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Abstract

In this paper we relate the SHGH Conjecture to the rationality of one-point
Seshadri constants on blow ups of the projective plane.
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1 Introduction

Nagata’s conjecture and its generalizations have been a central problem in the theory
of surfaces for many years, and much work has been done towards verifying them,
e.g. [10], [3], [8], [4]. In this paper we open a new line of attack in which we
relate Nagata-type statements to the rationality of one-point Seshadri constants.
As a consequence, our approach provides some evidence that certain Nagata-type
questions might be false.

Seshadri constants were first introduced by Demailly in the course of his work
on Fujita’s conjecture [6] in the late 80’s and have been the object of considerable
interest ever since. Recall that given a smooth projective variety X and a nef line
bundle L on X, the Seshadri constant of L at a point x ∈ X is the real number

ε(L;x) =def inf
C

L · C
multxC

, (1)

where the infimum is taken over all irreducible curves passing through x. An in-
triguing and notoriously difficult problem about Seshadri constants on surfaces is
the question whether these invariants are rational numbers, see [9, Remark 5.1.13]
It follows quickly from their definition that if a Seshadri constant is irrational then
it must be ε(L;x) =

√
L2, see e.g. [1, Theorem 2.1.5]. It is also known that Seshadri

constants of a fixed line bundle L, take their maximal value on a subset in X which
is a complement of at most countably many Zariski closed proper subsets of X, i.e.
in very general points.
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We denote this maximum by ε(L; 1). Similar notation ε(L; s) is used for multi-
point Seshadri constants, see [1, Definition 1.9]. In particular, if ε(L;x) =

√
L2 at

some point the same holds in a very general point on X and ε(L; 1) =
√
L2.

From a slightly different point of view, Seshadri constants reveal information
on the structure of the nef cone on the blow-up of X at x, hence their study is
closely related to our attempts to understand Mori cones of surfaces, see also [5] for
a somewhat different approach.

An even older problem concerning linear series on algebraic surfaces is the con-
jecture formulated by Beniamino Segre in 1961 and rediscovered, made more precise
and reformulated by Harbourne 1986, Gimigliano 1987 and Hirschowitz 1988. (See
[3] for a very nice account on this development and related subjects.) In particular
it is known, [3, Remark 5.12] that the SHGH Conjecture implies the Nagata Con-
jecture. We now recall these conjectures. There are several equivalent statements
of the SHGH Conjecture. We choose here the one due to Gimigliano [7, Conjecture
3.3] as it is the most convenient formulation for our purposes.

SHGH Conjecture. Let X be the blow up of the projective plane P2 in s very
general points with exceptional divisors E1, . . . , Es. Let H denote the pullback to X
of the hyperplane bundle OP2(1) on P2. Let the integers d,m1 > . . . > ms > −1 with
d > m1 +m2 +m3 be given. Then the line bundle

dH −
s∑
i=1

miEi

is non-special.

Also for the Nagata Conjecture, we choose a statement which best suits our needs.

Nagata Conjecture. Let s be an integer with s > 9. Then the multi-point Seshadri
constant of the hyperplane bundle OP2(1) on the projective plane satisfies

ε(OP2(1), s) =
1√
s
.

The main result of this note is the following somewhat unexpected relation between
the SHGH Conjecture and the rationality problem for Seshadri constants.

Main Theorem. Let s > 9 be an integer for which the SHGH Conjecture holds
true. Then

a) either there exist points P1, . . . , Ps ∈ P2, a line bundle L on BlP1,...,Ps P2 and
a points P ∈ X such that

ε(L;P ) is irrational

b) or the SHGH Conjecture fails for s+ 1 points.

Note that it is known that the SHGH conjecture holds true for s 6 9, [3, Theorem
5.1]. It is also known that Seshadri constants of ample line bundles on del Pezzo
surfaces (i.e. for s 6 8) are rational, see [11, Theorem 1.6]. In any case, the
statement of the Theorem is interesting (and non-empty) for s = 9.

Corollary 1.1. If all one–point Seshadri constants on the blow-up of P2 in nine
very general points are rational, then the SHGH conjecture fails for ten points.
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2 Rationality of one point Seshadri constants and the SHGH
Conjecture

In this section we prove the Main Theorem. We start with notation and preliminary
lemmas.

Let f : X → P2 be the blow up of P2 at s > 9 general points P1, . . . , Ps with
exceptional divisors E1, . . . , Es. We denote as usual by H = f∗(OP2(1)) the pull
back of the hyperplane bundle. It is well-known that H,E1, . . . , Es form a basis of
the Néron-Severi space N1(X)R of X. We denote by E = E1 + · · ·+ Es the sum of
exceptional divisors of f .

The following Lemma allows us to work with divisors with equal multiplicities.

Lemma 2.1. Let P1, . . . , Ps be a finite set of general points in P2. Let D be an
effective divisor of degree d with mi = multPi D. Let σ ∈ Σs be a permutation
of s elements. Then there exists an effective divisor Dσ of the same degree with
multPi Dσ = mσ(i).

