Group Theory

Written by: Hayder Abbas Janabi

PhD student at Budapest University of Technology and Economics, Budapest, Hungary. Lecturer at University of Kufa, Najaf, Iraq.

E-mail: haydera.janabi@uokufa.edu.iq

October, 2020

For MSc (Mathematics, Physics, etc) students, to the subject Group Theory.

This lecture notes is refereed by:
Dr.Kiss Sándor
Department of Algebra
Budapest University of Technology and Economics.

This work was supported by the NKFI-Grant No. 115288 and by the Stipendium Hungaricum PhD fellowship at the Budapest University of Technology and Economics.

List of Symbols

[$H, K]$ commutator subgroup
$[x, y]$ commutator element of x and y
$\Gamma(G, X)$ Cayley graph of G with generators X
$\omega^{G} \quad G$-orbit of ω
$\Phi(G) \quad$ Frattini subgroup of G
$A \leq B$ subgroup
$A \triangleleft B$ normal subgroup
$A \rtimes B$ semidirect product
$A \sim B$ wreath product
$a \sim b \quad a$ is conjugate to b
$A u t_{c}(\Gamma(G, X))$ colour preserving automorphisms of the Cayley graph
$C_{G}(x)$ centralizer of the element x in G
$\operatorname{cl}(G)$ nilpotency class of G
Core $_{G}(H)$ maximal normal subgroup of G contained in H
d.l.(G) derived length of G
$F(G)$ Fitting subgroup of G
$F(X)$ free group with free generating set X
$F_{n} \quad$ free group of rank n
Fix (π) the set of fixed point of permutation π
$G=\left\langle x_{1}, \cdots, x_{n} \mid r_{1}, \cdots, r_{k}\right\rangle$ group given by generators and relations $g^{x}=x^{-1} g x$ conjugate of an element g by x
$G^{\prime} \quad$ derived subgroup
$G^{(i)} \quad i^{\text {th }}$ member of the derived series
$G_{\omega} \quad$ point stabilizer of ω
$G_{\alpha_{1}, \cdots, \alpha_{n}}$ pointwise stabilizer of set $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$
$H^{x}=x^{-1} H x$ conjugate of a subset H by x
$\operatorname{Hall}_{\pi}(G)$ the set of Hall π-subgroups of G
$I(\pi)$ the set of inversions of permutation π
$K_{G}(x) \quad G$-conjugacy class of the element x
$K_{i}(G)$ the $i^{\text {th }}$ member of the lower central series of G
$o(x) \quad$ order of an element x
$S y l_{p}(G)$ the set of Sylow p-subgroups of G
$V: G \rightarrow Q / Q^{\prime}$ transfer map
$Z(G) \quad$ centre of G
$Z^{i}(G)$ the $i^{\text {th }}$ member of the upper central series of G

Contents

1 Permutation groups, the automorphism group of S_{n} 6
2 Application of the Sylow theorems, small groups 16
$3 \quad k$-transitive and primitive groups 18
4 Group extensions, semidirect product, wreath product 22
4.1 The Sylow p-subgroups of symmetric groups 24
5 Solvable groups and nilpotent groups 25
6 Hall theorems, and the Schur-Zassenhaus theorem 35
7 Normal p-complement theorems and the transfer 40
8 Free groups, the Nielsen-Schreier theorem 45
9 Problem sheets 53
Index 66

1 Permutation groups, the automorphism group of S_{n}

Definition 1.1. G is a group if there exists a binary operation $\cdot: G \times G \rightarrow G$ (denoted by - or by just writing letters beside each other) such that the following axioms are satisfied:

1. $(a b) c=a(b c)$ for all $a, b, c \in G$. (associatvity)
2. There exists an element $e \in G$ such that $e a=a e=a$ for all $a \in G$. (there exists a unit element)
3. For all $x \in G$ there exists an element $y \in G$ such that $x y=e=y x$ (all element has an inverse, let us denote this y by x^{-1}).

Remark 1.1. e and x^{-1} are unique. (see Algebra 1)
Definition 1.2. Let $\Omega:=\{1,2, \cdots, n\}$. A permutation of Ω is a bijective map $\pi: \Omega \rightarrow \Omega$.
These form a group under composition. It is called the symmetric group of degree n, denoted by S_{n} (or S_{Ω}) and its order is $\left|S_{n}\right|=n!$.

Definition 1.3. G is a permutation group of degree n if $G \leq S_{n}$. (or it is isomorphic to a subgroup of S_{n}).

Definition 1.4. A group action on Ω (or permutation representation) is a homomorphism $\varphi: G \rightarrow S_{\Omega}$ such that $g \mapsto \varphi(g)$. and the group G acts in the following way on $\Omega: \omega^{g}:=\omega^{\varphi(g)}$. Then $\omega^{(g h)}=\omega^{\varphi(g h)}=\omega^{\varphi(g) \varphi(h)}=\left(\omega^{g}\right)^{h}$.

Definition 1.5. The group action φ is faithful if $\operatorname{ker} \varphi=\{1\}$, then $G \cong \varphi(G) \leq S_{n}$ and we get a permutation group.

Definition 1.6. The group action is transitive on Ω if for all $\alpha, \beta \in \Omega$, there exists an element $g \in G$ such that $\alpha^{g}=\beta$.

Remark 1.2. In this note permutation will always act from the right, and multiply from the left.

Remark 1.3. We know from (Algebra 1) that every permutation can be written as a product of disjoint cycles uniquely (up to the order of the cycles). We note that disjoint cycles always commute.

Example 1.1. $(123)(1453)=(12)(345)$
$(123)^{-1}=(321),(123)^{2}=(132),(123)^{3}=()=i d$.
Theorem 1.7. If $\pi \in S_{n}, \pi=\pi_{1} \cdots \pi_{k}$ is a product of disjoint cycles with lengths n_{1}, \cdots, n_{k}, then $o(\pi)=\operatorname{lcm}\left(n_{1}, \cdots, n_{k}\right)$, where lcm is the least common multiple. (here o (π) is the order of the element π)

Proof. $o(\pi)=\min \left\{k \geq 1 \mid \pi^{k}=i d\right\}$. Let $\operatorname{lcm}\left(n_{1}, \cdots, n_{k}\right)=l$ and $l=n_{i} \beta_{i}$
then $\pi^{l}=\left(\pi_{1} \cdots \pi_{k}\right)^{l}=\pi_{1}^{l} \cdots \pi_{k}^{l}=\left(\pi_{1}^{n_{1}}\right)^{\beta_{1}} \cdots\left(\pi_{k}^{n_{k}}\right)^{\beta_{k}}=1$
(We know if $x^{N}=1$ then $o(x) \mid N$) (see problem sheet $1 / 5$)
thus:
if $\pi^{l}=1$ then $o(\pi) \mid l$.
On the other hand:
$1=\pi^{o(\pi)}=\left(\pi_{1} \cdots \pi_{k}\right)^{o(\pi)}=\pi_{1}^{o(\pi)} \cdots \pi_{k}^{o(\pi)}$. Since π_{1}, \cdots, π_{k} act on disjoint sets, if the product is 1 then $\pi_{i}^{o(\pi)}=1$ for all i, hence $o\left(\pi_{i}\right) \mid o(\pi) \forall i$. Hence $\operatorname{lcm}\left(o\left(\pi_{1}\right), \cdots, o\left(\pi_{k}\right)\right) \mid o(\pi)$ and so $l=o(\pi)$.

Definition 1.8. If $\pi \in S_{n}$, then $I(\pi):=\{(i, j) \mid i<j$ and $\pi(i)>\pi(j)\}$ is the set of inversions of π. The permutation π is even if it has even number of inversions. π is odd if it has odd number of inversions.

Remark 1.4. Let $p\left(x_{1}, \cdots, x_{n}\right):=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$. and let π act by permuting the indices $p^{\pi}=\prod_{1 \leq i<j \leq n}\left(x_{\pi(i)}-x_{\pi(j)}\right)$ and π is odd if and only if $p^{\pi}=-p, \pi$ is even if and only if $p^{\pi}=p$.

Definition 1.9. $A_{n}:=\left\{\pi \in S_{n} \mid \pi\right.$ is an even permutation $\}$.
Remark 1.5. Let $\varphi: S_{n} \rightarrow\{ \pm 1\}=C_{2}$ where $\pi \mapsto(-1)^{|I(\pi)|}$. This is a group homomorphism. $\operatorname{ker} \varphi=A_{n}$ thus $A_{n} \triangleleft S_{n}$ and $\operatorname{Im} \varphi=C_{2}$. By the homomorphism theorem we have
that $S_{n} / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi=C_{2}$. So $\frac{\left|S_{n}\right|}{|\operatorname{ker} \varphi|}=2$ and $\left[S_{n}: A_{n}\right]=2$. Thus A_{n} is an index 2 normal subgroup in S_{n}. The name of A_{n} is alternating group of degree n.

Theorem 1.10. If $n \geq 5$ then A_{n} is simple. (see problem sheet 1/4)
Definition 1.11. A 2 -cycle (α, β) is called transposition.
Remark 1.6. Every permutation is a product of transpositions. It is enough to prove for cycles: $(1,2, \cdots, n)=(1, n)(2, n) \cdots(n-1, n)$, so transpositions generate S_{n}

Remark 1.7. The transposition $(\alpha, \alpha+1)$ is an odd permutation, $(\alpha, \beta)=(\alpha, \alpha+1)(\alpha+$ $1, \alpha+2) \cdots(\alpha+k-2, \alpha+k-1)(\alpha+k-1, \beta)(\alpha+k-1, \alpha+k-2) \cdots(\alpha+1, \alpha)$ if $\beta=\alpha+k$. Hence (α, β) is also odd. The cycle $(1,2, \cdots, n)$ is odd if n is even and even if n is odd.

Theorem 1.12. (Cauchy)

If p divides $|G|$ then there exists an element $x \in G$ such that $o(x)=p$.
Proof. Let $\Omega:=\left\{\left(g_{1}, \cdots, g_{p}\right) \mid g_{i} \in G, \Pi_{i=1}^{p} g_{i}=1\right\} \subseteq G \times \cdots \times G$ (p-times).
Let π be the cyclic shift on $\left(g_{1}, \cdots, g_{p}\right):\left(g_{1}, \cdots, g_{p}\right)^{\pi}=\left(g_{2}, g_{3}, \cdots, g_{p}, g_{1}\right)$.
If $g_{1} \cdots g_{p}=1$ then $g_{2} \cdots g_{p}=g_{1}^{-1}$, hence $g_{2} \cdots g_{p} g_{1}=1$. So π acts on Ω.
An element $\left(g_{1}, \cdots, g_{p}\right)$ of Ω is fixed by π if and only if ($g_{1}=g_{2}=\cdots=g_{p}=g$) and $g^{p}=1$, e,g. $(1, \cdots, 1)$. The number of elements in $\Omega,|\Omega|=|G|^{p-1}$, since g_{1}, \ldots, g_{p-1} can be arbitrary and g_{p} is already determined.

Since p divides $|G|$ then p divides $|\Omega|$. As $o(\pi)=p, \pi$ is the product of cycles of length p and cycles of length 1, which belong to the fixed points of π, which we denote by Fix (π). Hence, $|\Omega|=|\operatorname{Fix}(\pi)|+p \cdot \mid$ (number of length p cycles in π) \mid. So p divides \mid Fix $(\pi) \mid$. Thus there exists a fixed point $(g, \cdots, g) \in \Omega$, where $g \neq 1$. Since $g^{p}=1$, we have that $o(g)=p$.

Definition 1.13. Let $G \leq S_{\Omega}$ or ($\varphi: G \rightarrow S_{\Omega}$ is a permutation representation) and $\omega \in \Omega$ then:
$G_{\omega}:=\left\{g \in G \mid \omega^{g}=\omega\right\}$ is called the point stabilizer of ω in G. We remark that G_{ω} is a subgroup of G.
$\omega^{G}=\left\{\alpha \in \Omega \mid \exists g \in G, \omega^{g}=\alpha\right\}$ is called the G-orbit of ω.

Theorem 1.14. If G is a group action on Ω then $\Omega=\cup^{*} \Omega_{i}$ is a disjoint union of G-orbits. Moreover, $\left|\omega^{G}\right|=\left|G: G_{\omega}\right|$. (the length of the orbit of $\omega=$ the index of the point stabilizer of ω)

Proof. Let $\alpha, \beta \in \Omega$, we say that α, β are equivalent if there exists an element $g \in G$ such that $\alpha^{g}=\beta$. This is an equivalence relation. The equivalence classes are the orbits of G. Hence $\Omega=\cup^{*} \Omega_{i}$.
Observe that $\omega^{g}=\omega^{h} \Leftrightarrow \omega^{g h^{-1}}=\omega \Leftrightarrow g h^{-1} \in G_{\omega} \Leftrightarrow G_{\omega} g=G_{\omega} h$.
$\left|\omega^{G}\right|=\mid\{$ different images of ω under $G\}|=|\left\{\right.$ different cosets of $\left.G_{\omega}\right\}\left|=\left|G: G_{\omega}\right|\right.$

Corollary 1.1. $|G|=\left|G_{\omega}\right| \cdot\left|\omega^{G}\right|$.

Definition 1.15. $G_{\alpha_{1}, \cdots, \alpha_{n}}:=\left\{g \in G \mid \alpha_{i}^{g}=\alpha_{i}, i=1, \cdots, n\right\}=\left(G_{\alpha_{1}, \cdots, \alpha_{n-1}}\right)_{\alpha_{n}}$.
Example 1.2. How many elements does the group of symmetries of the cube have?

$$
\begin{aligned}
& \left|1^{G}\right|=8 \\
& |G|=\left\lvert\, \begin{array}{l}
\left|1_{8}^{G}\right| \cdot\left|G_{1}\right|=48 \\
\left|G_{1}\right|=\left|2_{3}^{G_{1}}\right| \cdot\left|\left(G_{1}\right)_{2}\right|=6 \\
\left|G_{1,2}\right|=\left|3_{2}^{G_{1,2}}\right| \cdot\left|\left(G_{1,2}\right)_{3}\right|=2
\end{array}\right.
\end{aligned}
$$

Theorem 1.16. (Cayley)

a) Every group of order n is isomorphic to a transitive permutation group of degree n.
b) If there exists a subgroup $H \leq G$ of index $[G: H]=t$ then G has a transitive permutation representation of degree t with kernel $=\cap_{x \in G} x^{-1} H x \leq H .(t h i s ~ i s ~ t h e ~ m a x i m a l ~$ normal subgroup of G contained in H denoted by $\left.\operatorname{Core}_{G}(H)\right)$.

Proof. a) - G acts on G with right multiplication, there exists a map
$\Phi: G \rightarrow S_{|G|}$, such that $g \mapsto \pi_{g}=\left(\begin{array}{cccc}g_{1} & g_{2} & \cdots & g_{n} \\ g_{1} g & g_{2} g & \cdots & g_{n} g\end{array}\right)$

- $\Phi(g h)=\pi_{g h}=\pi_{g} \pi_{h}=\Phi(g) \Phi(h)$ since:

So Φ is a homomorphism.

- $\operatorname{ker} \Phi=\left\{g: \pi_{g}=i d\right\}=\{1\}$. So Φ is a faithful permutation representation.
- $G \cong \Phi(G) \leq S_{|G|}$
- Φ is a transitive action, since $g_{i} g=g_{i}$ if $g=g_{i}^{-1} g_{i}$.
b) - G acts on the cosets of $\mathrm{H}\{H x: x \in G\}$ by right multiplication, so there exists a map
$\Phi: G \rightarrow S_{[G: H]}$, such that $g \mapsto \pi g=\left(\begin{array}{cccc}H g_{1} & H g_{2} & \cdots & H g_{t} \\ H g_{1} g & H g_{2} g & \cdots & H g_{t} g\end{array}\right)$.
- Since $\Phi(g h)=\pi_{g h}=\pi_{g} \pi_{h}=\Phi(g) \Phi(h)$, so Φ is a group homomorphism.
- $\operatorname{ker} \phi=\left\{g \in G \mid H g_{i} g=H g_{i}, \forall i=1, \cdots, t\right\}=\left\{g \in G \mid H g_{i} g g_{i}^{-1}=H \forall i\right\}$
$=\left\{g \in G \mid g_{i} g g_{i}^{-1} \in H \forall i\right\}=\left\{g \in G \mid g \in g_{i}^{-1} H g_{i} \forall i\right\}$
$=\bigcap_{i=1}^{t} g_{i}^{-1} H g_{i}=\bigcap_{x \in G} x^{-1} H x=\operatorname{Core}_{G}(H)$, since every element $x \in G$ can be written as $x=h g_{i}$ for some $h \in H$ and i.
- Φ is a transitive action since $H g_{i} g=H g_{i}$ e.g. for $g=g_{i}^{-1} g_{i}$.

Theorem 1.17. If $\varphi: G \rightarrow S_{\Omega}$ is a transitive action on Ω then the point stabilizers are conjugate.

Proof. Let $\alpha, \beta \in \Omega$. Since G is transitive on Ω, there exists an element $g \in G$ such that $\alpha^{g}=\beta$. We prove that $g^{-1} G_{\alpha} g=G_{\beta}$, using short form of $x^{-1} H x=: H^{x}$, this means that $G_{\alpha}^{g}=G_{\beta}$.

1. If $\beta^{g^{-1} G_{\alpha} g}=\beta$, then $g^{-1} G_{\alpha} g \subseteq G_{\beta}$, hence $G_{\alpha} \subseteq g G_{\beta} g^{-1}$,
2. If $\alpha^{g G_{\beta} g^{-1}}=\alpha$, then $g G_{\beta} g^{-1} \subseteq G_{\alpha}$.

From (1) and (2) we have that $G_{\alpha}=g G_{\beta} g^{-1}$, hence $G_{\alpha}^{g}=G_{\beta}$.

Remark 1.8. There are also other actions that are frequently used, e.g.: conjugation action on elements of a group, conjugation action on subgroups.

	1. Right multiplication on elements	2. right multiplication on right cosets of $H \leq G$	3. conjugation on elements	4. conjugation on subgroups
Ω	G	$\{H x \mid x \in G\}$	G	$\{H \mid H \leq G\}$
Action of x	$\left.\begin{array}{ccc} \pi_{x}= & \cdots & g_{n} \\ \left(\begin{array}{l} g_{1} \\ g_{1} x \end{array}\right. & \cdots & g_{n} x \end{array}\right)$	$\left(\begin{array}{ccc} \pi_{x} \overline{=} & \cdots & H g_{t} \\ H g_{1} & \cdots & H g_{t} x \end{array}\right)$	$\begin{aligned} & \pi_{x}=\ldots \\ & \left(\begin{array}{lll} g_{1} \\ g_{1}^{x} & \cdots & g_{n} \\ g_{n}^{x} \end{array}\right) \end{aligned}$	$\left.\begin{array}{lll} \pi_{x}= & \cdots & H_{t} \\ H_{1} & \cdots & H_{1}^{x} \\ H_{1}^{x} & \cdots & H_{t}^{x_{2}} \end{array}\right)$
Orbits ω^{G}	$\begin{aligned} & g G=G \\ & \forall g \in G \end{aligned}$	$\begin{aligned} & H g_{i} G= \\ & \left\{H g_{1}, \ldots, H g_{t}\right\} \end{aligned}$	$K_{G}(g)$	$\left\{H^{g} \mid g \in G\right\}$
Is transitive?	Yes	Yes	Not	Not
1 element orbits	No	No	elements of $Z(G)$	Normal subgroups
G_{ω} point stabilizer	1	$\begin{aligned} & H x g=H x \Leftrightarrow \\ & x g x^{-1} \in H \Leftrightarrow \\ & g \in H^{x} \end{aligned}$	$\begin{aligned} & x^{g}=x \\ & \Leftrightarrow g \end{aligned} \in C_{G}(x)$	${ }_{g}^{H^{g}}={ }_{N}{ }_{G}(\stackrel{\leftrightarrow}{H})$
Length of the orbit	$\|G\|$	$[G: H]$	$\left\|K_{G}(g)\right\|$	$\left\|G: N_{G}(H)\right\|$
kernel of the action	1	$\begin{aligned} & \operatorname{Core}_{G}(H)= \\ & \cap_{x \in G} x^{-1} H x \end{aligned}$	$Z(G)$	$\begin{aligned} & \cap N_{G}(H) \\ & \forall H \leq G \end{aligned}$

Now we apply Theorem 1.14 We have the following:
Corollary 1.2. 1. $\left|K_{G}(x)\right|=\left[G: C_{G}(x)\right]$ we used the 3rd action.
2. $\left|S y l_{p}(G)\right|=\left[G: N_{G}(P)\right]$, since the orbit of $P \in S y l_{p}(G)$ is $S y l_{p}(G)$ in the $4^{\text {th }}$ action.

