Codes and gap sequences of Hermitian curves

G. Korchmáros ${ }^{\text {a,1 }}$, G.P. Nagy ${ }^{\text {b,c,2,3 }}$, M. Timpanella ${ }^{\text {a }}$
${ }^{a}$ Dipartimento di Matematica e Informatica, Università della Basilicata, Contrada Macchia Romana, 85100 Potenza (Italy)
${ }^{b}$ Department of Algebra, Budapest University of Technology, H-1111, Budapest, Egri József utca 1, Hungary
${ }^{c}$ Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1, Hungary

Abstract

Hermitian functional and differential codes are AG-codes defined on a Hermitian curve. To ensure good performance, the divisors defining such AG-codes have to be carefully chosen, exploiting the rich combinatorial and algebraic properties of the Hermitian curves. In this paper, the case of differential codes $C_{\Omega}(\mathrm{D}, m \mathrm{~T})$ on the Hermitian curve $\mathscr{H}_{q^{3}}$ defined over $\mathbb{F}_{q^{6}}$ is worked out where $\operatorname{supp}(\mathrm{T}):=\mathscr{H}_{q^{3}}\left(\mathbb{F}_{q^{2}}\right)$, the set of all $\mathbb{F}_{q^{2}}$-rational points of $\mathscr{H}_{q^{3}}$, while D is taken, as usual, to be the sum of the points in the complementary set $D=\mathscr{H}_{q^{3}}\left(\mathbb{F}_{q^{6}}\right) \backslash \mathscr{H}_{q}\left(\mathbb{F}_{q^{2}}\right)$. For certain values of m, such codes $C_{\Omega}(\mathrm{D}, m \mathrm{~T})$ have better minimum distance compared with true values of 1-point Hermitian codes. The automorphism group of $C_{L}(\mathrm{D}, m \mathrm{~T}), m \leq q^{3}-2$, is isomorphic to $\operatorname{PGU}(3, q)$.

Keywords: AG code, Weierstrass gap, pure gap, Hermitian curve
2000 MSC : 14H55, 11T71, 11G20, 94B27

1. Introduction

Algebraic-geometry (AG) codes, also called Goppa-codes, are certain linear codes arising from an algebraic curve \mathcal{X} defined over a finite field; see for instance [1, 7, 10, 18]. In this paper, we work on the projective plane $P G\left(2, \mathbb{F}_{q^{6}}\right)$ defined over the finite field $\mathbb{F}_{q^{6}}$ of order q^{6} and equipped with homogeneous coordinates (X, Y, Z). The points and lines of $P G\left(2, \mathbb{F}_{q^{6}}\right)$ with coordinates in the subfield $\mathbb{F}_{q^{2}}$ are the points and lines of the projective subplane $P G\left(2, \mathbb{F}_{q^{2}}\right)$ of $P G\left(2, \mathbb{F}_{q^{6}}\right)$. We take \mathcal{X} to be the (nonsingular) Hermitian curve $\mathscr{H}_{q^{3}}$ of $P G\left(2, \mathbb{F}_{q^{6}}\right)$, with genus $\mathfrak{g}\left(\mathscr{H}_{q^{3}}\right)=\frac{1}{2} q^{3}\left(q^{3}-1\right)$ and defined by its canonical homogeneous equation

$$
\begin{equation*}
X^{q^{3}+1}-Y^{q^{3}} Z-Y Z^{q^{3}}=0 \tag{1}
\end{equation*}
$$

and construct a particular family of AG-codes on the set of all points of $\mathscr{H}_{q^{3}}$ lying in $P G\left(2, \mathbb{F}_{q^{6}}\right)$, that is, on the set $\mathscr{H}_{q^{3}}\left(\mathbb{F}_{q^{6}}\right)$ of its $\mathbb{F}_{q^{6}}$-rational points. For this purpose, we take a divisor G whose support comprises all the points of $\mathscr{H}_{q^{3}}$ lying in the subplane $P G\left(2, \mathbb{F}_{q^{2}}\right)$, that is, the $\mathbb{F}_{q^{2}}$-rational points of $\mathscr{H}_{q^{3}}$. They satisfy the equation $X^{q+1}-Y^{q} Z-Y Z^{q}=0$, and are exactly the $\mathbb{F}_{q^{2}}$-rational points of the Hermitian curve of $P G\left(2, \mathbb{F}_{q^{2}}\right)$ given in its canonical homogenous equation