Proof. Let I(P ) denote the ideal sheaf of a point in P2. By the semi-continuity the
function

(P2)s 3 (P1, . . . , Ps)→ h0(P2,OP2(d)⊗ I(P1)
m1 ⊗ . . .⊗ I(Ps)

ms) ∈ Z

is positive on a Zariski open set U . Making this set a little bit smaller if neces-
sary, we can assume that with (P1, . . . , Ps) ∈ U also (Pσ(1), . . . , Pσ(s)) ∈ U for any
permutation σ ∈ Σs. The claim follows.

We consider now the blow up g : Y → X of X at P with exceptional divisor F .
The following result is a well-known consequence of Lemma 2.1. We were not able
to find a reference and we include a proof for the benefit of a reader.

Lemma 2.2. If there exists a curve C ⊂ X in the linear system dH −
∑s

i=1miEi
computing the Seshadri constant of a Q-line bundle L = H − αE, then there exists
a divisor Γ with multP1 Γ = . . . = multPs Γ = M computing the Seshadri constant
of L at P , i.e.

L · Γ
multP Γ

=
L · C

multP C
= ε(L;P ).

Proof. Since the points P1, . . . , Ps are general, there exist divisors

Cσ = dH −
s∑
j=1

mσ(j)Ej

for all permutations σ ∈ Σs. Since the point P is general, we may take all these
divisors to have the same multiplicity m at P . Summing over a cycle σ of length s
in the symmetric group Σs, we obtain a divisor

Γ =

s∑
i=1

Cσi = sdH −
s∑
i=1

s∑
j=1

mσi(j)Ej = sdH −ME,
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with M = m1 + . . . + ms. Note that the multiplicity of Γ at P equals sm. Taking
the Seshadri quotient for Γ we have

L · Γ
sm

=
sd− αsM

sm
=
d− αM
m

= ε(L;P )

hence Γ satisfies the assertions of the Lemma.

The following auxiliary Lemma will be used in the proof of the Main Theorem.
We postpone its proof to the end of this section.

Lemma 2.3. Let s > 9 be an integer. The function

f(δ) = (2
√
s+ 1− s)

√
1− sδ2 + s(1−

√
s+ 1)δ + s− 2 (2)

is non-negative for δ satisfying

1√
s+ 1

< δ <
1√
s
. (3)

Proof of the Main Theorem. If part a) in the Theorem holds, then we are done.
Otherwise we are in the situation that for all points P1, . . . , Ps ∈ P2, for all line

bundles L on X = BlP1,...,Ps P2 and for all points P ∈ X

ε(L;P ) is a rational number. (4)

We assume also to the contrary that part b) is false, i.e. that the SHGH Conjecture
holds for s+ 1 points.

Let U(j) denote an open set in (P2)j such that SHGH holds for all j-tuples from
U(j). Let

πj+1,j : (P2)j+1 → (P2)j

denote the projection onto the first j factors. Let

W (s) := πs+1,s(U(s+ 1)) ∩ U(s).

Since the projection is an open mapping W (s) is an open set. Let the points

P1, . . . , Ps ∈W (s) (5)

be fixed. Let δ be a rational number satisfying (3). Note that the SHGH Conjecture
implies the Nagata Conjecture [3, Remark 5.12] so that

ε(OP2(1); s) =
1√
s

and hence the Q–divisor L = H − δE is ample. Changing δ a little bit if necessary,
we can assume that

√
L2 is an irrational number.

By (4) ε(L;P ) is a rational number for all points P ∈ P2. From now on, we fix
a point P in such a way that (P1, . . . , Ps, P ) ∈ U(s+ 1) (this is possible by (5)).

By Lemma 2.2 there is a divisor Γ ⊂ P2 of degree γ with M = multP1 Γ = . . . =
multPs Γ and m = multP Γ whose proper transform Γ̃ on X computes the Seshadri
constant

ε(L;P ) =
L · Γ̃
m

=
γ − δsM

m
<
√

1− sδ2.
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This gives an upper bound on γ

γ < m
√

1− sδ2 + δsM. (6)

Since we work under assumption that SHGH holds for s+ 1, the Nagata Conjecture
also holds for s + 1 points and this gives a lower bound for γ, since for Γ we must
have

γ

sM +m
>

1√
s+ 1

. (7)

We now claim that
γ > 2M +m. (8)

Suppose not. We then have that

γ < 2M +m. (9)

The real numbers

a :=
2
√
s+ 1− s
2− δs

and b :=
s− δs

√
s+ 1

2− δs
are positive. Multiplying (6) by a and (9) by b and adding these inequalities we
obtain

sM +m 6 γ
√
s+ 1 < sM + (b+ a

√
1− sδ2)m,

where the first inequality follows from (7). Rearranging the right and left hand sides
of this inequality we obtain that

(2
√
s+ 1− s)

√
1− sδ2 + s− δs

√
s+ 1 < 2− δs,

which contradicts Lemma 2.3. Hence (8) holds.
It follows now from the SHGH conjecture for s+ 1 points (in the form stated in

the introduction) that the linear system

γH −ME−mF

on Y is non-special. Indeed the condition γ > 2M + m is (8) and the condition
γ > 3M is satisfied since γ

sM > 1√
s

(because the Nagata Conjecture holds for s

points by hypothesis) and because we have assumed that s > 9. This system is
also non-empty because the proper transform of Γ under g is a member. Thus by a
standard dimension count

0 6 γ(γ + 3)− sM(M + 1)−m(m+ 1).

