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Abstract

A set system F C 20" shatters a given set S C [n] if 25 ={F n S: F € F}.
The Sauer-Shelah lemma states that in general, F shatters at least |F| sets. A set
sytstem is called shattering-extremal if it shatters exactly |F| sets. In [7] and [9]
an algebraic characterization of shattering-extremal set systems was given, which
offered the possibility to generalize the notion of extremality to general finite vector
systems. Here we generalize the results obtained for set systems to this more general
setting, and as an application, strengthen a result of Dong, Li and Zhang from [5].
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1 Preliminaries

Throughout this note F will stand for a field, and n will be a positive integer.
The set {1,2,...,n} will be referred to shortly as [n] and its power set as
2ln). We use the notation F [x] = F[z,, ..., z,] for the ring of polynomials in n
variables over F and similarly use f(x) for the polynomial f(xq,...,z,). f w €
N, we write x¥ for the monomial z{* ...z%" € F[x]. For a subset M C [n],
the monomial zp; will be [],.,, #; (and 2y = 1). Using this correspondence we
will usually identify set systems and the corresponding collections of square-
free monomials.

1.1 Shattering-extremal families

A set system shatters a given set S C [n] if 2° = {FNS : F € F}. The
family of subsets of [n] shattered by F is denoted by Sh(F). The Sauer-Shelah
lemma states that in general we have that |[Sh(F)| > |F| for every set system
F C 2W A set systems F C 2" is shattering-extremal, or s-extremal for
short, if it shatters exactly |F| sets, i.e. |F| = |Sh(F)|. E.g. if F is a down-set,
ie. H C Fand F' € F imply H € F, then F is s-extremal, simply because
in this case Sh(F) = F. The study of s-extremal set systems was initiated
by Bollobas, Leader and Radcliffe in [3] and by Bollobds and Radcliffe in
[4] and since then many interesting results concerning them were obtained.
Anstee, Rényai and Sali in [2] related shattering to standard monomials of
vanishing ideals. Based on this, the present authors in [7] and [9] developed
algebraic methods for the investigation of s-extremal families, which we recall
now briefly.

1.2 Algebraic description of s-extremal families

Given some set F' C [n], let vp € {0,1}" be its characteristic vector, i.e. the
i-th coordinate of vp is 1 if ¢ € F' and 0 otherwise. Therefore we can identify a
set system F C 2[" with the vector system V(F) = {vp: F € F} C {0,1}" C
F™. One can then associate to F the wvanishing ideal I(F) = I(V(F)) =
{f € Flx] : f(vp) = 0 for every F' € F} <F[x]. Note that we always have
{2? —z; : i € [n]} C I(F). The vanishing ideal of a general vector system
Y C F” can be defined similarly. For more details about vanishing ideals of
finite vector systems see e.g. [9].

A total order < on the monomials in F[x] is a term order, if 1 is the minimal
element of <, and < is compatible with multiplication with monomials. One
well-known and important term order is the lexicographic (lex) order. Here



one has x%V <, x" iff for the smallest index k& with wj, # us one has wy < uy.
One can build a lex order based on other orderings of the variables as well,
so altogether we have n! different lex orders on the monomials of F [x]. Given
some term order < and a non-zero f € F[x|, the leading monomial Lm(f)
of f is the largest monomial (with respect to <) appearing with non-zero
coeflicient in the canonical form of f. For an ideal I < F[x| we denote the
set of all leading monomials of polynomials in / by Lm(/). A monomial is
called a standard monomial of I if it is not a leading monomial of any f € I.
Sm(/) denotes the set of standard monomials of I. Standard monomials have
some very nice properties; among other things, in the case of vanishing ideals
of finite set systems they are all square-free monomials. In general, aboutr
vanishing ideals of finite vectors systems we know that they form a linear
basis of the F-vector space F[x]/I, their number equals the size of the defining
vector system and for lex orders they can be computed in linear, O(n|F|k)
time, where k is the number of different coordinates appearing (see [6]).

For an ideal I <F[x] and a term order < a finite subset G C I is called a
Grobner basis of I with respect to < if for every f € I there exists a g € G
such that Lm(g) divides Lm(f). G is a universal Grébner basis if it is a
Grobner basis for every term order. Grobner bases have many nice properties,
for details the interested reader may consult e.g. [1].

