts (in different coding subgraphs) of coding graph G, thus,
the total complexity of finding disjoint paths could be upper
bounded with O(|V |+ |E|).

Note that, between a splitter pi and its corresponding merger
mi there are only Type (ii) minimal cuts (2-biedge cuts, e.g.,
C2 and C3 in Fig. 3). Thus, by replacing a disjoint path-pair
with a single edge of capacity 1, flow value at least three
is still maintained in the residual graph between these cuts,
without affecting others. Thus, in Step (8) the residual graph
contains three disjoint paths (Fig. 4b), which can be found in
O(|V | + |E|) time (as the augmenting paths in the residual
graph can be found with BFS). Finally, in Iteration (9) the
edges of the auxiliary graph are transformed back to the input
topology in order to obtain the three disjoint edge-sets (routing

DAGs). Thus, the network code construction in Algorithm 1
takes O(|V |+ |E|) time in total.

For the sake of explanation, we present three special min-
imal coding graphs G to demonstrate that the robust code
construction of Algorithm 1 is able to provide routing DAG
decomposition for the coding graph calculated with an arbi-
trary survivable routing algorithm which ensure instantaneous
recovery from sinlge edge failures for two data parts [6]:

1) Diversity coding: we have 3 disjoint paths between s
and t, i.e., there are no splitter and merger nodes in the coding
graph. Thus, Step (8) gives directly the edge sets E1, E2, E3

of the routing DAGs, i.e., A, B and A ⊕ B are sent along
three disjoint paths.

2) 1 + 1 path protection: we have 2 disjoint paths between
s and t each with capacity 2, thus every edge in G is a biedge.
It means, in G source s has 2 outgoing biedges and t has two
incoming biedges, i.e., p1 = s and m1 = t. In Step (4) we
search for biedge-disjoint paths in G, remove the traversed
edges (stored in S1) in Step (7), and add edge e1 = (s, t)
to G. Now in Step (8) we will have three disjoint paths, two
actual paths in G which are using without loss of generality
E2 and E3, while the third is the virtual edge e1. In Step (11)
the virtual edge in E1 = {e1} is replaced with the edges in
S1, and the coding algorithm terminates. As a result, we have
a resilient solution for 1 + 1, as we send A ⊕ B on the two
disjoint paths in E1. Thus, any single edge failure will disrupt
only one flow, and both streams can be recovered (from A and
A⊕B, or from B and A⊕B) at the destination8.

3) General diversity coding solution: In Figure 4 the steps
of Algorithm 1 are demonstrated on a general minimal coding
graph. First, a maximal chain of minimal s− t cuts is found
(shown in Fig. 3), and the splitter and merger nodes are
identified in Step (3). Next, we search for disjoint paths in
G between each pj −mj pairs (denoted by dotted and dashed
lines in Figure 4a). Second, the edges of the disjoint paths are
replaced with a single edge ej , shown in Figure 4b. As a result,
this graph contains three disjoint paths (found in Step (8)), and
can easily return the corresponding edge sets of the routing
DAGs in Step (11).

As a summary, we claim that if an arbitrary single edge
failure resilient minimal coding graph is given for two data
parts, robust XOR codes can be constructed in linear time
(in fact, in O(|V | + |E|) time). Furthermore, core network
switches do not need to be upgraded to perform any algebraic
operations. Unfortunately, as discussed in Section VI, this
simplicity generally does not hold.

VI. SCOPE OF ROUTING DAG DECOMPOSITION

We have seen that robust code construction is effective
with routing DAG decomposition for GDC, i.e., for the case
of two data parts and single edge failure resilience. Two
straightforward generalisations may be to increase the number
of data parts or the number of possible edge failures. In this

8We note here that for 1 + 1 a solution exists without coding. However,
our goal was to demonstrate the generality of our approach, i.e., it contains
both diversity coding and 1 + 1 as special cases.
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Fig. 5. A dual failure resilient connection in G with two data parts where
4 end-to-end routing DAGs do not exist, i.e., GDC cannot be generalised to
multiple failures.

section we present minimal coding graphs to show that none
of these generalisations are directly possible, i.e., higher field
for coding, signaling in the recovery process or core network
modifications might be necessary.

