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1 Permutation groups, the automorphism group of S,

Definition 1.1. G is a group if there exists a binary operation - : G x G — G (denoted by

- or by just writing letters beside each other) such that the following axioms are satisfied:
1. (ab)e = a(bc) for all a,b,c € G. (associatvity)

2. There exists an element e € G such that ea = ae = a for all a € G. (there exists a

unit element)

3. For all x € G there exists an element y € G such that xy = e = yz (all element has

an inverse, let us denote this y by z71).
Remark 1.1. e and 2~ ! are unique. (see Algebra 1)

Definition 1.2. Let Q :={1,2,--- ,n}. A permutation of Q) is a bijective map 7 : Q — Q.
These form a group under composition. It is called the symmetric group of degree n,

denoted by S, (or Sq) and its order is |S,| = n!.

Definition 1.3. G is a permutation group of degree n if G < S,,. (or it is isomorphic

to a subgroup of S,,).

Definition 1.4. A group action on 2 (or permutation representation) is a homo-

morphism ¢ : G — Sq such that g — ¢(g). and the group G acts in the following way on

Q:w? = w?9). Then wWh = PR = PP — (W9)h,

Definition 1.5. The group action ¢ is faithful if ker p = {1}, then G = ¢(G) < S,, and

we get a permutation group.

Definition 1.6. The group action is transitive on Q if for all «, § € €, there exists an

element g € G such that o = .

Remark 1.2. In this note permutation will always act from the right, and multiply from

the left.



Remark 1.3. We know from (Algebra 1) that every permutation can be written as a
product of disjoint cycles uniquely (up to the order of the cycles). We note that disjoint

cycles always commute.

Example 1.1. (123)(1453) = (12)(345)
(123)71 = (321), (123)? = (132), (123)3 = () = id.

Theorem 1.7. Ifw € S, m = 71 - - - 7 s a product of disjoint cycles with lengthsny, - -- ,ng,
then o(m) = lem(ny, - -+ ,ng), where lem is the least common multiple. (here o(m) is the or-

der of the element )

Proof. o(m) = min{k > 1| 7% =id}. Let lem(ny,--- ,nz) = and | = n;5;
then 7! = (mp - mp)! = wb - oowh = ()P ()P =1

(We know if ¥ = 1 then o(z) | N) (see problem sheet 1/5)

thus:

if 7' = 1 then o(r) | 1.

On the other hand:

1 =7 = (my - ﬂk)o(”) = Ff(ﬂ) . -wz(ﬂ). Since 7y, - - -, act on disjoint sets, if the prod-
uct is 1 then 7['1-0(71-) =1 for all i, hence o(m;) | o(m) Vi. Hence lem(o(m),---,0(mx)) | o(m)
and so [ = o(m). O

Definition 1.8. If 7 € S, then I(7) := {(4,j) | ¢ < j and (i) > 7(j)} is the set of in-

versions of m. The permutation 7 is even if it has even number of inversions. 7 is odd

if it has odd number of inversions.

Remark 1.4. Let p(z1,--- ,zy) == H (x; —x;). and let 7 act by permuting the in-
1<i<j<n

dices p™ = H (Tr(i) — Tr(j)) and 7 is odd if and only if p™ = —p, 7 is even if and only

1<i<j<n
if p" = p.

Definition 1.9. A, := {m € S, | 7 is an even permutation}.

Remark 1.5. Let ¢ : S, — {£1} = Cy where 7 — (—1)/(™|. This is a group homomor-
phism. ker p = A,, thus A, < S, and Im ¢ = (5. By the homomorphism theorem we have



that S,/ kero 2 Imp =Cy. So ISl
ke o]

normal subgroup in S,. The name of A,, is alternating group of degree n.

=2 and [S, : Ay] =2. Thus A4, is an index 2

Theorem 1.10. If n > 5 then A, is simple. (see problem sheet 1/4)
Definition 1.11. A 2-cycle («, ) is called transposition.

Remark 1.6. Every permutation is a product of transpositions. It is enough to prove for

cycles: (1,2,---,n) = (1,n)(2,n)---(n — 1,n), so transpositions generate S,

Remark 1.7. The transposition (a,a+ 1) is an odd permutation, («, 5) = (o, v+ 1)(a +
La+2) - (a+k-2,a+k—1)(a+k—-1,08)(a+k—-1,a+k—2)--- (a+1,a)if f = a+k.

Hence (a, ) is also odd. The cycle (1,2,---,n) is odd if n is even and even if n is odd.

Theorem 1.12. (Cauchy)
If p divides |G| then there exists an element x € G such that o(x) = p.

Proof. Let Q:={(g1,-* ,9p) | g € G, II!_,9; = 1}C G x --- x G (p-times).

Let m be the cyclic shift on (g1, -+ ,9p) : (91, > 9p)" = (92,93, , Gp> 91)-

Ifgi---g9p= 1theng2-~-gp:gl_1,hencegg~--gpg1 = 1. So 7 acts on 2.

An element (gi,---,gp) of Q is fixed by 7 if and only if (g1 =g2=--- =g, =¢) and
g’ =1, eg. (1,---,1). The number of elements in Q, |Q| = |G[P~!, since g1, ... , gp—1 can
be arbitrary and g, is already determined.

Since p divides |G| then p divides |Q2|. As o(7) = p, 7 is the product of cycles of length p
and cycles of length 1, which belong to the fixed points of 7, which we denote by Fiz(r).
Hence, || =| Fiz(m) | +p- | (number of length p cycles in 7) |. So p divides | Fiz(r) |.
Thus there exists a fixed point (g,---,g) € 2, where g # 1. Since ¢g” =1, we have that
o(g) =p. O

Definition 1.13. Let G < Sq or (p : G — Sq is a permutation representation) and w €
then:

Gy :={g € G|w? = w} is called the point stabilizer of w in G. We remark that G,, is a
subgroup of G.

Wl ={aeQ|3g e G, w!=a}is called the G-orbit of w .



Theorem 1.14. If G is a group action on Q then Q = U*Q; is a disjoint union of G-orbits.
Moreover, |w®| = |G : Gy|. (the length of the orbit of w = the index of the point stabilizer
of w)

Proof. Let o, 5 € €, we say that «, 8 are equivalent if there exists an element g € GG such
that of = 3. This is an equivalence relation. The equivalence classes are the orbits of G.
Hence = U*Q;.

Observe that w9 = w" < W ' =w o gh™t e G, < G, = Guh.

| w& |=|{different images of w under G'}|=|{different cosets of G, }|=| G : G,, | O

Corollary 1.1. |G| = |G| - |w°].
Definition 1.15. G, ... o, = {9 € Gla! =a;,i=1,--- ,n} = (Gay - an_1)an-

Example 1.2. How many elements does the group of symmetries of the cube have?

19 =8, 2 1

G| = [1]./G1| = 48 -3
. :

G| = 29][(G1)o| = 6
3
G2l = [3912|.|(G10)3| = 2
2 1

Theorem 1.16. (Cayley)
a) Every group of order n is isomorphic to a transitive permutation group of degree n.

b) If there exists a subgroup H < G of index |G : H| =t then G has a transitive permuta-
tion representation of degree t with kernel = Nyeqx *Hx < H. (this is the maximal

normal subgroup of G contained in H denoted by Coreg(H)).



Proof.  a) e G acts on G with right multiplication, there exists a map

®: G — Sg|, such that g — 75 = grogr ot n

g19 929 -+ gng

o O(gh) = mgp = mgmp, = ®(g)P(h) since:

gi 9i
g
glig gh
l h
gigh gi(gh)

So ® is a homomorphism.

ker ® = {g : 1y = id} = {1}. So ® is a faithful permutation representation.

G=9(G) < Siq|

® is a transitive action, since g;g = g; if g = gi_lgi.

o
~
[ ]

G acts on the cosets of H {Hx : z € G} by right multiplication, so there exists

a map

® : G — Sig.m), such that g — g = g1 92 gt

Hgig Hgeg -+ Hgyg

Since ®(gh) = mgp, = mymy = ®(9)P(h), so @ is a group homomorphism.

ker¢ = {g € G| Hgig=Hg;,Vi=1,-- ,t} ={g € G| Hgigg; ' = H Vi}
={9€G|gigg ' € HVi} ={geG|geyg 'HgVi}
t

= mglegi = ﬂ z 'Hz = Coreg(H), since every element z € G can be
i=1

= zeCG
written as « = hg; for some h € H and 1.

® is a transitive action since Hg;g = Hg; e.g. for g = gi_lgi.

10



Theorem 1.17. If ¢ : G — Sq is a transitive action on ) then the point stabilizers are

conjugate.

Proof. Let o, B € Q. Since G is transitive on {2, there exists an element g € GG such that
a9 = . We prove that ¢ 'Gpg = G, using short form of z 'Hx =: H®, this means that
G? = Gp.

1. If 89 'Ge9 = B, then g Gag C G, hence G, C gGpg ™!,
2. If a99997" = o, then 9Gsg ! C G,.

From (1) and (2) we have that G, = gG3g~ ', hence GY = Gj. O

Remark 1.8. There are also other actions that are frequently used, e.g.: conjugation

action on elements of a group, conjugation action on subgroups.

11



1. Right

multiplication on

multiplication on

2. right

3. conjugation

on elements

4. conjugation

on subgroups

action

elements right cosets of H < G
Q G {Hz| z € G} G {H|H < G}
Action of x Ty g = Ty = Ty =
1 n, H H g1 9n H H
bt oo di) | (oo i) @) [ (o A
Orbits w® 9G =G HgG = Ke(g) {HY| g€ G}
Vg € G {Hg1, ... ,Hgt}
Is transitive? Yes Yes Not Not
1 element orbits No No elements of Normal
Z(Q) subgroups
G, point 1 Hxg=Hzr < 9 HY=H
—1 7 =
H g € NG(I?S
stabilizer ggﬁ Hg < &g € Cq(x)
Length of the |G| G : H] |Ka(g)] |G : Na(H)|
orbit
kernel of the 1 Coreg(H) = Z(G) NNg(H)
ﬁxeg:r_le VH<G

Now we apply Theorem We have the following:

Corollary 1.2.

1. |Kg(x)| =[G : Cg(x)] we used the 3rd action.

12




2. |Syl,(G)| =[G : Ng(P)], since the orbit of P € Syl,(G) is Syl,(G) in the 4™ action.

Definition 1.18. We say that two actions of G, ¢1 : G = Sq,, and ¢y : G — Sq, are
equivalent if there exists a bijection by : 21 — €9 such that for all g € G, and for all
wy € Q17 b(Wfl(g)) — (b(wl))CPQ(g)

b
Wi > b(wi)
g g
wfl(g) ; > (b(w;))?2@)

Theorem 1.19. All transitive actions of G are equivalent to a group action on the right

cosets of a subgroup H with right multiplication.

Proof. Let ¢ : G — Sq be a transitive action on Q. Let H := G, let Q := {G,g | g € G}.
Observe that W = w* & ha™' € G, & Gur = Guh < h € Gyur. So Gux = {he @G| Wwh = w'}.
Let b : Gox — w”. Then this is a bijection between right cosets of G,, and the elements of

), which is compatible with the action of elements of (&, so this is an equivalence,

b

E

G,x |

wag — > wr =
O

Definition 1.20. Let G be a group. Aut(G) = {¢ : G — G | ¢ bijective homomorphism
(automorphism)}. Aut(G) is a group under composition of maps. This is the automor-

phism group of G.
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Definition 1.21. The group of inner automorphisms of the group G is defined as
Inn(G) .= G/Z(G).

Remark 1.9. The elements of Inn(G) correspond to conjugations with elements of G, since

gt =g forallge G & gf‘”"’g1 =g, forallg € G rzy' € Z(G) & Z(G)xy = Z(G)xa.
Example 1.3. If n > 2 then Z(S,) =1, so Inn(S,) = S,. (see problem sheet 1/2)

Theorem 1.22. Ifn > 2, and n # 6 then Aut(S,) = S,.

Proof. o Let n =3. We know that Sz = ((1,2,3),(1,2)). If ¢ € Aut(G) then ¢ pre-
serves elements orders. Thus (1,2) can be mapped to (1,2),(1,3) or (2,3), and
(1,2,3) can be mapped to (1,2,3) or (1,3,2). Hence |Aut(S3)| < 6. However,
| Inn(S3) |= 6 and Inn(S3) < Aut(Ss) so Aut(S3) = Ss.

e Let n = 4. We know that Sy = ((1,2,3,4),(1,2,4,3)). (one can check with GAP)
—— ——

a b

Since | Sy |= 24 and the number of elements of order 4 in Sy is 4321

= 6, so p(a)
can be choosen in at most 6 ways, ¢(b) # @(a) and p(b) # ¢(a)~! thus ¢(b) can be
choosen in at most 4 ways.

