
Group Theory

Written by: Hayder Abbas Janabi

PhD student at Budapest University of Technology and Economics, Budapest, Hungary.

Lecturer at University of Kufa, Najaf, Iraq.

E-mail: haydera.janabi@uokufa.edu.iq

October, 2020

Based on the lecture given by Dr. Erzsébet Horváth in the spring semester 2018.
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List of Symbols
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CG(x) centralizer of the element x in G

cl(G) nilpotency class of G

CoreG(H) maximal normal subgroup of G contained in H
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G = 〈x1, · · · , xn | r1, · · · , rk〉 group given by generators and relations

gx = x−1gx conjugate of an element g by x

G
′

derived subgroup

G(i) ith member of the derived series

Gω point stabilizer of ω

Gα1,··· ,αn pointwise stabilizer of set {α1, · · · , αn}

Hx = x−1Hx conjugate of a subset H by x
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KG(x) G-conjugacy class of the element x
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1 Permutation groups, the automorphism group of Sn

Definition 1.1. G is a group if there exists a binary operation · : G×G→ G (denoted by

· or by just writing letters beside each other) such that the following axioms are satisfied:

1. (ab)c = a(bc) for all a, b, c ∈ G. (associatvity)

2. There exists an element e ∈ G such that ea = ae = a for all a ∈ G. (there exists a

unit element)

3. For all x ∈ G there exists an element y ∈ G such that xy = e = yx (all element has

an inverse, let us denote this y by x−1).

Remark 1.1. e and x−1 are unique. (see Algebra 1)

Definition 1.2. Let Ω := {1, 2, · · · , n}. A permutation of Ω is a bijective map π : Ω→ Ω.

These form a group under composition. It is called the symmetric group of degree n,

denoted by Sn (or SΩ) and its order is |Sn| = n!.

Definition 1.3. G is a permutation group of degree n if G ≤ Sn. (or it is isomorphic

to a subgroup of Sn).

Definition 1.4. A group action on Ω (or permutation representation) is a homo-

morphism ϕ : G→ SΩ such that g 7→ ϕ(g). and the group G acts in the following way on

Ω : ωg := ωϕ(g). Then ω(gh) = ωϕ(gh) = ωϕ(g)ϕ(h) = (ωg)h.

Definition 1.5. The group action ϕ is faithful if kerϕ = {1}, then G ∼= ϕ(G) ≤ Sn and

we get a permutation group.

Definition 1.6. The group action is transitive on Ω if for all α, β ∈ Ω, there exists an

element g ∈ G such that αg = β.

Remark 1.2. In this note permutation will always act from the right, and multiply from

the left.
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Remark 1.3. We know from (Algebra 1) that every permutation can be written as a

product of disjoint cycles uniquely (up to the order of the cycles). We note that disjoint

cycles always commute.

Example 1.1. (123)(1453) = (12)(345)

(123)−1 = (321), (123)2 = (132), (123)3 = () = id.

Theorem 1.7. If π ∈ Sn, π = π1 · · ·πk is a product of disjoint cycles with lengths n1, · · · , nk,

then o(π) = lcm(n1, · · · , nk), where lcm is the least common multiple. (here o(π) is the or-

der of the element π)

Proof. o(π) = min{k ≥ 1 | πk = id}. Let lcm(n1, · · · , nk) = l and l = niβi

then πl = (π1 · · ·πk)l = πl1 · · ·πlk = (πn1
1 )β1 · · · (πnkk )βk = 1

(We know if xN = 1 then o(x) | N) (see problem sheet 1/5)

thus:

if πl = 1 then o(π) | l.

On the other hand:

1 = πo(π) = (π1 · · ·πk)o(π) = π
o(π)
1 · · ·πo(π)

k . Since π1, · · · , πk act on disjoint sets, if the prod-

uct is 1 then π
o(π)
i = 1 for all i, hence o(πi) | o(π) ∀i. Hence lcm(o(π1), · · · , o(πk)) | o(π)

and so l = o(π). �

Definition 1.8. If π ∈ Sn, then I(π) := {(i, j) | i < j and π(i) > π(j)} is the set of in-

versions of π. The permutation π is even if it has even number of inversions. π is odd

if it has odd number of inversions.

Remark 1.4. Let p(x1, · · · , xn) :=
∏

1≤i<j≤n
(xi − xj). and let π act by permuting the in-

dices pπ =
∏

1≤i<j≤n
(xπ(i) − xπ(j)) and π is odd if and only if pπ = −p, π is even if and only

if pπ = p.

Definition 1.9. An := {π ∈ Sn | π is an even permutation}.

Remark 1.5. Let ϕ : Sn → {±1} = C2 where π 7→ (−1)|I(π)|. This is a group homomor-

phism. kerϕ = An thus An C Sn and Imϕ = C2. By the homomorphism theorem we have
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that Sn/ kerϕ ∼= Imϕ = C2. So
|Sn|
| kerϕ|

= 2 and [Sn : An] = 2. Thus An is an index 2

normal subgroup in Sn. The name of An is alternating group of degree n.

Theorem 1.10. If n ≥ 5 then An is simple. (see problem sheet 1/4)

Definition 1.11. A 2-cycle (α, β) is called transposition.

Remark 1.6. Every permutation is a product of transpositions. It is enough to prove for

cycles: (1, 2, · · · , n) = (1, n)(2, n) · · · (n− 1, n), so transpositions generate Sn

Remark 1.7. The transposition (α, α+ 1) is an odd permutation, (α, β) = (α, α+ 1)(α+

1, α+2) · · · (α+k−2, α+k−1)(α+k−1, β)(α+k−1, α+k−2) · · · (α+1, α) if β = α+k.

Hence (α, β) is also odd. The cycle (1, 2, · · · , n) is odd if n is even and even if n is odd.

Theorem 1.12. (Cauchy)

If p divides |G| then there exists an element x ∈ G such that o(x) = p.

Proof. Let Ω := {(g1, · · · , gp) | gi ∈ G, Πp
i=1gi = 1}⊆ G× · · · ×G (p-times).

Let π be the cyclic shift on (g1, · · · , gp) : (g1, · · · , gp)π = (g2, g3, · · · , gp, g1).

If g1 · · · gp = 1 then g2 · · · gp = g−1
1 , hence g2 · · · gpg1 = 1. So π acts on Ω.

An element (g1, · · · , gp) of Ω is fixed by π if and only if (g1 = g2 = · · · = gp = g) and

gp = 1, e,g. (1, · · · , 1). The number of elements in Ω, |Ω| = |G|p−1, since g1, . . . , gp−1 can

be arbitrary and gp is already determined.

Since p divides |G| then p divides |Ω|. As o(π) = p, π is the product of cycles of length p

and cycles of length 1, which belong to the fixed points of π, which we denote by Fix(π).

Hence, |Ω| =| Fix(π) | +p· | (number of length p cycles in π) |. So p divides | Fix(π) |.

Thus there exists a fixed point (g, · · · , g) ∈ Ω, where g 6= 1. Since gp = 1, we have that

o(g) = p. �

Definition 1.13. Let G ≤ SΩ or (ϕ : G→ SΩ is a permutation representation) and ω ∈ Ω

then:

Gω := {g ∈ G|ωg = ω} is called the point stabilizer of ω in G. We remark that Gω is a

subgroup of G.

ωG = {α ∈ Ω | ∃g ∈ G,ωg = α} is called the G-orbit of ω .
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Theorem 1.14. If G is a group action on Ω then Ω = ∪∗Ωi is a disjoint union of G-orbits.

Moreover, |ωG| = |G : Gω|. (the length of the orbit of ω = the index of the point stabilizer

of ω)

Proof. Let α, β ∈ Ω, we say that α, β are equivalent if there exists an element g ∈ G such

that αg = β. This is an equivalence relation. The equivalence classes are the orbits of G.

Hence Ω = ∪∗Ωi.

Observe that ωg = ωh ⇔ ωgh
−1

= ω ⇔ gh−1 ∈ Gω ⇔ Gωg = Gωh.

| ωG |=|{different images of ω under G}|=|{different cosets of Gω }|=| G : Gω | �

Corollary 1.1. |G| = |Gω| · |ωG|.

Definition 1.15. Gα1,··· ,αn := {g ∈ G|αgi = αi, i = 1, · · · , n} = (Gα1,··· ,αn−1)αn .

Example 1.2. How many elements does the group of symmetries of the cube have?

12

3

4

|1G| = 8,

|G| = |1G|
8
.|G1| = 48

|G1| = |2G1 |
3
.|(G1)2| = 6

|G1,2| = |3G1,2 |
2

.|(G1,2)3|
1

= 2

Theorem 1.16. (Cayley)

a) Every group of order n is isomorphic to a transitive permutation group of degree n.

b) If there exists a subgroup H ≤ G of index [G : H] = t then G has a transitive permuta-

tion representation of degree t with kernel = ∩x∈Gx−1Hx ≤ H.
(
this is the maximal

normal subgroup of G contained in H denoted by CoreG(H)
)
.
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Proof. a) • G acts on G with right multiplication, there exists a map

Φ : G→ S|G|, such that g 7→ πg =

Ñ
g1 g2 · · · gn

g1g g2g · · · gng

é
• Φ(gh) = πgh = πgπh = Φ(g)Φ(h) since:

gi

gig

gigh

g

h

gi

gh

gi(gh)

So Φ is a homomorphism.

• ker Φ = {g : πg = id} = {1}. So Φ is a faithful permutation representation.

• G ∼= Φ(G) ≤ S|G|

• Φ is a transitive action, since gig = gi if g = g−1
i gi.

b) • G acts on the cosets of H {Hx : x ∈ G} by right multiplication, so there exists

a map

Φ : G→ S[G:H], such that g 7→ πg =

Ñ
Hg1 Hg2 · · · Hgt

Hg1g Hg2g · · · Hgtg

é
.

• Since Φ(gh) = πgh = πgπh = Φ(g)Φ(h), so Φ is a group homomorphism.

• kerφ = {g ∈ G | Hgig = Hgi,∀i = 1, · · · , t} = {g ∈ G | Hgigg−1
i = H ∀i}

= {g ∈ G | gigg−1
i ∈ H ∀i} = {g ∈ G | g ∈ g−1

i Hgi∀i}

=

t⋂
i=1

g−1
i Hgi =

⋂
x∈G

x−1Hx = CoreG(H), since every element x ∈ G can be

written as x = hgi for some h ∈ H and i.

• Φ is a transitive action since Hgig = Hgi e.g. for g = g−1
i gi.

�
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Theorem 1.17. If ϕ : G→ SΩ is a transitive action on Ω then the point stabilizers are

conjugate.

Proof. Let α, β ∈ Ω. Since G is transitive on Ω, there exists an element g ∈ G such that

αg = β. We prove that g−1Gαg = Gβ, using short form of x−1Hx =: Hx, this means that

Ggα = Gβ.

1. If βg
−1Gαg = β, then g−1Gαg ⊆ Gβ, hence Gα ⊆ gGβg−1,

2. If αgGβg
−1

= α, then gGβg
−1 ⊆ Gα.

From (1) and (2) we have that Gα = gGβg
−1, hence Ggα = Gβ. �

Remark 1.8. There are also other actions that are frequently used, e.g.: conjugation

action on elements of a group, conjugation action on subgroups.

11



1. Right

multiplication on

elements

2. right

multiplication on

right cosets of H ≤ G

3. conjugation

on elements

4. conjugation

on subgroups

Ω G {Hx| x ∈ G} G {H | H ≤ G}

Action of x πx =( g1 · · · gng1x · · · gnx
) πx =(

Hg1 · · · Hgt
Hg1x · · · Hgtx

) πx =Äg1 · · · gn
gx1 · · · gxn

ä πx =(
H1 · · · Ht
Hx

1 · · · Hx
t

)
Orbits ωG gG = G

∀ g ∈ G
HgiG =
{Hg1, ... , Hgt}

KG(g) {Hg | g ∈ G}

Is transitive? Yes Yes Not Not

1 element orbits No No elements of

Z(G)

Normal

subgroups

Gω point

stabilizer

1 Hxg = Hx⇔
xgx−1 ∈ H ⇔
g ∈ Hx

xg = x
⇔ g ∈ CG(x)

Hg = H ⇔
g ∈ NG(H)

Length of the

orbit

|G| [G : H] |KG(g)| |G : NG(H)|

kernel of the

action

1 CoreG(H) =
∩x∈Gx−1Hx

Z(G) ∩NG(H)
∀ H ≤ G

Now we apply Theorem 1.14. We have the following:

Corollary 1.2. 1. |KG(x)| = [G : CG(x)] we used the 3rd action.
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2. |Sylp(G)| = [G : NG(P )], since the orbit of P ∈ Sylp(G) is Sylp(G) in the 4th action.

Definition 1.18. We say that two actions of G, ϕ1 : G→ SΩ1 , and ϕ2 : G→ SΩ2 are

equivalent if there exists a bijection b1 : Ω1 → Ω2 such that for all g ∈ G, and for all

ω1 ∈ Ω1, b
(
ω
ϕ1(g)
1

)
=
(
b(ω1)

)ϕ2(g)

ω1 b(ω1)

g

ω
ϕ1(g)
1

g

(b(ω1))ϕ2(g)

b

b

Theorem 1.19. All transitive actions of G are equivalent to a group action on the right

cosets of a subgroup H with right multiplication.

Proof. Let ϕ : G→ SΩ be a transitive action on Ω. Let H := Gω, let Ω
′

:= {Gωg | g ∈ G}.

Observe that ωh = ωx ⇔ hx−1 ∈ Gω ⇔ Gωx = Gωh⇔ h ∈ Gωx. SoGωx = {h ∈ G | ωh = ωx}.

Let b : Gωx 7→ ωx. Then this is a bijection between right cosets of Gω and the elements of

Ω, which is compatible with the action of elements of G, so this is an equivalence,

Gωx ωx

g

Gωxg

g

ωxg = (ωx)g
b

b

�

Definition 1.20. Let G be a group. Aut(G) = {ϕ : G→ G | ϕ bijective homomorphism

(automorphism)}. Aut(G) is a group under composition of maps. This is the automor-

phism group of G.
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Definition 1.21. The group of inner automorphisms of the group G is defined as

Inn(G) := G/Z(G).

Remark 1.9. The elements of Inn(G) correspond to conjugations with elements ofG, since

gx1 = gx2 for all g ∈ G⇔ gx1x
−1
2 = g, for all g ∈ G⇔ x1x

−1
2 ∈ Z(G)⇔ Z(G)x1 = Z(G)x2.

Example 1.3. If n > 2 then Z(Sn) = 1, so Inn(Sn) ∼= Sn. (see problem sheet 1/2)

Theorem 1.22. If n > 2, and n 6= 6 then Aut(Sn) ∼= Sn.