$$
\begin{equation*}
X^{q+1}-Y^{q} Z-Y Z^{q}=0 \tag{2}
\end{equation*}
$$

[^0]More precisely, we define

$$
\mathrm{T}:=\sum_{Q \in \mathscr{H}_{q}\left(\mathbb{F}_{q^{2}}\right)} Q
$$

and, for a positive integer m, we put $\mathrm{G}=m \mathrm{~T}$. Also, we define the set D by complement, that is,

$$
D:=\mathscr{H}_{q^{3}}\left(\mathbb{F}_{q^{6}}\right) \backslash \mathscr{H}_{q}\left(\mathbb{F}_{q^{2}}\right)
$$

In particular, D has size $n:=q^{9}-q^{3}$. Furthermore, let $\mathrm{D}:=\sum_{Q \in D} Q$.
An AG-code arises by evaluating at the points of D the $\mathbb{F}_{q^{6}}$-rational functions whose poles are prescribed by T (each with multiplicity $\leq m$). It is an AG $[n, k, d]_{q^{6} \text {-code }}$ with

$$
d \geq n-\operatorname{deg}(m \mathrm{~T})=q^{9}-q^{3}-m\left(q^{3}+1\right) \text { and } k=\ell(m \mathrm{~T})-\ell(m \mathrm{~T}-\mathrm{D})
$$

where $\ell(\mathrm{P})$ stands, as usual, for the dimension of the Riemann-Roch space associated to a divisor P on $\mathscr{H}_{q^{3}}$. Here, if $m\left(q^{3}+1\right)=\operatorname{deg}(m \mathrm{~T})>2 \mathfrak{g}-2=\left(q^{3}+1\right)\left(q^{3}-2\right)$, that is, if $m>q^{3}-2$, then the Riemann-Roch Theorem yields $k=\operatorname{deg}(m \mathrm{~T})+1-\frac{1}{2} q^{3}\left(q^{3}-1\right)$ whence

$$
k=\left(q^{3}+1\right)\left(m-\frac{1}{2}\left(q^{3}-2\right)\right), \text { for } m>q^{3}-2
$$

Such an AG-code is the Hermitian functional code $C_{L}(\mathrm{D}, m \mathrm{~T})$ whose Goppa's designed minimum distance is

$$
\delta:=n-\operatorname{deg}(m \mathrm{~T})=\left(q^{3}+1\right)\left(q^{3}\left(q^{3}-1\right)-m\right)
$$

The dual code $C_{\Omega}(\mathrm{D}, m \mathrm{~T})$ of $C_{L}(\mathrm{D}, m \mathrm{~T})$ can also be obtained by computing residuals in the space of holomorphic differentials $\Omega(m \mathrm{~T}-\mathrm{D})$. Therefore,

$$
C_{\Omega}(\mathrm{D}, m \mathrm{~T})=\left\{\left(\operatorname{res}(d f)_{Q_{1}}, \ldots, \operatorname{res}(d f)_{Q_{n}}\right) \mid d f \in \Omega(m \mathrm{~T}-\mathrm{D})\right\}
$$

For this reason, the latter code is called a differential code. It is a $\left[n, k^{\prime}, d^{\prime}\right]_{q^{6}}$-code where

$$
d^{\prime} \geq \operatorname{deg}(m \mathrm{~T})-(2 \mathfrak{g}-2)=\left(q^{3}+1\right)\left(m-\left(q^{3}-2\right)\right)
$$

and $k^{\prime} \geq n+\ell(m \mathrm{~T}-\mathrm{D})-\ell(m \mathrm{~T})$. In particular, equality holds if $m \operatorname{deg}(\mathrm{~T})<n$, that is,

$$
k^{\prime}=\left(q^{3}+1\right)\left(q^{3}\left(q^{3}-1\right)-m-\frac{1}{2}\left(q^{3}-2\right)\right), \text { for } m<q^{3}\left(q^{3}-1\right) .
$$