Hence | Aut(Sy) |< 24. As Inn(S4) < Aut(Ss) we have that Aut(Sy) = Sy.

e Let n > 5. Observe that an automorphism preserves conjugacy classes: suppose that

a is conjugate to b in S,,. We denote this by a ~ b. If 27 az = b then

o(x) " p(a)p(x) = @(b), hence p(a) ~ ©(b).

Let Kg, ((1,2)) be the conjugacy class of transpositions in Sy,. If ¢ € Aut(S,) then
it takes (1,2) into an element of order 2, which is a product of disjoint transpositions.
Then K, ((1,2)) == Kg, ((1,2)(3,4) - -- (2k — 1,2k)), for some k.
Let us check if it is possible or not.

n(n —1)

We know that| K, ((1,2)) |= (Z) e and

n\ m—2\ (n—2k+2
| Ksn((l,Q)(3,4)~--(2k: — 1,2k)) |= (2)( 2 ) o ( 2 ) We investigate when there

numbers are equal, namely

14



-1 —1n—-2)---(n—2k+2)(n—2 1
n(n —1) = n(n—1)(n —2) (;ka' k+2)(n—2k+ ) This is equivalent to

2
1kl = (n—2)(n—3)---(n—2k+1).
If k£ = 2 then this gives us 2-2 = (n — 2)(n — 3), which has no solution.
If k = 3, then we have that 4-6 = (n — 2)(n —3)(n —4)(n — 5). Here n is a solution

if and only if n = 6.

Let k£ > 4. We show that there is no solution, since the left hand side is smaller than
the right hand side. The right hand side is the smallest if n = 2k,

(the left side is independent of n). So it is enough to prove the inequality for n = 2k.
Observe that 2871kl < (2k —2)(2k —3)--- 1< 2-4--- (2k — 2k < 2k —2)(2k —3)--- 1
< k< (2k—3)(2k —5)---3-1. This is true since k < 2k —3 < k > 3.

Hence if ¢ € Aut(Sy,) and n > 6,then ¢(Kg,(1,2)) = (Ks,(1,2)).

We define a graph I' = (V| E). The vertices V of I are the transpositions of S,.
Two transpositions (a,b) and (¢, d) are connected with an edge if and only if

| {a,b} N{c,d} |= 1. This is equivalent to o((a,b)(c,d)) = 3.

(Note that (a,z)(x,b) = (abz) and (a,z)(a,z) =1id if | {a,b} N {c,d} |= 2, moreover
o((a,b)(c,d)) =2 if {a,b} N {c,d} = 0).

Let o € Aut(S,) then, as we have seen, a(KSn((l, 2))) = Ks,((1,2)), so

o permutes the vertices of I" and o perserves the orders of elements. We show that o
also preserves edges. The transposition (a,b) and (¢, d) are connected with an edge if
and only if o((a,b)(c,d)) = 3. Then o(c((a,b))o((c,d))) = o(o((a,b)(c,d))) = o((a,b)(c,d)) = 3,
hence o(a,b) and o(c,d) are also connected with an edge, so o preserves edges and
we have that o € Aut(I'). We define the following subgraph.

Go :={(a,z)|r € {1,2,--- ,n} \{a}} then | G, |=n —1 and

G, is a complete graph on n — 1 points for every a € {1,--- ,n}.

I" has no other complete subgraphs on n — 1 points, see problem sheet 2/2.

Since o is a graph automorphism, hence complete n — 1 point subgraphs are mapped
to complete n — 1 point subgraphs and so 0(G4) = G /. Since S, is transitive on
{1,2,--- ,n}, there exists an element g € S,, such that a9 = d/, for a € {1,2,--- ,n}.

ai -+ Gm . . ’ /
Then g = (a/1 a;n)’ in a particular a9 =a ,b9 =10 .

15



If a # b, then {(a,b)} = G, NGy, and{(a,b)’} =G NGy = {(a’,b)} = {(a%,19)} =
{(a,b)?}. Hence (a,b)? = (a,b)? on transpositions. Since the transpositions generate
Sy, on the whole .S, o is the conjugation by g.

Hence every o € Aut(S,,) is a conjugation by some g € G. Thus Aut(S,) = Inn(Sy)
Sh.

O

2 Application of the Sylow theorems, small groups

We know by Lagrange’s theorem that if G is a finite group and H is a subgroup in G, then
| H | divides | G |.

However, the converse is not true. For example |As| = 60 and 15 divides 60, but there is
no subgroup of As of order 15. (see problem sheet 3/1)

However, for each maximal p-power divisor of |G|, there exists a subgroup of that order.

Definition 2.1. Let G be a finite group and let p be a prime. Suppose that | G |= p®m,
where (p,m) = 1. If P is a subgroup of G and | P |= p%, then P is called a Sylow
p-subgroup of G.

Theorem 2.2. (Sylow)
Let G be a finite group, let p be a prime and let |G| = p®m, where (p,m) = 1. Then

1. (Ep) There exists a subgroup P < G, such that |P|=p®. (existence of Sylow p-
subgroups)

2. Let Syl,(G) := {P < G||P| = p®}. Then |Syl,(G)| =[G : Na(P)] = 1(p).

3. (Cp) For all Py, P € Syl,(G) there exists an element g € G such that P{ = Ps.
(Sylow p-subgroups are conjugate)

4. (Dp) If H < G is a p-subgroup, then there exists a subgroup P € Syl,(G) such that

H < P, (P is a mazimal p-subgroup under containment as well).

16



Corollary 2.1. Let |G| = pq where p < q primes.

If Q € Syly(G), then Q < G.

If ¢ # 1(p), then P Q G and G = Cy.

If ¢ = 1(p), then there exist elements a,b € G such that

G={a,b|a? =1, =1,b"Yab=a",m = 1(¢),m # 1(q)). In particular, if |G| = 2q and

G is non-abelian then G = Dy,.

Proof. Let |G| = pq, then if P € Syl,(G) then |P| = p and If Q € Syl,(G) then |Q| = g,
so P and @ are cyclic, P = C)p,Q = C,. (problem sheet 2/8/c )
The number of Sylow g-subgroups in G is [G : Ng(Q)] ‘[G : Q] = p. Hence

—_——

=1(q)
G : Ng(Q)] = kq+ 1|p, and ¢ > pso k=0 hence Q <G.

The number of Sylow p-subgroups is [G : Ng(P)]‘[G : Pl =qand [G: Ng(P)] = 1(p).
If ¢ # 1(p) then [G : Ng(P)] =1 hence P < G. Since PN Q =1 and

PQ =G then G= P x Q = (), x Cy = Cpgq. (see problem sheet 2/8/e )

If g = 1(p) then there can be a non-abelian group of order pq. Let

Q = (a) where o(a) = ¢, let P = (b), where o(b) = p. Then (a) = Q < G and hence

— — k

b~tab € (a), so b~tab = a™ for some m, and p'---bLa bbb =a™.
—_—— ——
k—times k—times

Let k = p. Then b” = 1 and we have that a = a™" hence ™" ~! = 1. Thus o(a) | m? — 1
and so mP = 1(q). Observe that m # 1(q), otherwise b~'ab = a and G is commutative.
Hence if G is nonabelian, G satisfies relations of the group

X ={a,b|a? =1, =1,b"1ab = a™ mP = 1(q), m Z 1(q)).

By Dyck’s theorem, see Algebra 1, or Theorem G is a factor group of X. Since | X |< pq
we have that X = G.

In particular, if |G| = 2¢, ¢ is prime and G is non-abelian then

G={(a,b|a?=1,b>=1,b"tab=a"1), Hence G = Do, O

17



Corollary 2.2. Small groups

1 ji

P Cs

3 Cs

4 Cy, Oy x Oy

5 Cs

6 Cs, Dg

7 U7

8| (abelian Cs, Cy x Cy,Cy x Cy X Cy)(non-abelian Qg, Dg)
9 Cy,C3 x C5

10 (abelian Cg = Cy x Cs)(non-abelian D1p)

11 Cy

19 (abelian Ci2, (ca X C3) X Cs)(non-abelian D1a, Ay, C5 x Cy)
15 Ci3

1 (abelian Ch4)(non-abelian Dy4)

For the non-abelian groups of order 8, see problem sheet 2/9.

For the non-abelian groups of order 12, see problem sheet 3/4.

3 k-transitive and primitive groups

Definition 3.1. Let G act on 2. We say that this action is k-transitive on 2 if for all

ay, 9, ,ap € Q distinct and for all 81, 89, , B € €2 distinct, there exists an element
g € G such that of = f;, for i =1,2,--- , k.

Remark 3.1. G is 1-transitive if and only if G is transitive on €.
Remark 3.2. If G is k-transitive on Q and k£ > 1 then G is (k — 1)-transitive on .

Theorem 3.2. Let k > 2. The following are equivalent for an action of G on §2

1. G 1is k-transitive on €.

2. G is transitive on 0 and there exists an a € Q@ such that G, is (k — 1)-transitive on

Q \{a}.

3. G is transitive on Q0 and for all o« € Q, G is (k — 1)-transitive on Q\{a}.

18



Proof. (1) = (2)

Let a € 2. We have to prove that G is k — 1 transitive on 2 \{a}.

Let 51, , Bk—1 € 2 \{a} distinct, and let vq,...,7x—1 € Q \{a} distinct.

We have to find an element g, € G4 such that 8/ =~;, fori=1,--- k- 1.

Now «, 1, -, Br—1 € Q are distinct and «, 71, ,vx—1 € Q are distinct. From (1) we
have that there exists an element g € G such that o/ = cand 8 =~;, fori=1,--- ,k — 1,
hence g € G4 and G, is (k — 1)-transitive on Q \ {a}.

2) = (3)

Let B € Q. We have to prove that Gg is (k — 1)-transitive on € \{3}, in other words

for 81, -+, Br—1 € Q \{B} distinct, and for 5;, e ,5,;_1 € Q \{B} distinct, there exists an
element g € Gg such that 8/ =8}, i=1,--- |k — L

From (2) we have that G is transitive on ). So there exists an element g € G such that
o = 3. Let o := ﬁig_l and o := (6;)971. Then ai,---,ap—1 € Q \{a} are distinct, and
o, ap € Q\{a} are distinct.

By (2), there exists an element g, € G, such that af* = oy, fori=1,---  k—1.

Then Bf_lg"g =g, fori=1,--- ,k—1,s0 G is (k — 1)-transitive on Q \ {3}.

(3) = (1)

We have to prove that for every ai,---,ar € Q distinct, and for every (Bi,---, 8k € Q
distinct, there exists an element g € G such that o) = j;, for i =1,--- k. Since G is
transitive on (2, we have that there exists an element g € G such that of = ;.

From (3) we have that G, is (k—1)-transitive on Q \{f1}. Now a3, ad,--- ,af € Q\{B1}.

Since o, - - - , o] are distinct and fa, - - - , B € Q \{1}, we have that there exists an element
h € G, such that ()" = B;, for i = 2,--- k. Since of = S, ((al)g)h = /31 and so
afh:@-,forizl,Z,"‘,k. O

Definition 3.3. Let G < Sq (or G acts on §2). We say that ) = Uleﬁi is a G-invariant
partition of Q if ;N Q; =0 for all ¢ # j, and for all g € G, for all i =1,--- ,k, there

exists j such that QY = ;. This partition is proper if there exists an index 7 such that

’Qz‘ 75 1 and Qz 7é Q.
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Definition 3.4. We say that G < Sq (or action of G on Q) is primitive, if it is transitive
and there is no proper G-invariant partition on 2.

We say that G is imprimitive on () if GG is transitive on {2 but not primitive.

Remark 3.3. If G is transitive and not primitive, then since there exists an element g € G

such that Q7 = Q;, we have that |Q;] = |Q;].

Definition 3.5. If G acts on 2, then a subset B C Q is called a block (or domain of
imprimitivity) for G if for all elements g € G (BYN B # 0 = B = BY). B is a proper
block if B # Q, |B| # 1.

Example 3.1. Dg acts on {1,2,3,4} transitively, {1,4},{2,3} are blocks,

1 2

Theorem 3.6. If G is transitive on ), then G is primitive if and only if Q has no proper
blocks for G.

Proof. Tt is enough to prove that the action is imprimitive if and only if there exists a
proper block.

=) Suppose that Q = U*Q;, is a proper G-invariant partition on €.

Then §2; is a proper block for every i.

)

If B C Q is a proper block for G then we will prove that 2 = UBY is a proper G-invariant
partition of 2. By transitivity of G, we have that Q = UgcqBY.

We want to prove that if BY N B" # () then BY = B". Since (BY)"' N B # () we have
that B9 = B, hence BY = B". So Q= UgegB? is a G-invariant partition. Since

|B| # 1, B # Q, it is a proper partition of 2 and so G is imprimitive. O
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Example 3.2. G := {1, (123)(abc), (132)(acd), (1b)(2a)(3c), (1a)(2¢)(3b), (1¢)(2b)(3a) }
Q={1,2,3}U{a,b,c} ={1,a} U{2,b} U{3,c} are two G-invariant partitions on €.