A. Dual Edge Failure Resilience with Two Data Parts

Figure 5 presents a coding graph, where two data parts have
to be sent from s to t while dual edge failure resilience is
maintained. One can easily check that the above connection
can survive two failures, because removing any two edges (or
biedges) of G, there are at least two remaining paths in G from
s to t, i.e., the minimal capacity of two units is maintained.
Note that the graph is minimal with respect to this property.

Edges (s, a), (s, b), (s, c), (s, d) form a 4-edge-cut, so any
two of them can remain after the failure of the other two.
This shows that 3 end-to-end subgraphs do not guarantee
protection against two failures, so we need 4 routing DAGs,
and we need a network code at the source such that the original
data is decodable when receiving at least two of them at the
destination (clearly in a field larger than GF (2)). However,
we show that even in this case edges of the coding graph in
Figure 5 cannot be split into 4 end-to-end routing DAGs.

Assume indirectly that it can be, and let E1, E2, E3, E4

denote the edge-sets. Edges in a 4-edge-cut have to belong
to separate routing DAGs, hence it is easy to see that edges
entering nodes a and d belong to two completely different
edge-sets. Without loss of generality we may assume that edge
(a′,m), (m, t) ∈ E1 and (d′,m) ∈ E2. Then edge (d′,m)
does not have an end-to-end connection in E2, contradicting
the assumption.

Thus, robust network code in the form of routing DAGs
does not exist in general for this special case.

B. Single Edge Failure Resilience with Three Data Parts

Figure 6 presents a coding graph, where the source data
is divided into three data parts (A, B and C) and these data
parts have to be sent from s to t while single edge (or biedge)
failure resilience is maintained. In Figure 6, the failure of any
edge preserves a flow of value 3 from s to t, i.e., the necessary
requirement for instantaneous recovery is maintained.

However, edges (s, a), (s, b), (s, c), (s, d) form a 4-edge-cut,
so with the GDC approach again 4 end-to-end edge-sets are
needed to resist at most the failure of a biedge in G. We show
that such partition of the edges does not exist. Suppose that
indirectly, there are such sets (E1, E2, E3, E4) in the graph and
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Fig. 6. A single failure resilient connection in G with three data parts where
4 end-to-end routing DAGs do not exist, i.e., GDC cannot be generalised to
more than two source data parts.

assume that (s, c) ∈ E1. Then so is (c, w) and (c,m). Since
(w, t), (m, t), (a′, t), (d′, t) also form a 4-edge-cut, exactly one
of them belongs to E1, and it is either (m, t) or (w, t). Because
of symmetry we can assume it is (m, t) while (w, t) ∈ E2.
Then after the failure of biedge (a, a′), only two data parts
can be transmitted to t, even if node w switches to (c, w),
which clearly requires control plane signaling, which results
increased restoration time, i.e., instantaneous recovery is not
ensured.

Note that, by adding k further edges from s to t, the same
argument holds for k + 3 data parts.

VII. EXPERIMENTAL RESULTS

The main contributions of the paper – no in-network coding
is required and the robust network codes, i.e., routing DAGs
can be constructed in linear time – made GDC as a competitor
of DC and 1 + 1 to provide instantaneous failure recovery.
The simulation section is devoted to provide help in the
decision between the three approaches for network operators
by investigating the resource requirements of minimal coding
graphs G of GDC compared to its counterparts in at least 2-
connected network topologies.

We considered two performance metrics in this study:
blocking probability and resource saving. A connection request
with bandwidth of 2 units (A and B) between nodes s− t is
blocked if no fault-tolerant solution is found with the given
protection method (see Fig. 1), i.e.,

1 + 1 an edge-disjoint path-pair from s to t with 2 units of
bandwidth;

DC three edge-disjoint paths from s to t with 1 unit of
bandwidth; and

GDC a fault-tolerant coding subgraph according to Defini-
tion 1.

The blocking probability is the ratio of the blocked connection
requests to all generated connection requests. The resource
saving is the amount of bandwidth save of DC and GDC
compared to 1+1 protection with respect to the total capacity
needed for routing all generated connection requests.