Its Goppa's designed minimum distance is

$$
\delta^{*}=\operatorname{deg}(m \mathrm{~T})-(2 \mathfrak{g}-2)=\left(q^{3}+1\right)\left(m-\left(q^{3}-2\right)\right)
$$

We exhibit values of m for which the differential code $C_{\Omega}(\mathrm{D}, m \mathrm{~T})$ has good parameters. Its minimum distance is larger that the minimum distance of the one-point Hermitian code with the same length and dimension. The improvement is $O\left(q^{4}\right)$, see Theorem 4.3. The essential ingredient of the proof is the gap sequence of $\mathscr{H}_{q^{3}}$ on T , which we compute explicitly: see Theorem 3.2. We also prove that the group of permutation automorphisms of the code $C_{L}(\mathrm{D}, m \mathrm{~T}), m<q^{3}-2$, is isomorphic to $\operatorname{PGU}(3, q)$: see Theorem 5.4.

2. Preliminaris

We quote now several geometric and combinatorial properties of the Hermitian curves \mathscr{H}_{q} and $\mathscr{H}_{q^{3}}$, the references are [8, 12]. Motivating examples and computations are implemented in the computer algebra systems MAGMA [2] and GAP [5].

2.1. Plane algebraic curves

Our notation and terminology are standard. For the theory of plane algebraic curves, the reader is referred to $[9$, Chapters $1-5]$. Let \mathbb{F} be a finite field and fix an algebraic closure \mathbb{K} of \mathbb{F}, and let $A G(2, \mathbb{K})$ be the affine plane defined over \mathbb{K}. If $F \in \mathbb{K}[X, Y]$, then the affine plane curve \mathscr{F} is

$$
\mathscr{F}=\{P=(x, y) \in A G(2, \mathbb{K}) \mid F(x, y)=0\} .
$$

The degree of \mathscr{F} is the degree of F. A component of \mathscr{F} is a curve $\mathscr{G}=v_{a}(G)$ such that G divides F. A curve \mathscr{F} is irreducible if F is irreducible; otherwise, \mathscr{F} is reducible and it splits in irreducible curves, the components of \mathscr{F}. All these definitions are translated from $A G(2, \mathbb{K})$ to its projective closure $P G(2, \mathbb{K})$ when F is replaced by a form $F^{*} \in \mathbb{K}[X, Y, Z]$. For a form $F^{*} \in \mathbb{K}[X, Y, Z]$, the projective plane curve \mathscr{F} is

$$
\mathscr{F}=\mathbf{v}\left(F^{*}\right)=\left\{P=\left(x_{1}, x_{2}, x_{3}\right) \in P G(2, \mathbb{K}) \mid F\left(x_{1}, x_{2}, x_{3}\right)=0\right\} .
$$

If \mathscr{F} is non-singular, that is, it has no singular point in $P G(2, \mathbb{K})$, then its genus equals $\mathfrak{g}=\frac{1}{2}(\operatorname{deg}(\mathscr{F})-$ $1)(\operatorname{deg}(\mathscr{F})-2)$. Basic tools in the theory of plane curves are the theorem of Bézout, see $[9$, Theorem 3.14] which state the main properties of the intersection of two plane curves \mathscr{F} and \mathscr{G} in terms of their intersection divisor $\mathscr{F} \cdot \mathscr{G}$ depending on the intersection number $I(P, \mathscr{F} \cap \mathscr{G})$ at a point $P \in P G(2, \mathbb{K})$:

$$
\operatorname{deg}(\mathscr{F}) \operatorname{deg}(\mathscr{G})=\sum_{P \in \mathscr{F} \cap \mathscr{G}} I(P, \mathscr{F} \cap \mathscr{G})
$$