Theorem 3.7. If the group G acts on ) transitively, then the following are equivalent:
1. G acts on Q primitively.
2. There exists a €  such that G, is mazrimal in G.

3. For all o € Q, G, is mazximal in G.

Proof. (3) = (2) This is obvious.

(2) = (3) Since G is transitive on €2, by Theorem we have that G, is conjugate to Gg.
Thus they are maximal at the same time, so G is also maximal.

(1) & (2) It is enough to prove that G is imprimitive on 2 iff there is an o € Q such that
G, is not maximal.

=)

If the action of G is imprimitive then there exists a block B C € such that |B]| # 1.
Let M :={g€ G| BY=DB}. Then M ={g € G| BN B # @} and M is a subgroup of G.
Observe that if a € B, then G4 < M. We will prove G, < M. Since |B| > 1, and a € B
then there exists 5 € B such that a # 5. As G is transitive on €, there exists an element
g € G such that o9 = 8. Thus,

ad € BYNB # (), and hence BY = B and g € M. However g € M \G,, and so

Go < M. Since B # €, there exists an element g € G such that BY # B, thus g € G\ M
and so M # G and we have that G, < M < G, so G, is not maximal.

)

If G, is not maximal, then we want to prove that the action is imprimitive. Let us choose
a maximal subgroup M such that G, < M < G. We want to find a proper block of G on
Q. Let B:={a™ | m € M}, then |B| > 1 because G, < M, and there exists an element
m € M \G,, so for that & # a. Moreover B # (, since if B =  then M were transitive
on ) then for every g € G there would exist an element m € M such that o = o™. Hence

m—1

o = a. and so gm™' € G4, < M. Let my := gm~!. Then g = m;m € M, hence every
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g € G is in M, so this is a contradiction, and thus B # €.

Now, want to prove that B is a block. If BY N B # (), then there exist elements m, m’ € M
such that o™ = o™ Hence a™9(™) ™" = o and we have that mg(m’)~' € G < M. Hence
there is an element m” € M such that mg(m')~! = m" and we have that g = m~'m"m €
M. By the definition of B, we have that BY = B and so B is a block. Hence G acts

imprimitively. O

Definition 3.8. A group G is sharply k-transitive on ( if for all distinct aq, -+, ax € 2
and for all distinct 31, - -+ , B € Q, there is a unique element g € G such that of = §;, for
i=1,2,--- k.

Theorem 3.9. (Jordan)
Let G < S, be a sharply k-transitive group. If G # Sy, or A, then k =4 and n = 11 or
k=5 and n =12. (The Mathieu-groups M1y and Mis are such groups.)

4 Group extensions, semidirect product, wreath product

Definition 4.1.

; 12 T
1 p A »B_ O p1(%

Let A, B,C be groups, %, ¢ group homomorphisms, i is the embedding of 1 and 7 is the
surjection on 1. We say that the sequence (*) is exact if Imi = ker ¢ (if and only if 9 is
injective) and Im ¢ = ker 7 (if and only if ¢ is surjective) and A = Im ) = ker ¢ (in this case
B/kerp = Imy = C) hence B/1y(A) = B/A. In this case we tell that B is an extension
of A by C.

(A< B and B/A = C) (shortly)

Definition 4.2. The extension A by C is split (or inner semidirect product), if there
exists a subgroup C1 < B such that C; 2 C, ANC; = {1} and AC, = B.
(in this case B/A = (AC1)/A=C/(C1NA)=C; =0)
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Lemma 4.1. Let G =KQ, K <G, KNQ =1 (split extension of K by Q), then there

K
exists a map O : Q — Aut(K) such that x+— O, = . is a homomorphism (Q
Kz~

acts on K with conjugation by x=1 for z € Q).

Proof. © : Q — Aut(K) is a homomorphism since 0,,(K) = azyky 'z~ = 0,(0,(K)),
hence ©,, = ©,0,. O

Definition 4.3. (Outer semidirect product)

Let @ and K be groups and O : Q — Aut(K) be a group homomorphism.

G:=K xg Q ={(a,z) | a € K,z € Q} with multiplication rule (a,x)(b,y) = (a©(b), zy)
with this multiplication G is a group. (see problem sheet 5/2)

The unit element is (1,1), (k,q) ™" = (©,-1(k)) "', ¢~ ') and (1,¢)(k,1)(1,q) " = (O4(k),1).
The elements K* = {(k,1) | k € K} form a normal subgroup isomorphic to K, the elements
Q* ={(1,9) | ¢ € Q} form a subgroup isomorphic to @, G = K*Q* and K*NQ* = {(1,1)}.

Definition 4.4. (Wreath product)

Let D < S, @ < Sq be permutation groups, let D, = D for all w € 2, then K = H D,
weN

is the base group of the wreath product. Let: D ~ Q := ( H Dw> X @, where () acts on
we

H D,, by permuting components: (dy,, dw,, - )? = (dwya, dwga, -+ ).

wef

Remark 4.1. If |D| < oo, then |K| = |D|I¥¥l. If Q is also finite, then |D ~ Q| = |D|*|Q|.

Theorem 4.5. Let us suppose that D < Sp (D acts on A) and Q < Sq (Q acts on Q).
Then D ~ Q acts on A x Q, and D ~ Q < S(pxq), where the action is defined by
O ) dens) = (3 ). (%)

This define an action ¢ : D ~ Q — Saxq), in other words
Qp((dwlv o adwna q)(d;;lv U ad(/,,)na ql)) = @(dwla o ,dwnv Q)@(d;l, T ad(/una ql): as
()\dw,wq)(dwl""’dw"’q ) = (A\dua (W9)7) is the image of (\,w) when we apply the left hand

side. On the otherhcmd, (dwlv"' 7dwn’q)(d:u1?"' ,dw",q ) = ((dw1"" adwn)(d:u‘ll?”' d/ '1)7qu)

» Ywld
! / /
(dwl dwg [ 7dwn dw% »49 )

= (dwld;tlz, e 7dwnd;,gv qq). Thus (\,w) = ()\(dwd;‘I),wqq/> is the image
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of (\,w), when we apply the right hand side, This action is faithful, since if (A%, w?) = (X, w)
for all X\ and for all w, then A% =1 for all w, and ¢ = 1 and so (dy,, - ,dw,,q) =
(1,---,1). Hence G ~ Q < Spxq.

4.1 The Sylow p-subgroups of symmetric groups

What is the order of the Sylow p-subgroup of S,,. The order of S, is m!. We need p™ | m!

but pM+1 § m!

1 m

M=[3]+ 1zl +F]+- - since

[ %] numbers between 1 and m are divisible by p
EY

numbers between 1 and m are divisible by p?

etc.

Remark 4.2. C) ~ Cp = Cp x --- x Cp xCp, and Cp < S|, since Cp acts on C), by right
N————

p—times
multiplication.

By the previous theorem, we have that Cp, ~ C, < S2. Hence (Cp ~ Cp) ~ -+ ~ Cp < Spn.

Theorem 4.6. (Kaloujnine 1984)
Let p be a prime. The Sylow p-subgroup of Syn is the iterated wreath product
Wy =(Cp~Cp)~--~Cp.

n—times

Proof. The proof is by induction on n.

If n =1, then [Sy| = p!, and if P € Syl,(S,), then |P| = p hence P = C),.

By induction we suppose that the n-fold iterated wreath product P = (Cp ~ - -+ ~ C},) € Sylp(Spn).
Since P < Spn, O, < Sp, then P ~ C), acts on the direct product set of order p" 1, hence

P~ Cy < Spnia.
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n+1

L 1B =

If Py € Sylyn+1, then |Py| = P where pMtD) = |55 + (B
Pt 4 L

We know by induction that |P| = PP Hence |P ~ Cp| = |P|P-p=pPt 2" . p=plttr",
This is exactly the size of the Sylow p-subgroups of S,n+1. Hence we are done.

O

Remark 4.3. We can also determine the Sylow p-subgroup of S,,, where m is not nec-
essarily a p-power. Let us write m in p-adic number system: m = ag + a1p + - - - + asp’,
where 0 < a; < p—1,. Let Q := {1,2,--- ,m}. Then P € Syl,(S,,) has size p*, where
= 2 U2

p p p
(a1 +ap+ - +ap™ )+ (ag +asp+ - +ap'™) + -+ (a1 + ap) + (ar)
=ar+ax(p+1)+as(p®+p+ 1) +as(@®+p* +p+ D)+ +a(p T +p P+ + 1),
Thus, |P| = pUpe2PTl)pas@+prl) | pae(pt T D) | X[ XS7] -+ | X[, where X; € Syl,(Sy).
We partition € into ag 1-element sets, a; p-element sets, as p’>-element sets - - - etc.
Hence the group 1% x X7 x X" x -+ x " <87 x Sp¥ x -+ x SI < Sg = Sy,

This group has the order of p, thus it is a Sylow p-subgroup of Sy,.

5 Solvable groups and nilpotent groups

Definition 5.1. A finite group G is solvable if there exists a subnormal series
G=No>N;>---> N, ={e} (VN; < N;_1 but not necessarily N; < G) such that N;/N; 1

is abelian for all 4.

Definition 5.2. A composition series of GG is a subnormal series without repetitions,

such that it cannot refined properly (hence every N;/N;i is simple).

Remark 5.1. A finite group G is solvable if and only if it is has a composition series such

that all N;/N;11 are of prime order.

1

Definition 5.3. [z,y] = z ty~lzy is the commutator element of = and y.

Remark 5.2. [z,y] = 1 if and only if zy = yx.
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Definition 5.4. G = ([z,9] |2,y € G) is called the derived subgroup of G.

Definition 5.5. A subgroup H < (G is called a characteristic subgroup of G (denoted
by H char G), if for every automorphism ¢ € Aut(G), we have that ¢(H) = H.

Remark 5.3. If H char G then H < G.

Proof. If ¢4 : G — G, such that x g lzg, then g € Aut(G). Since H char G we have
that py(H) = H,so g"'Hg= H. Thus H < G. O

Remark 5.4. If A < B <1C then it is not necessarily true that A < C.

Example 5.1. Let K4 := {(),(12)(34), (13)(24), (14)(23)}, C2 = {(), (12)(34)} <« K4 <1 S4
but {(), (12)(34)} not normal in S; because © = (23) € S; but 7 1(12)(34)7 ¢ Cs, hence

C5 is not closed under conjugation.

Remark 5.5.

(i) If A char B<C then A< C.

(ii) If A char B char C, then A char C.

Proof. (i) Obviously A < C. Let g € G. We will show that g~ 'Ag = A.

Let ¢, : G — G such that = +— g~ 'zg. Then ¢ (B) = B. We show that

1 1

¢y € Aut(B). This is becuase g, is bijective and ¢, (z)p,(y) = g x99 yg = g~ ayg = p4(xy).

Since A char B, ¢4(A) = A for every g € G, hence A < G.

(ii) See problem sheet 6/1.

O
Corollary 5.1. If N is a normal subgroup of G then not necessarily N char G.
Proof. In Example Cy <1 K4, but Cy not characteristic in Kjy.
Suppose Cs char K4 <1 54. Then Cy <154, and this is a contradiction. O

Proposition 5.1. G is a characteristic subgroup of G.
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Proof. We have to prove that for every ¢ € Aut(G), p(G') =G .

It is enough to prove that for every z,y € G ¢([z,9]) € G'. Now, ¢([z,y]) = o(z 'y ay)
= p(@ ey Ne@)e(y) = o) o) e@)ey) = [p(@), o(y)] € G
Since ¢ (G') < @', hence o(G') = G’ and we have that G’ char G. O

Definition 5.6. G = (G')”G(i) _ (G(i—l))’

1!

Definition 5.7. Derived series of G:G>G >G > >GW > ...

Remark 5.6. G char G, in particular G is normal subgroup of G.

Proof. G' char G, G = (G')’ char G, so by Remark (ii) we have that G' char G.
Suppose by induction that G char G.
GO = (GD) char G char G. By Remark (ii) we have that GU*+D char G. O

Remark 5.7. G is abelian if and only if G = {1}.

Definition 5.8. G is called metabelian if there exists a normal subgroup N < G such

that NV is abelian and G/N is abelian.
Remark 5.8. G is metabelian if and only if G =1

Remark 5.9. G is the minimal normal subgroup N such that G/N is abelian.

Proof. G/N is abelian < [xtN,yN] =1= N < [zN,yN] = [z,y]N =N < [z,y] € N & G < N.
0

Corollary 5.2. G is solvable if and only if there exists a natural number k such that

G = {1}. The minimal such k is called the derived length of G denoted by d.1.(G).