Proof. • Let n = 3. We know that S3 = 〈(1, 2, 3), (1, 2)〉. If ϕ ∈ Aut(G) then ϕ pre-

serves elements orders. Thus (1, 2) can be mapped to (1, 2), (1, 3) or (2, 3), and

(1, 2, 3) can be mapped to (1, 2, 3) or (1, 3, 2). Hence |Aut(S3)| ≤ 6. However,

| Inn(S3) |= 6 and Inn(S3) ≤ Aut(S3) so Aut(S3) ∼= S3.

• Let n = 4. We know that S4 = 〈(1, 2, 3, 4)︸ ︷︷ ︸
a

, (1, 2, 4, 3)︸ ︷︷ ︸
b

〉. (one can check with GAP)

Since | S4 |= 24 and the number of elements of order 4 in S4 is 4·3·2·1
4 = 6, so ϕ(a)

can be choosen in at most 6 ways, ϕ(b) 6= ϕ(a) and ϕ(b) 6= ϕ(a)−1 thus ϕ(b) can be

choosen in at most 4 ways.

Hence | Aut(S4) |≤ 24. As Inn(S4) ≤ Aut(S4) we have that Aut(S4) ∼= S4.

• Let n ≥ 5. Observe that an automorphism preserves conjugacy classes: suppose that

a is conjugate to b in Sn. We denote this by a ∼ b. If x−1ax = b then

ϕ(x)−1ϕ(a)ϕ(x) = ϕ(b), hence ϕ(a) ∼ ϕ(b).

Let KSn

(
(1, 2)

)
be the conjugacy class of transpositions in Sn. If ϕ ∈ Aut(Sn) then

it takes (1, 2) into an element of order 2, which is a product of disjoint transpositions.

Then KSn

(
(1, 2)

) ϕ7−→ KSn

(
(1, 2)(3, 4) · · · (2k − 1, 2k)

)
, for some k.

Let us check if it is possible or not.

We know that| KSn

(
(1, 2)

)
|=
Ç
n

2

å
=
n(n− 1)

2
and

| KSn

(
(1, 2)(3, 4) · · · (2k − 1, 2k)

)
|=
(n

2

)(n−2
2

)
· · ·
(n−2k+2

2

)
k!

. We investigate when there

numbers are equal, namely
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n(n− 1)

2
=
n(n− 1)(n− 2) · · · (n− 2k + 2)(n− 2k + 1)

2kk!
. This is equivalent to

2k−1k! = (n− 2)(n− 3) · · · (n− 2k + 1).

If k = 2 then this gives us 2 · 2 = (n− 2)(n− 3), which has no solution.

If k = 3, then we have that 4 · 6 = (n− 2)(n− 3)(n− 4)(n− 5). Here n is a solution

if and only if n = 6.

Let k ≥ 4. We show that there is no solution, since the left hand side is smaller than

the right hand side. The right hand side is the smallest if n = 2k,

(the left side is independent of n). So it is enough to prove the inequality for n = 2k.

Observe that 2k−1k! < (2k − 2)(2k − 3) · · · 1⇔ 2 · 4 · · · (2k − 2)k < (2k − 2)(2k − 3) · · · 1

⇔ k < (2k − 3)(2k − 5) · · · 3 · 1. This is true since k < 2k − 3⇔ k > 3.

Hence if ϕ ∈ Aut(Sn) and n > 6, then ϕ
(
KSn(1, 2)

)
=
(
KSn(1, 2)

)
.

We define a graph Γ = (V,E). The vertices V of Γ are the transpositions of Sn.

Two transpositions (a, b) and (c, d) are connected with an edge if and only if

| {a, b} ∩ {c, d} |= 1. This is equivalent to o
(
(a, b)(c, d)

)
= 3.

(Note that (a, x)(x, b) = (abx) and (a, x)(a, x) = id if | {a, b} ∩ {c, d} |= 2, moreover

o
(
(a, b)(c, d)

)
= 2 if {a, b} ∩ {c, d} = ∅).

Let σ ∈ Aut(Sn) then, as we have seen, σ
(
KSn

(
(1, 2)

))
= KSn

(
(1, 2)

)
, so

σ permutes the vertices of Γ and σ perserves the orders of elements. We show that σ

also preserves edges. The transposition (a, b) and (c, d) are connected with an edge if

and only if o
(
(a, b)(c, d)

)
= 3. Then o(σ

(
(a, b)

)
σ
(
(c, d)

)
) = o(σ

(
(a, b)(c, d)

)
) = o

(
(a, b)(c, d)

)
= 3,

hence σ(a, b) and σ(c, d) are also connected with an edge, so σ preserves edges and

we have that σ ∈ Aut(Γ). We define the following subgraph.

Ga := {(a, x)|x ∈ {1, 2, · · · , n} \{a}} then | Ga |= n− 1 and

Ga is a complete graph on n− 1 points for every a ∈ {1, · · · , n}.

Γ has no other complete subgraphs on n− 1 points, see problem sheet 2/2.

Since σ is a graph automorphism, hence complete n− 1 point subgraphs are mapped

to complete n − 1 point subgraphs and so σ(Ga) = Ga′ . Since Sn is transitive on

{1, 2, · · · , n}, there exists an element g ∈ Sn such that ag = a′, for a ∈ {1, 2, · · · , n}.

Then g =
( a1 ··· am
a
′
1 ··· a

′
m

)
, in a particular ag = a

′
, bg = b

′
.
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If a 6= b, then {(a, b)} = Ga ∩Gb, and{(a, b)σ} = Ga′ ∩Gb′ = {(a′ , b′)} = {(ag, bg)} =

{(a, b)g}. Hence (a, b)σ = (a, b)g on transpositions. Since the transpositions generate

Sn, on the whole Sn σ is the conjugation by g.

Hence every σ ∈ Aut(Sn) is a conjugation by some g ∈ G. ThusAut(Sn) ∼= Inn(Sn) ∼=
Sn.

�

2 Application of the Sylow theorems, small groups

We know by Lagrange’s theorem that if G is a finite group and H is a subgroup in G, then

| H | divides | G |.

However, the converse is not true. For example |A5| = 60 and 15 divides 60, but there is

no subgroup of A5 of order 15. (see problem sheet 3/1)

However, for each maximal p-power divisor of |G|, there exists a subgroup of that order.

Definition 2.1. Let G be a finite group and let p be a prime. Suppose that | G |= pam,

where (p,m) = 1. If P is a subgroup of G and | P |= pa, then P is called a Sylow

p-subgroup of G.

Theorem 2.2. (Sylow)

Let G be a finite group, let p be a prime and let |G| = pam, where (p,m) = 1. Then

1. (Ep) There exists a subgroup P ≤ G, such that |P | = pa. (existence of Sylow p-

subgroups)

2. Let Sylp(G) := {P ≤ G
∣∣|P | = pa}. Then |Sylp(G)| = [G : NG(P )] ≡ 1(p).

3. (Cp) For all P1, P2 ∈ Sylp(G) there exists an element g ∈ G such that P g1 = P2.

(Sylow p-subgroups are conjugate)

4. (Dp) If H ≤ G is a p-subgroup, then there exists a subgroup P ∈ Sylp(G) such that

H ≤ P , (P is a maximal p-subgroup under containment as well).
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Corollary 2.1. Let |G| = pq where p < q primes.

If Q ∈ Sylq(G), then Q C G.

If q 6≡ 1(p), then P C G and G ∼= Cpq.

If q ≡ 1(p), then there exist elements a, b ∈ G such that

G = 〈a, b | aq = 1, bp = 1, b−1ab = am,m ≡ 1(q),m 6≡ 1(q)〉. In particular, if |G| = 2q and

G is non-abelian then G ∼= D2q.

Proof. Let |G| = pq, then if P ∈ Sylp(G) then |P | = p and If Q ∈ Sylq(G) then |Q| = q,

so P and Q are cyclic, P ∼= Cp, Q ∼= Cq. (problem sheet 2/8/c )

The number of Sylow q-subgroups in G is [G : NG(Q)]︸ ︷︷ ︸
∼=1(q)

∣∣∣[G : Q] = p. Hence

[G : NG(Q)] = kq + 1
∣∣p, and q > p so k = 0 hence QCG.

The number of Sylow p-subgroups is [G : NG(P )]
∣∣∣[G : P ] = q and [G : NG(P )] ≡ 1(p).

If q 6≡ 1(p) then [G : NG(P )] = 1 hence P CG. Since P ∩Q = 1 and

PQ = G then G ∼= P ×Q ∼= Cp × Cq ∼= Cpq. (see problem sheet 2/8/e )

If q ≡ 1(p) then there can be a non-abelian group of order pq. Let

Q = 〈a〉 where o(a) = q, let P = 〈b〉, where o(b) = p. Then 〈a〉 = QCG and hence

b−1ab ∈ 〈a〉, so b−1ab = am for some m, and b−1 · · · b−1︸ ︷︷ ︸
k−times

a b · · · b︸ ︷︷ ︸
k−times

= am
k
.

Let k = p. Then bp = 1 and we have that a = am
p

hence am
p−1 = 1. Thus o(a) | mp − 1

and so mp ≡ 1(q). Observe that m 6≡ 1(q), otherwise b−1ab = a and G is commutative.

Hence if G is nonabelian, G satisfies relations of the group

X = 〈a, b | aq = 1, bp = 1, b−1ab = am,mp ≡ 1(q),m 6≡ 1(q)〉.

By Dyck’s theorem, see Algebra 1, or Theorem 8.6, G is a factor group of X. Since | X |≤ pq

we have that X ∼= G.

In particular, if |G| = 2q, q is prime and G is non-abelian then

G = 〈a, b | aq = 1, b2 = 1, b−1ab = a−1〉, Hence G ∼= D2q. �
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Corollary 2.2. Small groups

1 1
2 C2
3 C3
4 C4, C2 × C2
5 C5
6 C6, D6
7 C7
8 (abelian C8, C4 × C2, C2 × C2 × C2)(non-abelian Q8, D8)
9 C9, C3 × C3
10 (abelian C10 = C2 × C5)(non-abelian D10)
11 C11
12 (abelian C12, (c2 × C2)× C3)(non-abelian D12, A4, C3 o C4)
13 C13
14 (abelian C14)(non-abelian D14)
15 C15

For the non-abelian groups of order 8, see problem sheet 2/9.

For the non-abelian groups of order 12, see problem sheet 3/4.

3 k-transitive and primitive groups

Definition 3.1. Let G act on Ω. We say that this action is k-transitive on Ω if for all

α1, α2, · · · , αk ∈ Ω distinct and for all β1, β2, · · · , βk ∈ Ω distinct, there exists an element

g ∈ G such that αgi = βi, for i = 1, 2, · · · , k.

Remark 3.1. G is 1-transitive if and only if G is transitive on Ω.

Remark 3.2. If G is k-transitive on Ω and k > 1 then G is (k − 1)-transitive on Ω.

Theorem 3.2. Let k ≥ 2. The following are equivalent for an action of G on Ω

1. G is k-transitive on Ω.

2. G is transitive on Ω and there exists an α ∈ Ω such that Gα is (k − 1)-transitive on

Ω \{α}.

3. G is transitive on Ω and for all α ∈ Ω, Gα is (k − 1)-transitive on Ω\{α}.
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Proof. (1)⇒ (2)

Let α ∈ Ω. We have to prove that Gα is k − 1 transitive on Ω \{α}.

Let β1, · · · , βk−1 ∈ Ω \{α} distinct, and let γ1, . . . , γk−1 ∈ Ω \{α} distinct.

We have to find an element gα ∈ Gα such that βgαi = γi, for i = 1, · · · , k − 1.

Now α, β1, · · · , βk−1 ∈ Ω are distinct and α, γ1, · · · , γk−1 ∈ Ω are distinct. From (1) we

have that there exists an element g ∈ G such that αg = α and βgi = γi, for i = 1, · · · , k − 1,

hence g ∈ Gα and Gα is (k − 1)-transitive on Ω \ {α}.

(2)⇒ (3)

Let β ∈ Ω. We have to prove that Gβ is (k − 1)-transitive on Ω \{β}, in other words

for β1, · · · , βk−1 ∈ Ω \{β} distinct, and for β
′
1, · · · , β

′
k−1 ∈ Ω \{β} distinct, there exists an

element g ∈ Gβ such that βgi = β′i, i = 1, · · · , k − 1.

From (2) we have that G is transitive on Ω. So there exists an element g ∈ G such that

αg = β. Let αi := βg
−1

i and α
′
i := (β

′
i)
g−1

. Then α1, · · · , αk−1 ∈ Ω \{α} are distinct, and

α
′
1, · · · , α

′
k−1 ∈ Ω \{α} are distinct.

By (2), there exists an element gα ∈ Gα such that αgαi = α
′
i, for i = 1, · · · , k − 1.

Then βg
−1gαg
i = β

′
i, for i = 1, · · · , k − 1, so Gβ is (k − 1)-transitive on Ω \ {β}.

(3)⇒ (1)

We have to prove that for every α1, · · · , αk ∈ Ω distinct, and for every β1, · · · , βk ∈ Ω

distinct, there exists an element g ∈ G such that αgi = βi, for i = 1, · · · , k. Since G is

transitive on Ω, we have that there exists an element g ∈ G such that αg1 = β1.

From (3) we have that Gβ1 is (k−1)-transitive on Ω \{β1}. Now αg2, α
g
3, · · · , α

g
k ∈ Ω \{β1}.

Since αg2, · · · , α
g
k are distinct and β2, · · · , βk ∈ Ω \{β1}, we have that there exists an element

h ∈ Gβ1 such that (αgi )
h = βi, for i = 2, · · · , k. Since αg1 = β1,

(
(α1)g

)h
= β1 and so

αghi = βi, for i = 1, 2, · · · , k. �

Definition 3.3. Let G ≤ SΩ (or G acts on Ω). We say that Ω = ∪ki=1Ωi is a G-invariant

partition of Ω if Ωi ∩ Ωj = ∅ for all i 6= j, and for all g ∈ G, for all i = 1, · · · , k, there

exists j such that Ωg
i = Ωj . This partition is proper if there exists an index i such that

|Ωi| 6= 1 and Ωi 6= Ω.
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Definition 3.4. We say that G ≤ SΩ (or action of G on Ω) is primitive, if it is transitive

and there is no proper G-invariant partition on Ω.

We say that G is imprimitive on Ω if G is transitive on Ω but not primitive.

Remark 3.3. If G is transitive and not primitive, then since there exists an element g ∈ G

such that Ωg
i = Ωj , we have that |Ωi| = |Ωj |.

Definition 3.5. If G acts on Ω, then a subset B ⊆ Ω is called a block (or domain of

imprimitivity) for G if for all elements g ∈ G (Bg ∩ B 6= ∅ ⇒ B = Bg). B is a proper

block if B 6= Ω, |B| 6= 1.

Example 3.1. D8 acts on {1, 2, 3, 4} transitively, {1, 4},{2, 3} are blocks,

1 2

3 4

Theorem 3.6. If G is transitive on Ω, then G is primitive if and only if Ω has no proper

blocks for G.