Definition 1.18. We say that two actions of $G, \varphi_{1}: G \rightarrow S_{\Omega_{1}}$, and $\varphi_{2}: G \rightarrow S_{\Omega_{2}}$ are equivalent if there exists a bijection $b_{1}: \Omega_{1} \rightarrow \Omega_{2}$ such that for all $g \in G$, and for all $\omega_{1} \in \Omega_{1}, b\left(\omega_{1}^{\varphi_{1}(g)}\right)=\left(b\left(\omega_{1}\right)\right)^{\varphi_{2}(g)}$

Theorem 1.19. All transitive actions of G are equivalent to a group action on the right cosets of a subgroup H with right multiplication.

Proof. Let $\varphi: G \rightarrow S_{\Omega}$ be a transitive action on Ω. Let $H:=G_{\omega}$, let $\Omega^{\prime}:=\left\{G_{\omega} g \mid g \in G\right\}$. Observe that $\omega^{h}=\omega^{x} \Leftrightarrow h x^{-1} \in G_{\omega} \Leftrightarrow G_{\omega} x=G_{\omega} h \Leftrightarrow h \in G_{\omega} x$. So $G_{\omega} x=\left\{h \in G \mid \omega^{h}=\omega^{x}\right\}$. Let $b: G_{\omega} x \mapsto \omega^{x}$. Then this is a bijection between right cosets of G_{ω} and the elements of Ω, which is compatible with the action of elements of G, so this is an equivalence,

Definition 1.20. Let G be a group. $\operatorname{Aut}(G)=\{\varphi: G \rightarrow G \mid \varphi$ bijective homomorphism (automorphism) $\}. \operatorname{Aut}(G)$ is a group under composition of maps. This is the automorphism group of G.

Definition 1.21. The group of inner automorphisms of the group G is defined as $\operatorname{Inn}(G):=G / Z(G)$.

Remark 1.9. The elements of $\operatorname{Inn}(G)$ correspond to conjugations with elements of G, since $g^{x_{1}}=g^{x_{2}}$ for all $g \in G \Leftrightarrow g^{x_{1} x_{2}^{-1}}=g$, for all $g \in G \Leftrightarrow x_{1} x_{2}^{-1} \in Z(G) \Leftrightarrow Z(G) x_{1}=Z(G) x_{2}$.

Example 1.3. If $n>2$ then $Z\left(S_{n}\right)=1$, so $\operatorname{Inn}\left(S_{n}\right) \cong S_{n}$. (see problem sheet $1 / 2$)
Theorem 1.22. If $n>2$, and $n \neq 6$ then $\operatorname{Aut}\left(S_{n}\right) \cong S_{n}$.

Proof. - Let $n=3$. We know that $S_{3}=\langle(1,2,3),(1,2)\rangle$. If $\varphi \in \operatorname{Aut}(G)$ then φ preserves elements orders. Thus $(1,2)$ can be mapped to $(1,2),(1,3)$ or $(2,3)$, and $(1,2,3)$ can be mapped to $(1,2,3)$ or $(1,3,2)$. Hence $\left|\operatorname{Aut}\left(S_{3}\right)\right| \leq 6$. However, $\left|\operatorname{Inn}\left(S_{3}\right)\right|=6$ and $\operatorname{Inn}\left(S_{3}\right) \leq \operatorname{Aut}\left(S_{3}\right)$ so $\operatorname{Aut}\left(S_{3}\right) \cong S_{3}$.

- Let $n=4$. We know that $S_{4}=\langle\underbrace{(1,2,3,4)}_{a}, \underbrace{(1,2,4,3)}_{b}\rangle$. (one can check with GAP)

Since $\left|S_{4}\right|=24$ and the number of elements of order 4 in S_{4} is $\frac{4 \cdot 3 \cdot 2 \cdot 1}{4}=6$, so $\varphi(a)$ can be choosen in at most 6 ways, $\varphi(b) \neq \varphi(a)$ and $\varphi(b) \neq \varphi(a)^{-1}$ thus $\varphi(b)$ can be choosen in at most 4 ways.
Hence $\left|\operatorname{Aut}\left(S_{4}\right)\right| \leq 24$. As $\operatorname{Inn}\left(S_{4}\right) \leq \operatorname{Aut}\left(S_{4}\right)$ we have that $\operatorname{Aut}\left(S_{4}\right) \cong S_{4}$.

- Let $n \geq 5$. Observe that an automorphism preserves conjugacy classes: suppose that a is conjugate to b in S_{n}. We denote this by $a \sim b$. If $x^{-1} a x=b$ then $\varphi(x)^{-1} \varphi(a) \varphi(x)=\varphi(b)$, hence $\varphi(a) \sim \varphi(b)$.
Let $K_{S_{n}}((1,2))$ be the conjugacy class of transpositions in S_{n}. If $\varphi \in \operatorname{Aut}\left(S_{n}\right)$ then it takes $(1,2)$ into an element of order 2 , which is a product of disjoint transpositions. Then $K_{S_{n}}((1,2)) \stackrel{\varphi}{\longmapsto} K_{S_{n}}((1,2)(3,4) \cdots(2 k-1,2 k))$, for some k.
Let us check if it is possible or not.
We know that $\left|K_{S_{n}}((1,2))\right|=\binom{n}{2}=\frac{n(n-1)}{2}$ and $\left|K_{S_{n}}((1,2)(3,4) \cdots(2 k-1,2 k))\right|=\frac{\binom{n}{2}\binom{n-2}{2} \cdots\binom{n-2 k+2}{2}}{k!}$. We investigate when there numbers are equal, namely
$\frac{n(n-1)}{2}=\frac{n(n-1)(n-2) \cdots(n-2 k+2)(n-2 k+1)}{2^{k} k!}$. This is equivalent to
$2^{k-1} k!=(n-2)(n-3) \cdots(n-2 k+1)$.
If $k=2$ then this gives us $2 \cdot 2=(n-2)(n-3)$, which has no solution.
If $k=3$, then we have that $4 \cdot 6=(n-2)(n-3)(n-4)(n-5)$. Here n is a solution if and only if $n=6$.
Let $k \geq 4$. We show that there is no solution, since the left hand side is smaller than the right hand side. The right hand side is the smallest if $n=2 k$,
(the left side is independent of n). So it is enough to prove the inequality for $n=2 k$.
Observe that $2^{k-1} k!<(2 k-2)(2 k-3) \cdots 1 \Leftrightarrow 2 \cdot 4 \cdots(2 k-2) k<(2 k-2)(2 k-3) \cdots 1$
$\Leftrightarrow k<(2 k-3)(2 k-5) \cdots 3 \cdot 1$. This is true since $k<2 k-3 \Leftrightarrow k>3$.
Hence if $\varphi \in \operatorname{Aut}\left(S_{n}\right)$ and $n>6$, then $\varphi\left(K_{S_{n}}(1,2)\right)=\left(K_{S_{n}}(1,2)\right)$.
We define a graph $\Gamma=(V, E)$. The vertices V of Γ are the transpositions of S_{n}.
Two transpositions (a, b) and (c, d) are connected with an edge if and only if $|\{a, b\} \cap\{c, d\}|=1$. This is equivalent to $o((a, b)(c, d))=3$.
(Note that $(a, x)(x, b)=(a b x)$ and $(a, x)(a, x)=i d$ if $|\{a, b\} \cap\{c, d\}|=2$, moreover $o((a, b)(c, d))=2$ if $\{a, b\} \cap\{c, d\}=\emptyset)$.
Let $\sigma \in \operatorname{Aut}\left(S_{n}\right)$ then, as we have seen, $\sigma\left(K_{S_{n}}((1,2))\right)=K_{S_{n}}((1,2))$, so
σ permutes the vertices of Γ and σ perserves the orders of elements. We show that σ also preserves edges. The transposition (a, b) and (c, d) are connected with an edge if and only if $o((a, b)(c, d))=3$. Then $o(\sigma((a, b)) \sigma((c, d)))=o(\sigma((a, b)(c, d)))=o((a, b)(c, d))=3$, hence $\sigma(a, b)$ and $\sigma(c, d)$ are also connected with an edge, so σ preserves edges and we have that $\sigma \in \operatorname{Aut}(\Gamma)$. We define the following subgraph.
$G_{a}:=\{(a, x) \mid x \in\{1,2, \cdots, n\} \backslash\{a\}\}$ then $\left|G_{a}\right|=n-1$ and
G_{a} is a complete graph on $n-1$ points for every $a \in\{1, \cdots, n\}$.
Γ has no other complete subgraphs on $n-1$ points, see problem sheet $2 / 2$.
Since σ is a graph automorphism, hence complete $n-1$ point subgraphs are mapped to complete $n-1$ point subgraphs and so $\sigma\left(G_{a}\right)=G_{a^{\prime}}$. Since S_{n} is transitive on $\{1,2, \cdots, n\}$, there exists an element $g \in S_{n}$ such that $a^{g}=a^{\prime}$, for $a \in\{1,2, \cdots, n\}$. Then $g=\left(\begin{array}{ccc}a_{1} & \cdots & a_{m} \\ a_{1}^{\prime} & \cdots & a_{m}^{\prime}\end{array}\right)$, in a particular $a^{g}=a^{\prime}, b^{g}=b^{\prime}$.

If $a \neq b$, then $\{(a, b)\}=G_{a} \cap G_{b}$, and $\left\{(a, b)^{\sigma}\right\}=G_{a^{\prime}} \cap G_{b^{\prime}}=\left\{\left(a^{\prime}, b^{\prime}\right)\right\}=\left\{\left(a^{g}, b^{g}\right)\right\}=$ $\left\{(a, b)^{g}\right\}$. Hence $(a, b)^{\sigma}=(a, b)^{g}$ on transpositions. Since the transpositions generate S_{n}, on the whole $S_{n} \sigma$ is the conjugation by g.
Hence every $\sigma \in \operatorname{Aut}\left(S_{n}\right)$ is a conjugation by some $g \in G$. Thus $\operatorname{Aut}\left(S_{n}\right) \cong \operatorname{Inn}\left(S_{n}\right) \cong$ S_{n}.

2 Application of the Sylow theorems, small groups

We know by Lagrange's theorem that if G is a finite group and H is a subgroup in G, then | $H \mid$ divides $|G|$.
However, the converse is not true. For example $\left|A_{5}\right|=60$ and 15 divides 60 , but there is no subgroup of A_{5} of order 15. (see problem sheet $3 / 1$)
However, for each maximal p-power divisor of $|G|$, there exists a subgroup of that order.
Definition 2.1. Let G be a finite group and let p be a prime. Suppose that $|G|=p^{a} m$, where $(p, m)=1$. If P is a subgroup of G and $|P|=p^{a}$, then P is called a Sylow p-subgroup of G.

Theorem 2.2. (Sylow)

Let G be a finite group, let p be a prime and let $|G|=p^{a} m$, where $(p, m)=1$. Then

1. (Ep) There exists a subgroup $P \leq G$, such that $|P|=p^{a}$. (existence of Sylow p subgroups)
2. $\operatorname{Let} \operatorname{Syl}_{p}(G):=\left\{P \leq G| | P \mid=p^{a}\right\}$. Then $\left|S y l_{p}(G)\right|=\left[G: N_{G}(P)\right] \equiv 1(p)$.
3. (Cp) For all $P_{1}, P_{2} \in S y l_{p}(G)$ there exists an element $g \in G$ such that $P_{1}^{g}=P_{2}$. (Sylow p-subgroups are conjugate)
4. (Dp) If $H \leq G$ is a p-subgroup, then there exists a subgroup $P \in \operatorname{Syl}_{p}(G)$ such that $H \leq P,(P$ is a maximal p-subgroup under containment as well $)$.

Corollary 2.1. Let $|G|=p q$ where $p<q$ primes.
If $Q \in \operatorname{Syl}_{q}(G)$, then $Q \triangleleft G$.
If $q \not \equiv 1(p)$, then $P \triangleleft G$ and $G \cong C_{p q}$.
If $q \equiv 1(p)$, then there exist elements $a, b \in G$ such that
$G=\left\langle a, b \mid a^{q}=1, b^{p}=1, b^{-1} a b=a^{m}, m \equiv 1(q), m \not \equiv 1(q)\right\rangle$. In particular, if $|G|=2 q$ and G is non-abelian then $G \cong D_{2 q}$.

Proof. Let $|G|=p q$, then if $P \in \operatorname{Syl}_{p}(G)$ then $|P|=p$ and If $Q \in \operatorname{Syl}_{q}(G)$ then $|Q|=q$, so P and Q are cyclic, $P \cong C_{p}, Q \cong C_{q}$. (problem sheet 2/8/c)
The number of Sylow q-subgroups in G is $\underbrace{\left[G: N_{G}(Q)\right]}_{\cong 1(q)} \mid[G: Q]=p$. Hence
$\left[G: N_{G}(Q)\right]=k q+1 \mid p$, and $q>p$ so $k=0$ hence $Q \triangleleft G$.
The number of Sylow p-subgroups is $\left[G: N_{G}(P)\right] \mid[G: P]=q$ and $\left[G: N_{G}(P)\right] \equiv 1(p)$.
If $q \not \equiv 1(p)$ then $\left[G: N_{G}(P)\right]=1$ hence $P \triangleleft G$. Since $P \cap Q=1$ and $P Q=G$ then $G \cong P \times Q \cong C_{p} \times C_{q} \cong C_{p q}$. (see problem sheet 2/8/e)
If $q \equiv 1(p)$ then there can be a non-abelian group of order $p q$. Let
$Q=\langle a\rangle$ where $o(a)=q$, let $P=\langle b\rangle$, where $o(b)=p$. Then $\langle a\rangle=Q \triangleleft G$ and hence
$b^{-1} a b \in\langle a\rangle$, so $b^{-1} a b=a^{m}$ for some m, and $\underbrace{b^{-1} \cdots b^{-1}}_{k-\text { times }} a \underbrace{b \cdots b}_{k-\text { times }}=a^{m^{k}}$.
Let $k=p$. Then $b^{p}=1$ and we have that $a=a^{m^{p}}$ hence $a^{m^{p}-1}=1$. Thus $o(a) \mid m^{p}-1$ and so $m^{p} \equiv 1(q)$. Observe that $m \not \equiv 1(q)$, otherwise $b^{-1} a b=a$ and G is commutative.
Hence if G is nonabelian, G satisfies relations of the group
$X=\left\langle a, b \mid a^{q}=1, b^{p}=1, b^{-1} a b=a^{m}, m^{p} \equiv 1(q), m \not \equiv 1(q)\right\rangle$.
By Dyck's theorem, see Algebra 1, or Theorem 8.6, G is a factor group of X. Since $|X| \leq p q$ we have that $X \cong G$.
In particular, if $|G|=2 q, q$ is prime and G is non-abelian then
$G=\left\langle a, b \mid a^{q}=1, b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$, Hence $G \cong D_{2 q}$.

Corollary 2.2. Small groups

$$
\begin{array}{|c|c|}
\hline \frac{1}{2} & C_{2} \\
\hline 2 & C_{3} \\
\hline 3 & C_{4}, C_{2} \times C_{2} \\
\hline 4 & C_{5} \\
5 & C_{6} D_{6} \\
\hline 6 & C_{7} \\
\hline 7 & \left(\text { abelian } C_{8}, C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}\right)\left(\text { non-abelian } Q_{8}, D_{8}\right) \\
\hline 8 & C_{9}, C_{3} \times C_{3} \\
\hline 9 & \left(\text { abelian } C_{10}=C_{2} \times C_{5}\right)\left(\text { non-abelian } D_{10}\right) \\
10 & C_{11} \\
\hline 11 & C_{12} \\
\hline 12\left(\text { abelian } C_{12},\left(c_{2} \times C_{2}\right) \times C_{3}\right)\left(\text { non-abelian } D_{12}, A_{4}, C_{3} \rtimes C_{4}\right) \\
\hline 13 & C_{13} \\
\hline 14 & \left(\text { abelian } C_{14}\right)\left(\text { non-abelian } D_{14}\right) \\
15 & C_{15} \\
\hline
\end{array}
$$

For the non-abelian groups of order 8, see problem sheet 2/9.
For the non-abelian groups of order 12, see problem sheet 3/4.

$3 k$-transitive and primitive groups

Definition 3.1. Let G act on Ω. We say that this action is k-transitive on Ω if for all $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k} \in \Omega$ distinct and for all $\beta_{1}, \beta_{2}, \cdots, \beta_{k} \in \Omega$ distinct, there exists an element $g \in G$ such that $\alpha_{i}^{g}=\beta_{i}$, for $i=1,2, \cdots, k$.

Remark 3.1. G is 1-transitive if and only if G is transitive on Ω.
Remark 3.2. If G is k-transitive on Ω and $k>1$ then G is $(k-1)$-transitive on Ω.
Theorem 3.2. Let $k \geq 2$. The following are equivalent for an action of G on Ω

1. G is k-transitive on Ω.
2. G is transitive on Ω and there exists an $\alpha \in \Omega$ such that G_{α} is ($k-1$)-transitive on $\Omega \backslash\{\alpha\}$.
3. G is transitive on Ω and for all $\alpha \in \Omega, G_{\alpha}$ is $(k-1)$-transitive on $\Omega \backslash\{\alpha\}$.

Proof. (1) \Rightarrow (2)
Let $\alpha \in \Omega$. We have to prove that G_{α} is $k-1$ transitive on $\Omega \backslash\{\alpha\}$.
Let $\beta_{1}, \cdots, \beta_{k-1} \in \Omega \backslash\{\alpha\}$ distinct, and let $\gamma_{1}, \ldots, \gamma_{k-1} \in \Omega \backslash\{\alpha\}$ distinct.
We have to find an element $g_{\alpha} \in G_{\alpha}$ such that $\beta_{i}^{g_{\alpha}}=\gamma_{i}$, for $i=1, \cdots, k-1$.
Now $\alpha, \beta_{1}, \cdots, \beta_{k-1} \in \Omega$ are distinct and $\alpha, \gamma_{1}, \cdots, \gamma_{k-1} \in \Omega$ are distinct. From (1) we have that there exists an element $g \in G$ such that $\alpha^{g}=\alpha$ and $\beta_{i}^{g}=\gamma_{i}$, for $i=1, \cdots, k-1$, hence $g \in G_{\alpha}$ and G_{α} is $(k-1)$-transitive on $\Omega \backslash\{\alpha\}$.
(2) \Rightarrow (3)

Let $\beta \in \Omega$. We have to prove that G_{β} is $(k-1)$-transitive on $\Omega \backslash\{\beta\}$, in other words for $\beta_{1}, \cdots, \beta_{k-1} \in \Omega \backslash\{\beta\}$ distinct, and for $\beta_{1}^{\prime}, \cdots, \beta_{k-1}^{\prime} \in \Omega \backslash\{\beta\}$ distinct, there exists an element $g \in G_{\beta}$ such that $\beta_{i}^{g}=\beta_{i}^{\prime}, i=1, \cdots, k-1$.
From (2) we have that G is transitive on Ω. So there exists an element $g \in G$ such that $\alpha^{g}=\beta$. Let $\alpha_{i}:=\beta_{i}^{g^{-1}}$ and $\alpha_{i}^{\prime}:=\left(\beta_{i}^{\prime}\right)^{g^{-1}}$. Then $\alpha_{1}, \cdots, \alpha_{k-1} \in \Omega \backslash\{\alpha\}$ are distinct, and $\alpha_{1}^{\prime}, \cdots, \alpha_{k-1}^{\prime} \in \Omega \backslash\{\alpha\}$ are distinct.
By (2), there exists an element $g_{\alpha} \in G_{\alpha}$ such that $\alpha_{i}^{g_{\alpha}}=\alpha_{i}^{\prime}$, for $i=1, \cdots, k-1$.
Then $\beta_{i}^{g^{-1} g_{\alpha} g}=\beta_{i}^{\prime}$, for $i=1, \cdots, k-1$, so G_{β} is $(k-1)$-transitive on $\Omega \backslash\{\beta\}$. (3) \Rightarrow (1)

We have to prove that for every $\alpha_{1}, \cdots, \alpha_{k} \in \Omega$ distinct, and for every $\beta_{1}, \cdots, \beta_{k} \in \Omega$ distinct, there exists an element $g \in G$ such that $\alpha_{i}^{g}=\beta_{i}$, for $i=1, \cdots, k$. Since G is transitive on Ω, we have that there exists an element $g \in G$ such that $\alpha_{1}^{g}=\beta_{1}$.
From (3) we have that $G_{\beta_{1}}$ is $(k-1)$-transitive on $\Omega \backslash\left\{\beta_{1}\right\}$. Now $\alpha_{2}^{g}, \alpha_{3}^{g}, \cdots, \alpha_{k}^{g} \in \Omega \backslash\left\{\beta_{1}\right\}$. Since $\alpha_{2}^{g}, \cdots, \alpha_{k}^{g}$ are distinct and $\beta_{2}, \cdots, \beta_{k} \in \Omega \backslash\left\{\beta_{1}\right\}$, we have that there exists an element $h \in G_{\beta_{1}}$ such that $\left(\alpha_{i}^{g}\right)^{h}=\beta_{i}$, for $i=2, \cdots, k$. Since $\alpha_{1}^{g}=\beta_{1},\left(\left(\alpha_{1}\right)^{g}\right)^{h}=\beta_{1}$ and so $\alpha_{i}^{g h}=\beta_{i}$, for $i=1,2, \cdots, k$.