Proof. <—:)

Suppose that G > G > >G6W = {1}. This chain is a normal series, and the factors
G /a0 = g0 /(GYY are abelian. Then @ is solvable.

=)

Suppose that G is solvable. Then there exists a series G = No > N7 > Ny > - - > N = {1},
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such that N;/Nj4 is abelian fori = 0,1,--- ,k—1. Since G/N; is abelian, so G < N;. Since
Nj /Ny is abelian, then N{ < Ny, hence G < Ny. We want to prove that G < N, = {1}.
By induction suppose that G Then < N, G+ < Ni/ and N;/N;y; is abelian we have
that N; < N**! hence G0 < Niyy. Thus G*®) = {1} O

Proposition 5.2.

1. If G is solvable and H is a subgroup of G, then H is solvable and d.l.(H) < d.l.(G).
2. If G is solvable then G/N is solvable and d.l.(G/N) < d.l.(G).

3. If N is solvable normal subgroup of G and G/N is solvable then G is solvable and
d.l.(G) < d.I.(N)+dl.(G/N).

4. If H, K are solvable then H x K is solvable.
Proof. 1. This is because H* < G for every 1.
2. This is because H' < (G/N)i = G'N / N.

3. Easy to see.

4. Easy to see.
O

Definition 5.9. A nontrivial normal subgroup H of G is called a minimal normal

subgroup of G if there exists no normal subgroup N such that 1 < N < H.

Definition 5.10. A group G is called characteristically simple if there is no character-

istic subgroup N of G such that {1} < N < G.

Proposition 5.3. If {1} < N is a minimal normal subgroup of a group G, then N is

characteristically simple.

Proof. Suppose {1} # H char N < G, H # N. Then by Remark H < G and this is a

contradiction since N was minimal. O
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Theorem 5.11. If G is a finite solvable group, and N is a minimal normal subgroup of
G then there exists a prime p such that N = Cy x --- x C, (N is a so called elementary
abelian p-group).

Proof. N is characteristically simple (by Prop. Since N’ char N,N' = Nor N = {1}.
However, N "= N impossible, as N is solvable. Hence N is abelian. Now, by the fundamen-
tal theorem of abelian groups we have that N = N, x Ny, x --- x Ny, , where N,,, € Syl,,,(N).
Then N, char N. Hence N,, = N or {1} since N is characteristically simple. Thus N is
abelian p-group.

Let Q,(N) := (z € N|z’" =1). We prove that Q,(N) char N. Let ¢ € Aut(N). It is
enough to prove that if z’" =1 then ¢(x)?" = 1. But p(z?") = p(z)?" = 1. In particular,
Q1 (N) char N. Hence Q1(N) = {1} or Q;(N) = N.

However, Q1 (N) = (z|x? = 1) # ({1}), since there exists an element of order p in N.

Thus Q;(N) = N. Since N is abelian, so N = C), x --- x C, elementary abelian. O

Remark 5.10. Every finite group of p-power order is solvable.

Proof. We know from (Algebra 1) that if |G| = p* > 1 then Z(G) # 1.

Let Z%(G) be the inverse image of Z(G/Z(G)) in G, and in general let Z'T1(G) be the
inverse image of Z(G/Z%G)). Then 1 < Z(G) < Z*(G) < --- and Z"TYG)/ZYG) =
Z(G/Zi(G)) abelian. Hence G is solvable. O

Theorem 5.12. (Burnside)
If G is a finite group and |G| = pd®, p £ q primes, then G is solvable.

Theorem 5.13. (Feit-Thompson 1963)
If G is a finite group and |G| is odd, then G is solvable.

Theorem 5.14. (Further properties of solvability)

1. If N, M are normal subgroups of G and G/N,G /M are solvable, then G/(N N M) is

also solvable.
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2. If M, N are normal subgroups of G and M, N are solvable, then M N is also solvable.

Proof. 1. Let g € G,let ¢ : G — G/N x G/M be a map such that g — (gN, gM). Then
this is a homomorphism and kerp ={g € G|g€ NN M} = NN M. So by the ho-
momorphism theorem G/(NNM) =ZIme < G/N x G/M. Now we use Prop (4)
and (1) to get that G/(IN N M) is solvable.

2. Since M is solvable and (M N)/N = M /(M N N) is solvable, moreover N is solvable,
so by Prop (3) M N is also solvable.
O

Definition 5.15. In a finite group G there is a biggest solvable normal subgroup (product

of all solvable normal subgroups) is called the solvable radical of G.

Remark 5.11. If p, g are primes then every group of order pq is solvable.

Proof. If ¢ > p and @Q € Syly(G) then @ < G. Hence we have the normal series
G > Q> {1}. Then G/Q = Cp, and Q/{1} = C,. Hence G is solvable. O

Remark 5.12. If |G| = pgr, where p, ¢, r are different primes then G is solvable.
Remark 5.13. Groups of orders (1 — 59) are solvable.
Remark 5.14. If G is non-abelian simple group then G is not solvable since G’ = G.

Definition 5.16. Let G be a group and let H, K be subgroups of G. Then the subgroup
[H, K] := ([h,k]|h € H,k € K) is called the commutator subgroup of H and K.

Remark 5.15.

1. Let H K < G. K is a subgroup of Ng(H) if and only if [H, K] < H.

2. Suppose H is a subgroup of GG, K is normal subgroup of G, and K is a subgroup H.
Then [H, G| is a subgroup of K if and only if H/K is a subgroup of Z(G/K).
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Proof. 1. =):
Let K < Ng(H). It is enough to prove that for every h € H, and for every k € K,
[h,k] = h ' k~'hk € H. But since k'hk € H we have that [h, k] € H.
SN—— N——
—):
Suppose that h~'k~thk € H, for every h € H, and for every k € K k™ 'hk € H so
K < N¢g(H).

2. [H,K] < K & H is commuting with G mod K. In other words H/K < Z(G/K).
0

Definition 5.17. (Lower central series of G)
Ko(G) == G,K1(G) = [G,G] = G, K2(G) = |G',G] = [K1(G),G], - . Ingeneral K;11(G) = [K;(G), G].
Then Ko(G) > K1(G) > --- is the lower central series of G.

Definition 5.18. (Upper central series)

Z%(G) = {1}, ZY(G) = Z(G), Z*(G) = inverse image of Z(G/Z(G)) in G. In general
ZN@))ZHG) = Z(G/Zi(G)). Then Z°(G) < ZY(G) < Z*(G) < --- is the upper cen-
tral series of G.

Written the following theorem we also introduce the notion of nilpotent groups.
Theorem 5.19. For a group G the following are equivalent:

1. The lower central series of G in finitely many many steps reaches {1}.

2. The upper central series of G in finitely many steps reaches G.

The number of steps in (1) and (2) are equal. If this number is ¢, then G is called a
nilpotent group of class c, or shortly by ¢ = cl(G).

Proof. (2) = (1)

Suppose Z°(G) = G, for some ¢. We will prove by induction on i that K;(G) < Z°7(G)
(*). For i =0,G = Ko(G) = Z°(G) = G. Suppose that (*) holds for i. Then by induction
we have that K;11(G) = [K;(G),G] < [Z2°74@G),G] < 271, since
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Z°74(G) /271G = Z(G/Z‘H*I(G)). Then (%) holds for every i and hence K.(G) < 2°(G) = {1}.
1) = )

Suppose that K.(G) = {1}. We want to prove that K._;(G) < Z?(G)(**). We prove by
induction on j.

If j = 0, then {1} = K.(G) = Z°(G) = {1}. Suppose by induction that (**) holds for j.
Then K. j(G) = [K.—(j4+1), G], thus K._(j;11) and G are interchangeable mod K. ;(G).
In other words K._(j1)(G)/K.—;(G) < Z(G/Kc,j(G))

By induction we know that K._;(G) < Z7(G). So we have that

Ko_+1)(G)Z(G)/21(G) < Z(G/Zj (G)). Hence K,_(j1)(G) < Z77(G) holds,

Hence (**) holds for every j and for j = ¢ we have that G = Ko(G) < Z°(G). Thus
Z°(G) =G. O

Definition 5.20. A group G is called supersolvable if it has a normal series, where

factors are of prime order.

Remark 5.16. Abelian groups C nilpotent groups C supersolvable groups C solvable

= = =

groups C all finite groups.

Example 5.2. 1. S3> A3 > {e} is supersolvable but not nilpotent, since Z(S3) = {1}.
2. Every finite p-group is nilpotent 1 < Z(G) < Z%(G) < --- < Z°(G) = G.
3. We know that e.g. Dg and (Jg are nilpotent but not abelian p-groups.
4. As is not solvable, since A/5 = As.

5. Sy is solvable but not supersolvable, since the only normal subgroups in S, are
Sa, Ay, K4 and {1}. There is no normal subgroup of order 2 in it. In the series

Sy Ay > Ky > {1}, the factors are abelian.
Theorem 5.21. (Properties of nilpotency)

1. If G is nilpotent and H is a subgroup of G, then H is also nilpotent and cl(H) < cl(G).
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2. If G is nilpotent and N is normal subgroup of G, then G/N is also nilpotent and
c(G/N) < c(Q).

3. If G1 and Go are nilpotent, then Gy x Gy is nilpotent and cl(G1 x Ga) = max(cl(Gl), cl(Gg)).

Proof. 1. This is because K;(H) is a subgroup of K;(G) hence cl(H) < cl(G).
2. This is because K;(G)N /N = K;(G/N), and so cl(G/N) < cl(G).

3. Easy to see.
O

Remark 5.17. If N is a nilpotent normal subgroup of G and G/N is nilpotent, then G is
not necessarily nilpotent. (See Example [5.3])

Example 5.3. S3 > As, S3/A3 = (5 is nilpotent and A3 = Cj is nilpotent(p-group).
But S5 is not nilpotent since Z(S3) = {1}.

Theorem 5.22. (Frattini-argument)
Let G be a finite group and let H be a normal subgroup of G, P € Syl,(H). Then G =
HNg(P).

Proof. 1t is enough to prove that G < HNg(P). Let g € G, since H < G, we have that
P9 < H, and P9 € Syl,(H). By Sylow’s theorem, there exists an element h € H such
that P9 = P" so P9"' = P and hence gh™' € Ng(P). Then gh™' =n € Ng(P). Thus
g =nh =hin € HNg(P) for some h; € H. O

Theorem 5.23. If G is a finite group then the following are equivalent:
1. G is nilpotent.
2. For every proper subgroup H < G, H < Ng(H) holds.
3. Every maximal subgroup of G is of prime index and normal.

4. Every Sylow subgroup of G is normal.
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5. G s the direct product of its Sylow subgroups.
6. If x,y € G and (o(x),0(y)) =1 then [z,y] = 1.

Proof. (1) = (2)

Suppose that G is nilpotent of class c. We have to prove that Ng(H) > H.

Since K.(G) = {1}, there exists an index ¢ such that K;(G) £ H but K;11(G) < H. Since
[Ki(G),H] < K;4+1(G) < H, we have that K;(G) < Ng(H) by Remark (1), and so
Ng(H) > H.

2) = (3)

Let M be maximal subgroup in G. Then M # G and by (1) M < Ng(M) = G. Hence
M < G. We have to prove that [G : M] is prime. Since M < G and M is maximal in G,
hence G/M has no nontrivial proper subgroups, so G/M = C), for some prime p.

(3) = (4)

Suppose by contradiction that there exists a Sylow subgroup P € Syl,(G), such that
P #4 G. Then since Ng(P) < G we can find a maximal subgroup H such that Ng(P) < H < G.
From (3) we know that H < G.

Now, by the Frattini-argument we have that G = HNg(P) < H, which is a contradiction.
Hence P <1 G.

(4) = (5)

)

t
Let |G| = Hp(.” and let P; € Syly,, (G). From (4) we have that P, < G,i=1,--- ,t, hence
i=1

¢ ¢ t
HPi <1 G. For all 7, we have that P, < HPi, hence | P; | divides |HPj] and hence
i=1 j=1 j=1

t t t t t
[TIAITT Al <16l But [T IR =Gl so [T 1P = IT] 2l = IGI.
j=1 j=1 j=1 j=1 j=1

t
Now, P, < G, fori=1,---,t, so HPj = (. We have to prove that P; OHPj ={1}.
j=1 i

P.||P
Then we will have G = x'_, P,. Now, |P,P,| = PP e |Py|| Py,
|P1 ﬂP2|
P.P||P.
|P Py P3| = AP B[ Ps] | PP, || Ps|||PL|| P2|| Ps| and by induction we have that
‘Plpg N P3|
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TI 1| TT 17 Hence PN T4, Py = {1}

J# J#i

(5) = (6)

We have to prove that if 2,y € G, and (o(x),0(y)) = 1, then [z,y] = 1. Since

G = x!_P,z=(x1,72, - ,2¢), where z; € P; and y = (y1,¥2,--- , ), where y; € P;.