In order to investigate the performance of the methods in-
dependently from the traffic pattern, we generated connection
requests between all s − t pairs in a given network, and
calculated the resource saving and blocking probability for a
fixed capacity setting on the edges. Hence, in a given setting
edges with 2 units of capacity are usable by all methods;
there might be bottleneck edges (have only 1 unit of capacity,
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Fig. 7. Blocking probability in randomly generated 60 node 2-connected
planar networks. Average of random problem instances of networks with high
traffic load, where x% of the edges have zero capacity, 20% have capacity of
1 unit, and the rest (80− x)% have capacity of 2 units.

thus, not usable for 1 + 1); and some edges might be fully
saturated (zero capacity). To measure the blocking probability
we generated random topologies, where x% of randomly
selected edges have zero capacity, 20% are bottlenecks with
capacity of 1 unit, and the rest (80− x)% have capacity of 2
units, i.e., available for all methods. In order to make a fair
comparison, for the resource saving simulations we assume
that each edge has 2 units of capacity, thus, none of the
methods will be limited by the capacity constraint. However,
a connection request may still be blocked by DC owing to the
network topology, i.e., if there are no 3 disjoint paths between
s and t. In this case we count zero resource saving for DC
compared to 1 + 1.

Suurballe’s algorithm [21] was used to calculate a fault-
tolerant solution with minimum capacity requirement for 1+1
and DC, on the edges with 2 units of capacity and with at least
1 unit of capacity, respectively. To obtain the minimal capacity
coding graph G for GDC with two data parts, we used the
Integer Linear Program (ILP) presented for GDP-NC [25] with
single failures. On this minimal coding graph G we can run Al-
gorithm 1 to obtain the routing DAG decomposition for GDC.
Finally, we also compare our method to the theoretical upper
bound in resource savings [24] for any proactive approach
providing instantaneous recovery, which assumes single edge
failure resilience, but do not limit the number of data parts to
two [16]. Although the practical limitations of two data parts
in GDC seems to be restrictive, we show that performance-
wise we have to pay limited price for it.

A. Performance Study on Random Network Topologies

First we used random 2-connected planar networks with
different densities. We group the networks into two categories
according to the average number of edges bounding the re-
gions, called faces. The first category is called dense networks
where most of the faces have size 4, while the second category
is called sparse networks with typical faces of size at least 6.
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Fig. 8. Resource saving with the GDC and DC approaches on planar networks
compared to 1 + 1. For topologies with a single 2-biedge cut, the source
and the target nodes of the connection requests are selected from different
3-connected components.

In Fig. 7 we present the blocking probabilities in randomly
generated 60 node dense (Fig. 7a) and sparse (Fig. 7b)
networks. Generation of 20% bottleneck edges with 1 unit
of capacity and x% of zero capacity edges was done for
five different random seeds. One can observe that the GDC
significantly outperforms the DC and 1 + 1, as it contains
both methods as special cases. To be specific, the blocking
probability of GDC is on average 5− 15% less than by 1 + 1,
and shows even higher flexibility compared to DC, where
besides the capacity constraints blocking occurs owing to the
lack of 3 disjoint paths in the 2-connected topology.

In Fig. 8 we investigated the resource saving which can be
reached with end-to-end coding approaches DC and GDC in 3-
connected planar (Delaunay triangulated) topologies between
all s − t pairs with 2 units of capacity on each edge. The
resource saving increases as network size increases (Fig. 8a),
which meets our expectation as the opportunities to decrease
resource consumption (i.e., split or merge the data flow)
grow. As the Delaunay triangulated graphs are dense networks
(average nodal degree is around 5.3), the DC method performs
similarly to our GDC approach as a third edge-disjoint path
with a moderate length exists in the topology. Thus, the
average resource saving which can be reached through end-
to-end coding (either with DC or GDC) is around 15− 20%.