2.2. Riemann-Roch spaces

Let $\mathbb{F}(\mathscr{F})$ be the function field of \mathscr{F} with constant field \mathbb{F}, regarded as the subfield of the function field $\mathbb{K}(\mathscr{F})$ of \mathscr{F} over \mathbb{K}. The divisors are formal sums of places (or branches) of $\mathbb{K}(\mathscr{F})$. If \mathscr{F} is non-singular, then the places of $\mathbb{K}(\mathscr{F})$ can be identified with the points of \mathscr{F} so that each point is the center of a unique place. For every non-zero function h in $\mathbb{F}(\mathscr{F}), \operatorname{Div}(h)$ stands for the principal divisor associated to h. For a divisor D on \mathscr{F}, the Riemann-Roch space $\mathscr{L}(\mathrm{D})$ is the vector space consisting of all rational functions which are regular outside D . The dimension $\ell(\mathrm{D})$ of $\mathscr{L}(\mathrm{D})$ and $\operatorname{deg}(\mathrm{D})$ are linked by the Riemann-Roch Theorem, see for instance $[9$, Theorem 6.70]: $\ell(D)=\operatorname{deg}(D)-\mathfrak{g}+1+\operatorname{deg}(W-D)$ where W is a canonical divisor. In particular,

$$
\ell(D)=\operatorname{deg}(D)-\mathfrak{g}+1 \text { for } \operatorname{deg}(D)>2 \mathfrak{g}-2
$$

To compute the dimension of the the Riemann-Roch space $\mathscr{L}(\mathrm{D})$ we use a geometric approach based on the corresponding complete linear series $|\mathrm{D}|$; see [7, Chapter 3] and [9, Chapter 6.2]. Since \mathscr{F} is assumed to be non-singular, the divisors of $|\mathrm{D}|$ are cut out on \mathscr{F} by certain curves of a given degree l which are determined as follows. Take any plane curve \mathscr{G} of degree l such that $\mathscr{G} \cdot \mathscr{F} \succeq \mathrm{D}$ and let $\mathrm{B}=\mathscr{G} \cdot \mathscr{F}-\mathrm{D}$. The curves $\mathscr{U}: U(X, Y)=0$ with $\operatorname{deg}(\mathscr{U})=l$ such that $\mathscr{U} \cdot \mathscr{F} \succeq \mathrm{B}$ form a linear system that contains a linear subsystem Λ free from curves having \mathscr{F} as a component. The curves in Λ cut out the divisors of $|\mathrm{D}|$. The (projective) dimension of $|\mathrm{D}|$ is $\operatorname{dim}(\Lambda)$, that is, the maximum number of linearly independent curves in Λ. In terms of the Riemann-Roch space,

$$
\begin{equation*}
\mathscr{L}(\mathrm{D})=\left\{\left.\frac{U(x, y)}{G(x, y)} \right\rvert\, \operatorname{deg} U \leq \operatorname{deg} G, \mathscr{U} \cdot \mathscr{F} \succeq \mathrm{~B}\right\} . \tag{3}
\end{equation*}
$$

2.3. Weierstrass semigroups and gap sequences

For simplicity, assume that \mathscr{F} is a non-singular projective plane curve. For any \mathbb{F}-rational point $P \in \mathscr{F}$, a non-gap at P is a non-negative integer g such that there exists $h \in \mathbb{F}(\mathscr{F})$ with pole number g at P which is regular on the remaining points of \mathscr{F}, that is, $\operatorname{Div}(h)_{\infty}=g P$. The Weierstrass semigroup at P consists of all non-gaps at P, that is, of all positive integers other than the gaps at P. In the study of differential codes it is useful the generalization of the gap sequence and the Weierstrass semigroup to several points; see $[3,4,11,13,14,15]$.