The upper bound on γ (6) together with the above inequality yields

0 6 (sδM +m
√

1− sδ2)(sδM +m
√

1− sδ2 + 3)−m2 −m− sM − sM2. (10)

Note that the quadratic term in (10) is a negative semi-definite form

(s2δ2 − s)M2 + 2sδ
√

1− sδ2Mm− sδ2m2.

Indeed, the restrictions on δ made in (3) imply that the term at M2 is negative.
The determinant of the associated symmetric matrix vanishes. These two conditions
imply together that the form is negative semi-definite. In particular this term of (10)
is non-positive. The linear part in turn is

(3sδ − s)M + (3
√

1− sδ2 − 1)m,

which is easily seen to be negative. This provides the desired contradiction and
finishes the proof of the Theorem.
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Remark 2.4. As it is well known, Nagata’s conjecture can be interpreted in terms of
the nef and Mori cones of the blow-up X of P2 at s general points. More precisely,
consider the following question: for what t > 0 does the ray H − tE meet the
boundary of the nef cone? The conjecture predicts that this ray should intersect the
boundaries of the nef cone and the effective cone at the same time. We denote the
value of t at which this ray leaves the effective cone by µ(L;E).

Considering the Zariski chamber structure of X (see [2]), we see that this is
equivalent to requiring that H − tE crosses exactly one Zariski chamber (the nef
cone itself). Surprisingly, it is easy to prove that H − tE cannot cross more than
two chambers.

Proposition 2.5. Let f : X → P2 be the blow up of P2 in s general points with
exceptional divisors E1, . . . , Es. Let H be the pull-back of the hyperplane bundle and
E = E1 + . . .+Es. The ray R = H − tE meets at most two Zariski chambers on X.

Proof. If ε = ε(OP2(1); s) = 1√
s

i.e. this multi-point Seshadri constant is maximal,

then the ray crosses only the nef cone.
If ε is submaximal, then there is a curve C = dH −

∑
miEi computing this

Seshadri constant, i.e. ε = d∑
mi

.
If this curve is homogeneous, i.e. m = m1 = · · · = ms, then we put Γ := C.

Otherwise we define Γ = γH −M ·E as a symmetrization of C as in Lemma 2.2, i.e.
we sum the curves Ck = dH −

∑
mσk(i)Ei over a length s cycle σ ∈ Σs.

Let µ = M
γ . Note that µ = µ(L;E). Indeed, it is in any case µ 6 µ(L;E) by the

construction of Γ and a strict inequality would contradict the fact that Γ computes
the Seshadri constant.

Now, we claim that

H − tE =
µ− t
µ− ε

(H − εE) +
t− ε

γ(µ− ε)
Γ

is the Zariski decomposition of H − tE for ε 6 t 6 µ. Indeed, H − εE is nef by
definition and it is orthogonal to all components of Γ, which together with the Index
Theorem implies that the intersection matrix of Γ is negative definite.

Thus the ray R after leaving the nef chamber remains in a single Zariski chamber.

It is interesting to compare this result with the following easy example, which
constructs rays meeting a maximal number of chambers.

Example 2.6. Keeping the notation from Proposition 2.5 let L = ( s(s+1)
2 + 1)H −

E1 − 2E2 − . . . − sEs. Then L is an ample divisor on X and the ray R = L + λE
crosses s+ 1 = ρ(X) Zariski chambers. Indeed, with λ growing, exceptional divisors
E1, E2, . . . , Es join the support of the Zariski decomposition of L− λE one by one.
We leave the details to the reader.

We conclude this section with the proof of Lemma 2.3.

Proof of Lemma 2.3. Since f(1/
√
s+ 1) = 0 it is enough to show that f(δ) is in-

creasing for 1/
√
s+ 1 6 δ 6 1/

√
s. Consider the derivative

f ′(δ) = s

(
1 +

δ√
1− sδ2

(s− 2
√
s+ 1)−

√
s+ 1

)
. (11)
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The function h(δ) = δ√
1−sδ2 is increasing for 1/

√
s+ 1 6 δ < 1/

√
s since the nu-

merator is an increasing function of δ and the denominator is a decreasing function
of δ. We have h( 1√

s+1
) = 1 so that h(δ) > 1 holds for all δ. Since the coefficient of

h(δ) in (11) is positive we have

f ′(δ) > s
(
1 + (s− 2

√
s+ 1)−

√
s+ 1

)
= s(1 + s− 3

√
s+ 1) > 0,

which completes the proof.
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