In Fig. 8b we considered two identical 3-connected topolo-
gies interconnected with two edges between distinct node-
pairs, and varied the inter-connection points between the two
components. For example, the 20 node topology in Fig. 8b
means that two 10-node Delaunay triangulated graphs are
interconnected. Clearly, the two edges between the two 3-
connected components is a cut with 2 edges, making the
topology 2-connected. Connection requests with the source
node in the one and the target node in the other 3-connected
component were generated. As such, DC cannot bring any
benefit to these connection requests, while the GDC frame-
work still approaching 5 − 10% resource saving, and clearly



TABLE I
SIMULATION RESULTS ON SOME WELL-KNOWN NETWORKS (UPPER PART: SNDLIB [12], LOWER PART: ROCKETFUEL ASS [13]). BLOCKING

PROBABILITY RESULTS ARE SHOWN WITH RANDOM 20% UNIT CAPACITY EDGES AND 80− x% 2 CAPACITY EDGES, WHILE x (THE NUMBER OF
UNUSABLE ZERO CAPACITY EDGES) INCREASES. RESOURCE SAVING RESULTS CORRESPOND TO A NON-BLOCKING SCENARIO, WHERE ONLY A LIMITED

NUMBER (THREE) OF BOTTLENECK (UNIT CAPACITY) EDGES ARE PRESENT, WHILE OTHER EDGES HAVE CAPACITY OF 2 UNITS.

Graph Blocking probability [%] 1 + 1 Resource saving [%]
0% zero capacity edges 10% zero capacity edges 20% zero capacity edges avg. theor.

|V | |E| diam. GDC 1 + 1 DC GDC 1 + 1 DC GDC 1 + 1 DC edges bound GDC DC
Pan-European 16 22 6 21.6 25.8 62.5 35 56.6 83.3 48.3 70 85 8.87 23.52 23.52 22.81
European 22 45 5 12.1 12.1 41.1 17.3 17.3 45 21.1 25.5 48 6.18 13.93 13.47 10.95
Italian 33 56 9 6.1 11.7 67.4 23.8 28.6 72.3 33.9 56.8 76.7 10.29 14.14 14.09 11.55
Cost 266 37 57 8 8.4 20.5 51 35.4 41.9 65.3 48.6 50.6 73.7 10.83 19.29 19.25 17.08
North American 39 61 10 0 7.3 48.9 7.4 55.3 65.7 54.9 76.5 87.4 11.76 19.47 19.42 17.34
NSFNET 79 108 16 34.2 34.2 72 42.2 42.2 79.2 42.2 59.3 85.8 18.10 15.06 14.99 11.91
AS6461 (Abovenet) 17 37 4 5.9 5.9 51.4 5.9 5.9 51.5 11 11 59.5 5.70 18.45 17.39 15.46
AS1755 (Ebone) 18 33 5 9.1 9.1 49 18.9 18.9 55.5 18.9 24.8 67.3 6.30 12.86 12.79 11.86
AS3967 (Exodus) 21 36 5 17.1 17.1 56.6 17.1 17.1 63.8 28.6 28.6 75.7 7.84 23.11 23.10 21.58
AS7018 (AT&T) 22 38 5 24.6 29.4 76.2 29.4 37.7 76.2 44.1 48 79.2 6.86 11.40 11.23 9.24
AS3257 (Tiscali) 27 64 4 7.4 7.4 51.2 15.1 15.1 55.3 21.4 21.4 63 5.34 14.11 13.45 11.56
AS1239 (Sprintlink) 30 69 6 9.2 9.2 51.5 15.4 15.4 58.6 25.9 41.1 61.8 7.25 14.95 14.04 11.53

demonstrates the advantage of GDC over DC in 2-connected
topologies.

B. Performance Study on Real-World Topologies

In order to investigate the performance of the proposed ap-
proaches in a realistic scenario, we selected some SNDLib [12]
and Rocketfuel [13] transport network topologies. We examine
the blocking probabilities in the same way as in Fig. 7, i.e.,
the capacity of randomly selected 20% of the edges is set to
1 unit, and 0, 10% and 20% of the edges have zero capacity.
The results are presented in Table I. As GDC contains both
DC and 1 + 1 as special cases, obviously it improves the
blocking probability of both approaches, as it provides a fault-
tolerant solution in all networks where any of these approaches
provide. Furthermore, owing to its superb flexibility, GDC
provides solution for networks where the previous methods
may fail.