Definition 3.3. Let $G \leq S_{\Omega}$ (or G acts on Ω). We say that $\Omega=\cup_{i=1}^{k} \Omega_{i}$ is a G-invariant partition of Ω if $\Omega_{i} \cap \Omega_{j}=\emptyset$ for all $i \neq j$, and for all $g \in G$, for all $i=1, \cdots, k$, there exists j such that $\Omega_{i}^{g}=\Omega_{j}$. This partition is proper if there exists an index i such that $\left|\Omega_{i}\right| \neq 1$ and $\Omega_{i} \neq \Omega$.

Definition 3.4. We say that $G \leq S_{\Omega}$ (or action of G on Ω) is primitive, if it is transitive and there is no proper G-invariant partition on Ω.
We say that G is imprimitive on Ω if G is transitive on Ω but not primitive.
Remark 3.3. If G is transitive and not primitive, then since there exists an element $g \in G$ such that $\Omega_{i}^{g}=\Omega_{j}$, we have that $\left|\Omega_{i}\right|=\left|\Omega_{j}\right|$.

Definition 3.5. If G acts on Ω, then a subset $B \subseteq \Omega$ is called a block (or domain of imprimitivity) for G if for all elements $g \in G\left(B^{g} \cap B \neq \emptyset \Rightarrow B=B^{g}\right)$. B is a proper block if $B \neq \Omega,|B| \neq 1$.

Example 3.1. D_{8} acts on $\{1,2,3,4\}$ transitively, $\{1,4\},\{2,3\}$ are blocks,

Theorem 3.6. If G is transitive on Ω, then G is primitive if and only if Ω has no proper blocks for G.

Proof. It is enough to prove that the action is imprimitive if and only if there exists a proper block.
\Longrightarrow) Suppose that $\Omega=\cup^{*} \Omega_{i}$, is a proper G-invariant partition on Ω.
Then Ω_{i} is a proper block for every i.
$\Longleftarrow)$
If $B \subsetneq \Omega$ is a proper block for G then we will prove that $\Omega=\cup B^{g}$ is a proper G-invariant partition of Ω. By transitivity of G, we have that $\Omega=\cup_{g \in G} B^{g}$.
We want to prove that if $B^{g} \cap B^{h} \neq \emptyset$ then $B^{g}=B^{h}$. Since $\left(B^{g}\right)^{h^{-1}} \cap B \neq \emptyset$ we have that $B^{g h^{-1}}=B$, hence $B^{g}=B^{h}$. So $\Omega=\cup_{g \in G} B^{g}$ is a G-invariant partition. Since $|B| \neq 1, B \neq \Omega$, it is a proper partition of Ω and so G is imprimitive.

Example 3.2. $G:=\{1,(123)(a b c),(132)(a c b),(1 b)(2 a)(3 c),(1 a)(2 c)(3 b),(1 c)(2 b)(3 a)\}$ $\Omega=\{1,2,3\} \cup\{a, b, c\}=\{1, a\} \cup\{2, b\} \cup\{3, c\}$ are two G-invariant partitions on Ω.

Theorem 3.7. If the group G acts on Ω transitively, then the following are equivalent:

1. G acts on Ω primitively.
2. There exists $\alpha \in \Omega$ such that G_{α} is maximal in G.
3. For all $\alpha \in \Omega, G_{\alpha}$ is maximal in G.

Proof. (3) \Rightarrow (2) This is obvious.
$(2) \Rightarrow(3)$ Since G is transitive on Ω, by Theorem 1.17 we have that G_{α} is conjugate to G_{β}. Thus they are maximal at the same time, so G_{β} is also maximal.
$(1) \Leftrightarrow(2)$ It is enough to prove that G is imprimitive on Ω iff there is an $\alpha \in \Omega$ such that G_{α} is not maximal.
$\Longrightarrow)$
If the action of G is imprimitive then there exists a block $B \subsetneq \Omega$ such that $|B| \neq 1$.
Let $M:=\left\{g \in G \mid B^{g}=B\right\}$. Then $M=\left\{g \in G \mid B^{g} \cap B \neq \varnothing\right\}$ and M is a subgroup of G. Observe that if $\alpha \in B$, then $G_{\alpha} \leq M$. We will prove $G_{\alpha} \leq M$. Since $|B|>1$, and $\alpha \in B$ then there exists $\beta \in B$ such that $\alpha \neq \beta$. As G is transitive on Ω, there exists an element $g \in G$ such that $\alpha^{g}=\beta$. Thus,
$\alpha^{g} \in B^{g} \cap B \neq \emptyset$, and hence $B^{g}=B$ and $g \in M$. However $g \in M \backslash G_{\alpha}$ and so
$G_{\alpha} \lesseqgtr M$. Since $B \neq \Omega$, there exists an element $g \in G$ such that $B^{g} \neq B$, thus $g \in G \backslash M$ and so $M \neq G$ and we have that $G_{\alpha} \lesseqgtr M \lesseqgtr G$, so G_{α} is not maximal.
$\Longleftarrow)$
If G_{α} is not maximal, then we want to prove that the action is imprimitive. Let us choose a maximal subgroup M such that $G_{\alpha} \lesseqgtr M \lesseqgtr G$. We want to find a proper block of G on Ω. Let $B:=\left\{\alpha^{m} \mid m \in M\right\}$, then $|B|>1$ because $G_{\alpha} \leq M$, and there exists an element $m \in M \backslash G_{\alpha}$, so for that $\alpha^{m} \neq \alpha$. Moreover $B \neq \Omega$, since if $B=\Omega$ then M were transitive on Ω then for every $g \in G$ there would exist an element $m \in M$ such that $\alpha^{g}=\alpha^{m}$. Hence $\alpha^{g m^{-1}}=\alpha$. and so $g m^{-1} \in G_{\alpha} \lesseqgtr M$. Let $m_{1}:=g m^{-1}$. Then $g=m_{1} m \in M$, hence every
$g \in G$ is in M, so this is a contradiction, and thus $B \neq \Omega$.
Now, want to prove that B is a block. If $B^{g} \cap B \neq \emptyset$, then there exist elements $m, m^{\prime} \in M$ such that $\alpha^{m g}=\alpha^{m^{\prime}}$. Hence $\alpha^{m g\left(m^{\prime}\right)^{-1}}=\alpha$ and we have that $m g\left(m^{\prime}\right)^{-1} \in G_{\alpha} \leq M$. Hence there is an element $m^{\prime \prime} \in M$ such that $m g\left(m^{\prime}\right)^{-1}=m^{\prime \prime}$ and we have that $g=m^{-1} m^{\prime \prime} m^{\prime} \in$ M. By the definition of B, we have that $B^{g}=B$ and so B is a block. Hence G acts imprimitively.

Definition 3.8. A group G is sharply k-transitive on Ω if for all distinct $\alpha_{1}, \cdots, \alpha_{k} \in \Omega$ and for all distinct $\beta_{1}, \cdots, \beta_{k} \in \Omega$, there is a unique element $g \in G$ such that $\alpha_{i}^{g}=\beta_{i}$, for $i=1,2, \cdots, k$.

Theorem 3.9. (Jordan)

Let $G \leq S_{n}$ be a sharply k-transitive group. If $G \neq S_{n}$ or A_{n}, then $k=4$ and $n=11$ or $k=5$ and $n=12$. (The Mathieu-groups M_{11} and M_{12} are such groups.)

4 Group extensions, semidirect product, wreath product

Definition 4.1.

Let A, B, C be groups, ψ, φ group homomorphisms, i is the embedding of 1 and π is the surjection on 1 . We say that the sequence $\left(^{*}\right.$) is exact if $\operatorname{Im} i=\operatorname{ker} \psi$ (if and only if ψ is injective) and $\operatorname{Im} \varphi=\operatorname{ker} \pi$ (if and only if φ is surjective) and $A \cong \operatorname{Im} \psi=\operatorname{ker} \varphi$ (in this case $B / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi=C)$ hence $B / \psi(A) \cong B / A$. In this case we tell that B is an extension of A by C.
$(A \triangleleft B$ and $B / A \cong C)$ (shortly)
Definition 4.2. The extension A by C is split (or inner semidirect product), if there exists a subgroup $C_{1} \leqslant B$ such that $C_{1} \cong C, A \cap C_{1}=\{1\}$ and $A C_{1}=B$.
(in this case $\left.B / A=\left(A C_{1}\right) / A \cong C_{1} /\left(C_{1} \cap A\right) \cong C_{1} \cong C\right)$

Lemma 4.1. Let $G=K Q, K \triangleleft G, K \cap Q=1$ (split extension of K by Q), then there exists a map $\Theta: Q \rightarrow \operatorname{Aut}(K)$ such that $x \mapsto \Theta_{x}=\binom{K}{x K x^{-1}}$ is a homomorphism $(Q$ acts on K with conjugation by x^{-1} for $x \in Q$).

Proof. $\Theta: Q \rightarrow \operatorname{Aut}(K)$ is a homomorphism since $\Theta_{x y}(K)=x y k y^{-1} x^{-1}=\Theta_{x}\left(\Theta_{y}(K)\right)$, hence $\Theta_{x y}=\Theta_{x} \Theta_{y}$.

Definition 4.3. (Outer semidirect product)

Let Q and K be groups and $\Theta: Q \rightarrow A u t(K)$ be a group homomorphism.
$G:=K \rtimes_{\Theta} Q=\{(a, x) \mid a \in K, x \in Q\}$ with multiplication rule $(a, x)(b, y)=\left(a \Theta_{x}(b), x y\right)$ with this multiplication G is a group. (see problem sheet $5 / 2$)
The unit element is $\left.(1,1),(k, q)^{-1}=\left(\Theta_{q^{-1}}(k)\right)^{-1}, q^{-1}\right)$ and $(1, q)(k, 1)(1, q)^{-1}=\left(\Theta_{q}(k), 1\right)$. The elements $K^{*}=\{(k, 1) \mid k \in K\}$ form a normal subgroup isomorphic to K, the elements $Q^{*}=\{(1, q) \mid q \in Q\}$ form a subgroup isomorphic to $Q, G=K^{*} Q^{*}$ and $K^{*} \cap Q^{*}=\{(1,1)\}$.

Definition 4.4. (Wreath product)

Let $D \leqslant S_{\Lambda}, Q \leqslant S_{\Omega}$ be permutation groups, let $D_{\omega} \cong D$ for all $\omega \in \Omega$, then $K=\prod_{\omega \in \Omega} D_{\omega}$, is the base group of the wreath product. Let: $D \sim Q:=\left(\prod_{\omega \in \Omega} D_{\omega}\right) \rtimes Q$, where Q acts on $\prod_{\omega \in \Omega} D_{\omega}$ by permuting components: $\left(d_{\omega_{1}}, d_{\omega_{2}}, \cdots\right)^{q}=\left(d_{\omega_{1} q}, d_{\omega_{2} q}, \cdots\right)$.
Remark 4.1. If $|D|<\infty$, then $|K|=|D|^{|\Omega|}$. If Q is also finite, then $|D \sim Q|=|D|^{|\Omega|}|Q|$.
Theorem 4.5. Let us suppose that $D \leqslant S_{\Lambda}(D$ acts on $\Lambda)$ and $Q \leqslant S_{\Omega}$ (Q acts on Ω).
Then $D \sim Q$ acts on $\Lambda \times \Omega$, and $D \sim Q \leqslant S_{(\Lambda \times \Omega)}$, where the action is defined by $(\lambda, \omega)^{\left(d_{\omega_{1}}, \cdots, d_{\omega_{n}}, q\right)}=\left(\lambda^{d_{\omega}}, \omega^{q}\right) .\left(^{*}\right)$
This define an action $\varphi: D \sim Q \rightarrow S_{(\Lambda \times \Omega)}$, in other words
$\varphi\left(\left(d_{\omega_{1}}, \cdots, d_{\omega_{n}}, q\right)\left(d_{\omega_{1}}^{\prime}, \cdots, d_{\omega_{n}}^{\prime}, q^{\prime}\right)\right)=\varphi\left(d_{\omega_{1}}, \cdots, d_{\omega_{n}}, q\right) \varphi\left(d_{\omega_{1}}^{\prime}, \cdots, d_{\omega_{n}}^{\prime}, q^{\prime}\right)$, as
$\left(\lambda^{d_{\omega}}, \omega^{q}\right)^{\left(d_{\omega_{1}}^{\prime}, \cdots, d_{\omega_{n}}^{\prime}, q^{\prime}\right)}=\left(\lambda^{d_{\omega} d_{\omega q}^{\prime}},\left(\omega^{q}\right)^{q^{\prime}}\right)$ is the image of (λ, ω) when we apply the left hand side. On the other hand, $\left(d_{\omega_{1}}, \cdots, d_{\omega_{n}}, q\right)\left(d_{\omega_{1}}^{\prime}, \cdots, d_{\omega_{n}}^{\prime}, q^{\prime}\right)=\left(\left(d_{\omega_{1}}, \cdots, d_{\omega_{n}}\right)\left(d_{\omega_{1}^{q}}^{\prime}, \cdots, d_{\omega_{n}^{q}}^{\prime}\right), q q^{\prime}\right)$ $=\left(d_{\omega_{1}} d_{\omega_{1}^{q}}^{\prime}, \cdots, d_{\omega_{n}} d_{\omega_{n}^{q}}^{\prime}, q q^{\prime}\right)$. Thus $(\lambda, \omega)^{\left(d_{\omega_{1}} d_{\omega_{1}^{q}}^{\prime}, \cdots, d_{\omega_{n}} d_{\omega_{n}^{q}}^{\prime}, q q^{\prime}\right)}=\left(\lambda^{\left(d_{\omega} d_{\omega q}^{\prime}\right)}, \omega^{q q^{\prime}}\right)$ is the image
of (λ, ω), when we apply the right hand side, This action is faithful, since if $\left(\lambda^{d_{\omega}}, \omega^{q}\right)=(\lambda, \omega)$ for all λ and for all ω, then $\lambda^{d_{\omega}}=1$ for all ω, and $q=1$ and so $\left(d_{\omega_{1}}, \cdots, d_{\omega_{n}}, q\right)=$ $(1, \cdots, 1)$. Hence $G \sim Q \leqslant S_{\Lambda \times \Omega}$.

4.1 The Sylow p-subgroups of symmetric groups

What is the order of the Sylow p-subgroup of S_{m}. The order of S_{m} is $m!$. We need $p^{M} \mid m$! but $p^{M+1} \nmid m$!

$M=\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\left\lfloor\frac{m}{p^{3}}\right\rfloor+\cdots$, since
$\left\lfloor\frac{m}{p}\right\rfloor$ numbers between 1 and m are divisible by p
$\left\lfloor\frac{m}{p^{2}}\right\rfloor$ numbers between 1 and m are divisible by p^{2}
\vdots
etc.
Remark 4.2. $C_{p} \sim C_{p}=\underbrace{C_{p} \times \cdots \times C_{p}}_{p-\text { times }} \rtimes C_{p}$ and $C_{p} \leq S_{\left|C_{p}\right|}$, since C_{p} acts on C_{p} by right multiplication.
By the previous theorem, we have that $C_{p} \sim C_{p} \leq S_{p^{2}}$. Hence $\left(C_{p} \sim C_{p}\right) \sim \cdots \sim C_{p} \leq S_{p^{n}}$.
Theorem 4.6. (Kaloujnine 1984)
Let p be a prime. The Sylow p-subgroup of $S_{p^{n}}$ is the iterated wreath product
$W_{n}=\underbrace{\left(C_{p} \sim C_{p}\right) \sim \cdots \sim C_{p}}_{n \text {-times }}$.
Proof. The proof is by induction on n.
If $n=1$, then $\left|S_{p}\right|=p!$, and if $P \in \operatorname{Syl}_{p}\left(S_{p}\right)$, then $|P|=p$ hence $P \cong C_{p}$.
By induction we suppose that the n-fold iterated wreath product $P=\left(C_{p} \sim \cdots \sim C_{p}\right) \in \operatorname{Syl}_{p}\left(S_{p^{n}}\right)$.
Since $P \leq S_{p^{n}}, C_{p} \leq S_{p}$, then $P \sim C_{p}$ acts on the direct product set of order p^{n+1}, hence $P \sim C_{p} \leq S_{p^{n+1}}$.

If $P_{1} \in S y l_{p^{n+1}}$, then $\left|P_{1}\right|=p^{\mu^{(n+1)}}$, where $\mu^{(n+1)}=\left\lfloor\frac{p^{n+1}}{p}\right\rfloor+\left\lfloor\frac{p^{n+1}}{p^{2}}\right\rfloor+\cdots+\left\lfloor\frac{p^{n+1}}{p^{n+1}}\right\rfloor=$ $p^{n}+p^{n-1}+\cdots+1$.
We know by induction that $|P|=p^{1+\cdots+p^{n-1}}$. Hence $\left|P \sim C_{p}\right|=|P|^{p} \cdot p=p^{p+\cdots+p^{n}} \cdot p=p^{1+\cdots+p^{n}}$. This is exactly the size of the Sylow p-subgroups of $S_{p^{n+1}}$. Hence we are done.

Remark 4.3. We can also determine the Sylow p-subgroup of S_{m}, where m is not necessarily a p-power. Let us write m in p-adic number system: $m=a_{0}+a_{1} p+\cdots+a_{t} p^{t}$, where $0 \leq a_{i}<p-1$, Let $\Omega:=\{1,2, \cdots, m\}$. Then $P \in \operatorname{Syl}_{p}\left(S_{m}\right)$ has size p^{μ}, where $\mu=\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\cdots+\left\lfloor\frac{m}{p^{t}}\right\rfloor=$ $\left(a_{1}+a_{2} p+\cdots+a_{t} p^{t-1}\right)+\left(a_{2}+a_{3} p+\cdots+a_{t} p^{t-2}\right)+\cdots+\left(a_{t-1}+a_{t} p\right)+\left(a_{t}\right)$ $=a_{1}+a_{2}(p+1)+a_{3}\left(p^{2}+p+1\right)+a_{4}\left(p^{3}+p^{2}+p+1\right)+\cdots+a_{t}\left(p^{t-1}+p^{t-2}+\cdots+1\right)$. Thus, $|P|=p^{a_{1}} p^{a_{2}(p+1)} p^{a_{3}\left(p^{2}+p+1\right)} \cdots p^{a_{t}\left(p^{t-1}+\cdots+1\right)}=\left|X_{1}^{a_{1}}\right|\left|X_{2}^{a_{2}}\right| \cdots\left|X_{t}^{a_{t}}\right|$, where $X_{i} \in \operatorname{Syl}_{p}\left(S_{p^{i}}\right)$.
We partition Ω into $a_{0} 1$-element sets, a_{1} p-element sets, $a_{2} p^{2}$-element sets \cdots etc.
Hence the group $1^{a_{0}} \times X_{1}^{a_{1}} \times X_{1}^{a_{1}} \times \cdots \times x_{t}^{a_{t}} \leq S_{1}^{a_{0}} \times S_{p}^{a_{p}} \times \cdots \times S_{p^{t}}^{a_{t}} \leq S_{\Omega} \cong S_{m}$.
This group has the order of p, thus it is a Sylow p-subgroup of S_{m}.

5 Solvable groups and nilpotent groups

Definition 5.1. A finite group G is solvable if there exists a subnormal series
$G=N_{\circ} \triangleright N_{1} \triangleright \cdots \triangleright N_{n}=\{e\}\left(\forall N_{i} \triangleleft N_{i-1}\right.$ but not necessarily $\left.N_{i} \triangleleft G\right)$ such that N_{i} / N_{i+1} is abelian for all i.

Definition 5.2. A composition series of G is a subnormal series without repetitions, such that it cannot refined properly (hence every N_{i} / N_{i+1} is simple).