Proof. It is enough to prove that the action is imprimitive if and only if there exists a

proper block.

=⇒) Suppose that Ω = ∪∗Ωi, is a proper G-invariant partition on Ω.

Then Ωi is a proper block for every i.

⇐=)

If B ( Ω is a proper block for G then we will prove that Ω = ∪Bg is a proper G-invariant

partition of Ω. By transitivity of G, we have that Ω = ∪g∈GBg.

We want to prove that if Bg ∩Bh 6= ∅ then Bg = Bh. Since (Bg)h
−1 ∩ B 6= ∅ we have

that Bgh−1
= B, hence Bg = Bh. So Ω = ∪g∈GBg is a G-invariant partition. Since

|B| 6= 1, B 6= Ω, it is a proper partition of Ω and so G is imprimitive. �
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Example 3.2. G := {1, (123)(abc), (132)(acb), (1b)(2a)(3c), (1a)(2c)(3b), (1c)(2b)(3a)}

Ω = {1, 2, 3} ∪ {a, b, c} = {1, a} ∪ {2, b} ∪ {3, c} are two G-invariant partitions on Ω.

Theorem 3.7. If the group G acts on Ω transitively, then the following are equivalent:

1. G acts on Ω primitively.

2. There exists α ∈ Ω such that Gα is maximal in G.

3. For all α ∈ Ω, Gα is maximal in G.

Proof. (3)⇒ (2) This is obvious.

(2)⇒ (3) Since G is transitive on Ω, by Theorem 1.17 we have that Gα is conjugate to Gβ.

Thus they are maximal at the same time, so Gβ is also maximal.

(1)⇔ (2) It is enough to prove that G is imprimitive on Ω iff there is an α ∈ Ω such that

Gα is not maximal.

=⇒)

If the action of G is imprimitive then there exists a block B ( Ω such that |B| 6= 1.

Let M := {g ∈ G | Bg = B}. Then M = {g ∈ G | Bg ∩B 6= ∅} and M is a subgroup of G.

Observe that if α ∈ B, then Gα ≤ M . We will prove Gα �M . Since |B| > 1, and α ∈ B

then there exists β ∈ B such that α 6= β. As G is transitive on Ω, there exists an element

g ∈ G such that αg = β. Thus,

αg ∈ Bg ∩B 6= ∅, and hence Bg = B and g ∈M . However g ∈M \Gα and so

Gα �M . Since B 6= Ω, there exists an element g ∈ G such that Bg 6= B, thus g ∈ G \M

and so M 6= G and we have that Gα �M � G, so Gα is not maximal.

⇐=)

If Gα is not maximal, then we want to prove that the action is imprimitive. Let us choose

a maximal subgroup M such that Gα �M � G. We want to find a proper block of G on

Ω. Let B := {αm | m ∈M}, then |B| > 1 because Gα ≤M , and there exists an element

m ∈M \Gα, so for that αm 6= α. Moreover B 6= Ω, since if B = Ω then M were transitive

on Ω then for every g ∈ G there would exist an element m ∈M such that αg = αm. Hence

αgm
−1

= α. and so gm−1 ∈ Gα �M . Let m1 := gm−1. Then g = m1m ∈M , hence every
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g ∈ G is in M , so this is a contradiction, and thus B 6= Ω.

Now, want to prove that B is a block. If Bg ∩B 6= ∅, then there exist elements m,m′ ∈M

such that αmg = αm
′
. Hence αmg(m

′
)−1

= α and we have that mg(m′)−1 ∈ Gα �M . Hence

there is an element m′′ ∈M such that mg(m
′
)−1 = m

′′
and we have that g = m−1m

′′
m
′ ∈

M . By the definition of B, we have that Bg = B and so B is a block. Hence G acts

imprimitively. �

Definition 3.8. A group G is sharply k-transitive on Ω if for all distinct α1, · · · , αk ∈ Ω

and for all distinct β1, · · · , βk ∈ Ω, there is a unique element g ∈ G such that αgi = βi, for

i = 1, 2, · · · , k.

Theorem 3.9. (Jordan)

Let G ≤ Sn be a sharply k-transitive group. If G 6= Sn or An, then k = 4 and n = 11 or

k = 5 and n = 12. (The Mathieu-groups M11 and M12 are such groups.)

4 Group extensions, semidirect product, wreath product

Definition 4.1. www

1
i

A B C 1 (*)
ψ ϕ π

Let A,B,C be groups, ψ,ϕ group homomorphisms, i is the embedding of 1 and π is the

surjection on 1. We say that the sequence (*) is exact if Im i = kerψ (if and only if ψ is

injective) and Imϕ = kerπ (if and only if ϕ is surjective) and A ∼= Imψ = kerϕ (in this case

B/ kerϕ ∼= Imϕ = C) hence B/ψ(A) ∼= B/A. In this case we tell that B is an extension

of A by C.

(A C B and B/A ∼= C) (shortly)

Definition 4.2. The extension A by C is split (or inner semidirect product), if there

exists a subgroup C1 6 B such that C1
∼= C, A ∩ C1 = {1} and AC1 = B.

(in this case B/A = (AC1)/A ∼= C1/(C1 ∩A) ∼= C1
∼= C)
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Lemma 4.1. Let G = KQ, K C G, K ∩Q = 1 (split extension of K by Q), then there

exists a map Θ : Q→ Aut(K) such that x 7→ Θx =

Ñ
K

xKx−1

é
is a homomorphism (Q

acts on K with conjugation by x−1 for x ∈ Q).

Proof. Θ : Q → Aut(K) is a homomorphism since Θxy(K) = xyky−1x−1 = Θx(Θy(K)),

hence Θxy = ΘxΘy. �

Definition 4.3. (Outer semidirect product)

Let Q and K be groups and Θ : Q→ Aut(K) be a group homomorphism.

G := K oΘ Q = {(a, x) | a ∈ K,x ∈ Q} with multiplication rule (a, x)(b, y) = (aΘx(b), xy)

with this multiplication G is a group. (see problem sheet 5/2)

The unit element is (1, 1), (k, q)−1 = (Θq−1(k))−1, q−1) and (1, q)(k, 1)(1, q)−1 = (Θq(k), 1).

The elements K∗ = {(k, 1) | k ∈ K} form a normal subgroup isomorphic to K, the elements

Q∗ = {(1, q) | q ∈ Q} form a subgroup isomorphic to Q, G = K∗Q∗ and K∗∩Q∗ = {(1, 1)}.

Definition 4.4. (Wreath product)

Let D 6 SΛ, Q 6 SΩ be permutation groups, let Dω
∼= D for all ω ∈ Ω, then K =

∏
ω∈Ω

Dω,

is the base group of the wreath product. Let: D ∼ Q :=

( ∏
ω∈Ω

Dω

)
oQ, where Q acts on∏

ω∈Ω

Dω by permuting components: (dω1 , dω2 , · · · )q = (dω1
q , dω2

q , · · · ).

Remark 4.1. If |D| <∞, then |K| = |D||Ω|. If Q is also finite, then |D ∼ Q| = |D||Ω||Q|.

Theorem 4.5. Let us suppose that D 6 SΛ (D acts on Λ) and Q 6 SΩ (Q acts on Ω).

Then D ∼ Q acts on Λ× Ω, and D ∼ Q 6 S(Λ×Ω), where the action is defined by

(λ, ω)(dω1 ,··· ,dωn ,q) = (λdω , ωq). (*)

This define an action ϕ : D ∼ Q→ S(Λ×Ω), in other words

ϕ
(
(dω1 , · · · , dωn , q)(d

′
ω1
, · · · , d′ωn , q

′
)
)

= ϕ(dω1 , · · · , dωn , q)ϕ(d
′
ω1
, · · · , d′ωn , q

′
), as

(λdω , ωq)(d
′
ω1
,··· ,d′ωn ,q

′
) = (λdωd

′
ωq , (ωq)q

′
) is the image of (λ, ω) when we apply the left hand

side. On the other hand, (dω1 , · · · , dωn , q)(d
′
ω1
, · · · , d′ωn , q

′
) = ((dω1 , · · · , dωn)(d

′

ωq1
, · · · , d′ωqn), qq

′
)

= (dω1d
′

ωq1
, · · · , dωnd

′

ωqn
, qq

′
). Thus (λ, ω)

(dω1d
′
ω
q
1
,··· ,dωnd

′
ω
q
n
,qq
′
)

=
(
λ(dωd

′
ωq

), ωqq
′)

is the image
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of (λ, ω), when we apply the right hand side, This action is faithful, since if (λdω , ωq) = (λ, ω)

for all λ and for all ω, then λdω = 1 for all ω, and q = 1 and so (dω1 , · · · , dωn , q) =

(1, · · · , 1). Hence G ∼ Q 6 SΛ×Ω.

4.1 The Sylow p-subgroups of symmetric groups

What is the order of the Sylow p-subgroup of Sm. The order of Sm is m!. We need pM | m!

but pM+1 - m!

1 m

bm/pcpp 2p

M = bmp c+ bm
p2
c+ bm

p3
c+ · · · , since

bmp c numbers between 1 and m are divisible by p

bm
p2
c numbers between 1 and m are divisible by p2

...

etc.

Remark 4.2. Cp ∼ Cp = Cp × · · · × Cp︸ ︷︷ ︸
p−times

oCp and Cp ≤ S|Cp|, since Cp acts on Cp by right

multiplication.

By the previous theorem, we have that Cp ∼ Cp ≤ Sp2 . Hence (Cp ∼ Cp) ∼ · · · ∼ Cp ≤ Spn .

Theorem 4.6. (Kaloujnine 1984)

Let p be a prime. The Sylow p-subgroup of Spn is the iterated wreath product

Wn = (Cp ∼ Cp) ∼ · · · ∼ Cp︸ ︷︷ ︸
n−times

.

Proof. The proof is by induction on n.

If n = 1, then |Sp| = p!, and if P ∈ Sylp(Sp), then |P | = p hence P ∼= Cp.

By induction we suppose that the n-fold iterated wreath product P = (Cp ∼ · · · ∼ Cp) ∈ Sylp(Spn).

Since P ≤ Spn , Cp ≤ Sp, then P ∼ Cp acts on the direct product set of order pn+1, hence

P ∼ Cp ≤ Spn+1 .
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If P1 ∈ Sylpn+1 , then |P1| = pµ
(n+1)

, where µ(n+1) = bp
n+1

p c + bp
n+1

p2
c + · · · + bp

n+1

pn+1 c =

pn + pn−1 + · · ·+ 1.

We know by induction that |P | = p1+···+pn−1
. Hence |P ∼ Cp| = |P |p · p = pp+···+p

n · p = p1+···+pn .

This is exactly the size of the Sylow p-subgroups of Spn+1 . Hence we are done.

�

Remark 4.3. We can also determine the Sylow p-subgroup of Sm, where m is not nec-

essarily a p-power. Let us write m in p-adic number system: m = a0 + a1p + · · · + atp
t,

where 0 ≤ ai < p − 1,. Let Ω := {1, 2, · · · ,m}. Then P ∈ Sylp(Sm) has size pµ, where

µ = bm
p
c+ bm

p2
c+ · · ·+ bm

pt
c =

(a1 + a2p+ · · ·+ atp
t−1) + (a2 + a3p+ · · ·+ atp

t−2) + · · ·+ (at−1 + atp) + (at)

= a1 + a2(p+ 1) + a3(p2 + p+ 1) + a4(p3 + p2 + p+ 1) + · · ·+ at(p
t−1 + pt−2 + · · ·+ 1).

Thus, |P | = pa1pa2(p+1)pa3(p2+p+1) · · · pat(pt−1+···+1) = |Xa1
1 ||X

a2
2 | · · · |X

at
t |, whereXi ∈ Sylp(Spi).

We partition Ω into a0 1-element sets, a1 p-element sets, a2 p
2-element sets · · · etc.

Hence the group 1a0 ×Xa1
1 ×X

a1
1 × · · · × x

at
t ≤ S

a0
1 × S

ap
p × · · · × Satpt ≤ SΩ

∼= Sm.

This group has the order of p, thus it is a Sylow p-subgroup of Sm.

5 Solvable groups and nilpotent groups

Definition 5.1. A finite group G is solvable if there exists a subnormal series

G = N◦ BN1 B · · ·BNn = {e} (∀Ni CNi−1 but not necessarilyNi CG) such thatNi/Ni+1

is abelian for all i.

Definition 5.2. A composition series of G is a subnormal series without repetitions,

such that it cannot refined properly (hence every Ni/Ni+1 is simple).

Remark 5.1. A finite group G is solvable if and only if it is has a composition series such

that all Ni/Ni+1 are of prime order.

Definition 5.3. [x, y] = x−1y−1xy is the commutator element of x and y.

Remark 5.2. [x, y] = 1 if and only if xy = yx.
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Definition 5.4. G
′

= 〈[x, y] |x, y ∈ G〉 is called the derived subgroup of G.

Definition 5.5. A subgroup H ≤ G is called a characteristic subgroup of G (denoted

by H char G), if for every automorphism ϕ ∈ Aut(G), we have that ϕ(H) = H.

Remark 5.3. If H char G then H CG.

Proof. If ϕg : G→ G, such that x 7→ g−1xg, then ϕg ∈ Aut(G). Since H char G we have

that ϕg(H) = H, so g−1Hg = H. Thus H CG. �

Remark 5.4. If ACB C C then it is not necessarily true that AC C.

Example 5.1. Let K4 := {(), (12)(34), (13)(24), (14)(23)}, C2 = {(), (12)(34)}CK4 C S4

but {(), (12)(34)} not normal in S4 because π = (23) ∈ S4 but π−1(12)(34)π /∈ C2, hence

C2 is not closed under conjugation.

Remark 5.5.

(i) If A char B C C then AC C.

(ii) If A char B char C, then A char C.

Proof. (i) Obviously A ≤ C. Let g ∈ G. We will show that g−1Ag = A.

Let ϕg : G→ G such that x 7→ g−1xg. Then ϕg(B) = B. We show that

ϕg ∈ Aut(B). This is becuase ϕg is bijective and ϕg(x)ϕg(y) = g−1xgg−1yg = g−1xyg = ϕg(xy).

Since A char B, ϕg(A) = A for every g ∈ G, hence ACG.

(ii) See problem sheet 6/1.

�

Corollary 5.1. If N is a normal subgroup of G then not necessarily N char G.

Proof. In Example 5.1 C2 CK4, but C2 not characteristic in K4.

Suppose C2 char K4 C S4. Then C2 C S4, and this is a contradiction. �

Proposition 5.1. G
′

is a characteristic subgroup of G.
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Proof. We have to prove that for every ϕ ∈ Aut(G), ϕ(G
′
) = G

′
.

It is enough to prove that for every x, y ∈ G ϕ([x, y]) ∈ G′ . Now, ϕ([x, y]) = ϕ(x−1y−1xy)

= ϕ(x−1)ϕ(y−1)ϕ(x)ϕ(y) = ϕ(x)−1ϕ(y)−1ϕ(x)ϕ(y) = [ϕ(x), ϕ(y)] ∈ G′ .