The first key result in the characterization of s-extremal set systems was
the algebraic description of the family of shattered sets, namely that Sh(F) =
Uit term orders S (F)) = Ulex orders SM(L(F)). Since the number of standard
monomials of I(F) equals |F| for every fixed term order, as a corollary we
obtain the following proposition.

Proposition 1.1 ([7,9]) F C 2" is s-extremal iff the standard monomials
of I(F) are the same for every term/lex order.

As mentioned earlier, for lex orders Sm(/(F)) can be computed in linear
time, however the number of possible lex orders is n!, and so the above result
does not offer directly a method to check the extremality of a set system. How-
ever it turns out that we actually need only a significantly smaller collection
of lex orders.

Theorem 1.2 ([7,9]) Take n orderings of the variables such that for every
i € [n] there is one in which x; is the greatest element, and take the corre-
sponding lex orders. If F C 2" is not extremal, then among these we can find
two term orders for which the sets of standard monomials of I(F) differ.

Accordingly, by computing the standard monomials for n lex orders, the



extremality of a set system can be checked in O(n?|F|) time.

To continue, for i € [n] define the downshift of F C 2"l by i as D;(F) =
{F\{i} : F e F} U {F :F e F,ieF F\{i} € F}. For indices
i1,92, ..., 0 put Dy 4y i, (F) = Dy (Diy(. .. (D;,(F)))). It is not hard to see
that |D;(F)| = |F| and Sh(D;(F)) C Sh(F), hence D; preserves s-extremality
(see e.g. [4]). Downshifts are an important tool in the study of set systems,
in particular they can be used to give a possible combinatorial description of
Sm(I(F)) for lexicographic term orders.

Proposition 1.3 ([7]) Let F C 2" and < a lex order for which x;, = x4, >
RS Xy, - Then Sm([(}")) = Din7in—17---,i1 (F)

The results about s-extremal families also include a nice connection be-
tween s-extremal families and the theory of Grébner bases. Given a pair of
sets H C S C [n] we define the polynomial fsu(x) = xu - [[;cqm(zi — 1)
A useful property of these polynomials is that for a set F' C [n] we have
fsu(vr) # 0 iff FNS = H, however much more is true.

Theorem 1.4 ([7,9]) F C 2 is s-extremal iff there are polynomials of the
form fs g, which together with {x? — x; : i € [n]} form a universal Grobner
basis of 1(F).

We remark that in Theorem 1.4 it is enough to require a Grobner basis of
the above form for just one term order to have an s-extremal family.

1.8 Extremal vector systems

There is a usual way of generalizing the notion of shattering for a vector system
Y C{0,1,...,k—1}", where elements of V are viewed as [n] — {0,1,....,k— 1}
functions. Now V shatters S C [n] if for every function g : S — {0,1,...,k—1}
there exists a function f € V such that f|¢ = g. As previously let Sh(V)
denote the family of shattered sets. In the definition of extremality the Sauer-
Shelah lemma played a key role, however in this case we cannot expect a
similar inequality to hold. Indeed, as Sh(V) C 2" there are at most 2" sets
shattered, but at the same time the size of ¥ can be much larger, up to k".
This lack of a Sauer-Shelah-like inequality suggests to forget about shattering,
and define extremality according to Proposition 1.1.

Proposition 1.5 ([8]) Let V C {0,1,....k — 1} C R™ be a vector system.
Then Sm(1(V)) is the same for every lex order iff Sm(I1(V)) is the same for
every term order.



Accordingly we define a finite set of vectors V C {0,1,....k — 1} C R"
to be extremal if Sm(I()V)) is the same for every lexicographic term order, or
equivalently if Sm(7(V)) is the same for every term order. Proposition 1.5 was
needed to guarantee that the definition of extremality in this general setting
is compatible with the special case of set systems. We remark that, although
in the above definition 7(V) is considered inside R [x], our results remain true
over an arbitrary field F and vector systems V C {ay,...,a;}" C F" (see the
universality property of standard monomials in [6]).

For i € [n] and for elements aq,...,; 1, @1, ..., q, the i-section of V,
denoted by Vi(aq,..., 1,1, ...,q,) is the collection of those elements
a for which (aq,..., 1,0, 41, ...,0,) € V. Using i-sections one can de-
fine the downshift at coordinate i in the general case. For any vector sys-
tem V C {0,1,...,k — 1}, D;(V) is the unique vector system such that
for every choice of elements aq,..,; 1,41, .., the i-section of D;(V) is
{0,1,.., [Vi(aq, .., i—1, Qis1, .., )| — 1} whenever this i-section is non-empty,
and empty otherwise. For indices iy,1is,...,% let as before Dy, 4, ;,(V) =
D;, (Dy,(...(D;,(V)))). Now Proposition 1.3 generalizes naturally.