Remark 5.1. A finite group G is solvable if and only if it is has a composition series such that all N_{i} / N_{i+1} are of prime order.

Definition 5.3. $[x, y]=x^{-1} y^{-1} x y$ is the commutator element of x and y.
Remark 5.2. $[x, y]=1$ if and only if $x y=y x$.

Definition 5.4. $G^{\prime}=\langle[x, y] \mid x, y \in G\rangle$ is called the derived subgroup of G.
Definition 5.5. A subgroup $H \leq G$ is called a characteristic subgroup of G (denoted by H char G), if for every automorphism $\varphi \in \operatorname{Aut}(G)$, we have that $\varphi(H)=H$.

Remark 5.3. If H char G then $H \triangleleft G$.

Proof. If $\varphi_{g}: G \rightarrow G$, such that $x \mapsto g^{-1} x g$, then $\varphi_{g} \in \operatorname{Aut}(G)$. Since H char G we have that $\varphi_{g}(H)=H$, so $g^{-1} H g=H$. Thus $H \triangleleft G$.

Remark 5.4. If $A \triangleleft B \triangleleft C$ then it is not necessarily true that $A \triangleleft C$.
Example 5.1. Let $K_{4}:=\{(),(12)(34),(13)(24),(14)(23)\}, C_{2}=\{(),(12)(34)\} \triangleleft K_{4} \triangleleft S_{4}$ but $\{(),(12)(34)\}$ not normal in S_{4} because $\pi=(23) \in S_{4}$ but $\pi^{-1}(12)(34) \pi \notin C_{2}$, hence C_{2} is not closed under conjugation.

Remark 5.5.

(i) If A char $B \triangleleft C$ then $A \triangleleft C$.
(ii) If A char B char C, then A char C.

Proof. (i) Obviously $A \leq C$. Let $g \in G$. We will show that $g^{-1} A g=A$. Let $\varphi_{g}: G \rightarrow G$ such that $x \mapsto g^{-1} x g$. Then $\varphi_{g}(B)=B$. We show that $\varphi_{g} \in \operatorname{Aut}(B)$. This is becuase φ_{g} is bijective and $\varphi_{g}(x) \varphi_{g}(y)=g^{-1} x g g^{-1} y g=g^{-1} x y g=\varphi_{g}(x y)$. Since A char B, $\varphi_{g}(A)=A$ for every $g \in G$, hence $A \triangleleft G$.
(ii) See problem sheet 6/1.

Corollary 5.1. If N is a normal subgroup of G then not necessarily N char G.

Proof. In Example 5.1 $C_{2} \triangleleft K_{4}$, but C_{2} not characteristic in K_{4}.
Suppose C_{2} char $K_{4} \triangleleft S_{4}$. Then $C_{2} \triangleleft S_{4}$, and this is a contradiction.
Proposition 5.1. G^{\prime} is a characteristic subgroup of G.

Proof. We have to prove that for every $\varphi \in \operatorname{Aut}(G), \varphi\left(G^{\prime}\right)=G^{\prime}$.
It is enough to prove that for every $x, y \in G \varphi([x, y]) \in G^{\prime}$. Now, $\varphi([x, y])=\varphi\left(x^{-1} y^{-1} x y\right)$ $=\varphi\left(x^{-1}\right) \varphi\left(y^{-1}\right) \varphi(x) \varphi(y)=\varphi(x)^{-1} \varphi(y)^{-1} \varphi(x) \varphi(y)=[\varphi(x), \varphi(y)] \in G^{\prime}$.
Since $\varphi^{-1}\left(G^{\prime}\right) \leq G^{\prime}$, hence $\varphi\left(G^{\prime}\right)=G^{\prime}$ and we have that G^{\prime} char G.
Definition 5.6. $G^{\prime \prime}=\left(G^{\prime}\right)^{\prime}, G^{(i)}=\left(G^{(i-1)}\right)^{\prime}$
Definition 5.7. Derived series of $G: G \geqslant G^{\prime} \geqslant G^{\prime \prime} \geqslant \ldots \geqslant G^{(i)} \geqslant \ldots$
Remark 5.6. $G^{(i)}$ char G, in particular $G^{(i)}$ is normal subgroup of G.
Proof. G^{\prime} char $G, G^{\prime \prime}=\left(G^{\prime}\right)^{\prime}$ char G^{\prime}, so by Remark 5.5 (ii) we have that $G^{\prime \prime}$ char G. Suppose by induction that $G^{(i)}$ char G.
$G^{(i+1)}=\left(G^{(i)}\right)^{\prime}$ char $G^{(i)}$ char G. By Remark 5.5 (ii) we have that $G^{(i+1)}$ char G.
Remark 5.7. G is abelian if and only if $G^{\prime}=\{1\}$.
Definition 5.8. G is called metabelian if there exists a normal subgroup $N \triangleleft G$ such that N is abelian and G / N is abelian.

Remark 5.8. G is metabelian if and only if $G^{\prime \prime}=1$
Remark 5.9. G^{\prime} is the minimal normal subgroup N such that G / N is abelian.
Proof. G / N is abelian $\Leftrightarrow[x N, y N]=\overline{1}=N \Leftrightarrow[x N, y N]=[x, y] N=N \Leftrightarrow[x, y] \in N \Leftrightarrow G^{\prime} \leq N$.

Corollary 5.2. G is solvable if and only if there exists a natural number k such that $G^{(k)}=\{1\}$. The minimal such k is called the derived length of G denoted by d.l. (G).

Proof. $\Longleftarrow:$)
Suppose that $G \geqslant G^{\prime} \geqslant \cdots \geqslant G^{(k)}=\{1\}$. This chain is a normal series, and the factors $G^{(i)} / G^{(i+1)}=G^{(i)} /\left(G^{(i)}\right)^{\prime}$ are abelian. Then G is solvable.
$\Longrightarrow:)$
Suppose that G is solvable. Then there exists a series $G=N_{\circ} \triangleright N_{1} \triangleright N_{2} \triangleright \cdots \triangleright N_{k}=\{1\}$,
such that N_{i} / N_{i+1} is abelian for $i=0,1, \cdots, k-1$. Since G / N_{1} is abelian, so $G^{\prime} \leqslant N_{1}$. Since N_{1} / N_{2} is abelian, then $N_{1}^{\prime} \leqslant N_{2}$, hence $G^{\prime \prime} \leqslant N_{2}$. We want to prove that $G^{(k)} \leqslant N_{k}=\{1\}$. By induction suppose that $G^{(i)}$.Then $\leqslant N_{i}, G^{(i+1)} \leqslant N_{i}^{\prime}$ and N_{i} / N_{i+1} is abelian we have that $N_{i}^{\prime} \leqslant N^{i+1}$ hence $G^{(i+1)} \leqslant N_{i+1}$. Thus $G^{(k)}=\{1\}$.

Proposition 5.2.

1. If G is solvable and H is a subgroup of G, then H is solvable and d.l. $(H) \leqslant d . l .(G)$.
2. If G is solvable then G / N is solvable and d.l. $(G / N) \leqslant d . l .(G)$.
3. If N is solvable normal subgroup of G and G / N is solvable then G is solvable and d.l. $(G) \leqslant$ d.l. $(N)+$ d.l. (G / N).
4. If H, K are solvable then $H \times K$ is solvable.

Proof. 1. This is because $H^{i} \leq G^{i}$ for every i.
2. This is because $H^{i} \leq(G / N)^{i}=G^{i} N / N$.
3. Easy to see.
4. Easy to see.

Definition 5.9. A nontrivial normal subgroup H of G is called a minimal normal subgroup of G if there exists no normal subgroup N such that $1 \leqslant N \lesseqgtr H$.

Definition 5.10. A group G is called characteristically simple if there is no characteristic subgroup N of G such that $\{1\} \lesseqgtr N \lesseqgtr G$.

Proposition 5.3. If $\{1\}<N$ is a minimal normal subgroup of a group G, then N is characteristically simple.

Proof. Suppose $\{1\} \neq H$ char $N \triangleleft G, H \neq N$. Then by Remark $5.3 H \triangleleft G$ and this is a contradiction since N was minimal.

Theorem 5.11. If G is a finite solvable group, and N is a minimal normal subgroup of G then there exists a prime p such that $N \cong C_{p} \times \cdots \times C_{p}$ (N is a so called elementary abelian p-group).

Proof. N is characteristically simple (by Prop5.3. Since N^{\prime} char $N, N^{\prime}=N$ or $N^{\prime}=\{1\}$. However, $N^{\prime}=N$ impossible, as N is solvable. Hence N is abelian. Now, by the fundamental theorem of abelian groups we have that $N \cong N_{p_{1}} \times N_{p_{2}} \times \cdots \times N_{p_{k}}$, where $N_{p_{i}} \in S y l_{p_{i}}(N)$. Then $N_{p_{i}}$ char N. Hence $N_{p_{i}}=N$ or $\{1\}$ since N is characteristically simple. Thus N is abelian p-group.
Let $\Omega_{n}(N):=\left\langle x \in N \mid x^{p^{n}}=1\right\rangle$. We prove that $\Omega_{n}(N)$ char N. Let $\varphi \in A u t(N)$. It is enough to prove that if $x^{p^{n}}=1$ then $\varphi(x)^{p^{n}}=1$. But $\varphi\left(x^{p^{n}}\right)=\varphi(x)^{p^{n}}=1$. In particular, $\Omega_{1}(N)$ char N. Hence $\Omega_{1}(N)=\{1\}$ or $\Omega_{1}(N)=N$.
However, $\Omega_{1}(N)=\left\langle x \mid x^{p}=1\right\rangle \neq\langle\{1\}\rangle$, since there exists an element of order p in N.
Thus $\Omega_{1}(N)=N$. Since N is abelian, so $N \cong C_{p} \times \cdots \times C_{p}$ elementary abelian.

Remark 5.10. Every finite group of p-power order is solvable.

Proof. We know from (Algebra 1) that if $|G|=p^{k}>1$ then $Z(G) \neq 1$.
Let $Z^{2}(G)$ be the inverse image of $Z(G / Z(G))$ in G, and in general let $Z^{i+1}(G)$ be the inverse image of $Z\left(G / Z^{i}(G)\right)$. Then $1<Z(G)<Z^{2}(G)<\cdots$ and $Z^{i+1}(G) / Z^{i}(G)=$ $Z\left(G / Z^{i}(G)\right)$ abelian. Hence G is solvable.

Theorem 5.12. (Burnside)

If G is a finite group and $|G|=p^{\alpha} q^{\beta}, p \neq q$ primes, then G is solvable.

Theorem 5.13. (Feit-Thompson 1963)
If G is a finite group and $|G|$ is odd, then G is solvable.

Theorem 5.14. (Further properties of solvability)

1. If N, M are normal subgroups of G and $G / N, G / M$ are solvable, then $G /(N \cap M)$ is also solvable.
2. If M, N are normal subgroups of G and M, N are solvable, then $M N$ is also solvable.

Proof. 1. Let $g \in G$, let $\varphi: G \rightarrow G / N \times G / M$ be a map such that $g \mapsto(g N, g M)$. Then this is a homomorphism and $\operatorname{ker} \varphi=\{g \in G \mid g \in N \cap M\}=N \cap M$. So by the homomorphism theorem $G /(N \cap M) \cong \operatorname{Im} \varphi \leqslant G / N \times G / M$. Now we use Prop 5.2 (4) and (1) to get that $G /(N \cap M)$ is solvable.
2. Since M is solvable and $(M N) / N \cong M /(M \cap N)$ is solvable, moreover N is solvable, so by $\operatorname{Prop} 5.2$ (3) $M N$ is also solvable.

Definition 5.15. In a finite group G there is a biggest solvable normal subgroup (product of all solvable normal subgroups) is called the solvable radical of G.

Remark 5.11. If p, q are primes then every group of order $p q$ is solvable.
Proof. If $q>p$ and $Q \in S y l_{q}(G)$ then $Q \triangleleft G$. Hence we have the normal series $G \triangleright Q \triangleright\{1\}$. Then $G / Q \cong C_{p}$, and $Q /\{1\} \cong C_{q}$. Hence G is solvable.

Remark 5.12. If $|G|=p q r$, where p, q, r are different primes then G is solvable.
Remark 5.13. Groups of orders $(1-59)$ are solvable.
Remark 5.14. If G is non-abelian simple group then G is not solvable since $G^{\prime}=G$.
Definition 5.16. Let G be a group and let H, K be subgroups of G. Then the subgroup $[H, K]:=\langle[h, k] \mid h \in H, k \in K\rangle$ is called the commutator subgroup of H and K.

Remark 5.15.

1. Let $H, K \leq G . K$ is a subgroup of $N_{G}(H)$ if and only if $[H, K] \leqslant H$.
2. Suppose H is a subgroup of G, K is normal subgroup of G, and K is a subgroup H. Then $[H, G]$ is a subgroup of K if and only if H / K is a subgroup of $Z(G / K)$.

Proof. 1. $\Longrightarrow)$:
Let $K \leqslant N_{G}(H)$. It is enough to prove that for every $h \in H$, and for every $k \in K$, $[h, k]=h^{-1} \underbrace{k^{-1} h k} \in H$. But since $\underbrace{k^{-1} h k} \in H$ we have that $[h, k] \in H$.
$\Longleftarrow):$
Suppose that $h^{-1} k^{-1} h k \in H$, for every $h \in H$, and for every $k \in K k^{-1} h k \in H$ so $K \leqslant N_{G}(H)$.
2. $[H, K] \leq K \Leftrightarrow H$ is commuting with $G \bmod K$. In other words $H / K \leq Z(G / K)$.

Definition 5.17. (Lower central series of \mathbf{G})

$K_{0}(G):=G, K_{1}(G):=[G, G]=G^{\prime}, K_{2}(G)=\left[G^{\prime}, G\right]=\left[K_{1}(G), G\right], \cdots$. In general $K_{i+1}(G)=\left[K_{i}(G), G\right]$.
Then $K_{0}(G) \geqslant K_{1}(G) \geqslant \cdots$ is the lower central series of G.
Definition 5.18. (Upper central series)
$Z^{0}(G)=\{1\}, Z^{1}(G)=Z(G), Z^{2}(G)=$ inverse image of $Z(G / Z(G))$ in G. In general $Z^{i+1}(G) / Z^{i}(G)=Z\left(G / Z^{i}(G)\right)$. Then $Z^{0}(G) \leqslant Z^{1}(G) \leqslant Z^{2}(G) \leqslant \cdots$ is the upper central series of G.
Written the following theorem we also introduce the notion of nilpotent groups.
Theorem 5.19. For a group G the following are equivalent:

1. The lower central series of G in finitely many many steps reaches $\{1\}$.
2. The upper central series of G in finitely many steps reaches G.

The number of steps in (1) and (2) are equal. If this number is c, then G is called a nilpotent group of class c, or shortly by $c=\operatorname{cl}(G)$.

Proof. (2) \Rightarrow (1)
Suppose $Z^{c}(G)=G$, for some c. We will prove by induction on i that $K_{i}(G) \leqslant Z^{c-i}(G)$ $\left(^{*}\right)$. For $i=0, G=K_{0}(G)=Z^{c}(G)=G$. Suppose that $\left(^{*}\right)$ holds for i. Then by induction we have that $K_{i+1}(G)=\left[K_{i}(G), G\right] \leqslant\left[Z^{c-i}(G), G\right] \leqslant Z^{c-i-1}$, since
$Z^{c-i}(G) / Z^{c-i-1}(G)=Z\left(G / Z^{c-i-1}(G)\right)$. Then $(*)$ holds for every i and hence $K_{c}(G) \leqslant Z^{0}(G)=\{1\}$. (1) $\Rightarrow(2)$

Suppose that $K_{c}(G)=\{1\}$. We want to prove that $K_{c-j}(G) \leqslant Z^{j}(G)\left({ }^{* *}\right)$. We prove by induction on j.
If $j=0$, then $\{1\}=K_{c}(G)=Z^{0}(G)=\{1\}$. Suppose by induction that $\left({ }^{* *}\right)$ holds for j.
Then $K_{c-j}(G)=\left[K_{c-(j+1)}, G\right]$, thus $K_{c-(j+1)}$ and G are interchangeable $\bmod K_{c-j}(G)$.
In other words $K_{c-(j+1)}(G) / K_{c-j}(G) \leqslant Z\left(G / K_{c-j}(G)\right)$.
By induction we know that $K_{c-j}(G) \leqslant Z^{j}(G)$. So we have that
$K_{c-(j+1)}(G) Z^{j}(G) / Z^{j}(G) \leqslant Z\left(G / Z^{j}(G)\right)$. Hence $K_{c-(j+1)}(G) \leqslant Z^{j+1}(G)$ holds.
Hence $\left(^{* *}\right)$ holds for every j and for $j=c$ we have that $G=K_{0}(G) \leqslant Z^{c}(G)$. Thus $Z^{c}(G)=G$.

Definition 5.20. A group G is called supersolvable if it has a normal series, where factors are of prime order.

Remark 5.16. Abelian groups \subsetneq nilpotent groups \subsetneq supersolvable groups \subsetneq solvable groups \subsetneq all finite groups.

Example 5.2. 1. $S_{3} \triangleright A_{3} \triangleright\{e\}$ is supersolvable but not nilpotent, since $Z\left(S_{3}\right)=\{1\}$.
2. Every finite p-group is nilpotent $1<Z(G)<Z^{2}(G)<\cdots<Z^{c}(G)=G$.
3. We know that e.g. D_{8} and Q_{8} are nilpotent but not abelian p-groups.
4. A_{5} is not solvable, since $A_{5}^{\prime}=A_{5}$.
5. S_{4} is solvable but not supersolvable, since the only normal subgroups in S_{4} are S_{4}, A_{4}, K_{4} and $\{1\}$. There is no normal subgroup of order 2 in it. In the series $S_{4} \triangleright A_{4} \triangleright K_{4} \triangleright\{1\}$, the factors are abelian.

Theorem 5.21. (Properties of nilpotency)

1. If G is nilpotent and H is a subgroup of G, then H is also nilpotent and $\operatorname{cl}(H) \leq \operatorname{cl}(G)$.
2. If G is nilpotent and N is normal subgroup of G, then G / N is also nilpotent and $c l(G / N) \leq c l(G)$.
3. If G_{1} and G_{2} are nilpotent, then $G_{1} \times G_{2}$ is nilpotent and $c l\left(G_{1} \times G_{2}\right)=\max \left(\operatorname{cl}\left(G_{1}\right), \operatorname{cl}\left(G_{2}\right)\right)$.

Proof. 1. This is because $K_{i}(H)$ is a subgroup of $K_{i}(G)$ hence $c l(H) \leq c l(G)$.
2. This is because $K_{i}(G) N / N=K_{i}(G / N)$, and so $c l(G / N) \leqslant c l(G)$.
3. Easy to see.

Remark 5.17. If N is a nilpotent normal subgroup of G and G / N is nilpotent, then G is not necessarily nilpotent. (See Example 5.3.)

Example 5.3. $S_{3} \triangleright A_{3}, S_{3} / A_{3} \cong C_{2}$ is nilpotent and $A_{3} \cong C_{3}$ is nilpotent(p-group).
But S_{3} is not nilpotent since $Z\left(S_{3}\right)=\{1\}$.

Theorem 5.22. (Frattini-argument)

Let G be a finite group and let H be a normal subgroup of $G, P \in \operatorname{Syl}_{p}(H)$. Then $G=$ $H N_{G}(P)$.

Proof. It is enough to prove that $G \leq H N_{G}(P)$. Let $g \in G$, since $H \triangleleft G$, we have that $P^{g} \leq H$, and $P^{g} \in \operatorname{Syl}_{p}(H)$. By Sylow's theorem, there exists an element $h \in H$ such that $P^{g}=P^{h}$, so $P^{g h^{-1}}=P$ and hence $g h^{-1} \in N_{G}(P)$. Then $g h^{-1}=n \in N_{G}(P)$. Thus $g=n h=h_{1} n \in H N_{G}(P)$ for some $h_{1} \in H$.

Theorem 5.23. If G is a finite group then the following are equivalent:

1. G is nilpotent.
2. For every proper subgroup $H \lesseqgtr G, H \lesseqgtr N_{G}(H)$ holds.
3. Every maximal subgroup of G is of prime index and normal.
4. Every Sylow subgroup of G is normal.
5. G is the direct product of its Sylow subgroups.
6. If $x, y \in G$ and $(o(x), o(y))=1$ then $[x, y]=1$.