Since ϕ−1(G
′
) ≤ G′ , hence ϕ(G

′
) = G

′
and we have that G

′
char G. �

Definition 5.6. G
′′

= (G
′
)
′
, G(i) = (G(i−1))

′

Definition 5.7. Derived series of G : G > G
′
> G

′′
> · · · > G(i) > · · ·

Remark 5.6. G(i) char G, in particular G(i) is normal subgroup of G.

Proof. G
′

char G, G
′′

= (G
′
)
′

char G
′
, so by Remark 5.5 (ii) we have that G

′′
char G.

Suppose by induction that G(i) char G.

G(i+1) = (G(i))
′

char G(i) char G. By Remark 5.5 (ii) we have that G(i+1) char G. �

Remark 5.7. G is abelian if and only if G
′

= {1}.

Definition 5.8. G is called metabelian if there exists a normal subgroup N C G such

that N is abelian and G/N is abelian.

Remark 5.8. G is metabelian if and only if G
′′

= 1

Remark 5.9. G
′

is the minimal normal subgroup N such that G/N is abelian.

Proof. G/N is abelian⇔ [xN, yN ] = 1̄ = N ⇔ [xN, yN ] = [x, y]N = N ⇔ [x, y] ∈ N ⇔ G
′ ≤ N .

�

Corollary 5.2. G is solvable if and only if there exists a natural number k such that

G(k) = {1}. The minimal such k is called the derived length of G denoted by d.l.(G).

Proof. ⇐=:)

Suppose that G > G
′
> · · · > G(k) = {1}. This chain is a normal series, and the factors

G(i)/G(i+1) = G(i)/(G(i))
′

are abelian. Then G is solvable.

=⇒:)

Suppose thatG is solvable. Then there exists a seriesG = N◦ B N1 B N2 B · · · B Nk = {1},
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such thatNi/Ni+1 is abelian for i = 0, 1, · · · , k−1. SinceG/N1 is abelian, soG
′
6 N1. Since

N1/N2 is abelian, then N
′
1 6 N2, hence G

′′
6 N2. We want to prove that G(k) 6 Nk = {1}.

By induction suppose that G(i).Then 6 Ni, G
(i+1) 6 N

′
i and Ni/Ni+1 is abelian we have

that N
′
i 6 N

i+1 hence G(i+1) 6 Ni+1. Thus G(k) = {1}. �

Proposition 5.2.

1. If G is solvable and H is a subgroup of G, then H is solvable and d.l.(H) 6 d.l.(G).

2. If G is solvable then G/N is solvable and d.l.(G/N) 6 d.l.(G).

3. If N is solvable normal subgroup of G and G/N is solvable then G is solvable and

d.l.(G) 6 d.l.(N) + d.l.(G/N).

4. If H,K are solvable then H ×K is solvable.

Proof. 1. This is because H i ≤ Gi for every i.

2. This is because H i ≤ (G/N)i = GiN
/
N .

3. Easy to see.

4. Easy to see.

�

Definition 5.9. A nontrivial normal subgroup H of G is called a minimal normal

subgroup of G if there exists no normal subgroup N such that 1 6 N � H.

Definition 5.10. A group G is called characteristically simple if there is no character-

istic subgroup N of G such that {1} � N � G.

Proposition 5.3. If {1} < N is a minimal normal subgroup of a group G, then N is

characteristically simple.

Proof. Suppose {1} 6= H char N C G,H 6= N . Then by Remark 5.3 H C G and this is a

contradiction since N was minimal. �
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Theorem 5.11. If G is a finite solvable group, and N is a minimal normal subgroup of

G then there exists a prime p such that N ∼= Cp × · · · × Cp (N is a so called elementary

abelian p-group).

Proof. N is characteristically simple (by Prop 5.3). Since N
′

char N , N
′

= N or N
′

= {1}.

However, N
′

= N impossible, as N is solvable. Hence N is abelian. Now, by the fundamen-

tal theorem of abelian groups we have thatN ∼= Np1 ×Np2 × · · · ×Npk , whereNpi ∈ Sylpi(N).

Then Npi char N . Hence Npi = N or {1} since N is characteristically simple. Thus N is

abelian p-group.

Let Ωn(N) := 〈x ∈ N |xpn = 1〉. We prove that Ωn(N) char N . Let ϕ ∈ Aut(N). It is

enough to prove that if xp
n

= 1 then ϕ(x)p
n

= 1. But ϕ(xp
n
) = ϕ(x)p

n
= 1. In particular,

Ω1(N) char N . Hence Ω1(N) = {1} or Ω1(N) = N .

However, Ω1(N) = 〈x|xp = 1〉 6= 〈{1}〉, since there exists an element of order p in N .

Thus Ω1(N) = N . Since N is abelian, so N ∼= Cp × · · · × Cp elementary abelian. �

Remark 5.10. Every finite group of p-power order is solvable.

Proof. We know from (Algebra 1) that if |G| = pk > 1 then Z(G) 6= 1.

Let Z2(G) be the inverse image of Z
(
G/Z(G)

)
in G, and in general let Zi+1(G) be the

inverse image of Z
(
G/Zi(G)

)
. Then 1 < Z(G) < Z2(G) < · · · and Zi+1(G)/Zi(G) =

Z
(
G/Zi(G)

)
abelian. Hence G is solvable. �

Theorem 5.12. (Burnside)

If G is a finite group and |G| = pαqβ, p 6= q primes, then G is solvable.

Theorem 5.13. (Feit-Thompson 1963)

If G is a finite group and |G| is odd, then G is solvable.

Theorem 5.14. (Further properties of solvability)

1. If N,M are normal subgroups of G and G/N,G/M are solvable, then G/(N ∩M) is

also solvable.
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2. If M,N are normal subgroups of G and M,N are solvable, then MN is also solvable.

Proof. 1. Let g ∈ G, let ϕ : G→ G/N ×G/M be a map such that g 7→ (gN, gM). Then

this is a homomorphism and kerϕ = {g ∈ G | g ∈ N ∩M} = N ∩M . So by the ho-

momorphism theorem G/(N ∩M) ∼= Imϕ 6 G/N ×G/M . Now we use Prop 5.2 (4)

and (1) to get that G/(N ∩M) is solvable.

2. Since M is solvable and (MN)/N ∼= M/(M ∩N) is solvable, moreover N is solvable,

so by Prop 5.2 (3) MN is also solvable.

�

Definition 5.15. In a finite group G there is a biggest solvable normal subgroup (product

of all solvable normal subgroups) is called the solvable radical of G.

Remark 5.11. If p, q are primes then every group of order pq is solvable.

Proof. If q > p and Q ∈ Sylq(G) then Q C G. Hence we have the normal series

G B Q B {1}. Then G/Q ∼= Cp, and Q/{1} ∼= Cq. Hence G is solvable. �

Remark 5.12. If |G| = pqr, where p, q, r are different primes then G is solvable.

Remark 5.13. Groups of orders (1− 59) are solvable.

Remark 5.14. If G is non-abelian simple group then G is not solvable since G
′

= G.

Definition 5.16. Let G be a group and let H,K be subgroups of G. Then the subgroup

[H,K] := 〈[h, k]|h ∈ H, k ∈ K〉 is called the commutator subgroup of H and K.

Remark 5.15.

1. Let H,K ≤ G. K is a subgroup of NG(H) if and only if [H,K] 6 H.

2. Suppose H is a subgroup of G,K is normal subgroup of G, and K is a subgroup H.

Then [H,G] is a subgroup of K if and only if H/K is a subgroup of Z(G/K).
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Proof. 1. =⇒) :

Let K 6 NG(H). It is enough to prove that for every h ∈ H, and for every k ∈ K,

[h, k] = h−1 k−1hk︸ ︷︷ ︸ ∈ H. But since k−1hk︸ ︷︷ ︸ ∈ H we have that [h, k] ∈ H.

⇐=) :

Suppose that h−1k−1hk ∈ H, for every h ∈ H, and for every k ∈ K k−1hk ∈ H so

K 6 NG(H).

2. [H,K] ≤ K ⇔ H is commuting with G mod K. In other words H/K ≤ Z(G/K).

�

Definition 5.17. (Lower central series of G)

K0(G) := G,K1(G) := [G,G] = G
′
,K2(G) = [G

′
, G] = [K1(G), G], · · · . In generalKi+1(G) = [Ki(G), G].

Then K0(G) > K1(G) > · · · is the lower central series of G.

Definition 5.18. (Upper central series)

Z0(G) = {1}, Z1(G) = Z(G), Z2(G) = inverse image of Z
(
G/Z(G)

)
in G. In general

Zi+1(G)/Zi(G) = Z
(
G/Zi(G)

)
. Then Z0(G) 6 Z1(G) 6 Z2(G) 6 · · · is the upper cen-

tral series of G.

Written the following theorem we also introduce the notion of nilpotent groups.

Theorem 5.19. For a group G the following are equivalent:

1. The lower central series of G in finitely many many steps reaches {1}.

2. The upper central series of G in finitely many steps reaches G.

The number of steps in (1) and (2) are equal. If this number is c, then G is called a

nilpotent group of class c, or shortly by c = cl(G).

Proof. (2)⇒ (1)

Suppose Zc(G) = G, for some c. We will prove by induction on i that Ki(G) 6 Zc−i(G)

(*). For i = 0, G = K0(G) = Zc(G) = G. Suppose that (*) holds for i. Then by induction

we have that Ki+1(G) = [Ki(G), G] 6 [Zc−i(G), G] 6 Zc−i−1, since
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Zc−i(G)/Zc−i−1(G) = Z
(
G/Zc−i−1(G)

)
. Then (∗) holds for every i and henceKc(G) 6 Z0(G) = {1}.

(1)⇒ (2)

Suppose that Kc(G) = {1}. We want to prove that Kc−j(G) 6 Zj(G)(**). We prove by

induction on j.

If j = 0, then {1} = Kc(G) = Z0(G) = {1}. Suppose by induction that (**) holds for j.

Then Kc−j(G) = [Kc−(j+1), G], thus Kc−(j+1) and G are interchangeable mod Kc−j(G).

In other words Kc−(j+1)(G)/Kc−j(G) 6 Z
(
G/Kc−j(G)

)
.

By induction we know that Kc−j(G) 6 Zj(G). So we have that

Kc−(j+1)(G)Zj(G)/Zj(G) 6 Z
(
G/Zj(G)

)
. Hence Kc−(j+1)(G) 6 Zj+1(G) holds.

Hence (**) holds for every j and for j = c we have that G = K0(G) 6 Zc(G). Thus

Zc(G) = G. �

Definition 5.20. A group G is called supersolvable if it has a normal series, where

factors are of prime order.

Remark 5.16. Abelian groups ( nilpotent groups ( supersolvable groups ( solvable

groups ( all finite groups.

Example 5.2. 1. S3 BA3 B {e} is supersolvable but not nilpotent, since Z(S3) = {1}.

2. Every finite p-group is nilpotent 1 < Z(G) < Z2(G) < · · · < Zc(G) = G.

3. We know that e.g. D8 and Q8 are nilpotent but not abelian p-groups.

4. A5 is not solvable, since A
′
5 = A5.

5. S4 is solvable but not supersolvable, since the only normal subgroups in S4 are

S4, A4,K4 and {1}. There is no normal subgroup of order 2 in it. In the series

S4 BA4 BK4 B {1}, the factors are abelian.

Theorem 5.21. (Properties of nilpotency)

1. If G is nilpotent and H is a subgroup of G, then H is also nilpotent and cl(H) ≤ cl(G).
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2. If G is nilpotent and N is normal subgroup of G, then G/N is also nilpotent and

cl(G/N) ≤ cl(G).

3. If G1 and G2 are nilpotent, then G1 ×G2 is nilpotent and cl(G1 ×G2) = max
(
cl(G1), cl(G2)

)
.

Proof. 1. This is because Ki(H) is a subgroup of Ki(G) hence cl(H) ≤ cl(G).

2. This is because Ki(G)N
/
N = Ki(G/N), and so cl(G/N) 6 cl(G).

3. Easy to see.

�

Remark 5.17. If N is a nilpotent normal subgroup of G and G/N is nilpotent, then G is

not necessarily nilpotent. (See Example 5.3.)

Example 5.3. S3 B A3, S3/A3
∼= C2 is nilpotent and A3

∼= C3 is nilpotent(p-group).

But S3 is not nilpotent since Z(S3) = {1}.

Theorem 5.22. (Frattini-argument)

Let G be a finite group and let H be a normal subgroup of G, P ∈ Sylp(H). Then G =

HNG(P ).

Proof. It is enough to prove that G ≤ HNG(P ). Let g ∈ G, since H C G, we have that

P g ≤ H, and P g ∈ Sylp(H). By Sylow’s theorem, there exists an element h ∈ H such

that P g = P h, so P gh
−1

= P and hence gh−1 ∈ NG(P ). Then gh−1 = n ∈ NG(P ). Thus

g = nh = h1n ∈ HNG(P ) for some h1 ∈ H. �

Theorem 5.23. If G is a finite group then the following are equivalent:

1. G is nilpotent.

2. For every proper subgroup H � G, H � NG(H) holds.

3. Every maximal subgroup of G is of prime index and normal.

4. Every Sylow subgroup of G is normal.

33



5. G is the direct product of its Sylow subgroups.

6. If x, y ∈ G and (o(x), o(y)) = 1 then [x, y] = 1.

Proof. (1)⇒ (2)

Suppose that G is nilpotent of class c. We have to prove that NG(H) > H.

Since Kc(G) = {1}, there exists an index i such that Ki(G) 6≤ H but Ki+1(G) 6 H. Since

[Ki(G), H] 6 Ki+1(G) 6 H, we have that Ki(G) ≤ NG(H) by Remark 5.15 (1), and so

NG(H) > H.

(2)⇒ (3)

Let M be maximal subgroup in G. Then M 6= G and by (1) M < NG(M) = G. Hence

M C G. We have to prove that [G : M ] is prime. Since M C G and M is maximal in G,

hence G/M has no nontrivial proper subgroups, so G/M ∼= Cp, for some prime p.

(3)⇒ (4)

Suppose by contradiction that there exists a Sylow subgroup P ∈ Sylp(G), such that

P 6 G. Then sinceNG(P ) � G we can find a maximal subgroupH such thatNG(P ) 6 H < G.

From (3) we know that H C G.

Now, by the Frattini-argument we have that G = HNG(P ) 6 H, which is a contradiction.

Hence P C G.

(4)⇒ (5)

Let |G| =
t∏
i=1

pαii and let Pi ∈ Sylpi(G). From (4) we have that Pi C G, i = 1, · · · , t, hence

t∏
i=1

Pi C G. For all i, we have that Pi ≤
t∏

j=1

Pi, hence | Pi | divides |
t∏

j=1

Pj | and hence

t∏
j=1

|Pj |
∣∣∣∣∣|

t∏
j=1

Pj | 6 |G|. But

t∏
j=1

|Pj | = |G|, so

t∏
j=1

|Pj | = |
t∏

j=1

Pi| = |G|.