If z; # 1, then y; = 1 and if y; # 1 then ; = 1. So xy = yz hence [z,y] = 1.

5) = (1)

We know that G = x!_, P;, when P; € Syl,,(G). We also know that every finite p-group
is nilpotent. As G is the direct product of nilpotent groups it is also G is nilpotent by
Theorem (3).

(6) = (4)

From (6) we have that [P;, P;] = 1 for every i # j, hence P; < Ng(P;) and P; < Ng(F;).

So [[ P < G. However, [] ypi\'\m < |G|, but [TIR| =Gl so [[ P = G. If g € G then

g =pip2- - pt, where p; € P;. Hence PP = P;. Thus g € Ng(P;) and so P, 9 G O

6 Hall theorems, and the Schur-Zassenhaus theorem

Definition 6.1. If G is a finite group and |G| = II'_p$*, 7(G) = {p1,p2, -+ , px}, set of
prime divisors of G. For a subset 7 C 7(G) we define 7 = 7(G) \ #. In particular
p =n(G)\ {p}. We say that n is a 7-number if the prime divisors of n are in the set 7, n

. / . . o e . /
is a m -number if the prime divisors of n are in the set 7 .

Definition 6.2. Let 7 be a subset of 7(G). Let H be a subgroup of G and let n(H) =«
and suppose that (|G : H],|H|) = 1 then we call H a Hall w-subgroup of G.

Definition 6.3. A subgroup H of G is a m-subgroup of G if 7(H) C .

Definition 6.4. Hall(G) = {H < G|H is a Hall m-subgroup of G}.
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Theorem 6.5. (Ph. Hall 1939)

(Analogues of Sylow’s theorems for solvable groups)
1. Er, for every subset m of m(G) there exists a Hall w-subgroup H € Hall,(G).
2. Cr, every Hall w-subgroup of G is conjugate in G.

3. Dy, every w-subgroup of G can be embedded into a Hall w-subgroup of G.

Proof. (of E;)

The proof is by induction on |G|. If G is a p-group then H = G. Let G be an arbitrary finite
solvable group. Let 1 # N <0G be a minimal normal subgroup. We have seen that N is an
elementary abelian p-group. In G/N by induction E, holds. Let H = H/N € Hall(G/N).

There are two cases:

1. If p € 7 then the inverse image H of H is also a m-group.

G
G/N = G
H
H
N
T
le

[G: H] =[G/N : H/N] and it is a 7! number. So H € Hall,(G).

2. Ifpé¢n,( |N| ,|H/N]|)=1. By the Schur-Zassenhaus theorem (see Theorem
—— ——

7’ —number T™—number

[6.7), there exists a subgroup Hy < H such that H = N - Hy and N N Hy = {1} (com-
plement to N in H).

Then H/N = Hy, so |Hy| is a m-number and |G : H1] =[G : H|[H : Hi] = |G : H]|N|,
which is a 7 -number. So H; € Hall,(G).
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Remark 6.1. 1. If 7 = {p} we get Sylow’s theorems for solvable groups.
2. Solvability is important

e |As] = 60 = 22 . 3.5, there is no subgroup H < As such that |[H| = 15, then
there is no Hall (3, 5)-subgroup in As.

o |GL(3,2)] = (22 —1)(23 —2)(2% — 2%) = 23-3-7. In GL(3,2) there are two
non-conjugate Hall {2, 3}-subgroups both isomorphic to Sj.

e PSL(2,11) = SL(2,11)/Z(SL(2,11)), it’s order is 22-3-7-11. There exist Hall
{2, 3}-subgroups that are not isomorphic, (A4, D12).

Remark 6.2. G is solvable if and only if for every subset m of 7(G), there exist a Hall
m-subgroup of G, moreover, G is solvable if and only if for all p € 7(G), there exists a Hall

p'-subgroup of G.

Theorem 6.6. (Gaschiitz) (special case of Schur-Zassenhaus)

Let G be a finite group, N a normal subgroup of G such that N is abelian and

(IN],[G : N]) = 1 then there ezists a subgroup H < G such that HON = {1}, and HN = G
(H is complement to N in G).

Proof. Let |G : N| =m, and |N| =n. Then (m,n) = 1. The elements of the factor group
G/N are cosets of N. Let a € G/N,z, € a (a representative of the coset «). Then
G = UZGG/N zoN. Let X :={z,| o € G/N}. It is enough to prove that we can choose
X to be closed under multiplication. Then X will be a subgroup, since o(z,) = k < oo
for some k, thus 2% = 1 € X and 287! = 27! € X also holds. Moreover, X will be a
complement to N, since XN =G and X NN = {1}.

Our aim is to find a set of coset representatives which is closed under multiplication. Since
Tag € TaglN, there exists a function f : G/N x G/N — N such that f(a,) € N and
oty = Tapf(o, B).

As the multiplication in G is associative, we have that (vq23)ry = zo(zg2,). Hence
(208 y = Tas () )0y = Tagyws | F(0 B)2y = Tagy f(0 Y = Tapyf (@B, 1) (0, B
On the other hand, ¥4 (752,) = TaTpy f(B,7) = Ta(sy) f (0, B7) f(B,7). Thus we have that
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flaB,y)f(a,B)™ = f(a, By)f(B,7)(*) (a function f: G/N x G/N — N satisfying (*) is

called a factor set ).

Let g(pB) := H f(a, B). Now we multiply both sides of (*) for every a.
a€G/N

Since N is abelian, we have that H f(aB,y) H fla, B)*r = H flo, By) F(B, )™

aeG/N aeG/N aeG/N

Hence g(v)g(8)™ = g(By)f(8,7)™ and g(B8)* g(v) f(B,7)"™ = g(Bv) (**)

Since |G/N| = m, |N| =n, and (m,n) = 1, we have that there exists an integer m' such

that (—m)m’ = 1(n). Thus —mm’ = kn + 1 and if z € N then g kel

Let h be a function h : G/N — N such that h(a) = g(a)m/. Let yo = xoh() be another

set of coset representatives of N. We prove that it is closed under multiplication.

We raise to the (m')*" power both sides of (**), then we have that h(3)*"h(y)f(8,7~) = h(57)
Now, ysyy = 26h(B)2,h(7) = 2y h(B)2,h(y) = 25ash(B)5 (1) = 2y f (B, 1) h(B)™ h(7)=
2yh(B7Y) = ysy-

Hence Y is closed under multiplication, and Y = {y, | « € G/N} complement to N. [

Theorem 6.7. (Schur—Zassenhaus theorem)
If G is a finite group and N is a normal subgroup of G such that (|N|,|G : N|) =1, then
there exists a subgroup H < G such that HN = G, H N N = {1}, in other words H is a

complement to N.

Proof. We proved this if N is abelian, this was Gaschiitz’s theorem.

Let G be a minimal counterexample, Suppose that N does not have a complement
Claim 1: N is nilpotent.

If N is not nilpotent then there exists P € Syl,(N) such that P #4 G. Hence Ng(P) $
G. By the Frattini-argument G = N - Ng(P) (*) because G is minimal and Ng(P) is
a smaller group. We have that N N Ng(P) < Ng(P) and | NN Ng(P) ||| N |, more-
over (**) [Ng(P): Na(P)NN]=| Na(P)/Na(P) N |=| Na(P)N/N |(*:)] G/N |. Since
(I N|,| G/N |) =1 we have that (|N N Ng(P)|,[Nag(P) : Ng(P)N NJ]) =1, by induction
there exist a complement H to N N Ng(P) in Ng(P). Hence
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H-(NNNg(P))=Ng(P),HN (NN Ng(P))={1}. By (**) we have that
| H|=[G: N] and Ng(P)/N N Ng(P) = H. Hence |HN| = m =|G|so HNN
and H is also a complement to N in G and this contradiction shows that N is nilpotent.
Claim 2: N is abelian.
Since N is nilpotent it is also solvable. So N' < N. If N is not abelian then N’ # 1 and
N' char N <G so N < G. Since | G/N' |< G we can apply induction then N/N <G /N’
and (| N/N'|,[G/N" : N/N']) =

T
By introduction there exists a complement H/N' to N/N' in G/N'. Then

| Hi/N |=[G/N: N/N’] [G:N]and NH, =G,NNH; = N’ By (¥*%),

G G

|G‘:| NH1 |_ ’ H ‘hen |H1 ‘: ‘lz\[’,and“N” ‘ |‘ SIHC8H1<GN <]H1,
[N

(| N |,[H; : N']) = 1, by induction there exists a subgroup Hs 1, such that N' Hy, = H,

[G:N]
and N' M Hy = 1. (¥5%¥)

G G/N1
H, N Hy/N1 N/N/
Ny NI1/N1
1
H, G

Then | Hy |= " N ’| || N “ We show that Hj is complement to /N in G. This is because
NHy = NN'H, "= NH, =G, NNHy, CNNH, =N NN Hy= NN H,n N’ =1 and
this is contradiction. O
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7 Normal p-complement theorems and the transfer

Definition 7.1. If for P € Syl,(G), there exists a normal subgroup K <G such that
KP =G and KNP = {1}, then we tell that K is a normal p-complementnormal p-

complement in G.
Remark 7.1. Since G/K = KP/K = P/KNP = P, thus K € Hall ;(G).
Definition 7.2. A group G is p-nilpotent if it has a normal p-complement.

Theorem 7.3. A finite group G is nilpotent if and only if G is p-nilpotent for every
p € ©(QG).

Proof. <) Suppose that G is p-nilpotent for every p € w(G). For every p; € n(G), K; € Hallp/_ (G),
K;NP =1,K; p;=Gandifp # p; then P < K for every P € Syl,(G). Hence P = Np4p, K; < G,
and so G is nilpotent by Theorem
—) If G is nilpotent then G = P; x --- x P, and H P; is a normal p;-complement in G.

J#i
0
Our aim is to prove the Burnside’s transfer theorem, see Theorem To prove it we need

the following results.

Lemma 7.1. Let Q be a subgroup of G of index n. Let {l1,--- ,l,} and {hi,---  hy} be

two complete sets of representatives of left cosets (left transversals) of Q in G. Then

Tk n*
G= U LiQ = U hiQ and for all g € G and for everyi € {1,--- ,n}, there exists a unique,
i=1 i=1
o(i) € {1,--- ,n} and there exists a unique v; € Q such that gh; = ly; ;. Moreover
o €S,

Proof. Since LnJ h,Q = OliQ,ghi, there exists a unique j such that gh; € [;Q). Then
gh; = ljx;, fo1::a1 unique ;::ile Q.

Let o : {1,- ,np—{1,- ,n} mapping i — j. then o is injective. Suppose o(k) = j = o(3).
It means thzat, ghp = ljajjk hence ghkx,;l = l; and gh; = ljz; hence ghia:i_l = l;. So
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ghkxlzl = ghixi_l and hence hkxlzl = hixi_l.

1 -1 . . .
Thus h; "hy = z; "z, € Q, which implies
that h;QQ = hip@. So ¢ = k and o is injective on a finite set to itself so it is also surjective

and o is a permutation on {1,--- ,n}. O

Proposition 7.1. (Special cases)
1. If l; = h; then gl; = ly;)wi(*)
2. Ifg = 1, then 1 - hi = la(i)xi

Definition 7.4. (Transfer)
Let @ be a subgroup G and [G : Q] = n. The transfer is a function V : G — Q/Q/ such
that g — (H mi)Q,, where G = U iQ and gl; = l,)@i, 7 € Q.
i=1 =1
Theorem 7.5. If Q is a subgroup of G, |[G:Q]=n and V : G — Q/Q/ is the transfer

map, then V' is a homomorphism and V is independent of the left transversal of Q in G.

n*x n*
Proof. Let {ly,--- ,l,},{h1, -, hn} be two left transversals of @ in G. Then G = U L;Q = U h;Q.
i=1 i=1
Let ¢ € G. Then we have that there exist unique o, 7 and « € S, and unique z;, y; and

z; € Q such that

gli = lyywi (%)

ghi = hoyyi (%)

Lh; = lo@yzi (x % *)

ghi " 9(la()#i) 2 lo(a(i))Ta(i)?i (* * **)

Now, let a(j) = o(a(i)) then j = o toa(i) (v).

NOW7 hj (*;*) la(j)Zj and so loc(j) = hjzj_l, hence ghi (*2*) la(j)xa(i) (Z_z) = hjzj_la:a(i)zi.