For an ordered r-tuple $\left(P_{1}, P_{2}, \ldots, P_{r}\right)$ of \mathbb{F}-rational points of \mathscr{F}, a non-gap is an ordered r-tuple of non-negative integers $\left(g_{1}, g_{2}, \ldots, g_{r}\right) \in \mathbb{N}_{0}^{r}$ such that there exists $h \in \mathbb{K}(\mathscr{F})$ with $\operatorname{Div}(h)_{\infty}=g_{1} P_{1}+$ $g_{2} P_{2}+\ldots+g_{r} P_{r}$ while the Weierstrass semigroup $\mathbf{H}\left(P_{1}, P_{2} \ldots, P_{r}\right)$ consists of all r-tuples of positive integers other than the gaps, that is, the Weierstrass semigroup at $\left(P_{1}, P_{2} \ldots, P_{r}\right)$ is

$$
\mathbf{H}\left(P_{1}, P_{2}, \ldots, P_{r}\right)=\mathbb{N}_{0}^{r} \backslash \mathbf{G}\left(P_{1}, P_{2} \ldots, P_{r}\right),
$$

where $\mathbf{G}\left(P_{1}, P_{2}, \ldots, P_{r}\right)$ is the set of all gaps at $\left(P_{1}, P_{2}, \ldots, P_{r}\right)$. An equivalent definition of these concepts in terms of Riemann-Roch spaces is stated in the following result.

Lemma 2.1 ([4, Lemma 2.2 and Corollary 2.3]). Fix $\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}_{0}^{m}$ and write $\mathrm{D}=n_{1} Q_{1}+\cdots+$ $n_{m} Q_{m}$.
(i) $\left(n_{1}, \ldots, n_{m}\right) \in \mathbf{G}\left(Q_{1}, \ldots, Q_{m}\right) \Longleftrightarrow \exists i$ such that $\ell(\mathrm{D})=\ell\left(\mathrm{D}-Q_{i}\right)$.
(ii) $\left(n_{1}, \ldots, n_{m}\right) \in \mathbf{H}\left(Q_{1}, \ldots, Q_{m}\right) \Longleftrightarrow \forall i$ we have $\ell(\mathrm{D})=\ell\left(\mathrm{D}-Q_{i}\right)+1$.

A little bit more general concepts are the Weierstrass semigroup and the gap sequence at an effective divisor. Let D be an effective divisor of $\mathbb{F}(\mathscr{F})$. The Weierstrass semigroup at D is

$$
\mathbf{H}(\mathrm{D})=\left\{n \in \mathbb{N}_{0} \mid \exists f \in \mathbb{F}(\mathscr{F}) \text { s.t. } \operatorname{Div}(f)_{\infty}=n \mathrm{D}\right\} .
$$

The Weierstrass gap sequence at D is

$$
\mathbf{G}(\mathrm{D})=\left\{n \in \mathbb{N}_{0} \mid \ell(n \mathrm{D})=\ell((n-1) \mathrm{D})\right\} .
$$

Unfortunately, it is not true that $\mathbf{G}(\mathrm{D})=\mathbb{N}_{0} \backslash \mathbf{H}(\mathrm{D})$. However, the following holds.
Lemma 2.2. Let $\mathrm{D}=P_{1}+P_{2}+\ldots+P_{r}$ with points $P_{1}, P_{2}, \ldots, P_{r}$ of \mathscr{F}. The non-negative integer n is in $\mathbf{G}(\mathrm{D})$ if and only if for all integers k_{1}, \ldots, k_{m} with

$$
(n-1, \ldots, n-1)<\left(k_{1}, \ldots, k_{m}\right) \leq(n, \ldots, n)
$$

we have $\left(k_{1}, \ldots, k_{m}\right) \in \mathbf{G}\left(P_{1}, P_{2}, \ldots, P_{r}\right)$.