Proposition 1.6 ([7]) Let V C {0,1,...,k — 1} C R" be a finite vector
system and < the lex order order for which x;; = x;, > -+ > x;,. Then

Sm(I(V)) = Diy i s, (V).

Note that according to Proposition 1.6 we could have defined extremal vec-
tor systems fully combinatorially as demonstrated by the following corollary.

Corollary 1.7 A finite vector system V C {0,1,... k — 1}" is extremal iff
Drn) r(n—1y,..x1)(V) is the same for every permutation 7 of [n].

In [7], beside Proposition 1.6, several other results concerning this general
setting were proved, however the general versions of the two main results about
set systems, Theorem 1.2 and Theorem 1.4, were missing.

2 Main results®

A polynomial f € F[x] is called degree dominated with dominating term x™
if it is of the form f(x) = xV + Zle a;xVi, where xVi|x%¥ for every i. By
basic properties of term orders we have that the dominating term of such a
polynomial is also its leading term for every term order. As an example of

5 All results of this note are part of the PhD dissertation of Tamés Mészaros. For proofs
of the main results see [8].



a degree dominated polynomial one can consider any polynomial of the form
fsm or for i = 1,...,n the polynomial x? — x;, all of them appearing in
Theorem 1.4.

Theorem 2.1 ([8]) A finite set of vectors V C {0,1,....k — 1}" C R" is
extremal if and only if there is a finite family G C R[x] of degree dominated
polynomials that form a universal Grébner basis of 1(V).

We remark that similarly as in the case of Theorem 1.4, in Theorem 2.1
it is also enough to require that I()) has a suitable Grobner basis for some
term order. Similarly, Theorem 1.2 also generalizes to this vector setting.

Theorem 2.2 ([8]) Tuake n orderings of the variables such that for every i €
[n] there is one in which x; is the greatest element, and take the corresponding
lex orders. If V C {0,1,....,k — 1} C R" is not extremal, then among these
we can find two term orders for which the sets of standard monomials of 1(V)
differ.

Theorem 2.2 has several interesting consequences. First of all, it means
that in the definition of extremality it would have been enough to require
that the family of standard monomials is the same for a particular family of
n lex orders. Next, just like Theorem 1.2 for set systems, it also results an
efficient, O(n?|V|k) time algorithm for deciding whether a finite vector system
is extremal or not. Finally, when considered over an arbitrary field F and for
vector systems V C {aq,...,a;}" C F", it allows a strengthening of a result
by Dong, Li and Zhang from [5], where they investigated zero dimensional
polynomial ideals. An ideal I < [x] is called zero dimensional if the factor
space F [x] /I is a finite dimensional F-vector space. Vanishing ideals of finite
vector systems are special types of zero dimensional ideals.

A term order < is called an elimination order with respect to the variable
x; if x; is larger than any monomial from Flxy, ..., 2, 1, %i11,...,2,]. As an
example one can consider any lex order where x; is the largest variable.

For i € [n] let <; be an elimination order with respect to z;. Part (2) < (3)
of Theorem 4 in [5] states that if F has characteristic zero, then the standard
monomials of any zero dimensional ideal I < [x] are the same for every term
order iff they are the same for <y, ..., <,. We claim that (the general form of)
Theorem 2.2 together with the universality property of standard monomials
(see [6]) prove the same result for arbitrary fields. For this we remark, that
the proof of Theorem 2.2 uses only the elimination property of lex orders and
the fact that the number of standard monomials of the ideal considered is
the same for every term order. Accordingly, the result remains true if we



substitute the lex orders by arbitrary elimination orders with respect to the
variables and the vanishing ideal (V) by a zero dimensional ideal /. For the
second part here note that as the standard monomials form a linear basis of
the F-vector space F [x] /1, their number is the same, namely the dimension of
this space, for every term order. With these observations in mind one gets the
following form of Theorem 2.2, which generalizes part (2) < (3) of Theorem 4
from [5] to arbitrary fields instead of fields of characteristic zero.

Theorem 2.3 ([8]) Let F be an arbitrary field and for 1 < i < n let <; be
an elimination order with respect to x;. Then the standard monomials of any
zero dimensional ideal I QF [x]| are the same for every term order iff they are
the same for <q,...,<,. O
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