Proof. (1) \Rightarrow (2)
Suppose that G is nilpotent of class c. We have to prove that $N_{G}(H)>H$.
Since $K_{c}(G)=\{1\}$, there exists an index i such that $K_{i}(G) \not \pm H$ but $K_{i+1}(G) \leqslant H$. Since $\left[K_{i}(G), H\right] \leqslant K_{i+1}(G) \leqslant H$, we have that $K_{i}(G) \leq N_{G}(H)$ by Remark 5.15 (1), and so $N_{G}(H)>H$.
(2) \Rightarrow (3)

Let M be maximal subgroup in G. Then $M \neq G$ and by (1) $M<N_{G}(M)=G$. Hence $M \triangleleft G$. We have to prove that $[G: M]$ is prime. Since $M \triangleleft G$ and M is maximal in G, hence G / M has no nontrivial proper subgroups, so $G / M \cong C_{p}$, for some prime p.

$$
(3) \Rightarrow(4)
$$

Suppose by contradiction that there exists a Sylow subgroup $P \in \operatorname{Syl}_{p}(G)$, such that $P \nRightarrow G$. Then since $N_{G}(P) \supsetneqq G$ we can find a maximal subgroup H such that $N_{G}(P) \leqslant H<G$. From (3) we know that $H \triangleleft G$.
Now, by the Frattini-argument we have that $G=H N_{G}(P) \leqslant H$, which is a contradiction. Hence $P \triangleleft G$.

Let $|G|=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ and let $P_{i} \in S y l_{p_{i}}(G)$. From (4) we have that $P_{i} \triangleleft G, i=1, \cdots, t$, hence $\prod_{i=1}^{t} P_{i} \triangleleft G$. For all i, we have that $P_{i} \leq \prod_{j=1}^{t} P_{i}$, hence $\left|P_{i}\right|$ divides $\left|\prod_{j=1}^{t} P_{j}\right|$ and hence $\prod_{j=1}^{t}\left|P_{j}\right|| | \prod_{j=1}^{t} P_{j}\left|\leqslant|G|\right.$. But $\left.\prod_{j=1}^{t}\right| P_{j}\left|=|G|\right.$, so $\left.\prod_{j=1}^{t}\right| P_{j}\left|=\left|\prod_{j=1}^{t} P_{i}\right|=|G|\right.$. Now, $P_{i} \triangleleft G$, for $i=1, \cdots, t$, so $\prod_{j=1}^{t} P_{j}=G$. We have to prove that $P_{i} \cap \prod_{j \neq i} P_{j}=\{1\}$.
Then we will have $G=\times_{i=1}^{t} P_{i}$. Now, $\left|P_{1} P_{2}\right|=\frac{\left|P_{1}\right|\left|P_{2}\right|}{\left|P_{1} \cap P_{2}\right|}$ divides $\left|P_{1}\right|\left|P_{2}\right|$, $\left|P_{1} P_{2} P_{3}\right|=\frac{\left|P_{1} P_{2}\right|\left|P_{3}\right|}{\left|P_{1} P_{2} \cap P_{3}\right|}| | P_{1} P_{2}| | P_{3}| |\left|P_{1}\right|\left|P_{2}\right|\left|P_{3}\right|$ and by induction we have that
$\left|\prod_{j \neq i} P_{j}\right|\left|\prod_{j \neq i}\right| P_{j} \mid$. Hence $P_{i} \cap \prod_{j \neq i} P_{j}=\{1\}$.
$(5) \Rightarrow(6)$
We have to prove that if $x, y \in G$, and $(o(x), o(y))=1$, then $[x, y]=1$. Since $G=\times_{i=1}^{t} P_{i}, x=\left(x_{1}, x_{2}, \cdots, x_{t}\right)$, where $x_{i} \in P_{i}$ and $y=\left(y_{1}, y_{2}, \cdots, y_{t}\right)$, where $y_{i} \in P_{i}$.
If $x_{i} \neq 1$, then $y_{i}=1$ and if $y_{j} \neq 1$ then $x_{j}=1$. So $x y=y x$ hence $[x, y]=1$.

We know that $G=\times_{i=1}^{t} P_{i}$, when $P_{i} \in \operatorname{Syl}_{p_{i}}(G)$. We also know that every finite p-group is nilpotent. As G is the direct product of nilpotent groups it is also G is nilpotent by Theorem 5.21 (3).
(6) \Rightarrow (4)

From (6) we have that $\left[P_{i}, P_{j}\right]=1$ for every $i \neq j$, hence $P_{i} \leq N_{G}\left(P_{j}\right)$ and $P_{j} \leq N_{G}\left(P_{i}\right)$. So $\prod P_{i} \leq G$. However, $\prod\left|P_{i}\right|\left|\left|P_{i}\right| \leq|G|\right.$, but $\left.\prod\right| P_{i}\left|=|G|\right.$, so $\prod P_{i}=G$. If $g \in G$ then $g=p_{1} p_{2} \cdots p_{t}$, where $p_{i} \in P_{i}$. Hence $P_{i}^{p_{1} \cdots p_{t}}=P_{i}$. Thus $g \in N_{G}\left(P_{i}\right)$ and so $P_{i} \triangleleft G$

6 Hall theorems, and the Schur-Zassenhaus theorem

Definition 6.1. If G is a finite group and $|G|=\Pi_{i=1}^{t} p_{i}^{\alpha_{i}}, \pi(G)=\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$, set of prime divisors of G. For a subset $\pi \subset \pi(G)$ we define $\pi^{\prime}=\pi(G) \backslash \pi$. In particular $p^{\prime}=\pi(G) \backslash\{p\}$. We say that n is a π-number if the prime divisors of n are in the set π, n is a π^{\prime}-number if the prime divisors of n are in the set π^{\prime}.

Definition 6.2. Let π be a subset of $\pi(G)$. Let H be a subgroup of G and let $\pi(H)=\pi$ and suppose that $([G: H],|H|)=1$ then we call H a Hall π-subgroup of G.

Definition 6.3. A subgroup H of G is a π-subgroup of G if $\pi(H) \subseteq \pi$.
Definition 6.4. $\operatorname{Hall}_{\pi}(G)=\{H \leq G \mid H$ is a Hall π-subgroup of $G\}$.

Theorem 6.5. (Ph. Hall 1939)
(Analogues of Sylow's theorems for solvable groups)

1. E_{π}, for every subset π of $\pi(G)$ there exists a Hall π-subgroup $H \in \operatorname{Hall}_{\pi}(G)$.
2. C_{π}, every Hall π-subgroup of G is conjugate in G.
3. D_{π}, every π-subgroup of G can be embedded into a Hall π-subgroup of G.

Proof. (of E_{π})

The proof is by induction on $|G|$. If G is a p-group then $H=G$. Let G be an arbitrary finite solvable group. Let $1 \neq N \triangleleft G$ be a minimal normal subgroup. We have seen that N is an elementary abelian p-group. In G / N by induction E_{π} holds. Let $\bar{H}=H / N \in \operatorname{Hall}_{\pi}(G / N)$. There are two cases:

1. If $p \in \pi$ then the inverse image H of \bar{H} is also a π-group.

$[G: H]=[G / N: H / N]$ and it is a $\pi!$ number. So $H \in \operatorname{Hall}_{\pi}(G)$.
2. If $p \notin \pi,(\underbrace{|N|}_{\pi^{\prime}-\text { number }}, \underbrace{|H / N|}_{\pi-\text { number }})=1$. By the Schur-Zassenhaus theorem (see Theorem 6.7), there exists a subgroup $H_{1} \leq H$ such that $H=N \cdot H_{1}$ and $N \cap H_{1}=\{1\}$ (complement to N in H).
Then $H / N \cong H_{1}$, so $\left|H_{1}\right|$ is a π-number and $\left[G: H_{1}\right]=[G: H]\left[H: H_{1}\right]=[G: H]|N|$, which is a π^{\prime}-number. So $H_{1} \in \operatorname{Hall}_{\pi}(G)$.

Remark 6.1. 1. If $\pi=\{p\}$ we get Sylow's theorems for solvable groups.
2. Solvability is important

- $\left|A_{5}\right|=60=2^{2} \cdot 3 \cdot 5$, there is no subgroup $H \leq A_{5}$ such that $|H|=15$, then there is no Hall $(3,5)$-subgroup in A_{5}.
- $|G L(3,2)|=\left(2^{3}-1\right)\left(2^{3}-2\right)\left(2^{3}-2^{2}\right)=2^{3} \cdot 3 \cdot 7$. In $G L(3,2)$ there are two non-conjugate Hall $\{2,3\}$-subgroups both isomorphic to S_{4}.
- $\operatorname{PSL}(2,11)=S L(2,11) / Z(S L(2,11))$, it's order is $2^{2} \cdot 3 \cdot 7 \cdot 11$. There exist Hall $\{2,3\}$-subgroups that are not isomorphic, $\left(A_{4}, D_{12}\right)$.

Remark 6.2. G is solvable if and only if for every subset π of $\pi(G)$, there exist a Hall π-subgroup of G, moreover, G is solvable if and only if for all $p \in \pi(G)$, there exists a Hall p^{\prime}-subgroup of G.

Theorem 6.6. (Gaschütz) (special case of Schur-Zassenhaus)

Let G be a finite group, N a normal subgroup of G such that N is abelian and $(|N|,[G: N])=1$ then there exists a subgroup $H \leq G$ such that $H \cap N=\{1\}$, and $H N=G$ (H is complement to N in G).

Proof. Let $|G: N|=m$, and $|N|=n$. Then $(m, n)=1$. The elements of the factor group G / N are cosets of N. Let $\alpha \in G / N, x_{\alpha} \in \alpha$ (a representative of the coset α). Then $G=\bigcup_{\alpha \in G / N}^{*} x_{\alpha} N$. Let $X:=\left\{x_{\alpha} \mid \alpha \in G / N\right\}$. It is enough to prove that we can choose X to be closed under multiplication. Then X will be a subgroup, since $o\left(x_{\alpha}\right)=k<\infty$ for some k, thus $x_{\alpha}^{k}=1 \in X$ and $x_{\alpha}^{k-1}=x_{\alpha}^{-1} \in X$ also holds. Moreover, X will be a complement to N, since $X N=G$ and $X \cap N=\{1\}$.
Our aim is to find a set of coset representatives which is closed under multiplication. Since $x_{\alpha} x_{\beta} \in x_{\alpha \beta} N$, there exists a function $f: G / N \times G / N \rightarrow N$ such that $f(\alpha, \beta) \in N$ and $x_{\alpha} x_{\beta}=x_{\alpha \beta} f(\alpha, \beta)$.
As the multiplication in G is associative, we have that $\left(x_{\alpha} x_{\beta}\right) x_{\gamma}=x_{\alpha}\left(x_{\beta} x_{\gamma}\right)$. Hence
$\left(x_{\alpha} x_{\beta}\right) x_{\gamma}=x_{\alpha \beta} f(\alpha, \beta) x_{\gamma}=x_{\alpha \beta} x_{\gamma} x_{\gamma}^{-1} f(\alpha, \beta) x_{\gamma}=x_{\alpha \beta} x_{\gamma} f(\alpha, \beta)^{x_{\gamma}}=x_{(\alpha \beta) \gamma} f(\alpha \beta, \gamma) f(\alpha, \beta)^{x_{\gamma}}$.
On the other hand, $x_{\alpha}\left(x_{\beta} x_{\gamma}\right)=x_{\alpha} x_{\beta \gamma} f(\beta, \gamma)=x_{\alpha(\beta \gamma)} f(\alpha, \beta \gamma) f(\beta, \gamma)$. Thus we have that
$f(\alpha \beta, \gamma) f(\alpha, \beta)^{x_{\gamma}}=f(\alpha, \beta \gamma) f(\beta, \gamma)\left(^{*}\right)$ (a function $f: G / N \times G / N \rightarrow N$ satisfying (*) is called a factor set).
Let $g(\beta):=\prod_{\alpha \in G / N} f(\alpha, \beta)$. Now we multiply both sides of $\left(^{*}\right)$ for every α.
Since N is abelian, we have that $\prod_{\alpha \in G / N} f(\alpha \beta, \gamma) \prod_{\alpha \in G / N} f(\alpha, \beta)^{x_{\gamma}}=\prod_{\alpha \in G / N} f(\alpha, \beta \gamma) f(\beta, \gamma)^{m}$.
Hence $g(\gamma) g(\beta)^{x_{\gamma}}=g(\beta \gamma) f(\beta, \gamma)^{m}$ and $g(\beta)^{x_{\gamma}} g(\gamma) f(\beta, \gamma)^{-m}=g(\beta \gamma)\left(^{* *}\right)$
Since $|G / N|=m,|N|=n$, and $(m, n)=1$, we have that there exists an integer m^{\prime} such that $(-m) m^{\prime} \equiv 1(n)$. Thus $-m m^{\prime}=k n+1$ and if $z \in N$ then $z^{-m m^{\prime}}=z^{n k+1}=z$.
Let h be a function $h: G / N \rightarrow N$ such that $h(\alpha)=g(\alpha)^{m^{\prime}}$. Let $y_{\alpha}=x_{\alpha} h(\alpha)$ be another set of coset representatives of N. We prove that it is closed under multiplication.
We raise to the $\left(m^{\prime}\right)^{t h}$ power both sides of $\left({ }^{* *}\right)$, then we have that $h(\beta)^{x_{\gamma}} h(\gamma) f(\beta, \gamma)=h(\beta \gamma)$ (***).
Now, $y_{\beta} y_{\gamma}=x_{\beta} h(\beta) x_{\gamma} h(\gamma)=x_{\beta} x_{\gamma} x_{\gamma}^{-1} h(\beta) x_{\gamma} h(\gamma)=x_{\beta} x_{\gamma} h(\beta)^{x_{\gamma}} h(\gamma)=x_{\beta \gamma} f(\beta, \gamma) h(\beta)^{x_{\gamma}} h(\gamma)=$ $x_{\beta \gamma} h(\beta \gamma)=y_{\beta \gamma}$.
Hence Y is closed under multiplication, and $Y=\left\{y_{\alpha} \mid \alpha \in G / N\right\}$ complement to N.

Theorem 6.7. (Schur-Zassenhaus theorem)

If G is a finite group and N is a normal subgroup of G such that $(|N|,|G: N|)=1$, then there exists a subgroup $H \leq G$ such that $H N=G, H \cap N=\{1\}$, in other words H is a complement to N.

Proof. We proved this if N is abelian, this was Gaschütz's theorem.
Let G be a minimal counterexample, Suppose that N does not have a complement
Claim 1: N is nilpotent.
If N is not nilpotent then there exists $P \in \operatorname{Syl}_{p}(N)$ such that $P \nless G$. Hence $N_{G}(P) \nsupseteq$ G. By the Frattini-argument $G=N \cdot N_{G}(P)\left({ }^{*}\right)$ because G is minimal and $N_{G}(P)$ is a smaller group. We have that $N \cap N_{G}(P) \triangleleft N_{G}(P)$ and $\left|N \cap N_{G}(P)\right|||N|$, moreover $\left({ }^{* *}\right)\left[N_{G}(P): N_{G}(P) \cap N\right]=\left|N_{G}(P) / N_{G}(P) \cap N\right|=\left|N_{G}(P) N / N\right| \stackrel{(*)}{=}|G / N|$. Since $(|N|,|G / N|)=1$ we have that $\left(\left|N \cap N_{G}(P)\right|,\left[N_{G}(P): N_{G}(P) \cap N\right]\right)=1$, by induction there exist a complement H to $N \cap N_{G}(P)$ in $N_{G}(P)$. Hence
$H \cdot\left(N \cap N_{G}(P)\right)=N_{G}(P), H \cap\left(N \cap N_{G}(P)\right)=\{1\}$. By ($\left.{ }^{* *}\right)$ we have that $|H|=[G: N]$ and $N_{G}(P) / N \cap N_{G}(P) \cong H$. Hence $|H N|=\frac{|H||N|}{|H \cap N|}=|G|$ so $H \cap N$ and H is also a complement to N in G and this contradiction shows that N is nilpotent.
Claim 2: N is abelian.
Since N is nilpotent it is also solvable. So $N^{\prime}<N$. If N is not abelian then $N^{\prime} \neq 1$ and N^{\prime} char $N \triangleleft G$ so $N^{\prime} \triangleleft G$. Since $\left|G / N^{\prime}\right|<G$ we can apply induction then $N / N^{\prime} \triangleleft G / N^{\prime}$ and $(\left|N / N^{\prime}\right|, \underbrace{\left[G / N^{\prime}: N / N^{\prime}\right]}_{[G: N]})=1$.
By introduction there exists a complement H / N^{\prime} to N / N^{\prime} in G / N^{\prime}. Then
$\left|H_{1} / N\right|=\left[G / N^{\prime}: N / N^{\prime}\right]=[G: N]$ and $N H_{1}=G, N \cap H_{1}=N^{\prime}$. By $\left({ }^{* * *}\right)$, $|G|=\left|N H_{1}\right|=\frac{|N|\left|H_{1}\right|}{N^{\prime}}$ hence $\left|H_{1}\right|=\frac{|G|}{\frac{|N|}{\left|N^{\prime}\right|}}$, and $\frac{|G|}{|N|}=\frac{\left|H_{1}\right|}{\left|N^{\prime}\right|}$. Since $H_{1}<G, N^{\prime} \triangleleft H_{1}$, $(\left|N^{\prime}\right|, \underbrace{\left[H_{1}: N^{\prime}\right]}_{[G: N]})=1$, by induction there exists a subgroup $H_{2} \leq H_{1}$, such that $N^{\prime} H_{2}=H_{1}$ and $N^{\prime} \cap H_{2}=1$. $\left({ }^{(* * * *)}\right.$

Then $\left|H_{2}\right|=\frac{\left|H_{1}\right|}{\left|N^{\prime}\right|}=\frac{|G|}{|N|}$. We show that H_{2} is complement to N in G. This is because $N H_{2}=N N^{\prime} H_{2} \stackrel{(* * * *)}{=} N H_{1}=G, N \cap H_{2} \subseteq N \cap H_{1}=N^{\prime}, N \cap H_{2}=N \cap H_{2} \cap N^{\prime}=1$ and this is contradiction.

7 Normal p-complement theorems and the transfer

Definition 7.1. If for $P \in \operatorname{Syl}_{p}(G)$, there exists a normal subgroup $K \triangleleft G$ such that $K P=G$ and $K \cap P=\{1\}$, then we tell that K is a normal p-complementnormal p complement in G.

Remark 7.1. Since $G / K=K P / K \cong P / K \cap P \cong P$, thus $K \in \operatorname{Hall}_{p^{\prime}}(G)$.
Definition 7.2. A group G is p-nilpotent if it has a normal p-complement.
Theorem 7.3. A finite group G is nilpotent if and only if G is p-nilpotent for every $p \in \pi(G)$.

Proof. $\Longleftarrow)$ Suppose that G is p-nilpotent for every $p \in \pi(G)$. For every $p_{i} \in \pi(G), K_{i} \in \operatorname{Hall}_{p_{i}^{\prime}}(G)$, $K_{i} \cap P_{i}=1, K_{i} \cdot p_{i}=G$ and if $p \neq p_{i}$ then $P \leq K_{i}$ for every $P \in \operatorname{Syl}_{p}(G)$. Hence $P=\cap_{p \neq p_{i}} K_{i} \triangleleft G$, and so G is nilpotent by Theorem 5.23.
$\Longrightarrow)$ If G is nilpotent then $G=P_{1} \times \cdots \times P_{t}$ and $\prod_{j \neq i} P_{j}$ is a normal p_{i}-complement in G.

Our aim is to prove the Burnside's transfer theorem, see Theorem 7.8. To prove it we need the following results.

Lemma 7.1. Let Q be a subgroup of G of index n. Let $\left\{l_{1}, \cdots, l_{n}\right\}$ and $\left\{h_{1}, \cdots, h_{n}\right\}$ be two complete sets of representatives of left cosets (left transversals) of Q in G. Then
$G=\bigcup_{i=1}^{n *} l_{i} Q=\bigcup_{i=1}^{n *} h_{i} Q$ and for all $g \in G$ and for every $i \in\{1, \cdots, n\}$, there exists a unique, $\sigma(i) \in\{1, \cdots, n\}$ and there exists a unique $x_{i} \in Q$ such that $g h_{i}=l_{\sigma(i)} x_{i}$. Moreover $\sigma \in S_{n}$.