Now, Pi C G, for i = 1, · · · , t, so
t∏

j=1

Pj = G. We have to prove that Pi ∩
∏
j 6=i

Pj = {1}.

Then we will have G = ×ti=1Pi. Now, |P1P2| =
|P1||P2|
|P1 ∩ P2|

divides |P1||P2|,

|P1P2P3| =
|P1P2||P3|
|P1P2 ∩ P3|

∣∣∣∣∣|P1P2||P3|
∣∣∣∣∣|P1||P2||P3| and by induction we have that
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|
∏
j 6=i

Pj |
∣∣∣∏
j 6=i
|Pj |. Hence Pi ∩

∏
j 6=i Pj = {1}.

(5)⇒ (6)

We have to prove that if x, y ∈ G, and (o(x), o(y)) = 1, then [x, y] = 1. Since

G = ×ti=1Pi, x = (x1, x2, · · · , xt), where xi ∈ Pi and y = (y1, y2, · · · , yt), where yi ∈ Pi.

If xi 6= 1, then yi = 1 and if yj 6= 1 then xj = 1. So xy = yx hence [x, y] = 1.

(5)⇒ (1)

We know that G = ×ti=1Pi, when Pi ∈ Sylpi(G). We also know that every finite p-group

is nilpotent. As G is the direct product of nilpotent groups it is also G is nilpotent by

Theorem 5.21 (3).

(6)⇒ (4)

From (6) we have that [Pi, Pj ] = 1 for every i 6= j, hence Pi ≤ NG(Pj) and Pj ≤ NG(Pi).

So
∏

Pi ≤ G. However,
∏
|Pi|
∣∣∣∣∣|Pi| ≤ |G|, but

∏
|Pi| = |G|, so

∏
Pi = G. If g ∈ G then

g = p1p2 · · · pt, where pi ∈ Pi. Hence P p1···pti = Pi. Thus g ∈ NG(Pi) and so Pi CG �

6 Hall theorems, and the Schur-Zassenhaus theorem

Definition 6.1. If G is a finite group and |G| = Πt
i=1p

αi
i , π(G) = {p1, p2, · · · , pk}, set of

prime divisors of G. For a subset π ⊂ π(G) we define π
′

= π(G) \ π. In particular

p
′

= π(G) \ {p}. We say that n is a π-number if the prime divisors of n are in the set π, n

is a π
′
-number if the prime divisors of n are in the set π

′
.

Definition 6.2. Let π be a subset of π(G). Let H be a subgroup of G and let π(H) = π

and suppose that ([G : H], |H|) = 1 then we call H a Hall π-subgroup of G.

Definition 6.3. A subgroup H of G is a π-subgroup of G if π(H) ⊆ π.

Definition 6.4. Hallπ(G) = {H ≤ G|H is a Hall π-subgroup of G}.
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Theorem 6.5. (Ph. Hall 1939)

(Analogues of Sylow’s theorems for solvable groups)

1. Eπ, for every subset π of π(G) there exists a Hall π-subgroup H ∈ Hallπ(G).

2. Cπ, every Hall π-subgroup of G is conjugate in G.

3. Dπ, every π-subgroup of G can be embedded into a Hall π-subgroup of G.

Proof. (of Eπ)

The proof is by induction on |G|. If G is a p-group then H = G. Let G be an arbitrary finite

solvable group. Let 1 6= N CG be a minimal normal subgroup. We have seen that N is an

elementary abelian p-group. In G/N by induction Eπ holds. Let H̄ = H/N ∈ Hallπ(G/N).

There are two cases:

1. If p ∈ π then the inverse image H of H̄ is also a π-group.

G

1

N

H

H

G/N = G

1

[G : H] = [G/N : H/N ] and it is a π! number. So H ∈ Hallπ(G).

2. If p /∈ π, ( | N |︸︷︷︸
π′−number

, | H/N |︸ ︷︷ ︸
π−number

) = 1. By the Schur-Zassenhaus theorem (see Theorem

6.7), there exists a subgroup H1 ≤ H such that H = N ·H1 and N ∩H1 = {1} (com-

plement to N in H).

Then H/N ∼= H1, so |H1| is a π-number and [G : H1] = [G : H][H : H1] = [G : H]|N |,

which is a π
′
-number. So H1 ∈ Hallπ(G).

�
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Remark 6.1. 1. If π = {p} we get Sylow’s theorems for solvable groups.

2. Solvability is important

• |A5| = 60 = 22 · 3 · 5, there is no subgroup H ≤ A5 such that |H| = 15, then

there is no Hall (3, 5)-subgroup in A5.

• |GL(3, 2)| = (23 − 1)(23 − 2)(23 − 22) = 23 · 3 · 7. In GL(3, 2) there are two

non-conjugate Hall {2, 3}-subgroups both isomorphic to S4.

• PSL(2, 11) = SL(2, 11)
/
Z(SL(2, 11)), it’s order is 22 ·3 ·7 ·11. There exist Hall

{2, 3}-subgroups that are not isomorphic, (A4, D12).

Remark 6.2. G is solvable if and only if for every subset π of π(G), there exist a Hall

π-subgroup of G, moreover, G is solvable if and only if for all p ∈ π(G), there exists a Hall

p
′
-subgroup of G.

Theorem 6.6. (Gaschütz) (special case of Schur-Zassenhaus)

Let G be a finite group, N a normal subgroup of G such that N is abelian and

(|N |, [G : N ]) = 1 then there exists a subgroup H ≤ G such that H∩N = {1}, and HN = G

(H is complement to N in G).

Proof. Let |G : N | = m, and |N | = n. Then (m,n) = 1. The elements of the factor group

G/N are cosets of N . Let α ∈ G/N, xα ∈ α (a representative of the coset α). Then

G =
⋃∗
α∈G/N xαN . Let X := {xα | α ∈ G/N}. It is enough to prove that we can choose

X to be closed under multiplication. Then X will be a subgroup, since o(xα) = k < ∞

for some k, thus xkα = 1 ∈ X and xk−1
α = x−1

α ∈ X also holds. Moreover, X will be a

complement to N , since XN = G and X ∩N = {1}.

Our aim is to find a set of coset representatives which is closed under multiplication. Since

xαxβ ∈ xαβN , there exists a function f : G/N × G/N → N such that f(α, β) ∈ N and

xαxβ = xαβf(α, β).

As the multiplication in G is associative, we have that (xαxβ)xγ = xα(xβxγ). Hence

(xαxβ)xγ = xαβf(α, β)xγ = xαβxγx
−1
γ f(α, β)xγ = xαβxγf(α, β)xγ = x(αβ)γf(αβ, γ)f(α, β)xγ .

On the other hand, xα(xβxγ) = xαxβγf(β, γ) = xα(βγ)f(α, βγ)f(β, γ). Thus we have that
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f(αβ, γ)f(α, β)xγ = f(α, βγ)f(β, γ)(*) (a function f : G/N × G/N → N satisfying (*) is

called a factor set ).

Let g(β) :=
∏

α∈G/N

f(α, β). Now we multiply both sides of (*) for every α.

Since N is abelian, we have that
∏

α∈G/N

f(αβ, γ)
∏

α∈G/N

f(α, β)xγ =
∏

α∈G/N

f(α, βγ)f(β, γ)m.

Hence g(γ)g(β)xγ = g(βγ)f(β, γ)m and g(β)xγg(γ)f(β, γ)−m = g(βγ) (**)

Since |G/N | = m, |N | = n, and (m,n) = 1, we have that there exists an integer m
′

such

that (−m)m
′ ≡ 1(n). Thus −mm′ = kn+ 1 and if z ∈ N then z−mm

′
= znk+1 = z.

Let h be a function h : G/N → N such that h(α) = g(α)m
′
. Let yα = xαh(α) be another

set of coset representatives of N . We prove that it is closed under multiplication.

We raise to the (m
′
)th power both sides of (**), then we have that h(β)xγh(γ)f(β, γ) = h(βγ)

(***).

Now, yβyγ = xβh(β)xγh(γ) = xβxγx
−1
γ h(β)xγh(γ) = xβxγh(β)xγh(γ) = xβγf(β, γ)h(β)xγh(γ)=

xβγh(βγ) = yβγ .

Hence Y is closed under multiplication, and Y = {yα | α ∈ G/N} complement to N . �

Theorem 6.7. (Schur–Zassenhaus theorem)

If G is a finite group and N is a normal subgroup of G such that (|N |, |G : N |) = 1, then

there exists a subgroup H ≤ G such that HN = G, H ∩ N = {1}, in other words H is a

complement to N.

Proof. We proved this if N is abelian, this was Gaschütz’s theorem.

Let G be a minimal counterexample, Suppose that N does not have a complement

Claim 1: N is nilpotent.

If N is not nilpotent then there exists P ∈ Sylp(N) such that P 6 G. Hence NG(P ) �

G. By the Frattini-argument G = N ·NG(P ) (*) because G is minimal and NG(P ) is

a smaller group. We have that N ∩NG(P )CNG(P ) and | N ∩NG(P ) |
∣∣∣ | N |, more-

over (**) [NG(P ) : NG(P ) ∩N ] =| NG(P )/NG(P ) ∩N |=| NG(P )N/N |(∗)= | G/N |. Since

(| N |, | G/N |) = 1 we have that (|N ∩NG(P )|, [NG(P ) : NG(P ) ∩N ]) = 1, by induction

there exist a complement H to N ∩NG(P ) in NG(P ). Hence
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H · (N ∩NG(P )) = NG(P ), H ∩ (N ∩NG(P )) = {1}. By (**) we have that

| H |= [G : N ] and NG(P )/N ∩ NG(P ) ∼= H. Hence |HN | = | H || N |
| H ∩N |

=| G | so H ∩ N

and H is also a complement to N in G and this contradiction shows that N is nilpotent.

Claim 2: N is abelian.

Since N is nilpotent it is also solvable. So N
′
< N . If N is not abelian then N

′ 6= 1 and

N
′

char N CG so N
′
CG. Since | G/N ′ |< G we can apply induction then N/N

′
CG/N

′

and (| N/N ′ |, [G/N ′ : N/N
′
]︸ ︷︷ ︸

[G:N ]

) = 1.

By introduction there exists a complement H/N
′

to N/N
′

in G/N
′
. Then

| H1/N |= [G/N
′

: N/N
′
] = [G : N ] and NH1 = G,N ∩H1 = N

′
. By (***),

| G |=| NH1 |=
| N || H1 |

N ′
hence | H1 |=

| G |
|N |
|N ′ |

, and
| G |
| N |

=
| H1 |
| N ′ |

. SinceH1 < G,N
′
CH1,

(| N ′ |, [H1 : N
′
]︸ ︷︷ ︸

[G:N ]

) = 1, by induction there exists a subgroup H2 ≤ H1, such that N
′
H2 = H1

and N
′ ∩H2 = 1. (****)

G

NH1

N ′

1

G/N ′

N/N ′H1/N ′

N ′/N ′

Then | H2 |=
| H1 |
| N ′ |

=
| G |
| N |

. We show that H2 is complement to N in G. This is because

NH2 = NN ′H2
(∗∗∗∗)

= NH1 = G,N ∩H2 ⊆ N ∩H1 = N ′, N ∩H2 = N ∩H2 ∩N ′ = 1 and

this is contradiction. �
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7 Normal p-complement theorems and the transfer

Definition 7.1. If for P ∈ Sylp(G), there exists a normal subgroup K CG such that

KP = G and K ∩ P = {1}, then we tell that K is a normal p-complementnormal p-

complement in G.

Remark 7.1. Since G/K = KP/K ∼= P/K ∩ P ∼= P , thus K ∈ Hallp′ (G).

Definition 7.2. A group G is p-nilpotent if it has a normal p-complement.

Theorem 7.3. A finite group G is nilpotent if and only if G is p-nilpotent for every

p ∈ π(G).

Proof. ⇐=) Suppose thatG is p-nilpotent for every p ∈ π(G). For every pi ∈ π(G), Ki ∈ Hallp′i(G),

Ki ∩ Pi = 1, Ki · pi = G and if p 6= pi then P ≤ Ki for every P ∈ Sylp(G). Hence P = ∩p 6=piKi CG,

and so G is nilpotent by Theorem 5.23.

=⇒) If G is nilpotent then G = P1 × · · · × Pt and
∏
j 6=i

Pj is a normal pi-complement in G.

�

Our aim is to prove the Burnside’s transfer theorem, see Theorem 7.8. To prove it we need

the following results.

Lemma 7.1. Let Q be a subgroup of G of index n. Let {l1, · · · , ln} and {h1, · · · , hn} be

two complete sets of representatives of left cosets (left transversals) of Q in G. Then

G =
n∗⋃
i=1

liQ =
n∗⋃
i=1

hiQ and for all g ∈ G and for every i ∈ {1, · · · , n}, there exists a unique,

σ(i) ∈ {1, · · · , n} and there exists a unique xi ∈ Q such that ghi = lσ(i)xi. Moreover

σ ∈ Sn.

Proof. Since

n⋃
i=1

∗

hiQ =

n⋃
i=1

liQ, ghi, there exists a unique j such that ghi ∈ ljQ. Then

ghi = ljxi, for a unique xi ∈ Q.

Let σ : {1, · · · , n}
i

→ {1, · · · , n}
j

mapping i 7→ j. then σ is injective. Suppose σ(k) = j = σ(i).

It means that, ghk = ljxk hence ghkx
−1
k = lj and ghi = ljxi hence ghix

−1
i = lj . So
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ghkx
−1
k = ghix

−1
i and hence hkx

−1
k = hix

−1
i . Thus h−1

i hk = x−1
i xk ∈ Q, which implies

that hiQ = hkQ. So i = k and σ is injective on a finite set to itself so it is also surjective

and σ is a permutation on {1, · · · , n}. �

Proposition 7.1. (Special cases)

1. If li = hi then gli = lσ(i)xi(*)

2. If g = 1, then 1 · hi = lσ(i)xi

Definition 7.4. (Transfer)

Let Q be a subgroup G and [G : Q] = n. The transfer is a function V : G→ Q/Q
′

such

that g 7→ (
n∏
i=1

xi)Q
′
, where G =

n⋃
i=1

liQ and gli = lσ(i)xi, xi ∈ Q.

Theorem 7.5. If Q is a subgroup of G, [G : Q] = n and V : G→ Q/Q
′

is the transfer

map, then V is a homomorphism and V is independent of the left transversal of Q in G.

Proof. Let {l1, · · · , ln}, {h1, · · · , hn} be two left transversals ofQ inG. ThenG =
n∗⋃
i=1

liQ =
n∗⋃
i=1

hiQ.