On the other hand, gh; () 1 @ 1

ho(i)yi and we have that 7(i) = jand y; = 2z; @)z = o1 ga(i) Tali)Zi-

So H%Ql = Hz;_llm(i)a;a(i)ziQ/ = Hma(i)Ql = H:CiQ/. Hence V is independent of
i=1 i=1 i=1 i=1

the left transversal of @ in G. We want prove that V : G — Q/ Ql is a homomorphism.
n *

It is enough to prove that V(ggl) = V(g)V(g/). Let G = U LiQ. Then gl; = Iy,
i=1
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/

9'li = Layyi- 50 99l = gle(iyYi = lor(ty@-(iyyi- Hence V(gg) = 72,3y1iQ = 72,3 Q 73 Q
= m2:Q Ty Q =V (9)V(g). =

Definition 7.6. Let [G : Q] = n, and let K be a normal subgroup of G. Suppose that
KQ =G and KNQ = {1}. Then we say that K is a normal complement to Q.

Remark 7.2. If K is a normal complement to @, then |[K| = [G: Q] =nand K = {a1, -+ ,a,}
is a left transversal to Q in G and K < ker(V). (V : G = Q/Q’ transfer map)

Proof. n =[G : Q] = ’QG: = |I|Z§|2| = |K|Ir:’l§|2\|Q| = |K|. Since K ={ai, - ,a,}, we have

that G = KQ = U a;Q. This is a disjoint union, since if a;Q) = a;Q then a]-_lai ceQNK=({1},
i=1
so a; = a; and then K = {a1,--- ,a,} is a left transversal to @ in G.

Let V:G — Q/Ql be the transfer map. We want to prove that K < ker(V).
Let k € K. Then ka; = a,(;z; where o € S, andz; € QN K = {1}. Thus V' (k) = H 1-Q =qQ.
Hence k € ker(V), for every k € K so K < ker(V). O

Remark 7.3. If Q is abelian, then Q/Q = Q so Im(V) < Q.

Corollary 7.1. Let [G : Q] =n, let Q be abelian and let K be a normal complement to @
in G. IfV:G— Q/Q is surjective, then ker(V) = K.

Proof. We have seen K < ker(V). By the Homomorphism theorem we have that

: . . - G| G|
G/ker(V)=ZIm(V) =Q/Q = Q, since @Q is abelian. Since ———— = |Q| and — = |Q|,
we have that K = ker(V). O

Lemma 7.2. (Nice form of the transfer map)
n *

Let @Q be a subgroup of G, |G : Q] = n, U 1;,Q = G, then for every g € G, there exist ele-
i=1
ments hi, ho, -+  hy € G and integers ny,--- ,ny, € N with (depending on g) such that

1. h;lgnihi €Q,

m
2. g n; =n,
=1
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m

3. V(g) = [[h: 9" h)Q".

i=1
Proof. We have that gl; = l,;z;, where 0 € 5, and z; € Q. Now we write o as product
of disjoint cycles: 0 = ajas -+ - .
Let a; = (j1, -+, Jr), 911 = lo(j) @y = ljpTj,

gljg = la(jg)ij - lj333j2

gljrfl = lU(jr_l)ijfl = lj,.ij,1

9l = lo(j) 25, = Ly, Then aje = gl @,y =1 gl -y = 1 gl

Let hy =1j,,n; =7 for i =1,--- ,n. Hence we have that

Q3 wjm, g = (15 gl ) (G gl ) - (5 gl (15, gly,) = (15, g ,) = (g™ h).

Repeating this process for each «;,i =1, -+ ,m, we have that
n m m

= [1=@ =11@pz)---20)Q = [0 g i@ O
=1 =1

i=1
Theorem 7.7. If Q is a subgroup of G, [G : Q] = n and Q is abelian such that Q < Z(G)
then V(g) = g" for every g € G.

Proof. Let g € G. Then by Lemmawe have that V(g H h; Lgmin, Q = H h; Lgmih,.
and

h;lg"ihi € Q. As Q < G, then g™ € Q also holds.

However, Since Q < Z(G) "= h;(h; 1gmh )bt = h;tg™h; and

g =g In”“—Hg”l—Hh 'g"ih —Hh g hiQ = V(g). O

Corollary 7.2. If [G: Q] =n and Q < Z(G) then the map g — ¢g" is a homomorphism
from G to Q.

Proof. By Theorem we have that V' (g) = ¢", so it is homomorphism. O

Lemma 7.3. Let G be a finite group, p a prime, Q € Syl,(G). If g,h € Ce(Q) are
congugate in G, then they are also conjugate in Ng(Q).
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Proof. Let g,h € Cz(Q) be two elements that are conjugate in G. Then there exist an
element z € G such that 27 'gz = h. Since conjugation by z is an automorphism of G,
we have that h =27 gz € 71Cq(Q)x = Cg= (Q°) = Ca(Q"), hence Q¥ < Cg(h). Since
Q, Q" € Syl,(Ca(h)), we have that there exists an element ¢ € Cg(h) such that @ = Q™
and so zc € Ng(Q). Let ny := xc, then g™ = ¢ = (¢%)° = h® = h. O

Theorem 7.8. (Burnside transfer theorem)
Let G be a finite group Q € Syl,(G) such that Q < Z(Ng(Q)). Then there is a normal

p-complement in G.

Proof. Since @ is abelian, we have that Q < Cg(Q) and V : G — (Q/Ql =Q).

Let [G: Q] =n. Ifge Q,¢" € Q < Cq(Q), and by Lemma(l) hilg"hi € Q < Ca(Q)
also holds. By Lemma g™ and hi_l g™ h; are conjugate in Ng(Q) i.e., there exists an
element u € Ng(Q) such that u™'g"iu = h;'g"h;. Since Q@ < Z(Ng(Q)), we have that
u~lg™u = g™ and V(g) = ﬁg”i — gXi=1% = g Let |Q| = q. Then (g,n) = 1, so there

=1

exist o, 8 € Z such that ag 4 fn = 1. If g € Q, then g = g' = g®9P" = (4°)"(¢9)* = (¢°)"
hence themap V : Q — @, g — ¢" is surjective. Thus V is bijective and soker VN Q = {1}.
By the Homomorphism theorem G/kerV 2 ImV = Q. Let K =kerV. Then KN Q = 1.
We will prove that K is a normal p-complement in G. Obviously K <1 G.

|KQ| = K9 = |K||Q| = |G|, hence KQ = G. Thus K is a normal p-complement in G.
O

KN

Remark 7.4. If K is a normal p-complement then K is characteristic in G.

Proof. We know that K € Hall ;(G), Let ¢ € Aut(G). Then p(K) € Hall y(G) and p(K) < G.
Thus we have that K (K) is a p -group, however [G : K] =| Q |, Q € Syl,(G), so p(K) C K,
hence p(K) = K. O
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8 Free groups, the Nielsen-Schreier theorem

Let us fix a set X. We form words from elements of X and their inverses, w = ajas - - - a, =
x5, &; = £1. We define multiplication, as concatenation of words, and cancel zz lorxzlz.

We call a word reduced if it cannot be written in a shorter form.

Theorem 8.1. FEvery word can be simplified into a unique reduced word.
(The proof is by induction on the length of the word).

In this way two words are equivalent if they reduce to the same word.

Theorem 8.2. The equivalence classes of words on X form a group under the above
multiplication, this group is called the free group generated by free generations set X. We

denote it F(X). If | X |=n then we use notation F,.

Theorem 8.3. (The universal property)
Let G be a group and let p : X — G be a map. Then ¢ can be extended in a unique way
to a group homomorphism ¢ : F(X) — G such that ¢|x = ¢.
k
Proof. We define ¢(25t,- -+, a3F) = H ©(z;)% and this a homomorphism.
i=1

X c F(X)

Corollary 8.1. If | X|=|Y|= F(X) = F(Y). (the converse is also true)
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Proof.

X C » F(X)
/
xX; //
\\cp + 3 homomorphism @ such that @|x=¢
\ 7
N\
Yi ¥
F(Y)
Y C » F(Y)
/7
Yi //
/7 S —
\\¢ ,7 3" homomorphism v such that |y =1
\
N\ .
T, »
F(Y)
Vo|x = idx, @ly = idy.

3! homomorphism, hence 1 @ =idp(x)

x _» F(X)
|
|
|
|
|
|

idx = Vp|x
F(X)

y 5 F(Y)
|
l J—
: 3! homomorphism, hence @ 1 =idp(y)
:

F(Y)

Hence @, 1) are inverses of each other, so @, ¢ are group isomorphism, hence F(X) = F(Y).
O
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Theorem 8.4. Let G = (g1, -+, gn) be a group F(X) be the free group with free generating
set X ={x1, -+ ,xn}. Then G is a homomorphic image of F(X).

Proof. Let o(z;) = ¢gi, i =1,--- ,n. By the universal property of F(X), there exists a
unique homomorphism @ : F(X) — G such that ¢(z;) = ¢g;, i = 1,--- ,n holds.

¢ is surjective since Im(@) contains a generating set of G. So by the Homomorphism the-

orem, F(X)/kerd_) ~Imy =G.
X >__+ F

Definition 8.5. Let N :=ker @ in the above theorem and let {r;|i € I} be the normal

g

subgroup generators of N (r; and their conjugates generate N). Then the words r; are
called the defining relations of G.
We say that G = (x1,--- ,z, ‘ r1,T2,+ - ) is given by generators and relations.

If there are finite number of generators and relations, then G is called finitely presented

group.

Theorem 8.6. (Dyck)
L@tR: {T17r27”'}7 R/ = {TllvrlQ7"'}; letGl - <:C17'CU27'” |T1,7’2,"'>, G2 == <$17$27"‘ |Tl17r/27"'>
be groups are given with generators and relations. Suppose that R C R'. Then Gy is a ho-

momorphic image of G1.

Proof. Let N1 be the normal subgroup of F,, generated by normal subgroup generators
R. We know that Gy = F,,/N1,Gy = F,,/N3, and N; < Ny. By the second isomorphism
theorem we have that N; <1 Na, Na/Ny <1 F,,/Np and F, /N, / No/Ny = F /Ny 2 Gy, O
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Definition 8.7. Let G be a group, and let X be a generating set of G. Then I'(G, X) is
the Cayley-graph of G with respect to X if the vertices are V(I'(G, X)) = G, the edges
are E(T'(G, X)) = {(g,xg)|x € X, g € G}. Then I'(G, X) is a directed coloured graph, the
edges of I'(G, X) are coloured by elements of X. (In general X can also be just a subset

of a generating set)

Definition 8.8. Aut.(I'(G, X)) is the group of colour preserving automorphisms of the
graph I'(G, X). This is a permutation on the vertices and each edge is mapped to an edge,

a non-edge is mapped to non-edge and the coulour of the edge is preserved.

Remark 8.1. In I'(G, X)) From each vertex for every z € X there exists a unique in-edge

(z71g,g) with colour z and a unique out-edge g, xg with colour z.

Lemma 8.1. If X C G, then I'(G, X) is connected if and only if X is a generating set of

G.
N -1 __ ,.€1,.€ €r .
Proof. <=) Let g1,92 € G. Then g := g2g; " = Ty @2 -+ where xi; € X and € = £1.
3 J— —1 _ €1 ,.€2 € .
Then since g2 = (g29; )g1 = z; 22" g1, there is a path
xer €r—1 €r—2 .’L‘El
7 er Z; €r_1 € ZT; _ i1 € er
1 r ‘ Tp—1 r r r—2 I .
g Ly 91 — T, Ty gl— -z, r; 91 = g2

from g; to go, hence I'(G, X)) is connected.
=) Suppose that I'(G, X) is connected. Then we can reach each element g € G with a

path from e. If on the edge we go in reverse direction then the label in the inverse of the

generator.
€1 €9 €n
e (L‘l €1 .'172 €2 €1 xn €n €1
Zy Lo Ty e Z, Ty =g
thus the product on the edges gives g. Hence generates G. O

Theorem 8.9. Aut.(I'(G, X)) = G.
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Proof. Let g € G. Then g acts on the vertices of the graph by right multiplication ¢, :
u +— ug. Observe that this a permutation.

If (h, zh) is an edge, then (hg, zhg) is also an edge, so ¢, preserves edges. If there is no edge
between h and k, then (hg, kg) cannot be an edge, since ¢, -1 also preserves edges. Hence we
can define amap ® : G — Aut.(I'(G, X)) by ® : g — ¢4. This map is injective. ® is a group
homomorphism, since for every h € G, we have that heg, 4, = h(g192) = (hg1)g92 = (hg,)@g,,
hence ©g, g, = ©g, Py -

We want to prove that ® is surjective.

Note: if a € Aut.(T'(G, X)) fixes a vertex then it also fixes it’s neighbours, since to g there
is a unique in-edge with colour x and a unique out-edge with colour x.

Since I' is connected, we have that a = id.

X X
g > 9 > g

Suppose that ¢ € Aut.(I'(G, X)). If g = 1o then 1 = (1p)p,-1.
So 1 is a fixed point of oy -1. Hence pp,-1 =id and ¢ = ¢,. Thus @ is surjective and ®

is an isomomorphism. O
Lemma 8.2. G is freely generated by X C G if and only if T'(G, X) is a tree.