Proof. Since $\bigcup_{i=1}^{n *} h_{i} Q=\bigcup_{i=1}^{n} l_{i} Q, g h_{i}$, there exists a unique j such that $g h_{i} \in l_{j} Q$. Then $g h_{i}=l_{j} x_{i}$, for a unique $x_{i} \in Q$.
Let $\sigma:\{1, \cdots, n\} \rightarrow\{1, \cdots, n\}$ mapping $i \mapsto j$. then σ is injective. Suppose $\sigma(k)=j=\sigma(i)$. It means that, $g h_{k}=l_{j} x_{k}$ hence $g h_{k} x_{k}^{-1}=l_{j}$ and $g h_{i}=l_{j} x_{i}$ hence $g h_{i} x_{i}^{-1}=l_{j}$. So
$g h_{k} x_{k}^{-1}=g h_{i} x_{i}^{-1}$ and hence $h_{k} x_{k}^{-1}=h_{i} x_{i}^{-1}$. Thus $h_{i}^{-1} h_{k}=x_{i}^{-1} x_{k} \in Q$, which implies that $h_{i} Q=h_{k} Q$. So $i=k$ and σ is injective on a finite set to itself so it is also surjective and σ is a permutation on $\{1, \cdots, n\}$.

Proposition 7.1. (Special cases)

1. If $l_{i}=h_{i}$ then $g l_{i}=l_{\sigma(i)} x_{i}\left({ }^{*}\right)$
2. If $g=1$, then $1 \cdot h_{i}=l_{\sigma(i)} x_{i}$

Definition 7.4. (Transfer)

Let Q be a subgroup G and $[G: Q]=n$. The transfer is a function $V: G \rightarrow Q / Q^{\prime}$ such that $g \mapsto\left(\prod_{i=1}^{n} x_{i}\right) Q^{\prime}$, where $G=\bigcup_{i=1}^{n} l_{i} Q$ and $g l_{i}=l_{\sigma(i)} x_{i}, x_{i} \in Q$.

Theorem 7.5. If Q is a subgroup of $G,[G: Q]=n$ and $V: G \rightarrow Q / Q^{\prime}$ is the transfer map, then V is a homomorphism and V is independent of the left transversal of Q in G.

Proof. Let $\left\{l_{1}, \cdots, l_{n}\right\},\left\{h_{1}, \cdots, h_{n}\right\}$ be two left transversals of Q in G. Then $G=\bigcup_{i=1}^{n *} l_{i} Q=\bigcup_{i=1}^{n *} h_{i} Q$. Let $g \in G$. Then we have that there exist unique σ, τ and $\alpha \in S_{n}$ and unique x_{i}, y_{i} and $z_{i} \in Q$ such that
$g l_{i}=l_{\sigma(i)} x_{i}(*)$
$g h_{i}=h_{\tau(i)} y_{i}(* *)$
$1 h_{i}=l_{\alpha(i)} z_{i}(* * *)$
$g h_{i} \stackrel{(* * *)}{=} g\left(l_{\alpha(i)} z_{i}\right) \stackrel{(*)}{=} l_{\sigma(\alpha(i))} x_{\alpha(i)} z_{i}(* * * *)$
Now, let $\alpha(j)=\sigma(\alpha(i))$ then $j=\alpha^{-1} \sigma \alpha(i)(v)$.
Now, $h_{j} \stackrel{(* * *)}{=} l_{\alpha(j)} z_{j}$ and so $l_{\alpha(j)}=h_{j} z_{j}^{-1}$, hence $g h_{i} \stackrel{(* * * *)}{=} l_{\alpha(j)} x_{\alpha(i)}\left(\bar{z}_{i}\right)=h_{j} z_{j}^{-1} x_{\alpha(i)} z_{i}$.
On the other hand, $g h_{i} \stackrel{(* *)}{=} h_{\tau(i)} y_{i}$ and we have that $\tau(i)=j$ and $y_{i}=z_{j}^{-1} x_{\alpha(i)} z_{i} \stackrel{(v)}{=} z_{\alpha^{-1} \sigma \alpha(i)}^{-1} x_{\alpha(i)} z_{i}$.
So $\prod_{i=1}^{n} y_{i} Q^{\prime}=\prod_{i=1}^{n} z_{\alpha^{-1} \sigma \alpha(i)}^{-1} x_{\alpha(i)} z_{i} Q^{\prime}=\prod_{i=1}^{n} x_{\alpha(i)} Q^{\prime}=\prod_{i=1}^{n} x_{i} Q^{\prime}$. Hence V is independent of
the left transversal of Q in G. We want prove that $V: G \rightarrow{\underset{n}{*}}_{Q / Q^{\prime}}$ is a homomorphism.
It is enough to prove that $V\left(g g^{\prime}\right)=V(g) V\left(g^{\prime}\right)$. Let $G=\bigcup_{i=1}^{n *} l_{i} Q$. Then $g l_{i}=l_{\sigma(i)} x_{i}$,
$g^{\prime} l_{i}=l_{\tau(i)} y_{i}$. So $g g^{\prime} l_{i}=g l_{\tau(i)} y_{i}=l_{\sigma \tau(i)} x_{\tau(i)} y_{i}$. Hence $V\left(g g^{\prime}\right)=\pi x_{\tau(i)} y_{i} Q^{\prime}=\pi x_{\tau(i)} Q^{\prime} \pi y_{i} Q^{\prime}$ $=\pi x_{i} Q^{\prime} \pi y_{i} Q^{\prime}=V(g) V\left(g^{\prime}\right)$.

Definition 7.6. Let $[G: Q]=n$, and let K be a normal subgroup of G. Suppose that $K Q=G$ and $K \cap Q=\{1\}$. Then we say that K is a normal complement to Q.

Remark 7.2. If K is a normal complement to Q, then $|K|=[G: Q]=n$ and $K=\left\{a_{1}, \cdots, a_{n}\right\}$ is a left transversal to Q in G and $K \leq \operatorname{ker}(V) .\left(V: G \rightarrow Q / Q^{\prime}\right.$ transfer map)

Proof. $n=[G: Q]=\frac{|G|}{|Q|}=\frac{|K Q|}{|Q|}=\frac{|K||Q|}{|K \cap Q||Q|}=|K|$. Since $K=\left\{a_{1}, \cdots, a_{n}\right\}$, we have that $G=K Q=\bigcup_{i=1}^{n *} a_{i} Q$. This is a disjoint union, since if $a_{i} Q=a_{j} Q$ then $a_{j}^{-1} a_{i} \in Q \cap K=\{1\}$, so $a_{i}=a_{j}$ and then $K=\left\{a_{1}, \cdots, a_{n}\right\}$ is a left transversal to Q in G.
Let $V: G \rightarrow Q / Q^{\prime}$ be the transfer map. We want to prove that $K \leq \operatorname{ker}(V)$.
Let $k \in K$. Then $k a_{i}=a_{\sigma(i)} x_{i}$ where $\sigma \in S_{n}$ and $x_{i} \in Q \cap K=\{1\}$. Thus $V(k)=\prod 1 \cdot Q^{\prime}=Q^{\prime}$. Hence $k \in \operatorname{ker}(V)$, for every $k \in K$ so $K \leq \operatorname{ker}(V)$.

Remark 7.3. If Q is abelian, then $Q / Q^{\prime}=Q$ so $\operatorname{Im}(V) \leq Q$.
Corollary 7.1. Let $[G: Q]=n$, let Q be abelian and let K be a normal complement to Q in G. If $V: G \rightarrow Q / Q^{\prime}$ is surjective, then $\operatorname{ker}(V)=K$.

Proof. We have seen $K \leq \operatorname{ker}(V)$. By the Homomorphism theorem we have that $G / \operatorname{ker}(V) \cong \operatorname{Im}(V)=Q / Q^{\prime}=Q$, since Q is abelian. Since $\frac{|G|}{|\operatorname{ker}(V)|}=|Q|$ and $\frac{|G|}{|K|}=|Q|$, we have that $K=\operatorname{ker}(V)$.

Lemma 7.2. (Nice form of the transfer map)

Let Q be a subgroup of $G,[G: Q]=n, \bigcup_{i=1}^{n *} l_{i} Q=G$, then for every $g \in G$, there exist elements $h_{1}, h_{2}, \cdots, h_{m} \in G$ and integers $n_{1}, \cdots, n_{m} \in N$ with (depending on g) such that

1. $h_{i}^{-1} g^{n_{i}} h_{i} \in Q$,
2. $\sum_{i=1}^{m} n_{i}=n$,

$$
\text { 3. } V(g)=\prod_{i=1}^{m}\left(h_{i}^{-1} g^{n_{i}} h_{i}\right) Q^{\prime} \text {. }
$$

Proof. We have that $g l_{i}=l_{\sigma(i)} x_{i}$, where $\sigma \in S_{n}$ and $x_{i} \in Q$. Now we write σ as product of disjoint cycles: $\sigma=\alpha_{1} \alpha_{2} \cdots \alpha_{m}$.
Let $\alpha_{i}=\left(j_{1}, \cdots, j_{r}\right), g l_{1}=l_{\sigma\left(j_{1}\right)} x_{j_{1}}=l_{j_{2}} x_{j_{1}}$
$g l_{j_{2}}=l_{\sigma\left(j_{2}\right)} x_{j_{2}}=l_{j_{3}} x_{j_{2}}$
\vdots
$g l_{j_{r-1}}=l_{\sigma\left(j_{r-1}\right)} x_{j_{r-1}}=l_{j_{r}} x_{j_{r-1}}$
$g l_{j_{r}}=l_{\sigma\left(j_{r}\right)} x_{j_{r}}=l_{j_{1}} x_{j_{r}}$. Then $x_{j r}=l_{j_{1}}^{-1} g l_{j_{r}}, x_{j_{r-1}}=l_{j_{r}}^{-1} g l_{j_{r-1}}, \cdots, x_{j_{1}}=l_{j_{2}}^{-1} g l_{1}$.
Let $h_{i}=l_{j_{1}}, n_{i}=r$ for $i=1, \cdots, n$. Hence we have that
$Q \ni x_{j_{r}} x_{j_{r-1}} \cdots x_{j_{1}}=\left(l_{j_{1}}^{-1} g l_{j_{r}}\right)\left(l_{j_{r}}^{-1} g l_{j_{r-1}}\right) \cdots\left(l_{j_{3}}^{-1} g l_{j_{2}}\right)\left(l_{j_{2}}^{-1} g l_{j_{1}}\right)=\left(l_{j_{1}}^{-1} g^{r} l_{j_{1}}\right)=\left(h^{-1} g^{n_{i}} h\right)$.
Repeating this process for each $\alpha_{i}, i=1, \cdots, m$, we have that
$V(g)=\prod_{i=1}^{n} x_{i} Q^{\prime}=\prod_{i=1}^{m}\left(x_{j_{r}} x_{j_{r-1}} \cdots x_{j_{1}}\right) Q^{\prime}=\prod_{i=1}^{m} h_{i}^{-1} g^{n_{i}} h_{i} Q^{\prime}$.
Theorem 7.7. If Q is a subgroup of $G,[G: Q]=n$ and Q is abelian such that $Q \leq Z(G)$ then $V(g)=g^{n}$ for every $g \in G$.

Proof. Let $g \in G$. Then by Lemma 7.2 we have that $V(g)=\prod_{i=1}^{m} h_{i}^{-1} g^{n_{i}} h_{i} Q^{\prime}=\prod_{i=1}^{m} h_{i}^{-1} g^{n_{i}} h_{i}$. and
$h_{i}^{-1} g^{n_{i}} h_{i} \in Q$. As $Q \triangleleft G$, then $g^{n_{i}} \in Q$ also holds.
However, Since $Q \leq Z(G), g^{n_{i}}=h_{i}\left(h_{i}^{-1} g^{n_{i}} h_{i}\right) h_{i}^{-1}=h_{i}^{-1} g^{n_{i}} h_{i}$ and
$g^{n}=g^{\sum_{i=1}^{m} n_{i}}=\prod_{i=1}^{m} g^{n_{i}}=\prod_{i=1}^{m} h_{i}^{-1} g^{n_{i}} h_{i}=\prod_{i=1}^{m} h_{i}^{-1} g^{n_{i}} h_{i} Q^{\prime}=V(g)$.
Corollary 7.2. If $[G: Q]=n$ and $Q \leq Z(G)$ then the map $g \mapsto g^{n}$ is a homomorphism from G to Q.

Proof. By Theorem 7.7, we have that $V(g)=g^{n}$, so it is homomorphism.

Lemma 7.3. Let G be a finite group, p a prime, $Q \in \operatorname{Syl}_{p}(G)$. If $g, h \in C_{G}(Q)$ are conjugate in G, then they are also conjugate in $N_{G}(Q)$.

Proof. Let $g, h \in C_{G}(Q)$ be two elements that are conjugate in G. Then there exist an element $x \in G$ such that $x^{-1} g x=h$. Since conjugation by x is an automorphism of G, we have that $h=x^{-1} g x \in x^{-1} C_{G}(Q) x=C_{G^{x}}\left(Q^{x}\right)=C_{G}\left(Q^{x}\right)$, hence $Q^{x} \leq C_{G}(h)$. Since $Q, Q^{x} \in \operatorname{Syl}_{p}\left(C_{G}(h)\right)$, we have that there exists an element $c \in C_{G}(h)$ such that $Q=Q^{x c}$ and so $x c \in N_{G}(Q)$. Let $n_{1}:=x c$, then $g^{n_{1}}=g^{x c}=\left(g^{x}\right)^{c}=h^{c}=h$.

Theorem 7.8. (Burnside transfer theorem)

Let G be a finite group $Q \in \operatorname{Syl}_{p}(G)$ such that $Q \leq Z\left(N_{G}(Q)\right)$. Then there is a normal p-complement in G.

Proof. Since Q is abelian, we have that $Q \leq C_{G}(Q)$ and $V: G \rightarrow\left(Q / Q^{\prime}=Q\right)$.
Let $[G: Q]=n$. If $g \in Q, g^{n_{i}} \in Q \leq C_{G}(Q)$, and by Lemma 7.2 (1) $h_{i}^{-1} g^{n_{i}} h_{i} \in Q \leq C_{G}(Q)$ also holds. By Lemma $7.3 g^{n_{i}}$ and $h_{i}^{-1} g^{n_{i}} h_{i}$ are conjugate in $N_{G}(Q)$ i.e., there exists an element $u \in N_{G}(Q)$ such that $u^{-1} g^{n_{i}} u=h_{i}^{-1} g^{n_{i}} h_{i}$. Since $Q \leq Z\left(N_{G}(Q)\right)$, we have that $u^{-1} g^{n_{i}} u=g^{n_{i}}$ and $V(g)=\prod_{i=1}^{m} g^{n_{i}}=g^{\sum_{i=1}^{m} n_{i}}=g^{n}$. Let $|Q|=q$. Then $(q, n)=1$, so there exist $\alpha, \beta \in \mathbb{Z}$ such that $\alpha q+\beta n=1$. If $g \in Q$, then $g=g^{1}=g^{\alpha q+\beta n}=\left(g^{\beta}\right)^{n}\left(g^{q}\right)^{\alpha}=\left(g^{\beta}\right)^{n}$ hence the map $V: Q \rightarrow Q, g \mapsto g^{n}$ is surjective. Thus V is bijective and so ker $V \cap Q=\{1\}$. By the Homomorphism theorem $G / \operatorname{ker} V \cong \operatorname{Im} V=Q$. Let $K=\operatorname{ker} V$. Then $K \cap Q=1$. We will prove that K is a normal p-complement in G. Obviously $K \triangleleft G$. $|K Q|=\frac{|K||Q|}{|K \cap Q|}=|K||Q|=|G|$, hence $K Q=G$. Thus K is a normal p-complement in G.

Remark 7.4. If K is a normal p-complement then K is characteristic in G.
Proof. We know that $K \in \operatorname{Hall}_{p^{\prime}}(G)$, Let $\varphi \in \operatorname{Aut}(G)$. Then $\varphi(K) \in \operatorname{Hall}_{p^{\prime}}(G)$ and $\varphi(K) \triangleleft G$. Thus we have that $K \varphi(K)$ is a p^{\prime}-group, however $[G: K]=|Q|, Q \in \operatorname{Syl}_{p}(G)$, so $\varphi(K) \subseteq K$, hence $\varphi(K)=K$.

8 Free groups, the Nielsen-Schreier theorem

Let us fix a set X. We form words from elements of X and their inverses, $w=a_{1} a_{2} \cdots a_{n}=$ $x_{i}^{\varepsilon_{i}}, \varepsilon_{i}= \pm 1$. We define multiplication, as concatenation of words, and cancel $x x^{-1}$ or $x^{-1} x$. We call a word reduced if it cannot be written in a shorter form.

Theorem 8.1. Every word can be simplified into a unique reduced word.
(The proof is by induction on the length of the word).
In this way two words are equivalent if they reduce to the same word.
Theorem 8.2. The equivalence classes of words on X form a group under the above multiplication, this group is called the free group generated by free generations set X. We denote it $F(X)$. If $|X|=n$ then we use notation F_{n}.

Theorem 8.3. (The universal property)
Let G be a group and let $\varphi: X \rightarrow G$ be a map. Then φ can be extended in a unique way to a group homomorphism $\tilde{\varphi}: F(X) \rightarrow G$ such that $\left.\tilde{\varphi}\right|_{X}=\varphi$.

Proof. We define $\tilde{\varphi}\left(x_{1}^{\varepsilon_{1}}, \cdots, x_{k}^{\varepsilon_{k}}\right):=\prod_{i=1}^{k} \varphi\left(x_{i}\right)^{\varepsilon_{i}}$ and this a homomorphism.

Corollary 8.1. If $|X|=|Y| \Rightarrow F(X) \cong F(Y)$. (the converse is also true)

Proof.

Hence $\bar{\varphi}, \bar{\psi}$ are inverses of each other, so $\bar{\varphi}, \bar{\psi}$ are group isomorphism, hence $F(X) \cong F(Y)$.

Theorem 8.4. Let $G=\left\langle g_{1}, \cdots, g_{n}\right\rangle$ be a group $F(X)$ be the free group with free generating set $X=\left\{x_{1}, \cdots, x_{n}\right\}$. Then G is a homomorphic image of $F(X)$.

Proof. Let $\varphi\left(x_{i}\right)=g_{i}, i=1, \cdots, n$. By the universal property of $F(X)$, there exists a unique homomorphism $\bar{\varphi}: F(X) \rightarrow G$ such that $\bar{\varphi}\left(x_{i}\right)=g_{i}, i=1, \cdots, n$ holds.
$\bar{\varphi}$ is surjective since $\operatorname{Im}(\bar{\varphi})$ contains a generating set of G. So by the Homomorphism theorem, $F(X) / \operatorname{ker} \bar{\psi} \cong \operatorname{Im} \bar{\psi}=G$.

Definition 8.5. Let $N:=\operatorname{ker} \bar{\varphi}$ in the above theorem and let $\left\{r_{i} \mid i \in I\right\}$ be the normal subgroup generators of $N\left(r_{i}\right.$ and their conjugates generate $\left.N\right)$. Then the words r_{i} are called the defining relations of G.
We say that $G=\left\langle x_{1}, \cdots, x_{n} \mid r_{1}, r_{2}, \cdots\right\rangle$ is given by generators and relations.
If there are finite number of generators and relations, then G is called finitely presented group.

Theorem 8.6. (Dyck)
Let $R=\left\{r_{1}, r_{2}, \cdots\right\}, R^{\prime}=\left\{r_{1}^{\prime}, r_{2}^{\prime}, \cdots\right\}$, let $G_{1}=\left\langle x_{1}, x_{2}, \cdots \mid r_{1}, r_{2}, \cdots\right\rangle, G_{2}=\left\langle x_{1}, x_{2}, \cdots \mid r_{1}^{\prime}, r_{2}^{\prime}, \cdots\right\rangle$ be groups are given with generators and relations. Suppose that $R \subseteq R^{\prime}$. Then G_{2} is a homomorphic image of G_{1}.

Proof. Let N_{1} be the normal subgroup of F_{n} generated by normal subgroup generators R. We know that $G_{1} \cong F_{n} / N_{1}, G_{2} \cong F_{n} / N_{2}$, and $N_{1} \leq N_{2}$. By the second isomorphism theorem we have that $N_{1} \triangleleft N_{2}, N_{2} / N_{1} \triangleleft F_{n} / N_{1}$ and $F_{n} / N_{1} / N_{2} / N_{1} \cong F_{n} / N_{2} \cong G_{2}$.

Definition 8.7. Let G be a group, and let X be a generating set of G. Then $\Gamma(G, X)$ is the Cayley-graph of G with respect to X if the vertices are $V(\Gamma(G, X))=G$, the edges are $E(\Gamma(G, X))=\{(g, x g) \mid x \in X, g \in G\}$. Then $\Gamma(G, X)$ is a directed coloured graph, the edges of $\Gamma(G, X)$ are coloured by elements of X. (In general X can also be just a subset of a generating set)

Definition 8.8. $A u t_{c}(\Gamma(G, X))$ is the group of colour preserving automorphisms of the graph $\Gamma(G, X)$. This is a permutation on the vertices and each edge is mapped to an edge, a non-edge is mapped to non-edge and the coulour of the edge is preserved.