Let g ∈ G. Then we have that there exist unique σ, τ and α ∈ Sn and unique xi, yi and

zi ∈ Q such that

gli = lσ(i)xi (∗)

ghi = hτ(i)yi (∗∗)

1hi = lα(i)zi (∗ ∗ ∗)

ghi
(∗∗∗)
= g(lα(i)zi)

(∗)
= lσ(α(i))xα(i)zi (∗ ∗ ∗∗)

Now, let α(j) = σ(α(i)) then j = α−1σα(i) (v).

Now, hj
(∗∗∗)
= lα(j)zj and so lα(j) = hjz

−1
j , hence ghi

(∗∗∗∗)
= lα(j)xα(i)

¯(zi) = hjz
−1
j xα(i)zi.

On the other hand, ghi
(∗∗)
= hτ(i)yi and we have that τ(i) = j and yi = z−1

j xα(i)zi
(v)
= z−1

α−1σα(i)
xα(i)zi.

So
n∏
i=1

yiQ
′

=
n∏
i=1

z−1
α−1σα(i)

xα(i)ziQ
′

=
n∏
i=1

xα(i)Q
′

=
n∏
i=1

xiQ
′
. Hence V is independent of

the left transversal of Q in G. We want prove that V : G→ Q/Q
′

is a homomorphism.

It is enough to prove that V (gg
′
) = V (g)V (g

′
). Let G =

n⋃
i=1

∗

liQ. Then gli = lσ(i)xi,
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g
′
li = lτ(i)yi. So gg

′
li = glτ(i)yi = lστ(i)xτ(i)yi. Hence V (gg

′
) = πxτ(i)yiQ

′
= πxτ(i)Q

′
πyiQ

′

= πxiQ
′
πyiQ

′
= V (g)V (g

′
). �

Definition 7.6. Let [G : Q] = n, and let K be a normal subgroup of G. Suppose that

KQ = G and K ∩Q = {1}. Then we say that K is a normal complement to Q.

Remark 7.2. IfK is a normal complement toQ, then |K| = [G : Q] = n andK = {a1, · · · , an}

is a left transversal to Q in G and K ≤ ker(V ). (V : G→ Q/Q
′

transfer map)

Proof. n = [G : Q] =
|G|
|Q|

=
|KQ|
|Q|

=
|K||Q|
|K ∩Q||Q|

= |K|. Since K = {a1, · · · , an}, we have

thatG = KQ =
n⋃
i=1

∗

aiQ. This is a disjoint union, since if aiQ = ajQ then a−1
j ai ∈ Q ∩K = {1},

so ai = aj and then K = {a1, · · · , an} is a left transversal to Q in G.

Let V : G→ Q/Q
′

be the transfer map. We want to prove that K ≤ ker(V ).

Let k ∈ K. Then kai = aσ(i)xi where σ ∈ Sn and xi ∈ Q ∩K = {1}. Thus V (k) =
∏

1 ·Q′ = Q
′
.

Hence k ∈ ker(V ), for every k ∈ K so K ≤ ker(V ). �

Remark 7.3. If Q is abelian, then Q/Q
′

= Q so Im(V ) ≤ Q.

Corollary 7.1. Let [G : Q] = n, let Q be abelian and let K be a normal complement to Q

in G. If V : G→ Q/Q
′

is surjective, then ker(V ) = K.

Proof. We have seen K ≤ ker(V ). By the Homomorphism theorem we have that

G/ ker(V ) ∼= Im(V ) = Q/Q
′

= Q, since Q is abelian. Since
|G|

| ker(V )|
= |Q| and

|G|
|K|

= |Q|,

we have that K = ker(V ). �

Lemma 7.2. (Nice form of the transfer map)

Let Q be a subgroup of G, [G : Q] = n,

n⋃
i=1

∗

liQ = G, then for every g ∈ G, there exist ele-

ments h1, h2, · · · , hm ∈ G and integers n1, · · · , nm ∈ N with (depending on g) such that

1. h−1
i gnihi ∈ Q,

2.
m∑
i=1

ni = n,
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3. V (g) =

m∏
i=1

(h−1
i gnihi)Q

′
.

Proof. We have that gli = lσ(i)xi, where σ ∈ Sn and xi ∈ Q. Now we write σ as product

of disjoint cycles: σ = α1α2 · · ·αm.

Let αi = (j1, · · · , jr), gl1 = lσ(j1)xj1 = lj2xj1

glj2 = lσ(j2)xj2 = lj3xj2
...

gljr−1 = lσ(jr−1)xjr−1 = ljrxjr−1

gljr = lσ(jr)xjr = lj1xjr . Then xjr = l−1
j1
gljr , xjr−1 = l−1

jr
gljr−1 , · · · , xj1 = l−1

j2
gl1.

Let hi = lj1 , ni = r for i = 1, · · · , n. Hence we have that

Q 3 xjrxjr−1 · · ·xj1 = (l−1
j1
gljr)(l

−1
jr
gljr−1) · · · (l−1

j3
glj2)(l−1

j2
glj1) = (l−1

j1
grlj1) = (h−1gnih).

Repeating this process for each αi, i = 1, · · · ,m, we have that

V (g) =
n∏
i=1

xiQ
′

=
m∏
i=1

(xjrxjr−1 · · ·xj1)Q
′

=
m∏
i=1

h−1
i gnihiQ

′
. �

Theorem 7.7. If Q is a subgroup of G, [G : Q] = n and Q is abelian such that Q ≤ Z(G)

then V (g) = gn for every g ∈ G.

Proof. Let g ∈ G. Then by Lemma 7.2 we have that V (g) =

m∏
i=1

h−1
i gnihiQ

′
=

m∏
i=1

h−1
i gnihi.

and

h−1
i gnihi ∈ Q. As QCG, then gni ∈ Q also holds.

However, Since Q ≤ Z(G), gni = hi(h
−1
i gnihi)h

−1
i = h−1

i gnihi and

gn = g
∑m
i=1 ni =

m∏
i=1

gni =
m∏
i=1

h−1
i gnihi =

m∏
i=1

h−1
i gnihiQ

′
= V (g). �

Corollary 7.2. If [G : Q] = n and Q ≤ Z(G) then the map g 7→ gn is a homomorphism

from G to Q.

Proof. By Theorem 7.7, we have that V (g) = gn, so it is homomorphism. �

Lemma 7.3. Let G be a finite group, p a prime, Q ∈ Sylp(G). If g, h ∈ CG(Q) are

conjugate in G, then they are also conjugate in NG(Q).
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Proof. Let g, h ∈ CG(Q) be two elements that are conjugate in G. Then there exist an

element x ∈ G such that x−1gx = h. Since conjugation by x is an automorphism of G,

we have that h = x−1gx ∈ x−1CG(Q)x = CGx(Qx) = CG(Qx), hence Qx ≤ CG(h). Since

Q,Qx ∈ Sylp(CG(h)), we have that there exists an element c ∈ CG(h) such that Q = Qxc

and so xc ∈ NG(Q). Let n1 := xc, then gn1 = gxc = (gx)c = hc = h. �

Theorem 7.8. (Burnside transfer theorem)

Let G be a finite group Q ∈ Sylp(G) such that Q ≤ Z(NG(Q)). Then there is a normal

p-complement in G.

Proof. Since Q is abelian, we have that Q ≤ CG(Q) and V : G→ (Q/Q
′

= Q).

Let [G : Q] = n. If g ∈ Q, gni ∈ Q ≤ CG(Q), and by Lemma 7.2 (1) h−1
i gnihi ∈ Q ≤ CG(Q)

also holds. By Lemma 7.3 gni and h−1
i gnihi are conjugate in NG(Q) i.e., there exists an

element u ∈ NG(Q) such that u−1gniu = h−1
i gnihi. Since Q ≤ Z(NG(Q)), we have that

u−1gniu = gni and V (g) =

m∏
i=1

gni = g
∑m
i=1 ni = gn. Let |Q| = q. Then (q, n) = 1, so there

exist α, β ∈ Z such that αq + βn = 1. If g ∈ Q, then g = g1 = gαq+βn = (gβ)n(gq)α = (gβ)n

hence the map V : Q→ Q, g 7→ gn is surjective. Thus V is bijective and so kerV ∩Q = {1}.

By the Homomorphism theorem G/ kerV ∼= ImV = Q. Let K = kerV . Then K ∩Q = 1.

We will prove that K is a normal p-complement in G. Obviously K CG.

|KQ| = |K||Q|
|K ∩Q|

= |K||Q| = |G|, hence KQ = G. Thus K is a normal p-complement in G.

�

Remark 7.4. If K is a normal p-complement then K is characteristic in G.

Proof. We know thatK ∈ Hallp′ (G), Let ϕ ∈ Aut(G). Then ϕ(K) ∈ Hallp′ (G) and ϕ(K)CG.

Thus we have thatKϕ(K) is a p
′
-group, however [G : K] =| Q |, Q ∈ Sylp(G), so ϕ(K) ⊆ K,

hence ϕ(K) = K. �
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8 Free groups, the Nielsen-Schreier theorem

Let us fix a set X. We form words from elements of X and their inverses, w = a1a2 · · · an =

xεii , εi = ±1. We define multiplication, as concatenation of words, and cancel xx−1 or x−1x.

We call a word reduced if it cannot be written in a shorter form.

Theorem 8.1. Every word can be simplified into a unique reduced word.

(The proof is by induction on the length of the word).

In this way two words are equivalent if they reduce to the same word.

Theorem 8.2. The equivalence classes of words on X form a group under the above

multiplication, this group is called the free group generated by free generations set X. We

denote it F (X). If | X |= n then we use notation Fn.

Theorem 8.3. (The universal property)

Let G be a group and let ϕ : X → G be a map. Then ϕ can be extended in a unique way

to a group homomorphism ϕ̃ : F (X)→ G such that ϕ̃|X = ϕ.

Proof. We define ϕ̃(xε11 , · · · , x
εk
k ) :=

k∏
i=1

ϕ(xi)
εi and this a homomorphism.

X ⊂ F (X)

ϕϕ

G

�

Corollary 8.1. If |X| = |Y | ⇒ F (X) ∼= F (Y ). (the converse is also true)
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Proof. xdfhgjjh

F (X)

F (Y )

∃! homomorphism ϕ such that ϕ|X=ϕ

yi

xi

∃! homomorphism ψ such that ψ|Y =ψ

F (Y )

F (Y )

X

xi
ϕ

Y

yi
ψ

xi yi xi
ϕ ψ

ψ̄ϕ̄|X = idX , ϕ|Y = idY .

F (X)

F (X)

∃! homomorphism, hence ψ ϕ =idF (X)

X

idX = ψϕ|X

idY = ϕψ|Y

Y

∃! homomorphism, hence ϕ ψ =idF (Y )

F (Y )

F (Y )

Hence ϕ̄, ψ̄ are inverses of each other, so ϕ̄, ψ̄ are group isomorphism, hence F (X) ∼= F (Y ).

�
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Theorem 8.4. Let G = 〈g1, · · · , gn〉 be a group F (X) be the free group with free generating

set X = {x1, · · · , xn}. Then G is a homomorphic image of F (X).

Proof. Let ϕ(xi) = gi, i = 1, · · · , n. By the universal property of F (X), there exists a

unique homomorphism ϕ̄ : F (X)→ G such that ϕ̄(xi) = gi, i = 1, · · · , n holds.

ϕ̄ is surjective since Im(ϕ̄) contains a generating set of G. So by the Homomorphism the-

orem, F (X)
/

ker ψ̄ ∼= Im ψ̄ = G.

X F (X)

∃! ϕϕ

G

xi

gi

�

Definition 8.5. Let N := ker ϕ̄ in the above theorem and let {ri|i ∈ I} be the normal

subgroup generators of N (ri and their conjugates generate N). Then the words ri are

called the defining relations of G.

We say that G = 〈x1, · · · , xn
∣∣ r1, r2, · · · 〉 is given by generators and relations.

If there are finite number of generators and relations, then G is called finitely presented

group.

Theorem 8.6. (Dyck)

Let R = {r1, r2, · · · }, R
′

= {r′1, r
′
2, · · · }, let G1 = 〈x1, x2, · · ·

∣∣r1, r2, · · · 〉, G2 = 〈x1, x2, · · ·
∣∣r′1, r′2, · · · 〉

be groups are given with generators and relations. Suppose that R ⊆ R′. Then G2 is a ho-

momorphic image of G1.

Proof. Let N1 be the normal subgroup of Fn generated by normal subgroup generators

R. We know that G1
∼= Fn/N1, G2

∼= Fn/N2, and N1 ≤ N2. By the second isomorphism

theorem we have that N1 CN2, N2/N1 C Fn/N1 and Fn/N1

/
N2/N1

∼= Fn/N2
∼= G2. �
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Definition 8.7. Let G be a group, and let X be a generating set of G. Then Γ(G,X) is

the Cayley-graph of G with respect to X if the vertices are V (Γ(G,X)) = G, the edges

are E(Γ(G,X)) = {(g, xg)
∣∣x ∈ X, g ∈ G}. Then Γ(G,X) is a directed coloured graph, the

edges of Γ(G,X) are coloured by elements of X. (In general X can also be just a subset

of a generating set)

Definition 8.8. Autc(Γ(G,X)) is the group of colour preserving automorphisms of the

graph Γ(G,X). This is a permutation on the vertices and each edge is mapped to an edge,

a non-edge is mapped to non-edge and the coulour of the edge is preserved.

Remark 8.1. In Γ(G,X) From each vertex for every x ∈ X there exists a unique in-edge

(x−1g, g) with colour x and a unique out-edge g, xg with colour x.

Lemma 8.1. If X ⊆ G, then Γ(G,X) is connected if and only if X is a generating set of

G.

Proof. ⇐=) Let g1, g2 ∈ G. Then g := g2g
−1
1 = xε1i1x

ε2
i2
· · ·xεrir where xij ∈ X and εi = ±1.

Then since g2 = (g2g
−1
1 )g1 = xε1i1x

ε2
i2
· · ·xεrir g1, there is a path

g1
x
εr

ir · · ·
x
ε1

i1
x
ε1

i1 · · · x
εr

ir g1 = g2x
εr

ir g1
x
εr−1

ir−1 x
εr−1

ir−1
x
εr

ir g1

x
εr−2

ir−2

from g1 to g2, hence Γ(G,X) is connected.

=⇒) Suppose that Γ(G,X) is connected. Then we can reach each element g ∈ G with a

path from e. If on the edge we go in reverse direction then the label in the inverse of the

generator.

e
x
ε1

1
x
ε1

1

x
ε2

2
x
ε2

2 x
ε1

1 · · ·
x
εn

n
x
εn

n · · · x
ε1

1 = g

thus the product on the edges gives g. Hence generates G. �

Theorem 8.9. Autc(Γ(G,X)) ∼= G.
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Proof. Let g ∈ G. Then g acts on the vertices of the graph by right multiplication ϕg :

u 7→ ug. Observe that this a permutation.