Proof. We have seen that X is a generating set if and only if I'(G, X) is connected.
If X is not a free generating set of G then there exists a nontrivial relation xfll x :c:: =1,

where z;; € X and ¢; = £1. Then

€n €n—1 €1

xT; T

in €n xinfl €n—1 €n i1 €1 €n
1 s l’zn > fEin71 "B’Ln—b —_— .Til e :L’in — ].
. . . . e . € €
gives a circle in the graph of length > 3, since z;/2;> = 1 would imply that i} and z;> are

inverses of each other, and this is a trivial relation.

Conversly if we have a circle in I' then the product of labels gives a nontrivial relation. [J
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Zorn’s lemma
Let P is a partial ordered set (P, <). Suppose that every ordered subset of P has an upper

bound. Then there is a maximal element in P.

Theorem 8.10. (Nielsen-Schreier)

FEvery non-trivial subgroup of a free group is free.

Proof. Let G = F(X), and let {1} # H < G. We want to prove that H is free. By Lemma
we have that I'(G, X) is a tree.

We have to prove there exists a generating set Y of H such that I'(H,Y") is a tree. Let us
define the set S := {F, < I‘|F/ is a spanning subgraph of I" (an edge in I is in I if the end
points are in the set I') and T" connected, I contains from each left coset of H at most
one element}.

We apply for the set S Zorn’s lemma. The conditions of Zorn’s lemma are satisfied: if
I't <T'y <---is achain in S, then U I'; € S. Then by Zorn’s lemma there is a maximal
element 7" in S. We want to prove that T contains from each left coset of H exactly one
element. Suppose by contradiction that g1H N'T = @ for some g; € G. Since I'(G, X) is
connected, g; is reachable by a path from an element of T. So there exists an element g
such that (g,29) € E(I'(G, X)) gHNT # 0, xzgH NT = (. So there exists an element
h € H such that gh € T, xzgh ¢ T, and (gh,zgh) € E(I'(G,X)). Thus T U {xgh} is a
bigger spanning subgraph in I'(G, X), which is connected and contains from each coset of
H at most one element. This is a contradiction, since T as maximal. Hence T contains
from each left coset exactly one element, so T is a left transversal of H in G. We suppose
that 1 € T, since there exists an element h € HNT. Thus 1 € Th™' = T (this is an
isomorphism of graphs), and Th~! left transversal of H in G.

Let T = {Thlh € H}. We want to prove that 7 is a set of a disjoint left transversals of
H in G. If Thy NThy # () then there exist elements t1,t3 € T and hy, hy € H such that
t1h1 = toho. Then t1H = toH and so t1,t9 € T are in the same coset of H. Hence t1 = to,
since T' was a left transversal, so h1 = ho. Thus, if we map h to Th, then we get a bijection
between H and 7. On T we define a directed H-coloured graph. The vertices of this graph
will be {T h’h € H}. Now we define when the transversals Thy and Thy are connected
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with an edge coloured by x. Let hy # hs, and t1hy € Thy,tohe € Tho. If there exists an
element z € G such that x(t1hy) = tohg, then t1hg 5 tohs is an edge in I'(G, X). Then
ty tatihy = hy and hy'xt; = hehy' € H. Let (Thy, Ths) be an edge coloured by hohy.

Observe that there is at most one element x € Y such that an edge coloured by x connect
elements of Thy with elements Thy. Suppose that x/(t’lhl) = t;hg and x(t1hy) = tohs.

Since T'h, and They are connected,

tll ha —yx to | he

x
tifhy — th | 1

Th1 Th2

we get a circle in the original graph, and this is a contradiction, since I'(G, X)) was a tree.
We repeat this for all possible Th;, Th; then we define Y as the set of possible colours in
T.

We want to prove that Y is a free generating set of H and I'(H,Y) = T. Let ¢ be
the map h — Th. This is a bijection between H and 7. If (h,yh) € E(I'(H,Y)) then
y = thl_l where xtihy = taho for some ti,to € 1. Then t2_1:ct1 = hghl_l. and
x(t1h) = tz(hghl_lh) € Thghl_lh, so from Th to Thzhl_lh there is an edge of colour y;. So
the map h — Th preserve coloured edges.

If there is no edge y € Y between h and k' then there cannot be an edge y € Y between Th
and Th', since then y = h'h~! and this takes h to h’, which is a contradiction. I'(H,Y) is
connected, since I'(G, X)) is connected, and there is a path between certain points of Th;

and Thg
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T is a tree, otherwise would be a circle also in I'(G, X)) and this is a contradiction. Since
T =T(H,Y), H is a free group with free generators Y.
O

Remark 8.2. If [F}, : H] =m then H = Fp,,_1)41-

Proof. In the previous proof we have seen that T'.(H,Y) = T, where h — Th gives the
isomorphism. T is also a tree, since it is connected and without any circles, as I'.(G, X)
had no circles. The vertices of T are Th, where h € H, these are disjoint. There was
an edge between Th; and Tho iff there exist elements t1,to € T and x € X such that
t1h1 = taho.

We have seen that between T'h; and T'ho there is at most one edge, and its colour is thl_l.
In the isomorphism between I'.(H,Y') and 7, Y maps to the edges of 7. We have seen that
I'.(H,Y) is also a tree. (H is a free group with free generators Y'). We want to determine
Y |.

We have to calculate how many edges go from Th to TH': this is exactly m - n, since we

can choose z in n different ways and ¢; in m different ways.

Th ' " TH tth ——— ¢

But edgs that go from T'h to Th are not good, so we have to substract the number of edges
in the tree Th. This is exatctly | Th | =1 =m — 1.
So|Y|[=m-n—(m-1)=m(n—1)+ 1. O

52



9 Problem sheets

Problem sheet 1.
1. Prove that two elements of S,, are conjugate if and only if writing them as products of
disjoint cycles, in both decompositions the lengths of cycles (ci,...,¢;) are the same up
to the order of the cycles. How can one conjugate two permutations with the same cycle

structure into each other?

2. Show that the centre Z(S,,) of the symmetric group contains only the unit element if

n > 3. Moreover, Z(A,) =1 and Cg, (A,) =1, if n > 4.

3. Determine the conjugacy classes of A,. Prove that if o € A,, then there are two cases:
(a) If the centralizer Cg, (o) contains an odd permutation, then the conjugacy classes of o
in A,, and S,, are the same: Ky, (0) = Kg, (o). (b) If Cg, (o) contains only even permuta-

tions then Kg, (o) splits into two conjugacy classes of A,, of equal size.

4. Show that A, is simple if n > 5 with the following steps:

a) Let us suppose by contradiction that there is a normal subgroup 1 < N < A,. Let
o € N be a nontrivial element with maximal possible number of fixed points. Prove that
we may suppose that o is of prime order.

b) Prove that in the decomposition of ¢ into the product of disjoint cycles every cycle
length is either p or 1.

c¢) Prove that A, is generated by the 3-cycles of S), if n > 3.

d) Prove that if p = 3 and o is one 3-cycle, then N contains all 3-cycles of S, hence
N =A,.

e) Prove that if p = 3 and o is the product of at least two 3-cycles, say (1,2,3)(4,5,6) - -,

1, -1

orp>bando=(1,2,...,p)-- thenif 7 = (3,4,5) € A,, we form the element o707 ".
This also belongs to N, it is not 1, it fixes all the fixed points of o, moreover it also fixes
1, contradicting that ¢ has the maximal number of fixed points among nontrivial elements

of N.
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f) If p = 2, then o is the product of at least 2 transpositions, e.g. (1,2)(3,4)---. Then
0(1,2,3)07%(3,2,1) = (1,4)(2, 3) and this belongs to N.
g) (1,4)(2,3) can be conjugated to any double transpositions by an element of A,,, hence

N = A,,, which is a contradiction.

5.(a) Prove that if x is an element of a group G and =¥ = 1, then its order o(x) divides N.
(b) Prove that if G, G2 are groups and ¢ : G; — G2 is a multiplicative map (¢(ab) =
#(a)¢(b)), then ¢(1g,) = lg, and for every x € G1 ¢(z71) = ¢(x) L.

6. Prove that if n > 5 and |S,, : H| < n for a subgroup H < S,, , then either H = A,, or
H=25,.

7. Prove that if n > 5, then S,, has only the following normal subgroups: S, 4,, {1}.

8. Prove that if a € S, and its decomposition into disjoint cycles there are n; cycles of

length ¢, then |Cg, ()| = [[i"in;!.

Problem sheet 2.
1. Prove that if H is a subgroup of the group G, then N,cgH%is a normal subgroup in G,

it lies inside H and contains each normal subgroup of G which lies in H.

2. Let I' be a graph, the vertices of I' are the transpositions of .S,. Two vertices are con-
nected with an edge if and only if the two transpositions have a common moved point.
Prove that if n > 5, then every n — 1 point complete subgraph of I' is of the form
Go :={(a,x) | x € {1,2,...,n} \ {a}}, in other words the vertices of this subgraph are all

transpositions with exactly 1 common moved point a.

3. Prove that if GG is a finite group acting on the finite set {2, then

a) the number of G-orbits is ﬁZweG |Fiz(m)|, where |Fiz(m)| is the number of fixed
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points of the element 7. ( Cauchy-Frobenius-Burnside lemma) b) Deduce from (a) that if
the action is trasitive on €2, then for every «, 3 € €2 the number of orbits of G, és Gg is

the same.

4. Prove that the group GL(V) of invertible linear transformations of a vector space

V' is not transitive on the vectors of V', however, it is transitive on the nonzero vectors of V.

5. Prove that if the group G is acting on the set Q, then Gog = {h € G | /" = a9}.

6. Prove that every faithful, transitive action of G on () is equivalent to an action on the
right cosets of a subgroup H with the property that H does not contain any proper normal
subgroups of G.

7. a) Prove that every nontrivial group of prime power order has nontrivial centre.
b) Prove that every nontrivial normal subgroup of a group of prime power order intersects

nontrivially the centre of the group.

8.a) Prove that if G/Z(G) is cyclic, then G is abelian.

b) Prove that every index 2 subgroup is normal.

c¢) Prove that every group of prime order is cyclic.

d) Prove that every group of primesquare order is abelian.

e) Prove that the direct product of two cyclic groups of coprime order is cyclic.

9. Let G be a nonabelian group of order 8. Prove that G ~ Dg or G ~ Qs.

a) Prove that G has an element g of order 4.

b) Prove that for every h € G\(g) h~tgh = g~! holds.

c) If there exist an element h € G\(g) of order 2 show that G ~ Ds.

d) If every element h € G\(g) is of order 4, then show that h? € (g), h? = ¢ and G satisfies
the defining relations of Qg = (a,b,a* = 1,b* = 1,a%> = b,a® = a7 ') and G ~ Qs.
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10. Prove that if n > 5 and |S,, : H| < n for a subgroup H < S,, , then either H = A,, or
H=2_5,.

Problem sheet 3
1. Prove that in the alternating group G = Ajs there is no element of order 15 and no

subgroup of order 15, however, |G| is divisible by 15.

2. Prove that if the order of the group G is bigger than n! and H < G is a subgroup with
|G : H| < n, then G cannot be a simple group. (Hint: Represent G on the right cosets of
H with right multiplication)

3. Prove that if the group element a has order n, then its & power has order o(a¥) =

n
ged(n,k)

4. Prove that nonabelian groups of order 12 have three isomophy types: Dis, A4 and the
split extension of C3 by Cy:

a) Let P € Syl3(G), represent G on the right cosets of P. Show that if this representation
is faithful, then G ~ A4!

b) Show that if this representation is not faithful, then its kernel is P € Syl3(G), in other
words: P<G.

c) Let b be a generator of the cyclic group P. Prove that |Kq(b)| < 2, and |Cg(b)| € {6,12}!
d) Show that if P € Syl3(G) is a normal subgroup, then G has elements of order 6.

e) Show that the Sylow 2-subgroup S of G is either Cy, or Cy x Cs.

f) Prove that if P € Syl3(P) is normal, then G = PS, PN S = 1.

g) Show that this product is isomorphic to Dy if S ~ Cy x Cy!

5. Prove that if G is a simple group of order 60, then G ~ As:
a) If G contains a subgroup of index 5, then show that G ~ As.
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b) Suppose that G does not contain a subgroup of index 5!

b/1 Show that each subgroup has index bigger than 5.

b/2 Determine the number of Sylow 2, 3 and 5-subgroups of G.

b/3 Prove that if the intersection D of two Sylow 2-subgroups Pj, Py of G would not be
trivial, then D would be a normal subgroup in the subgroup 7' = (P;, P5). Prove that in
this case T' < G and T would contain at least 3 Sylow 2-subgroups of G, hence |T'| > 12,
which contradicts b/1.

b/4 Calculate the number of elements in Sylow 2, 3 and 5-subgroups, show that this is

bigger than 60, which is a contradiction.