Remark 8.1. In $\Gamma(G, X)$ From each vertex for every $x \in X$ there exists a unique in-edge $\left(x^{-1} g, g\right)$ with colour x and a unique out-edge $g, x g$ with colour x.

Lemma 8.1. If $X \subseteq G$, then $\Gamma(G, X)$ is connected if and only if X is a generating set of G.

Proof. $\Longleftarrow)$ Let $g_{1}, g_{2} \in G$. Then $g:=g_{2} g_{1}^{-1}=x_{i_{1}}^{\epsilon_{1}} x_{i_{2}}^{\epsilon_{2}} \cdots x_{i_{r}}^{\epsilon_{r}}$ where $x_{i j} \in X$ and $\epsilon_{i}= \pm 1$. Then since $g_{2}=\left(g_{2} g_{1}^{-1}\right) g_{1}=x_{i_{1}}^{\epsilon_{1}} x_{i_{2}}^{\epsilon_{2}} \cdots x_{i_{r}}^{\epsilon_{r}} g_{1}$, there is a path

$$
g_{1} \xlongequal{x_{i_{r}}^{\epsilon_{r}}} x_{i_{r} \epsilon_{r}}^{\epsilon_{1}} \xlongequal{x_{i_{r-1}}^{\epsilon_{r}-1}} x_{i_{r-1}}^{\epsilon_{r-1}} x_{i_{r}}^{\epsilon_{r}} g_{1} \xlongequal{x_{i_{r-2}}^{\epsilon_{r}-2}} \cdots \xrightarrow{x_{i_{1}}^{\epsilon_{1}}} x_{i_{1}}^{\epsilon_{1}} \cdots x_{i_{r}}^{\epsilon_{r}} g_{1}=g_{2}
$$

from g_{1} to g_{2}, hence $\Gamma(G, X)$ is connected.
$\Longrightarrow)$ Suppose that $\Gamma(G, X)$ is connected. Then we can reach each element $g \in G$ with a path from e. If on the edge we go in reverse direction then the label in the inverse of the generator.

$$
e^{x_{1}^{\epsilon_{1}}} x_{1}^{\epsilon_{1}} x_{2}^{x_{2}} x_{2}^{\epsilon_{2}} x_{1}^{\epsilon_{1}} \longrightarrow \cdots x_{n}^{\epsilon_{n}} x_{n}^{\epsilon_{n}} \cdots x_{1}^{\epsilon_{1}}=g
$$

thus the product on the edges gives g. Hence generates G.
Theorem 8.9. $\operatorname{Aut}_{c}(\Gamma(G, X)) \cong G$.

Proof. Let $g \in G$. Then g acts on the vertices of the graph by right multiplication φ_{g} : $u \mapsto u g$. Observe that this a permutation.
If $(h, x h)$ is an edge, then $(h g, x h g)$ is also an edge, so φ_{g} preserves edges. If there is no edge between h and k, then $(h g, k g)$ cannot be an edge, since $\varphi_{g^{-1}}$ also preserves edges. Hence we can define a map $\Phi: G \rightarrow \operatorname{Aut}_{c}(\Gamma(G, X))$ by $\Phi: g \mapsto \varphi_{g}$. This map is injective. Φ is a group homomorphism, since for every $h \in G$, we have that $h \varphi_{g_{1} g_{2}}=h\left(g_{1} g_{2}\right)=\left(h g_{1}\right) g_{2}=\left(h \varphi_{g_{1}}\right) \varphi_{g_{2}}$, hence $\varphi_{g_{1} g_{2}}=\varphi_{g_{1}} \varphi_{g_{2}}$.
We want to prove that Φ is surjective.
Note: if $\alpha \in \operatorname{Aut}_{c}(\Gamma(G, X))$ fixes a vertex then it also fixes it's neighbours, since to g there is a unique in-edge with colour x and a unique out-edge with colour x.
Since Γ is connected, we have that $\alpha=i d$.

Suppose that $\varphi \in \operatorname{Aut}_{c}(\Gamma(G, X))$. If $g=1 \varphi$ then $1=(1 \varphi) \varphi_{g^{-1}}$.
So 1 is a fixed point of $\varphi \varphi_{g^{-1}}$. Hence $\varphi \varphi_{g^{-1}}=i d$ and $\varphi=\varphi_{g}$. Thus Φ is surjective and Φ is an isomomorphism.

Lemma 8.2. G is freely generated by $X \subseteq G$ if and only if $\Gamma(G, X)$ is a tree.
Proof. We have seen that X is a generating set if and only if $\Gamma(G, X)$ is connected.
If X is not a free generating set of G then there exists a nontrivial relation $x_{i_{1}}^{\epsilon_{1}} \cdots x_{i_{n}}^{\epsilon_{n}}=1$, where $x_{i j} \in X$ and $\epsilon_{i}= \pm 1$. Then

$$
1 \xrightarrow{x_{i_{n}}^{\epsilon_{n}}} x_{i_{n}}^{\epsilon_{n}} \xrightarrow{x_{i_{n-1}}^{\epsilon_{n-1}}} x_{i_{n-1}}^{\epsilon_{n-1}} x_{i_{n}}^{\epsilon_{n}} \longrightarrow \cdots \xrightarrow{x_{i_{1}}^{\epsilon_{1}}} x_{i_{1}}^{\epsilon_{1}} \cdots x_{i_{n}}^{\epsilon_{n}}=1
$$

gives a circle in the graph of length ≥ 3, since $x_{i_{1}}^{\epsilon_{1}} x_{i_{2}}^{\epsilon_{2}}=1$ would imply that $x_{i_{1}}^{\epsilon_{1}}$ and $x_{i_{2}}^{\epsilon_{2}}$ are inverses of each other, and this is a trivial relation.
Conversly if we have a circle in Γ then the product of labels gives a nontrivial relation.

Zorn's lemma

Let P is a partial ordered set (P, \leq). Suppose that every ordered subset of P has an upper bound. Then there is a maximal element in P.

Theorem 8.10. (Nielsen-Schreier)

Every non-trivial subgroup of a free group is free.
Proof. Let $G=F(X)$, and let $\{1\} \neq H \leq G$. We want to prove that H is free. By Lemma 8.2 we have that $\Gamma(G, X)$ is a tree.

We have to prove there exists a generating set Y of H such that $\Gamma(H, Y)$ is a tree. Let us define the set $S:=\left\{\Gamma^{\prime} \leq \Gamma \mid \Gamma^{\prime}\right.$ is a spanning subgraph of Γ (an edge in Γ is in Γ^{\prime} if the end points are in the set Γ^{\prime}) and Γ^{\prime} connected, Γ^{\prime} contains from each left coset of H at most one element $\}$.

We apply for the set S Zorn's lemma. The conditions of Zorn's lemma are satisfied: if $\Gamma_{1} \leq \Gamma_{2} \leq \cdots$ is a chain in S, then $\bigcup \Gamma_{i} \in S$. Then by Zorn's lemma there is a maximal element T in S. We want to prove that T contains from each left coset of H exactly one element. Suppose by contradiction that $g_{1} H \cap T=\emptyset$ for some $g_{1} \in G$. Since $\Gamma(G, X)$ is connected, g_{1} is reachable by a path from an element of T. So there exists an element g such that $(g, x g) \in E(\Gamma(G, X)) g H \cap T \neq \emptyset, x g H \cap T=\emptyset$. So there exists an element $h \in H$ such that $g h \in T, x g h \notin T$, and $(g h, x g h) \in E(\Gamma(G, X))$. Thus $T \cup\{x g h\}$ is a bigger spanning subgraph in $\Gamma(G, X)$, which is connected and contains from each coset of H at most one element. This is a contradiction, since T as maximal. Hence T contains from each left coset exactly one element, so T is a left transversal of H in G. We suppose that $1 \in T$, since there exists an element $h \in H \cap T$. Thus $1 \in T h^{-1} \cong T$ (this is an isomorphism of graphs), and $T h^{-1}$ left transversal of H in G.
Let $\mathcal{T}=\{T h \mid h \in H\}$. We want to prove that \mathcal{T} is a set of a disjoint left transversals of H in G. If $T h_{1} \cap T h_{2} \neq \emptyset$ then there exist elements $t_{1}, t_{2} \in T$ and $h_{1}, h_{2} \in H$ such that $t_{1} h_{1}=t_{2} h_{2}$. Then $t_{1} H=t_{2} H$ and so $t_{1}, t_{2} \in T$ are in the same coset of H. Hence $t_{1}=t_{2}$, since T was a left transversal, so $h_{1}=h_{2}$. Thus, if we map h to $T h$, then we get a bijection between H and \mathcal{T}. On \mathcal{T} we define a directed H-coloured graph. The vertices of this graph will be $\{T h \mid h \in H\}$. Now we define when the transversals $T h_{1}$ and $T h_{2}$ are connected
with an edge coloured by x. Let $h_{1} \neq h_{2}$, and $t_{1} h_{1} \in T h_{1}, t_{2} h_{2} \in T h_{2}$. If there exists an element $x \in G$ such that $x\left(t_{1} h_{1}\right)=t_{2} h_{2}$, then $t_{1} h_{1} \xrightarrow{x} t_{2} h_{2}$ is an edge in $\Gamma(G, X)$. Then $t_{2}^{-1} x t_{1} h_{1}=h_{2}$ and $h_{2}^{-1} x t_{1}=h_{2} h_{1}^{-1} \in H$. Let $\left(T h_{1}, T h_{2}\right)$ be an edge coloured by $h_{2} h_{1}^{-1}$.
Observe that there is at most one element $x \in Y$ such that an edge coloured by x connect elements of $T h_{1}$ with elements $T h_{2}$. Suppose that $x^{\prime}\left(t_{1}^{\prime} h_{1}\right)=t_{2}^{\prime} h_{2}$ and $x\left(t_{1} h_{1}\right)=t_{2} h_{2}$. Since $T h_{1}$ and $T h_{2}$ are connected,

we get a circle in the original graph, and this is a contradiction, since $\Gamma(G, X)$ was a tree. We repeat this for all possible $T h_{i}, T h_{j}$ then we define Y as the set of possible colours in \mathcal{T}.

We want to prove that Y is a free generating set of H and $\Gamma(H, Y) \cong \mathcal{T}$. Let ϕ be the map $h \mapsto T h$. This is a bijection between H and \mathcal{T}. If $(h, y h) \in E(\Gamma(H, Y))$ then $y=h_{2} h_{1}^{-1}$ where $x t_{1} h_{1}=t_{2} h_{2}$ for some $t_{1}, t_{2} \in T$. Then $t_{2}^{-1} x t_{1}=h_{2} h_{1}^{-1}$. and $x\left(t_{1} h\right)=t_{2}\left(h_{2} h_{1}^{-1} h\right) \in T h_{2} h_{1}^{-1} h$, so from $T h$ to $T h_{2} h_{1}^{-1} h$ there is an edge of colour y_{i}. So the map $h \mapsto T h$ preserve coloured edges.
If there is no edge $y \in Y$ between h and h^{\prime} then there cannot be an edge $y \in Y$ between $T h$ and $T h^{\prime}$, since then $y=h^{\prime} h^{-1}$ and this takes h to h^{\prime}, which is a contradiction. $\Gamma(H, Y)$ is connected, since $\Gamma(G, X)$ is connected, and there is a path between certain points of $T h_{1}$ and $T h_{2}$.

\mathcal{T} is a tree, otherwise would be a circle also in $\Gamma(G, X)$ and this is a contradiction. Since $\mathcal{T} \cong \Gamma(H, Y), H$ is a free group with free generators Y.

Remark 8.2. If $\left[F_{n}: H\right]=m$ then $H \cong F_{m(n-1)+1}$.
Proof. In the previous proof we have seen that $\Gamma_{c}(H, Y) \cong \mathcal{T}$, where $h \mapsto T h$ gives the isomorphism. T is also a tree, since it is connected and without any circles, as $\Gamma_{c}(G, X)$ had no circles. The vertices of \mathcal{T} are $T h$, where $h \in H$, these are disjoint. There was an edge between $T h_{1}$ and $T h_{2}$ iff there exist elements $t_{1}, t_{2} \in T$ and $x \in X$ such that $t_{1} h_{1} \xrightarrow{x} t_{2} h_{2}$.
We have seen that between $T h_{1}$ and $T h_{2}$ there is at most one edge, and its colour is $h_{2} h_{1}^{-1}$. In the isomorphism between $\Gamma_{c}(H, Y)$ and \mathcal{T}, Y maps to the edges of \mathcal{T}. We have seen that $\Gamma_{c}(H, Y)$ is also a tree. (H is a free group with free generators Y). We want to determine $|Y|$.
We have to calculate how many edges go from $T h$ to $T h^{\prime}$: this is exactly $m \cdot n$, since we can choose x in n different ways and t_{1} in m different ways.

But edgs that go from $T h$ to $T h$ are not good, so we have to substract the number of edges in the tree $T h$. This is exatctly $|T h|-1=m-1$.
So $|Y|=m \cdot n-(m-1)=m(n-1)+1$.

9 Problem sheets

Problem sheet 1

1. Prove that two elements of S_{n} are conjugate if and only if writing them as products of disjoint cycles, in both decompositions the lengths of cycles $\left(c_{1}, \ldots, c_{t}\right)$ are the same up to the order of the cycles. How can one conjugate two permutations with the same cycle structure into each other?
2. Show that the centre $Z\left(S_{n}\right)$ of the symmetric group contains only the unit element if $n \geq 3$. Moreover, $Z\left(A_{n}\right)=1$ and $C_{S_{n}}\left(A_{n}\right)=1$, if $n \geq 4$.
3. Determine the conjugacy classes of A_{n}. Prove that if $\sigma \in A_{n}$ then there are two cases: (a) If the centralizer $C_{S_{n}}(\sigma)$ contains an odd permutation, then the conjugacy classes of σ in A_{n} and S_{n} are the same: $K_{A_{n}}(\sigma)=K_{S_{n}}(\sigma)$. (b) If $C_{S_{n}}(\sigma)$ contains only even permutations then $K_{S_{n}}(\sigma)$ splits into two conjugacy classes of A_{n} of equal size.
4. Show that A_{n} is simple if $n \geq 5$ with the following steps:
a) Let us suppose by contradiction that there is a normal subgroup $1<N<A_{n}$. Let $\sigma \in N$ be a nontrivial element with maximal possible number of fixed points. Prove that we may suppose that σ is of prime order.
b) Prove that in the decomposition of σ into the product of disjoint cycles every cycle length is either p or 1.
c) Prove that A_{n} is generated by the 3 -cycles of S_{n} if $n \geq 3$.
d) Prove that if $p=3$ and σ is one 3 -cycle, then N contains all 3-cycles of S_{n}, hence $N=A_{n}$.
e) Prove that if $p=3$ and σ is the product of at least two 3 -cycles, say $(1,2,3)(4,5,6) \cdots$, or $p \geq 5$ and $\sigma=(1,2, \ldots, p) \cdots$ then if $\tau=(3,4,5) \in A_{n}$, we form the element $\sigma \tau \sigma^{-1} \tau^{-1}$. This also belongs to N, it is not 1 , it fixes all the fixed points of σ, moreover it also fixes 1 , contradicting that σ has the maximal number of fixed points among nontrivial elements of N.
f) If $p=2$, then σ is the product of at least 2 transpositions, e.g. $(1,2)(3,4) \cdots$. Then $\sigma(1,2,3) \sigma^{-1}(3,2,1)=(1,4)(2,3)$ and this belongs to N.
g) $(1,4)(2,3)$ can be conjugated to any double transpositions by an element of A_{n}, hence $N=A_{n}$, which is a contradiction.
5.(a) Prove that if x is an element of a group G and $x^{N}=1$, then its order $o(x)$ divides N. (b) Prove that if G_{1}, G_{2} are groups and $\phi: G_{1} \rightarrow G_{2}$ is a multiplicative map $(\phi(a b)=$ $\phi(a) \phi(b))$, then $\phi\left(1_{G_{1}}\right)=1_{G_{2}}$ and for every $x \in G_{1} \phi\left(x^{-1}\right)=\phi(x)^{-1}$.
5. Prove that if $n \geq 5$ and $\left|S_{n}: H\right|<n$ for a subgroup $H \leq S_{n}$, then either $H=A_{n}$ or $H=S_{n}$.
6. Prove that if $n \geq 5$, then S_{n} has only the following normal subgroups: $S_{n}, A_{n},\{1\}$.
7. Prove that if $\alpha \in S_{n}$ and its decomposition into disjoint cycles there are n_{i} cycles of length i, then $\left|C_{S_{n}}(\alpha)\right|=\prod i^{n_{i}} n_{i}$!.

Problem sheet 2.

1. Prove that if H is a subgroup of the group G, then $\cap_{x \in G} H^{x}$ is a normal subgroup in G, it lies inside H and contains each normal subgroup of G which lies in H.
2. Let Γ be a graph, the vertices of Γ are the transpositions of S_{n}. Two vertices are connected with an edge if and only if the two transpositions have a common moved point. Prove that if $n \geq 5$, then every $n-1$ point complete subgraph of Γ is of the form $\mathcal{G}_{a}:=\{(a, x) \mid x \in\{1,2, \ldots, n\} \backslash\{a\}\}$, in other words the vertices of this subgraph are all transpositions with exactly 1 common moved point a.
3. Prove that if G is a finite group acting on the finite set Ω, then
a) the number of G-orbits is $\frac{1}{|G|} \sum_{\pi \in G}|F i x(\pi)|$, where $|F i x(\pi)|$ is the number of fixed
points of the element π. (Cauchy-Frobenius-Burnside lemma) b) Deduce from (a) that if the action is trasitive on Ω, then for every $\alpha, \beta \in \Omega$ the number of orbits of G_{α} és G_{β} is the same.
4. Prove that the group $G L(V)$ of invertible linear transformations of a vector space V is not transitive on the vectors of V, however, it is transitive on the nonzero vectors of V.
5. Prove that if the group G is acting on the set Ω, then $G_{\alpha} g=\left\{h \in G \mid \alpha^{h}=\alpha^{g}\right\}$.
6. Prove that every faithful, transitive action of G on Ω is equivalent to an action on the right cosets of a subgroup H with the property that H does not contain any proper normal subgroups of G.
7. a) Prove that every nontrivial group of prime power order has nontrivial centre.
b) Prove that every nontrivial normal subgroup of a group of prime power order intersects nontrivially the centre of the group.
8.a) Prove that if $G / Z(G)$ is cyclic, then G is abelian.
b) Prove that every index 2 subgroup is normal.
c) Prove that every group of prime order is cyclic.
d) Prove that every group of primesquare order is abelian.
e) Prove that the direct product of two cyclic groups of coprime order is cyclic.
8. Let G be a nonabelian group of order 8 . Prove that $G \simeq D_{8}$ or $G \simeq Q_{8}$.
a) Prove that G has an element g of order 4 .
b) Prove that for every $h \in G \backslash\langle g\rangle h^{-1} g h=g^{-1}$ holds.
c) If there exist an element $h \in G \backslash\langle g\rangle$ of order 2 show that $G \simeq D_{8}$.
d) If every element $h \in G \backslash\langle g\rangle$ is of order 4 , then show that $h^{2} \in\langle g\rangle, h^{2}=g^{2}$ and G satisfies the defining relations of $Q_{8}=\left\langle a, b, a^{4}=1, b^{4}=1, a^{2}=b^{2}, a^{b}=a^{-1}\right\rangle$ and $G \simeq Q_{8}$.
9. Prove that if $n \geq 5$ and $\left|S_{n}: H\right|<n$ for a subgroup $H \leq S_{n}$, then either $H=A_{n}$ or $H=S_{n}$.