If (h, xh) is an edge, then (hg, xhg) is also an edge, so ϕg preserves edges. If there is no edge

between h and k, then (hg, kg) cannot be an edge, since ϕg−1 also preserves edges. Hence we

can define a map Φ : G→ Autc(Γ(G,X)) by Φ : g 7→ ϕg. This map is injective. Φ is a group

homomorphism, since for every h ∈ G, we have that hϕg1g2 = h(g1g2) = (hg1)g2 = (hϕg1)ϕg2 ,

hence ϕg1g2 = ϕg1ϕg2 .

We want to prove that Φ is surjective.

Note: if α ∈ Autc(Γ(G,X)) fixes a vertex then it also fixes it’s neighbours, since to g there

is a unique in-edge with colour x and a unique out-edge with colour x.

Since Γ is connected, we have that α = id.

x−1g x gg
x x

Suppose that ϕ ∈ Autc(Γ(G,X)). If g = 1ϕ then 1 = (1ϕ)ϕg−1 .

So 1 is a fixed point of ϕϕg−1 . Hence ϕϕg−1 = id and ϕ = ϕg. Thus Φ is surjective and Φ

is an isomomorphism. �

Lemma 8.2. G is freely generated by X ⊆ G if and only if Γ(G,X) is a tree.

Proof. We have seen that X is a generating set if and only if Γ(G,X) is connected.

If X is not a free generating set of G then there exists a nontrivial relation xε1i1 · · ·x
εn
in

= 1,

where xij ∈ X and εi = ±1. Then

1
x
εn

in
x
εn

in

x
εn−1

in−1
x
εn−1

in−1
x
εn

in
· · ·

x
ε1

i1
x
ε1

i1 · · · x
εn

in = 1

gives a circle in the graph of length ≥ 3, since xε1i1x
ε2
i2

= 1 would imply that xε1i1 and xε2i2 are

inverses of each other, and this is a trivial relation.

Conversly if we have a circle in Γ then the product of labels gives a nontrivial relation. �
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Zorn’s lemma

Let P is a partial ordered set (P,≤). Suppose that every ordered subset of P has an upper

bound. Then there is a maximal element in P .

Theorem 8.10. (Nielsen-Schreier)

Every non-trivial subgroup of a free group is free.

Proof. Let G = F (X), and let {1} 6= H ≤ G. We want to prove that H is free. By Lemma

8.2 we have that Γ(G,X) is a tree.

We have to prove there exists a generating set Y of H such that Γ(H,Y ) is a tree. Let us

define the set S := {Γ′ ≤ Γ
∣∣Γ′ is a spanning subgraph of Γ (an edge in Γ is in Γ

′
if the end

points are in the set Γ
′
) and Γ

′
connected, Γ

′
contains from each left coset of H at most

one element}.

We apply for the set S Zorn’s lemma. The conditions of Zorn’s lemma are satisfied: if

Γ1 ≤ Γ2 ≤ · · · is a chain in S, then
⋃

Γi ∈ S. Then by Zorn’s lemma there is a maximal

element T in S. We want to prove that T contains from each left coset of H exactly one

element. Suppose by contradiction that g1H ∩ T = ∅ for some g1 ∈ G. Since Γ(G,X) is

connected, g1 is reachable by a path from an element of T . So there exists an element g

such that (g, xg) ∈ E(Γ(G,X)) gH ∩ T 6= ∅, xgH ∩ T = ∅. So there exists an element

h ∈ H such that gh ∈ T , xgh /∈ T , and (gh, xgh) ∈ E(Γ(G,X)). Thus T ∪ {xgh} is a

bigger spanning subgraph in Γ(G,X), which is connected and contains from each coset of

H at most one element. This is a contradiction, since T as maximal. Hence T contains

from each left coset exactly one element, so T is a left transversal of H in G. We suppose

that 1 ∈ T , since there exists an element h ∈ H ∩ T . Thus 1 ∈ Th−1 ∼= T (this is an

isomorphism of graphs), and Th−1 left transversal of H in G.

Let T = {Th|h ∈ H}. We want to prove that T is a set of a disjoint left transversals of

H in G. If Th1 ∩ Th2 6= ∅ then there exist elements t1, t2 ∈ T and h1, h2 ∈ H such that

t1h1 = t2h2. Then t1H = t2H and so t1, t2 ∈ T are in the same coset of H. Hence t1 = t2,

since T was a left transversal, so h1 = h2. Thus, if we map h to Th, then we get a bijection

between H and T . On T we define a directed H-coloured graph. The vertices of this graph

will be {Th
∣∣h ∈ H}. Now we define when the transversals Th1 and Th2 are connected
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with an edge coloured by x. Let h1 6= h2, and t1h1 ∈ Th1, t2h2 ∈ Th2. If there exists an

element x ∈ G such that x(t1h1) = t2h2, then t1h1
x→ t2h2 is an edge in Γ(G,X). Then

t−1
2 xt1h1 = h2 and h−1

2 xt1 = h2h
−1
1 ∈ H. Let (Th1, Th2) be an edge coloured by h2h

−1
1 .

Observe that there is at most one element x ∈ Y such that an edge coloured by x connect

elements of Th1 with elements Th2. Suppose that x
′
(t
′
1h1) = t

′
2h2 and x(t1h1) = t2h2.

Since Th1 and Th2 are connected,

t
′
1
h1

x′
h2t′2

h1

x
t′2 h′2t1

Th1 Th2

we get a circle in the original graph, and this is a contradiction, since Γ(G,X) was a tree.

We repeat this for all possible Thi, Thj then we define Y as the set of possible colours in

T .

We want to prove that Y is a free generating set of H and Γ(H,Y ) ∼= T . Let φ be

the map h 7→ Th. This is a bijection between H and T . If (h, yh) ∈ E(Γ(H,Y )) then

y = h2h
−1
1 where xt1h1 = t2h2 for some t1, t2 ∈ T . Then t−1

2 xt1 = h2h
−1
1 . and

x(t1h) = t2(h2h
−1
1 h) ∈ Th2h

−1
1 h, so from Th to Th2h

−1
1 h there is an edge of colour yi. So

the map h 7→ Th preserve coloured edges.

If there is no edge y ∈ Y between h and h
′

then there cannot be an edge y ∈ Y between Th

and Th
′
, since then y = h

′
h−1 and this takes h to h

′
, which is a contradiction. Γ(H,Y ) is

connected, since Γ(G,X) is connected, and there is a path between certain points of Th1

and Th2.
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Th1 Th2

T is a tree, otherwise would be a circle also in Γ(G,X) and this is a contradiction. Since

T ∼= Γ(H,Y ), H is a free group with free generators Y .

�

Remark 8.2. If [Fn : H] = m then H ∼= Fm(n−1)+1.

Proof. In the previous proof we have seen that Γc(H,Y ) ∼= T , where h 7→ Th gives the

isomorphism. T is also a tree, since it is connected and without any circles, as Γc(G,X)

had no circles. The vertices of T are Th, where h ∈ H, these are disjoint. There was

an edge between Th1 and Th2 iff there exist elements t1, t2 ∈ T and x ∈ X such that

t1h1
x→ t2h2.

We have seen that between Th1 and Th2 there is at most one edge, and its colour is h2h
−1
1 .

In the isomorphism between Γc(H,Y ) and T , Y maps to the edges of T . We have seen that

Γc(H,Y ) is also a tree. (H is a free group with free generators Y ). We want to determine

| Y |.

We have to calculate how many edges go from Th to Th
′
: this is exactly m · n, since we

can choose x in n different ways and t1 in m different ways.

Th Th
′ t1h th

′

But edgs that go from Th to Th are not good, so we have to substract the number of edges

in the tree Th. This is exatctly | Th | −1 = m− 1.

So | Y |= m · n− (m− 1) = m(n− 1) + 1. �
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9 Problem sheets

Problem sheet 1.

1. Prove that two elements of Sn are conjugate if and only if writing them as products of

disjoint cycles, in both decompositions the lengths of cycles (c1, . . . , ct) are the same up

to the order of the cycles. How can one conjugate two permutations with the same cycle

structure into each other?

2. Show that the centre Z(Sn) of the symmetric group contains only the unit element if

n ≥ 3. Moreover, Z(An) = 1 and CSn(An) = 1, if n ≥ 4.

3. Determine the conjugacy classes of An. Prove that if σ ∈ An then there are two cases:

(a) If the centralizer CSn(σ) contains an odd permutation, then the conjugacy classes of σ

in An and Sn are the same: KAn(σ) = KSn(σ). (b) If CSn(σ) contains only even permuta-

tions then KSn(σ) splits into two conjugacy classes of An of equal size.

4. Show that An is simple if n ≥ 5 with the following steps:

a) Let us suppose by contradiction that there is a normal subgroup 1 < N < An. Let

σ ∈ N be a nontrivial element with maximal possible number of fixed points. Prove that

we may suppose that σ is of prime order.

b) Prove that in the decomposition of σ into the product of disjoint cycles every cycle

length is either p or 1.

c) Prove that An is generated by the 3-cycles of Sn if n ≥ 3.

d) Prove that if p = 3 and σ is one 3-cycle, then N contains all 3-cycles of Sn, hence

N = An.

e) Prove that if p = 3 and σ is the product of at least two 3-cycles, say (1, 2, 3)(4, 5, 6) · · · ,

or p ≥ 5 and σ = (1, 2, . . . , p) · · · then if τ = (3, 4, 5) ∈ An, we form the element στσ−1τ−1.

This also belongs to N , it is not 1, it fixes all the fixed points of σ, moreover it also fixes

1, contradicting that σ has the maximal number of fixed points among nontrivial elements

of N .
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f) If p = 2, then σ is the product of at least 2 transpositions, e.g. (1, 2)(3, 4) · · · . Then

σ(1, 2, 3)σ−1(3, 2, 1) = (1, 4)(2, 3) and this belongs to N .

g) (1, 4)(2, 3) can be conjugated to any double transpositions by an element of An, hence

N = An, which is a contradiction.

5.(a) Prove that if x is an element of a group G and xN = 1, then its order o(x) divides N .

(b) Prove that if G1, G2 are groups and φ : G1 → G2 is a multiplicative map (φ(ab) =

φ(a)φ(b)), then φ(1G1) = 1G2 and for every x ∈ G1 φ(x−1) = φ(x)−1.

6. Prove that if n ≥ 5 and |Sn : H| < n for a subgroup H ≤ Sn , then either H = An or

H = Sn.

7. Prove that if n ≥ 5, then Sn has only the following normal subgroups: Sn, An, {1}.

8. Prove that if α ∈ Sn and its decomposition into disjoint cycles there are ni cycles of

length i, then |CSn(α)| =
∏
inini!.

Problem sheet 2.

1. Prove that if H is a subgroup of the group G, then ∩x∈GHxis a normal subgroup in G,

it lies inside H and contains each normal subgroup of G which lies in H.

2. Let Γ be a graph, the vertices of Γ are the transpositions of Sn. Two vertices are con-

nected with an edge if and only if the two transpositions have a common moved point.

Prove that if n ≥ 5, then every n − 1 point complete subgraph of Γ is of the form

Ga := {(a, x) | x ∈ {1, 2, . . . , n} \ {a}}, in other words the vertices of this subgraph are all

transpositions with exactly 1 common moved point a.

3. Prove that if G is a finite group acting on the finite set Ω, then

a) the number of G-orbits is 1
|G|
∑

π∈G |Fix(π)|, where |Fix(π)| is the number of fixed
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points of the element π. ( Cauchy-Frobenius-Burnside lemma) b) Deduce from (a) that if

the action is trasitive on Ω, then for every α, β ∈ Ω the number of orbits of Gα és Gβ is

the same.

4. Prove that the group GL(V ) of invertible linear transformations of a vector space

V is not transitive on the vectors of V , however, it is transitive on the nonzero vectors of V .

5. Prove that if the group G is acting on the set Ω, then Gαg = {h ∈ G | αh = αg}.

6. Prove that every faithful, transitive action of G on Ω is equivalent to an action on the

right cosets of a subgroup H with the property that H does not contain any proper normal

subgroups of G.

7. a) Prove that every nontrivial group of prime power order has nontrivial centre.

b) Prove that every nontrivial normal subgroup of a group of prime power order intersects

nontrivially the centre of the group.

8.a) Prove that if G/Z(G) is cyclic, then G is abelian.

b) Prove that every index 2 subgroup is normal.

c) Prove that every group of prime order is cyclic.

d) Prove that every group of primesquare order is abelian.

e) Prove that the direct product of two cyclic groups of coprime order is cyclic.

9. Let G be a nonabelian group of order 8. Prove that G ' D8 or G ' Q8.

a) Prove that G has an element g of order 4.

b) Prove that for every h ∈ G\〈g〉 h−1gh = g−1 holds.

c) If there exist an element h ∈ G\〈g〉 of order 2 show that G ' D8.

d) If every element h ∈ G\〈g〉 is of order 4, then show that h2 ∈ 〈g〉, h2 = g2 and G satisfies

the defining relations of Q8 = 〈a, b, a4 = 1, b4 = 1, a2 = b2, ab = a−1〉 and G ' Q8.
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10. Prove that if n ≥ 5 and |Sn : H| < n for a subgroup H ≤ Sn , then either H = An or

H = Sn.

Problem sheet 3

1. Prove that in the alternating group G = A5 there is no element of order 15 and no

subgroup of order 15, however, |G| is divisible by 15.

2. Prove that if the order of the group G is bigger than n! and H < G is a subgroup with

|G : H| < n, then G cannot be a simple group. (Hint: Represent G on the right cosets of

H with right multiplication)

3. Prove that if the group element a has order n, then its kth power has order o(ak) =

n
gcd(n,k) .

4. Prove that nonabelian groups of order 12 have three isomophy types: D12, A4 and the

split extension of C3 by C4:

a) Let P ∈ Syl3(G), represent G on the right cosets of P . Show that if this representation

is faithful, then G ' A4!

b) Show that if this representation is not faithful, then its kernel is P ∈ Syl3(G), in other

words: P / G.

c) Let b be a generator of the cyclic group P . Prove that |KG(b)| ≤ 2, and |CG(b)| ∈ {6, 12}!

d) Show that if P ∈ Syl3(G) is a normal subgroup, then G has elements of order 6.

e) Show that the Sylow 2-subgroup S of G is either C4, or C2 × C2.

f) Prove that if P ∈ Syl3(P ) is normal, then G = PS, P ∩ S = 1.

g) Show that this product is isomorphic to D12 if S ' C2 × C2!

5. Prove that if G is a simple group of order 60, then G ' A5:

a) If G contains a subgroup of index 5, then show that G ' A5.

56



b) Suppose that G does not contain a subgroup of index 5!

b/1 Show that each subgroup has index bigger than 5.

b/2 Determine the number of Sylow 2, 3 and 5-subgroups of G.

b/3 Prove that if the intersection D of two Sylow 2-subgroups P1, P2 of G would not be

trivial, then D would be a normal subgroup in the subgroup T = 〈P1, P2〉. Prove that in

this case T < G and T would contain at least 3 Sylow 2-subgroups of G, hence |T | ≥ 12,

which contradicts b/1.

b/4 Calculate the number of elements in Sylow 2, 3 and 5-subgroups, show that this is

bigger than 60, which is a contradiction.