6. Prove that the affine linear transformations of a vector space V AGL(V) :=

{v—Av+b| A€ GL(V),be€ V}is a doubly transitive group on the vectors of V.

A group action G on () is called regular or sharply 1-transitive if it is transitive, and

for every a, 8 € {2 a unique g € G exits, such that o9 = .

7. a) Prove that the Cayley-representation is regular, however the generalized Cayley rep-
resentation is not.

b) Show that in the case of a regular group action the point stabilizer is trivial and |G| = |€].

Problem sheet 4
1. Determine all the primitive actions of S3. Which of them are faithful? Which of them

are equivalent? (Use the statement of Exercise 6.)

2. We say that the group G acts on the set () sharply k-transitively, if for every distict
points ajq,...,ax € € and for every distict points 1, ..., S there exists a unique g € G
such that a? =6;i=1,...,k. Prove that S,, is sharply n-transitive and sharply n — 1-

transitive and A, is sharply n — 2-transitive.
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3. Prove that the following are equivalent for k£ > 2:

(i) The group G acts on 2 sharply k-transitively.

(ii) G acts k-transitively and G, . o, = {1}, for every distict a,...,ax € Q.
(iii) G is transitive on Q and G, is sharply (k — 1)-transitive on Q \ {a}.

4. Prove that AGL(K) ={x +— ax+b|a,b € K,a # 0} is sharply 2-transitive on the field
K.

5.a) Prove that every transitive permutation group on p points (p prime) is primitive.

b) Prove that if a group is 2-transitive on a set € that contains at least 3 points, then the

action is primitive.

6. Prove that every primitive group action is equivalent to an action on the right cosets of

a maximal subgroup with right multiplication. When is it faithful?

7. Prove that if G is k-transitive on a set {2 of n points, then |G| = n(n —1)...(n —
k4 1)|Gay....onls for every aq,. .., ap distinct points. What will be the group order if the

action is sharply k-transitive?

8. Prove that every nontrivial normal subgroup of every primitive permutation group

G < 8¢ is transitive on .

9. Show an example that a nontrivial normal subgroup of a transitive permutation group is

not necessarily transitive on Q. (Consider GL(V) on V'\{0} and look at the scalar matrices)

10. Let N <G. G acts on N \ {1} by conjugation.

a) Prove that if this action is transitive, then N is an elementary abelian p-group, for p
prime.

b) If this action is 2-transitive, then p = 2 or |[N| = 3.

c) If the action is 3-transitive, then |N| = 4.
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c¢) This action is never 4-transitive.

11. Suppose that G acts on Q and N <G acts regularly (sharply 1-transitively) on Q. Prove
that the action of G,, on Q\{w} is equivalent to the action of G, on N\{1} by conjugation.

12. Prove that if G is a transitive permutation group on a set {2 with n points and G is

abelian, then the action is regular (sharply 1-transitive on Q).

Problem sheet 5
1. Prove that the Sylow p-subgroup of S, is isomorphic to &!_,X;*, where X; is the i
times iterated wreath product of C}, and m = ZE:O a;p', where a; € {0,1,...,p—1}.

2. Let @, K be groups and 6 : Q — Aut(K) be a homomorphism. Let us define on the di-
rect product set K x @ the following multiplication:(k1, q1)(kz2, ¢2) := (k1ko"% 9 kg, q1¢2).
a) Prove that this is associative!

b) Determine the unit element and determine the inverse of each element.

c) Prove that the group constructed this way is a split extension of (K,1) ~ K by
(1L,Q) =~ Q.

d) Calculate the product: (1,q)(k,1)(1,q)~ .

3. Let A be a nontrivial p-group and let K be an infinite p-group. Consider both of them
as permutation groups on themselves by right multiplication. Consider the wreath product

A K. Prove that this a p-group whose centre is trivial.

4. Prove that the derived subgroup of the wreath product Gt C, consists of elements

(91, ,9p,1) where g1,--- ,gp € Gand g1 ---gp € G'.

5. Let G be a cyclic group of order 4 with cyclic generator a. Prove that to the normal

subgroup (a?) there is no complement in G.
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6. Prove that the group of automorphisms of Klein four group is isomorphic to Ss!

7. Prove that the group of automorphisms of the elementary abelian group of order p” is

GL(n,p)!

8. Prove that the group of automorphisms of C), is the unit group of the ring Z mod n

hence it is abelian of order ¢(n), if p is a prime, then Aut(Cp) ~ Cp_;.
9. Prove that the group of automorphisms of the 3 level binary tree is Cs ! Cs.

10. Prove that if G = G1 x ... x Gy, and (|G;|.|Gj|) = 1, then Aut(G) = Aut(G1) x ... x
Aut(Gy).

11. Determine, how many non-isomophic split extensions of Cs by Cy4 can one construct?

12. Prove that Aut(Cpn) =~ C(,_1)pn-1, if p > 2 is a prime, and Aut(Cyn) =~ Cyn—2 x Co, if
p=2and n > 2.

13. Prove that if A, B < G are subgroups, then |AB| = |A|B|/|AN B.

Problem sheet 6
1. A subgroup H < G is called characteristic in G (denoted by: HcharG), if for all
¢ € Aut(G), ¢(H) = H. Prove that if HcharK and KcharG, then HcharG.

2. Prove that:
a) [y, 2] = [z, 2]"[y, 2],
b) [z,yz] = [, 2][z, y]*.

¢) [ty = ([w,9)" ),
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d) et y) = (gl )

e) [x,y~ 1, 2]y, 271, 2] [z, 271, y]® = 1(Witt-identity)

Here [z,vy, 2] := [[z, ], 2]

3. Prove that the centre Z(G) of a group G and in general Z¢(G), are characteristic sub-
groups in G.

4.a) Prove that every finite p-group is solvable.

b) Prove that every group of order pq is solvable (p, ¢ primes).

c¢) Prove that all groups of orders 1 — 15 are solvable.

5. Prove that if G is a finite solvable group, N a minimal normal subgroup in G, then the
elements of G induce linear transformations on IV, as on a vector space over a field of p
elements.

6.(Frattini-argument) Prove that if H <G and P € Syl,(H), then G = HNg(P).

7. Prove that if P € Sylp(G) and Ng(P) < H < G, then Ng(H) = H.

8. Prove that a maximal subgroup is not necessarily of prime index.

9.a) Let H, K, L be subgroups in G. Let [H, K, L] := ([h,k,l]|h € H,k € K,l € l). Prove
that if [H,K,L] = 1= [K, L, H], then [L,H, K] = 1.

b) Let N be a normal subgroup is G. Prove that if [H, K, L] < N and [K, L, H] < N, then
[L,H, K] < N!(Three subgroup lemma)

10. Prove that if G = G’, then the centre of G/Z(QG) is trivial.

11. Prove that if H <G and H NG’ =1, then H < Z(G).
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12. Let [H, K] := ([h, k] | h € Hk € K).
a) Prove that [H, K] < H <+ K < Ng(H).
b) Prove that H/N < Z(G/N) < [H,G] < N.

13. Prove that every characteristically simple group (i.e. subgroup without proper charac-

eristic subgroups) is a direct product of isomorphic simple groups.

Problem sheet 7
1. Let Ko(GQ) := G, K1(G) = G', Ki+1(G) := [K;(G), G| (this is the lower central series
of GG). Prove that K;(G)charG for all i.

A group G is nilpotent, if K;(G) =1 for suitable i. The smallest such i is the nilpotence
class of G, denoted by ¢ = ¢l(G). This holds if and only if Z¢(G) = G. (Proved on the
lecture)

2. Prove that the nilpotency class of every non-abelian group of order p? is 2.

3. Prove that every nilpotent group is solvable, but not conversely.

4. Characterize nilpotent group of class 1 and 2.

5. Prove that [zy, z] = [z, 2][y, 2] and [z,yz] = [z, ][z, y] hold in groups of nilpotence class

2.

6.a) Prove that [K;(G), K;(GQ)] < Kiy;(G).
b) Prove that G < K,i(G), in other words if the nilpotence class of G is at most 2¢, then

the derived length of G is at most 3.

7. Prove that Da, is nilpotent if and only if n is a 2-power.
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8. Let G be a finite nilpotent group, |G| = n. Prove that for every m|n there exists a

subgroup in G of order m.

9. Prove that if H, K are nilpotent normal subgroups in G, then HK is also a nilpotent
normal subgroup. Prove that in a finite group G there exists always a biggest nipotent
normal subgroup and this is a characteristic subgroup. (its name is Fitting subgroup,

denoted by F(G)).

10. Let G be a finite p- group, N <G, |N| = p’. Prove that there exists a chain of nor-
mal subgroups of G: Ng=1< Ny <...< N; =N < ... < Ny =G, where |[N; : N;_1| = p.

11. Prove that every finite p-group is nilpotent but this is not necessarily true for infinite

p-groups.

12. Prove that in every finite nilpotent group every nontrivial normal subgroup contains a
nontrivial element of the centre.
Problem sheet 8

The Frattini-subgroup ®(G) of a group G is the intersection of maximal subgroups of
G. If there is no maximal subgroup in G, then ®(G) = G.
1. Prove that ®(G)charG.
2. Let G be a finite p-group. Prove that GP' := (zF' | 2 € G) is a characteristic subgroup
in G.
3. Prove that in (@, +) there is no maximal subgroup.

An element x € G is a non-generator, if it can be left out from every generating set
of G.
4. Prove that if G is a finite group, then ®(G) is exactly the set of non-generators in G.
5. Prove that in every finite group G, ®(G) is nilpotent.
6.a) Prove that in every finite p-group G, ®(G) = G'GP. b) Prove that in every finite
p-group G G/®(G) is a vector space over GF(p).c) Let G be a finite p-group. Prove that
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®(@G) is the minimal normal subgroup in G, the factor group by which is an elementary
abelian p-group.
7. A generating set is minimal, if every proper subset does not generate the group. Show
that a minimal generting set need not be a generating set of minimal size. (Consider:
Cy x Cs).
8.(Burnside basis theorem) Prove that in a finite p-group G every minimal generating
set is of the same size, and this size is equal to dimgp()(G/®(G)). b) Moreover, every
z € G\ ®(G) is in a suitable minimal generating set of G.
9. Show example that ®(H) £ ®(G) for some H < G. (Consider the semidirect product
of C5 = (a) and Cy4 = (b) where a® = a®. Here ®(G) = 1, but ®(Cy) is of order 2.)
10. Prove that a finite p-group G is cyclic, if and only if G/®(G) is cyclic.
11. Prove that a finite group G is nilpotent iff G’ < ®(Q)
12. A finite p-group G is extraspecial, if ®(G) = Z(G) = G’ are of order p. Prove that
every non-abelian group of order p? is extraspecial.

Problem sheet 9.
1. Prove that if G is a group H < G subgroup, then C¢(H)<Ng(H) and Ng(H)/Ca(H) <
Aut(H).
A group G is p-nilpotent, if it has a normal p-complement K: K<G, KP=G, KNP =
{1}, where P € Syl,(G).
2. Prove that if K is a normal pj-complement in G and K is a normal po-complement in
G where p; # ps primes, then K1 N K5 is a normal ps-complement in K.
3.a) Prove that if p||G| is a minimal prime divisor and P € Syl,(G) is cyclic, then G is p-
nilpotent. b) Prove, that if G is a finite non-abelian simple group then its Sylow 2-subgroup
cannot be cyclic!
4.a) Prove that if for a finite group G, for every prime divisor p € 7(G) P € Syl,(G) is
cyclic, then G is solvable. b) Prove that if |G| is squarefree, then G is solvable.
5. Prove that if G is a non-abelian simple group, then if p € 7(G) is a minimal prime
divisor, then either p?||G| or 12||G].
6. Prove that if G is a finitely generated group and |G : H| = n, then H is also finitely
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generated.

7. Prove that in a finite solvable group, the centralizer C(F(G)) of the Fitting- subgroup
is contained in F'(G).

8. Let H, K be subgroups in G. Prove that [H, K] is a normal subgroup in (H, K).

9. Let P be a finite p-group. Prove that if an automorphism « € Aut(P) of p’ order of P
is acting on P/®(P) trivially, then o = idp.

10. Prove that if [;,7 = 1,--- ,n is a left transversal of a subgroup @ in G, then l;l,i =
1,--- ,n is a right transversal of @ in G.

11. Let Q@ < G and y;,72 = 1,--- ,n is a right transversal of () in G. Prove that if for a € G,
yia = piyr(;) holds, then for R(a) = [[p:Q’ the equality V(a) = R(a) holds.

12.a) Let n = p1---p, where p; < pa < ... < py are primes. Prove that in every group
of order n, the Sylow ps- subgroup is normal. b) If additionally, (p;,p; — 1) = 1 for every
1 < j, then G is cyclic.

13. Prove that there is no non-abelian simple group of order less than 60.
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