Problem sheet 3

1. Prove that in the alternating group $G=A_{5}$ there is no element of order 15 and no subgroup of order 15 , however, $|G|$ is divisible by 15 .
2. Prove that if the order of the group G is bigger than n ! and $H<G$ is a subgroup with $|G: H|<n$, then G cannot be a simple group. (Hint: Represent G on the right cosets of H with right multiplication)
3. Prove that if the group element a has order n, then its $k^{t h}$ power has order $o\left(a^{k}\right)=$ $\frac{n}{\operatorname{gcd}(n, k)}$.
4. Prove that nonabelian groups of order 12 have three isomophy types: D_{12}, A_{4} and the split extension of C_{3} by C_{4} :
a) Let $P \in \operatorname{Syl}_{3}(G)$, represent G on the right cosets of P. Show that if this representation is faithful, then $G \simeq A_{4}$!
b) Show that if this representation is not faithful, then its kernel is $P \in \operatorname{Syl}_{3}(G)$, in other words: $P \triangleleft G$.
c) Let b be a generator of the cyclic group P. Prove that $\left|K_{G}(b)\right| \leq 2$, and $\left|C_{G}(b)\right| \in\{6,12\}$!
d) Show that if $P \in \operatorname{Syl}_{3}(G)$ is a normal subgroup, then G has elements of order 6 .
e) Show that the Sylow 2-subgroup S of G is either C_{4}, or $C_{2} \times C_{2}$.
f) Prove that if $P \in S y l_{3}(P)$ is normal, then $G=P S, P \cap S=1$.
g) Show that this product is isomorphic to D_{12} if $S \simeq C_{2} \times C_{2}$!
5. Prove that if G is a simple group of order 60 , then $G \simeq A_{5}$:
a) If G contains a subgroup of index 5 , then show that $G \simeq A_{5}$.
b) Suppose that G does not contain a subgroup of index 5 !
b/1 Show that each subgroup has index bigger than 5 .
b/2 Determine the number of Sylow 2, 3 and 5 -subgroups of G.
b/3 Prove that if the intersection D of two Sylow 2-subgroups P_{1}, P_{2} of G would not be trivial, then D would be a normal subgroup in the subgroup $T=\left\langle P_{1}, P_{2}\right\rangle$. Prove that in this case $T<G$ and T would contain at least 3 Sylow 2-subgroups of G, hence $|T| \geq 12$, which contradicts $\mathrm{b} / 1$.
b/4 Calculate the number of elements in Sylow 2, 3 and 5 -subgroups, show that this is bigger than 60 , which is a contradiction.
6. Prove that the affine linear transformations of a vector space $V A G L(V):=$ $\{\underline{v} \mapsto A \underline{v}+\underline{b} \mid A \in G L(V), \underline{b} \in V\}$ is a doubly transitive group on the vectors of V.

A group action G on Ω is called regular or sharply 1-transitive if it is transitive, and for every $\alpha, \beta \in \Omega$ a unique $g \in G$ exits, such that $\alpha^{g}=\beta$.
7. a) Prove that the Cayley-representation is regular, however the generalized Cayley representation is not.
b) Show that in the case of a regular group action the point stabilizer is trivial and $|G|=|\Omega|$.

Problem sheet 4

1. Determine all the primitive actions of S_{3}. Which of them are faithful? Which of them are equivalent? (Use the statement of Exercise 6.)
2. We say that the group G acts on the set Ω sharply k-transitively, if for every distict points $\alpha_{1}, \ldots, \alpha_{k} \in \Omega$ and for every distict points $\beta_{1}, \ldots, \beta_{k}$ there exists a unique $g \in G$ such that $\alpha_{i}^{g}=\beta_{i} i=1, \ldots, k$. Prove that S_{n} is sharply n-transitive and sharply $n-1$ transitive and A_{n} is sharply $n-2$-transitive.
3. Prove that the following are equivalent for $k \geq 2$:
(i) The group G acts on Ω sharply k-transitively.
(ii) G acts k-transitively and $G_{\alpha_{1}, \ldots, \alpha_{k}}=\{1\}$, for every distict $\alpha_{1}, \ldots, \alpha_{k} \in \Omega$.
(iii) G is transitive on Ω and G_{α} is sharply $(k-1)$-transitive on $\Omega \backslash\{\alpha\}$.
4. Prove that $A G L(K)=\{x \mapsto a x+b \mid a, b \in K, a \neq 0\}$ is sharply 2-transitive on the field K.
5.a) Prove that every transitive permutation group on p points (p prime) is primitive.
b) Prove that if a group is 2 -transitive on a set Ω that contains at least 3 points, then the action is primitive.
5. Prove that every primitive group action is equivalent to an action on the right cosets of a maximal subgroup with right multiplication. When is it faithful?
6. Prove that if G is k-transitive on a set Ω of n points, then $|G|=n(n-1) \ldots(n-$ $k+1)\left|G_{\alpha_{1}, \ldots, \alpha_{k}}\right|$, for every $\alpha_{1}, \ldots, \alpha_{k}$ distinct points. What will be the group order if the action is sharply k-transitive?
7. Prove that every nontrivial normal subgroup of every primitive permutation group $G \leq S_{\Omega}$ is transitive on Ω.
8. Show an example that a nontrivial normal subgroup of a transitive permutation group is not necessarily transitive on Ω. (Consider $G L(V)$ on $V \backslash\{0\}$ and look at the scalar matrices)
9. Let $N \triangleleft G$. G acts on $N \backslash\{1\}$ by conjugation.
a) Prove that if this action is transitive, then N is an elementary abelian p-group, for p prime.
b) If this action is 2 -transitive, then $p=2$ or $|N|=3$.
c) If the action is 3 -transitive, then $|N|=4$.
c) This action is never 4 -transitive.
10. Suppose that G acts on Ω and $N \triangleleft G$ acts regularly (sharply 1-transitively) on Ω. Prove that the action of G_{ω} on $\Omega \backslash\{\omega\}$ is equivalent to the action of G_{ω} on $N \backslash\{1\}$ by conjugation.
11. Prove that if G is a transitive permutation group on a set Ω with n points and G is abelian, then the action is regular (sharply 1-transitive on Ω).

Problem sheet 5

1. Prove that the Sylow p-subgroup of S_{m} is isomorphic to $\oplus_{i=0}^{t} X_{i}{ }^{a_{i}}$, where X_{i} is the i times iterated wreath product of C_{p} and $m=\sum_{i=0}^{t} a_{i} p^{i}$, where $a_{i} \in\{0,1, \ldots, p-1\}$.
2. Let Q, K be groups and $\theta: Q \rightarrow \operatorname{Aut}(K)$ be a homomorphism. Let us define on the direct product set $K \times Q$ the following multiplication: $\left(k_{1}, q_{1}\right)\left(k_{2}, q_{2}\right):=\left(k_{1} k_{2}^{k_{1} \theta\left(q_{1}\right)} k_{2}, q_{1} q_{2}\right)$.
a) Prove that this is associative!
b) Determine the unit element and determine the inverse of each element.
c) Prove that the group constructed this way is a split extension of $(K, 1) \simeq K$ by $(1, Q) \simeq Q$.
d) Calculate the product: $(1, q)(k, 1)(1, q)^{-1}$.
3. Let A be a nontrivial p-group and let K be an infinite p-group. Consider both of them as permutation groups on themselves by right multiplication. Consider the wreath product $A \imath K$. Prove that this a p-group whose centre is trivial.
4. Prove that the derived subgroup of the wreath product $G \imath C_{p}$ consists of elements $\left(g_{1}, \cdots, g_{p}, 1\right)$ where $g_{1}, \cdots, g_{p} \in G$ and $g_{1} \cdots g_{p} \in G^{\prime}$.
5. Let G be a cyclic group of order 4 with cyclic generator a. Prove that to the normal subgroup $\left\langle a^{2}\right\rangle$ there is no complement in G.
6. Prove that the group of automorphisms of Klein four group is isomorphic to S_{3} !
7. Prove that the group of automorphisms of the elementary abelian group of order p^{n} is $G L(n, p)$!
8. Prove that the group of automorphisms of C_{n} is the unit group of the ring $\mathbb{Z} \bmod n$ hence it is abelian of order $\phi(n)$, if p is a prime, then $\operatorname{Aut}\left(C_{p}\right) \simeq C_{p-1}$.
9. Prove that the group of automorphisms of the 3 level binary tree is C_{2} 乙 C_{2}.
10. Prove that if $G=G_{1} \times \ldots \times G_{n}$ and $\left(\left|G_{i}\right| \cdot\left|G_{j}\right|\right)=1$, then $\operatorname{Aut}(G)=\operatorname{Aut}\left(G_{1}\right) \times \ldots \times$ $\operatorname{Aut}\left(G_{n}\right)$.
11. Determine, how many non-isomophic split extensions of C_{5} by C_{4} can one construct?
12. Prove that $\operatorname{Aut}\left(C_{p^{n}}\right) \simeq C_{(p-1) p^{n-1}}$, if $p>2$ is a prime, and $\operatorname{Aut}\left(C_{p^{n}}\right) \simeq C_{2^{n-2}} \times C_{2}$, if $p=2$ and $n \geq 2$.
13. Prove that if $A, B \leq G$ are subgroups, then $|A B|=|A| B|/|A \cap B|$.

Problem sheet 6

1. A subgroup $H \leq G$ is called characteristic in G (denoted by: Hchar G), if for all $\phi \in \operatorname{Aut}(G), \phi(H)=H$. Prove that if HcharK and KcharG, then HcharG.
2. Prove that:
a) $[x y, z]=[x, z]^{y}[y, z]$,
b) $[x, y z]=[x, z][x, y]^{z}$.
c) $\left[x, y^{-1}\right]=\left([x, y]^{y^{-1}}\right)^{-1}$,
d) $\left[x^{-1}, y\right]=\left([x, y]^{x^{-1}}\right)^{-1}$
e) $\left[x, y^{-1}, z\right]^{y}\left[y, z^{-1}, x\right]^{z}\left[z, x^{-1}, y\right]^{x}=1$ (Witt-identity)

Here $[x, y, z]:=[[x, y], z]$
3. Prove that the centre $Z(G)$ of a group G and in general $Z^{i}(G)$, are characteristic subgroups in G.
4.a) Prove that every finite p-group is solvable.
b) Prove that every group of order $p q$ is solvable (p, q primes).
c) Prove that all groups of orders $1-15$ are solvable.
5. Prove that if G is a finite solvable group, N a minimal normal subgroup in G, then the elements of G induce linear transformations on N, as on a vector space over a field of p elements.
6.(Frattini-argument) Prove that if $H \triangleleft G$ and $P \in S y l_{p}(H)$, then $G=H N_{G}(P)$.
7. Prove that if $P \in \operatorname{Sylp}(G)$ and $N_{G}(P) \leq H \leq G$, then $N_{G}(H)=H$.
8. Prove that a maximal subgroup is not necessarily of prime index.
9.a) Let H, K, L be subgroups in G. Let $[H, K, L]:=\langle[h, k, l] \mid h \in H, k \in K, l \in l\rangle$. Prove that if $[H, K, L]=1=[K, L, H]$, then $[L, H, K]=1$.
b) Let N be a normal subgroup is G. Prove that if $[H, K, L] \leq N$ and $[K, L, H] \leq N$, then $[L, H, K] \leq N!$ (Three subgroup lemma)
10. Prove that if $G=G^{\prime}$, then the centre of $G / Z(G)$ is trivial.
11. Prove that if $H \triangleleft G$ and $H \cap G^{\prime}=1$, then $H \leq Z(G)$.
12. Let $[H, K]:=\langle[h, k] \mid h \in H k \in K\rangle$.
a) Prove that $[H, K] \leq H \leftrightarrow K \leq N_{G}(H)$.
b) Prove that $H / N \leq Z(G / N) \leftrightarrow[H, G] \leq N$.
13. Prove that every characteristically simple group (i.e. subgroup without proper characeristic subgroups) is a direct product of isomorphic simple groups.

Problem sheet 7

1. Let $K_{0}(G):=G, K_{1}(G)=G^{\prime}, K_{i+1}(G):=\left[K_{i}(G), G\right]$ (this is the lower central series of G). Prove that $K_{i}(G) c h a r G$ for all i.

A group G is nilpotent, if $K_{i}(G)=1$ for suitable i. The smallest such i is the nilpotence class of G, denoted by $c=\operatorname{cl}(G)$. This holds if and only if $Z^{c}(G)=G$. (Proved on the lecture)
2. Prove that the nilpotency class of every non-abelian group of order p^{3} is 2 .
3. Prove that every nilpotent group is solvable, but not conversely.
4. Characterize nilpotent group of class 1 and 2.
5. Prove that $[x y, z]=[x, z][y, z]$ and $[x, y z]=[x, z][x, y]$ hold in groups of nilpotence class 2.
6.a) Prove that $\left[K_{i}(G), K_{j}(G)\right] \leq K_{i+j}(G)$.
b) Prove that $G^{(i)} \leq K_{2^{i}}(G)$, in other words if the nilpotence class of G is at most 2^{i}, then the derived length of G is at most i.
7. Prove that $D_{2 n}$ is nilpotent if and only if n is a 2 -power.
8. Let G be a finite nilpotent group, $|G|=n$. Prove that for every $m \mid n$ there exists a subgroup in G of order m.
9. Prove that if H, K are nilpotent normal subgroups in G, then $H K$ is also a nilpotent normal subgroup. Prove that in a finite group G there exists always a biggest nipotent normal subgroup and this is a characteristic subgroup. (its name is Fitting subgroup, denoted by $F(G)$).
10. Let G be a finite p - group, $N \triangleleft G,|N|=p^{i}$. Prove that there exists a chain of normal subgroups of $G: N_{0}=1<N_{1}<\ldots<N_{i}=N<\ldots<N_{k}=G$, where $\left|N_{i}: N_{i-1}\right|=p$.
11. Prove that every finite p-group is nilpotent but this is not necessarily true for infinite p-groups.
12. Prove that in every finite nilpotent group every nontrivial normal subgroup contains a nontrivial element of the centre.

Problem sheet 8

The Frattini-subgroup $\Phi(G)$ of a group G is the intersection of maximal subgroups of G. If there is no maximal subgroup in G, then $\Phi(G)=G$.

1. Prove that $\Phi(G)$ char G.
2. Let G be a finite p-group. Prove that $G^{p^{i}}:=\left\langle x^{p^{i}} \mid x \in G\right\rangle$ is a characteristic subgroup in G.
3. Prove that in $(Q,+)$ there is no maximal subgroup.

An element $x \in G$ is a non-generator, if it can be left out from every generating set of G.
4. Prove that if G is a finite group, then $\Phi(G)$ is exactly the set of non-generators in G.
5. Prove that in every finite group $G, \Phi(G)$ is nilpotent.
6.a) Prove that in every finite p-group $G, \Phi(G)=G^{\prime} G^{p}$. b) Prove that in every finite p-group $G G / \Phi(G)$ is a vector space over $G F(p)$.c) Let G be a finite p-group. Prove that
$\Phi(G)$ is the minimal normal subgroup in G, the factor group by which is an elementary abelian p-group.
7. A generating set is minimal, if every proper subset does not generate the group. Show that a minimal generting set need not be a generating set of minimal size. (Consider: $\left.C_{2} \times C_{3}\right)$.
8.(Burnside basis theorem) Prove that in a finite p-group G every minimal generating set is of the same size, and this size is equal to $\operatorname{dim}_{G F(p)}(G / \Phi(G))$. b) Moreover, every $x \in G \backslash \Phi(G)$ is in a suitable minimal generating set of G.
9. Show example that $\Phi(H) \nsubseteq \Phi(G)$ for some $H \leq G$. (Consider the semidirect product of $C_{5}=\langle a\rangle$ and $C_{4}=\langle b\rangle$ where $a^{b}=a^{2}$. Here $\Phi(G)=1$, but $\Phi\left(C_{4}\right)$ is of order 2.)
10. Prove that a finite p-group G is cyclic, if and only if $G / \Phi(G)$ is cyclic.
11. Prove that a finite group G is nilpotent iff $G^{\prime} \leq \Phi(G)$
12. A finite p-group G is extraspecial, if $\Phi(G)=Z(G)=G^{\prime}$ are of order p. Prove that every non-abelian group of order p^{3} is extraspecial.

Problem sheet 9.

1. Prove that if G is a group $H \leq G$ subgroup, then $C_{G}(H) \triangleleft N_{G}(H)$ and $N_{G}(H) / C_{G}(H) \leq$ Aut (H).
A group G is p-nilpotent, if it has a normal p-complement $K: K \triangleleft G, K P=G, K \cap P=$ $\{1\}$, where $P \in \operatorname{Syl}_{p}(G)$.
2. Prove that if K_{1} is a normal p_{1}-complement in G and K_{2} is a normal p_{2}-complement in G where $p_{1} \neq p_{2}$ primes, then $K_{1} \cap K_{2}$ is a normal p_{2}-complement in K_{1}.
3.a) Prove that if $p \| G \mid$ is a minimal prime divisor and $P \in S y l_{p}(G)$ is cyclic, then G is p nilpotent. b) Prove, that if G is a finite non-abelian simple group then its Sylow 2-subgroup cannot be cyclic!
4.a) Prove that if for a finite group G, for every prime divisor $p \in \pi(G) P \in \operatorname{Syl}_{p}(G)$ is cyclic, then G is solvable. b) Prove that if $|G|$ is squarefree, then G is solvable.
3. Prove that if G is a non-abelian simple group, then if $p \in \pi(G)$ is a minimal prime divisor, then either $p^{3}| | G \mid$ or $12||G|$.
4. Prove that if G is a finitely generated group and $|G: H|=n$, then H is also finitely
generated.
5. Prove that in a finite solvable group, the centralizer $C_{G}(F(G))$ of the Fitting- subgroup is contained in $F(G)$.
6. Let H, K be subgroups in G. Prove that $[H, K]$ is a normal subgroup in $\langle H, K\rangle$.
7. Let P be a finite p-group. Prove that if an automorphism $\alpha \in \operatorname{Aut}(P)$ of p^{\prime} order of P is acting on $P / \Phi(P)$ trivially, then $\alpha=i d_{P}$.
8. Prove that if $l_{i}, i=1, \cdots, n$ is a left transversal of a subgroup Q in G, then $l_{i}^{-1}, i=$ $1, \cdots, n$ is a right transversal of Q in G.
9. Let $Q \leq G$ and $y_{i}, i=1, \cdots, n$ is a right transversal of Q in G. Prove that if for $a \in G$, $y_{i} a=p_{i} y_{\tau(i)}$ holds, then for $R(a)=\prod p_{i} Q^{\prime}$ the equality $V(a)=R(a)$ holds.
12.a) Let $n=p_{1} \cdots p_{t}$, where $p_{1}<p_{2}<\ldots<p_{t}$ are primes. Prove that in every group of order n, the Sylow $p_{t^{-}}$subgroup is normal. b) If additionally, $\left(p_{i}, p_{j}-1\right)=1$ for every $i<j$, then G is cyclic.
10. Prove that there is no non-abelian simple group of order less than 60 .

Index

G-invariant partition, 19
G-orbit of $\omega, 8$
$G L(V), 55$
π-subgroup, 35
k-transitive, 18
p-nilpotent, 40
Core $_{G}(H), 9$

AGL(K), 58
AGL(V), 57
alternating group, 8, 56
automorphism group of a group, 13
biggest solvable normal, 30
block, 20
Burnside, 29
Burnside basis theorem, 64

Cauchy, 8
Cauchy-Frobenius-Burnside, 55
Cayley, 9
Cayley-graph, 48
characteristic subgroup, 26
characteristically simple, 28
commutator element, 25
commutator subgroup, 30
composition series, 25
conjugation action on elements, 11
conjugation action on subgroups, 11
connected, 15
derived length, 27
derived series, 27
derived subgroup, 26
Dyck, 47
elementary abelian group, 29
equivalence of actions, 13
even permutation, 7
exact, 22
extraspecial p-group, 64
factor set, 38
faithful, 6
Feit-Thompson, 29
finitely generated group, 64
Fitting subgroup, 63
Frattini-subgroup, 63
free generating set, 47
Free groups, 45

Gaschütz, 37
generators and relations, 47
graph automorphism, 15
group, 6
group action, 6
group extensions, 22
group of inner automorphisms, 14

Hall π-subgroup, 35
$\operatorname{Hall}_{\pi}(G) 35$
imprimitive, 20
inner semidirect product, 22
inversion, 7
iterated wreath product, 24
Jordan, 22
Kaloujnine, 24
lower central series, 31
metabelian, 27
minimal normal subgroup, 28
Nielsen-Schreier, 50
nilpotency class, 31
nilpotent group, 31
non-generator, 63
normal p-complement, 40
normal complement, 42
odd permutation, 7
outer semidirect product, 23
permutation, 6
permutation group, 6
permutation representation, 6
point stabilizer, 8
primitive, 20
reduced word, 45
right multiplication, 10
Schur-Zassenhaus, 38
set of prime divisors, 35
sharply k-transitive, 22
small groups, 18
solvable group, 25
solvable radical, 30
split, 22
subnormal, 25
supersolvable, 32
Sylow p-subgroup, 16, 24
Sylow theorems, 16
symmetric group, 6
transfer, 41
transitive, 6
transposition, 8
tree, 49
universal property, 45
upper central series, 31
wreath product, 23

Zorn's lemma, 50