6. Prove that the affine linear transformations of a vector space V AGL(V ) :=

{v 7→ Av + b | A ∈ GL(V ), b ∈ V } is a doubly transitive group on the vectors of V .

A group action G on Ω is called regular or sharply 1-transitive if it is transitive, and

for every α, β ∈ Ω a unique g ∈ G exits, such that αg = β.

7. a) Prove that the Cayley-representation is regular, however the generalized Cayley rep-

resentation is not.

b) Show that in the case of a regular group action the point stabilizer is trivial and |G| = |Ω|.

Problem sheet 4

1. Determine all the primitive actions of S3. Which of them are faithful? Which of them

are equivalent? (Use the statement of Exercise 6.)

2. We say that the group G acts on the set Ω sharply k-transitively, if for every distict

points α1, . . . , αk ∈ Ω and for every distict points β1, . . . , βk there exists a unique g ∈ G

such that αgi = βi i = 1, . . . , k. Prove that Sn is sharply n-transitive and sharply n − 1-

transitive and An is sharply n− 2-transitive.

57



3. Prove that the following are equivalent for k ≥ 2:

(i) The group G acts on Ω sharply k-transitively.

(ii) G acts k-transitively and Gα1,...,αk = {1}, for every distict α1, . . . , αk ∈ Ω.

(iii) G is transitive on Ω and Gα is sharply (k − 1)-transitive on Ω \ {α}.

4. Prove that AGL(K) = {x 7→ ax+ b | a, b ∈ K, a 6= 0} is sharply 2-transitive on the field

K.

5.a) Prove that every transitive permutation group on p points (p prime) is primitive.

b) Prove that if a group is 2-transitive on a set Ω that contains at least 3 points, then the

action is primitive.

6. Prove that every primitive group action is equivalent to an action on the right cosets of

a maximal subgroup with right multiplication. When is it faithful?

7. Prove that if G is k-transitive on a set Ω of n points, then |G| = n(n − 1) . . . (n −

k + 1)|Gα1,...,αk |, for every α1, . . . , αk distinct points. What will be the group order if the

action is sharply k-transitive?

8. Prove that every nontrivial normal subgroup of every primitive permutation group

G ≤ SΩ is transitive on Ω.

9. Show an example that a nontrivial normal subgroup of a transitive permutation group is

not necessarily transitive on Ω. (Consider GL(V ) on V \{0} and look at the scalar matrices)

10. Let N / G. G acts on N \ {1} by conjugation.

a) Prove that if this action is transitive, then N is an elementary abelian p-group, for p

prime.

b) If this action is 2-transitive, then p = 2 or |N | = 3.

c) If the action is 3-transitive, then |N | = 4.
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c) This action is never 4-transitive.

11. Suppose that G acts on Ω and N /G acts regularly (sharply 1-transitively) on Ω. Prove

that the action of Gω on Ω\{ω} is equivalent to the action of Gω on N \{1} by conjugation.

12. Prove that if G is a transitive permutation group on a set Ω with n points and G is

abelian, then the action is regular (sharply 1-transitive on Ω).

Problem sheet 5

1. Prove that the Sylow p-subgroup of Sm is isomorphic to ⊕ti=0Xi
ai , where Xi is the i

times iterated wreath product of Cp and m =
∑t

i=0 aip
i, where ai ∈ {0, 1, . . . , p− 1}.

2. Let Q,K be groups and θ : Q→ Aut(K) be a homomorphism. Let us define on the di-

rect product set K ×Q the following multiplication:(k1, q1)(k2, q2) := (k1k2
k1θ(q1)k2, q1q2).

a) Prove that this is associative!

b) Determine the unit element and determine the inverse of each element.

c) Prove that the group constructed this way is a split extension of (K, 1) ' K by

(1, Q) ' Q.

d) Calculate the product: (1, q)(k, 1)(1, q)−1.

3. Let A be a nontrivial p-group and let K be an infinite p-group. Consider both of them

as permutation groups on themselves by right multiplication. Consider the wreath product

A oK. Prove that this a p-group whose centre is trivial.

4. Prove that the derived subgroup of the wreath product G o Cp consists of elements

(g1, · · · , gp, 1) where g1, · · · , gp ∈ G and g1 · · · gp ∈ G′.

5. Let G be a cyclic group of order 4 with cyclic generator a. Prove that to the normal

subgroup 〈a2〉 there is no complement in G.
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6. Prove that the group of automorphisms of Klein four group is isomorphic to S3!

7. Prove that the group of automorphisms of the elementary abelian group of order pn is

GL(n, p)!

8. Prove that the group of automorphisms of Cn is the unit group of the ring Z mod n

hence it is abelian of order φ(n), if p is a prime, then Aut(Cp) ' Cp−1.

9. Prove that the group of automorphisms of the 3 level binary tree is C2 o C2.

10. Prove that if G = G1 × . . .×Gn and (|Gi|.|Gj |) = 1, then Aut(G) = Aut(G1)× . . .×

Aut(Gn).

11. Determine, how many non-isomophic split extensions of C5 by C4 can one construct?

12. Prove that Aut(Cpn) ' C(p−1)pn−1 , if p > 2 is a prime, and Aut(Cpn) ' C2n−2 × C2, if

p = 2 and n ≥ 2.

13. Prove that if A,B ≤ G are subgroups, then |AB| = |A|B|/|A ∩B|.

Problem sheet 6

1. A subgroup H ≤ G is called characteristic in G (denoted by: HcharG), if for all

φ ∈ Aut(G), φ(H) = H. Prove that if HcharK and KcharG, then HcharG.

2. Prove that:

a) [xy, z] = [x, z]y[y, z],

b) [x, yz] = [x, z][x, y]z.

c) [x, y−1] = ([x, y]y
−1

)
−1

,
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d) [x−1, y] = ([x, y]x
−1

)
−1

e) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1(Witt-identity)

Here [x, y, z] := [[x, y], z]

3. Prove that the centre Z(G) of a group G and in general Zi(G), are characteristic sub-

groups in G.

4.a) Prove that every finite p-group is solvable.

b) Prove that every group of order pq is solvable (p, q primes).

c) Prove that all groups of orders 1− 15 are solvable.

5. Prove that if G is a finite solvable group, N a minimal normal subgroup in G, then the

elements of G induce linear transformations on N , as on a vector space over a field of p

elements.

6.(Frattini-argument) Prove that if H / G and P ∈ Sylp(H), then G = HNG(P ).

7. Prove that if P ∈ Sylp(G) and NG(P ) ≤ H ≤ G, then NG(H) = H.

8. Prove that a maximal subgroup is not necessarily of prime index.

9.a) Let H,K,L be subgroups in G. Let [H,K,L] := 〈[h, k, l]|h ∈ H, k ∈ K, l ∈ l〉. Prove

that if [H,K,L] = 1 = [K,L,H], then [L,H,K] = 1.

b) Let N be a normal subgroup is G. Prove that if [H,K,L] ≤ N and [K,L,H] ≤ N , then

[L,H,K] ≤ N !(Three subgroup lemma)

10. Prove that if G = G′, then the centre of G/Z(G) is trivial.

11. Prove that if H / G and H ∩G′ = 1, then H ≤ Z(G).
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12. Let [H,K] := 〈[h, k] | h ∈ Hk ∈ K〉.

a) Prove that [H,K] ≤ H ↔ K ≤ NG(H).

b) Prove that H/N ≤ Z(G/N)↔ [H,G] ≤ N .

13. Prove that every characteristically simple group (i.e. subgroup without proper charac-

eristic subgroups) is a direct product of isomorphic simple groups.

Problem sheet 7

1. Let K0(G) := G, K1(G) = G′, Ki+1(G) := [Ki(G), G] (this is the lower central series

of G). Prove that Ki(G)charG for all i.

A group G is nilpotent, if Ki(G) = 1 for suitable i. The smallest such i is the nilpotence

class of G, denoted by c = cl(G). This holds if and only if Zc(G) = G. (Proved on the

lecture)

2. Prove that the nilpotency class of every non-abelian group of order p3 is 2.

3. Prove that every nilpotent group is solvable, but not conversely.

4. Characterize nilpotent group of class 1 and 2.

5. Prove that [xy, z] = [x, z][y, z] and [x, yz] = [x, z][x, y] hold in groups of nilpotence class

2.

6.a) Prove that [Ki(G),Kj(G)] ≤ Ki+j(G).

b) Prove that G(i) ≤ K2i(G), in other words if the nilpotence class of G is at most 2i, then

the derived length of G is at most i.

7. Prove that D2n is nilpotent if and only if n is a 2-power.
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8. Let G be a finite nilpotent group, |G| = n. Prove that for every m|n there exists a

subgroup in G of order m.

9. Prove that if H,K are nilpotent normal subgroups in G, then HK is also a nilpotent

normal subgroup. Prove that in a finite group G there exists always a biggest nipotent

normal subgroup and this is a characteristic subgroup. (its name is Fitting subgroup,

denoted by F (G)).

10. Let G be a finite p- group, N / G, |N | = pi. Prove that there exists a chain of nor-

mal subgroups of G: N0 = 1 < N1 < . . . < Ni = N < . . . < Nk = G, where |Ni : Ni−1| = p.

11. Prove that every finite p-group is nilpotent but this is not necessarily true for infinite

p-groups.

12. Prove that in every finite nilpotent group every nontrivial normal subgroup contains a

nontrivial element of the centre.

Problem sheet 8

The Frattini-subgroup Φ(G) of a group G is the intersection of maximal subgroups of

G. If there is no maximal subgroup in G, then Φ(G) = G.

1. Prove that Φ(G)charG.

2. Let G be a finite p-group. Prove that Gp
i

:= 〈xpi | x ∈ G〉 is a characteristic subgroup

in G.

3. Prove that in (Q,+) there is no maximal subgroup.

An element x ∈ G is a non-generator, if it can be left out from every generating set

of G.

4. Prove that if G is a finite group, then Φ(G) is exactly the set of non-generators in G.

5. Prove that in every finite group G, Φ(G) is nilpotent.

6.a) Prove that in every finite p-group G, Φ(G) = G′Gp. b) Prove that in every finite

p-group G G/Φ(G) is a vector space over GF (p).c) Let G be a finite p-group. Prove that
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Φ(G) is the minimal normal subgroup in G, the factor group by which is an elementary

abelian p-group.

7. A generating set is minimal, if every proper subset does not generate the group. Show

that a minimal generting set need not be a generating set of minimal size. (Consider:

C2 × C3).

8.(Burnside basis theorem) Prove that in a finite p-group G every minimal generating

set is of the same size, and this size is equal to dimGF (p)(G/Φ(G)). b) Moreover, every

x ∈ G \ Φ(G) is in a suitable minimal generating set of G.

9. Show example that Φ(H) 6≤ Φ(G) for some H ≤ G. (Consider the semidirect product

of C5 = 〈a〉 and C4 = 〈b〉 where ab = a2. Here Φ(G) = 1, but Φ(C4) is of order 2.)

10. Prove that a finite p-group G is cyclic, if and only if G/Φ(G) is cyclic.

11. Prove that a finite group G is nilpotent iff G′ ≤ Φ(G)

12. A finite p-group G is extraspecial, if Φ(G) = Z(G) = G′ are of order p. Prove that

every non-abelian group of order p3 is extraspecial.

Problem sheet 9.

1. Prove that if G is a group H ≤ G subgroup, then CG(H)/NG(H) and NG(H)/CG(H) ≤

Aut(H).

A group G is p-nilpotent, if it has a normal p-complement K: K /G, KP = G, K ∩P =

{1}, where P ∈ Sylp(G).

2. Prove that if K1 is a normal p1-complement in G and K2 is a normal p2-complement in

G where p1 6= p2 primes, then K1 ∩K2 is a normal p2-complement in K1.

3.a) Prove that if p||G| is a minimal prime divisor and P ∈ Sylp(G) is cyclic, then G is p-

nilpotent. b) Prove, that if G is a finite non-abelian simple group then its Sylow 2-subgroup

cannot be cyclic!

4.a) Prove that if for a finite group G, for every prime divisor p ∈ π(G) P ∈ Sylp(G) is

cyclic, then G is solvable. b) Prove that if |G| is squarefree, then G is solvable.

5. Prove that if G is a non-abelian simple group, then if p ∈ π(G) is a minimal prime

divisor, then either p3||G| or 12||G|.

6. Prove that if G is a finitely generated group and |G : H| = n, then H is also finitely
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generated.

7. Prove that in a finite solvable group, the centralizer CG(F (G)) of the Fitting- subgroup

is contained in F (G).

8. Let H,K be subgroups in G. Prove that [H,K] is a normal subgroup in 〈H,K〉.

9. Let P be a finite p-group. Prove that if an automorphism α ∈ Aut(P ) of p′ order of P

is acting on P/Φ(P ) trivially, then α = idP .

10. Prove that if li, i = 1, · · · , n is a left transversal of a subgroup Q in G, then l−1
i , i =

1, · · · , n is a right transversal of Q in G.

11. Let Q ≤ G and yi, i = 1, · · · , n is a right transversal of Q in G. Prove that if for a ∈ G,

yia = piyτ(i) holds, then for R(a) =
∏
piQ

′ the equality V (a) = R(a) holds.

12.a) Let n = p1 · · · pt, where p1 < p2 < . . . < pt are primes. Prove that in every group

of order n, the Sylow pt- subgroup is normal. b) If additionally, (pi, pj − 1) = 1 for every

i < j, then G is cyclic.

13. Prove that there is no non-abelian simple group of order less than 60.
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graph automorphism, 15

group, 6

group action, 6

group extensions, 22

group of inner automorphisms, 14
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Hall π-subgroup, 35

Hallπ(G), 35

imprimitive, 20

inner semidirect product, 22

inversion, 7

iterated wreath product, 24

Jordan, 22

Kaloujnine, 24

lower central series, 31

metabelian, 27

minimal normal subgroup, 28

Nielsen-Schreier, 50

nilpotency class, 31

nilpotent group, 31

non-generator, 63

normal p-complement, 40

normal complement, 42

odd permutation, 7

outer semidirect product, 23

permutation, 6

permutation group, 6

permutation representation, 6

point stabilizer, 8

primitive, 20

reduced word, 45

right multiplication, 10

Schur–Zassenhaus, 38

set of prime divisors, 35

sharply k-transitive, 22

small groups, 18

solvable group, 25

solvable radical, 30

split, 22

subnormal, 25

supersolvable, 32

Sylow p-subgroup, 16, 24

Sylow theorems, 16

symmetric group, 6

transfer, 41

transitive, 6

transposition, 8

tree, 49

universal property, 45

upper central series, 31

wreath product, 23

Zorn’s lemma, 50
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