For the resource saving simulations in each real network
topology we identified three edges most prone to congestion
based on their betweenness centrality value (assuming shortest
path routing), and considered them as bottlenecks (with edge
capacity of 1 unit), and the rest of the edges have 2 units of
capacity to ensure that 1+1 has a fault-tolerant solution for all
connection requests. One can observe that the resource saving
of our GDC approach is about 10−20% compared to the 1+1
approach, while the optimality gap of GDC is less than 1% in
comparison to the theoretical upper bound in the investigated
transport topologies. Although DC performs close the GDC
in these networks, it blocks several connection requests owing
to these real-world networks are not 3-connected topologies,
while GDC provides a fault-tolerant solution for all s−t pairs.

VIII. CONCLUSIONS

In this paper we showed that robust network codes for
single edge failure resilient unicast connections where user
data can be split into two parts are equivalent with finding three
end-to-end routing DAGs. Built on this observation, we gave
linear time algorithms to obtain the routing DAGs in fault-
tolerant and minimal coding graphs, instead of involved gadget

transformations presented in [5]. We also showed that such an
equivalence between robust network codes and network flow
problems may not exist for other transport network scenarios.
Through simulations we demonstrated that the minimal ca-
pacity coding graphs for GDC reach about 15−20% resource
saving compared to 1 + 1 protection, while outperform DC
with 5 − 10% even in topologies with a single 2 edge cut.
Furthermore, as GDC contains both 1 + 1 and DC as special
cases, it is solvable in all network topologies (and even more)
where any of these methods is solvable. Thus, we conclude that
GDC might be an alternative of DC in 2-connected topologies
and its improvement in denser networks to reduce the resource
consumption of 1 + 1 without in-network coding.
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taneous recovery of unicast connections in transport networks: Routing
versus coding,” Elsevier Computer Networks, vol. 82, pp. 68–80, 2015.
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APPENDIX

Lemma 5. There are three edge-disjoint routing DAGs in a
Type (iii) coding subgraph, such that two of them are simple
paths (one of them traversing f and ex, and the other passing
through g and ey , where x 6= y), while the third routing DAG
is composed of three path segments (si → m traversing edge
f , si → m containing edge g, and m → ti passing through
ez , where m is a merger node, z 6= y and z 6= x).

Proof: To show this, we need to dig into the Ford-
Fulkerson theorem.

Let F be an integer flow of value 3 in Gi. The existence
of this flow implies that there are three edge-disjoint paths
P1, P2, P3 from si to ti in Gi. The edges e1, e2, e3, and
3 of the 4 edges corresponding to f, g are traversed by F
because they originate from minimum cuts in Ḡ. Without
loss of generality we may assume that P1 and P2 traverses
the edges in Gi corresponding to biedge f , and P3 traverses
one of the edges of biedge g and hence passes through
node v, where g = (si, v). There must exist a v − ti
flow in Gi of value at least 2, otherwise Gi would not be
fault-tolerant (removing f disrupts two routing DAGs). For
example, P1 = {f, e1}, P2 = {f, y, e2}, P3 = {g, e3} in G3.

Let P = {P3 \g}, i.e., the v → ti path segment of P3 (e.g.,
P = {e3} in G3). We can send a flow of value 1 through P
from v to ti. This is not a maximal v − ti flow, hence there
exists an augmenting path for it (see Bollobás [29, Chapter III]
or [27, Chap. 7] for basic facts related to the Ford-Fulkerson
theorem). To form such a path we can use the edges of P in
the reverse direction and all other edges of Gi in their original
direction. In fact, it suffices to search for an augmenting path
until the first node (m in G3 on Fig. 3b) traversed by P1 or P2

(say, it is P2). From m one can walk along the edges of P2

to reach ti. Let P ∗ be the v → m portion of the augmenting
path (h1 in G3). Let Q be the union of the edges of P and P ∗

(from which we delete every edge of P which occurs reversed
in P ∗, together with this reverse edge). In Q the outdegree of
v is 2, the indegree of m and ti is 1, and for all other nodes
the indegree is the same as the outdegree. The indegree of v
and the outdegree of m and ti is 0. These imply that Q is
the disjoint union of a path from v to ti (dented as Q1) and
a path from v to m (denoted as Q2). We have also Q ⊆ Ei,
and the two paths are edge disjoint from from P1 and P2 as
well. These facts together imply the lemma.

Finally, the path traversing f and ex is P1, the other path
is {g,Q1}, and the third routing DAG is P2 ∪ {g,Q2}.