2.4. The geometry of the Hermitian curve \mathscr{H}_{q}

We keep up our notation from Introduction. A line l of $P G\left(2, \mathbb{F}_{q^{2}}\right)$ is either a tangent to \mathscr{H}_{q} at an $\mathbb{F}_{q^{2}}$-rational point of \mathscr{H}_{q} or it meets \mathscr{H}_{q} at $q+1$ distinct $\mathbb{F}_{q^{2}}$-rational points. In terms of intersection divisors, see [9, Section 6.2],

$$
\mathscr{H}_{q} \cdot l= \begin{cases}(q+1) Q, & Q \in \mathscr{H}_{q} ; \\ \sum_{i=1}^{q+1} Q_{i}, & Q_{i} \in \mathscr{H}_{q}, \quad Q_{i} \neq Q_{j}, \quad 1 \leq i<j \leq n .\end{cases}
$$

Through every point $V \in P G\left(2, \mathbb{F}_{q^{2}}\right)$ not in $\mathscr{H}_{q}\left(\mathbb{F}_{q^{2}}\right)$ there are $q^{2}-q$ secants and $q+1$ tangents to \mathscr{H}_{q}. The arising $q+1$ tangency points are the common points of \mathscr{H}_{q} with the polar line of V relative to the unitary polarity associated to \mathscr{H}_{q}. Let $V=(1: 0: 0)$. Then the line l_{∞} of equation $Z=0$ is tangent at $P_{\infty}=(0: 1: 0)$ while another line through V with equation $Y-c Z=0$ is either a tangent or a secant according as $c^{q}+c$ is 0 or not. This gives rise to the polynomial

$$
\begin{equation*}
R_{q}(X, Y)=X \prod_{c \in \mathbb{F}_{q^{2}}, c^{q}+c \neq 0}(Y-c) \tag{4}
\end{equation*}
$$

of degree $q^{2}-q+1$. By [9, Theorem 6.42],

$$
\operatorname{Div}\left(R_{q}(x, y)\right)_{\infty}=\left(q^{2}-q+1\right)(q+1) P_{\infty}=\left(q^{3}+1\right) P_{\infty}
$$

The above results can be stated for $\mathscr{H}_{q^{3}}$ by replacing q with q^{3}. In particular.

$$
\operatorname{Div}\left(R_{q^{3}}(x, y)\right)_{\infty}=\left(q^{6}-q^{3}+1\right)\left(q^{3}+1\right) P_{\infty}=\left(q^{9}+1\right) P_{\infty}
$$

2.5. Intersection of the Hermitian curves $\mathscr{H}_{q^{3}}$ and \mathscr{H}_{q}

As we pointed out in Introduction, since $x^{q^{3}}=x^{q}$ for all $x \in \mathbb{F}_{q^{2}}$, we have $\mathscr{H}_{q}\left(\mathbb{F}_{q^{2}}\right)=\mathscr{H}_{q^{3}}\left(\mathbb{F}_{q^{2}}\right)$, that is, all $\mathbb{F}_{q^{2}}$-rational points of \mathscr{H}_{q} lie on $\mathscr{H}_{q^{3}}$. Moreover, the curves \mathscr{H}_{q} and $\mathscr{H}_{q^{3}}$ have the same tangent line t_{Q} at any point $Q \in \mathscr{H}_{q}\left(\mathbb{F}_{q^{2}}\right)$. Their intersection multiplicity at Q is therefore

$$
I\left(Q, \mathscr{H}_{q} \cap \mathscr{H}_{q^{3}}\right)=I\left(Q, \mathscr{H}_{q} \cap t_{Q}\right)=q+1
$$

By the theorem of Bézout [9, Theorem 3.14], \mathscr{H}_{q} and $\mathscr{H}_{q^{3}}$ have no further common points. As in the Introduction, define the divisors

$$
\begin{equation*}
\mathrm{D}=\sum_{Q \in \mathscr{H}_{q^{3}} \backslash \mathscr{H}_{q}} Q \quad \text { and } \quad \mathrm{T}=\sum_{Q \in \mathscr{H}_{q}} Q \tag{5}
\end{equation*}
$$

on $\mathscr{H}_{q^{3}}$. Then $\operatorname{deg}(\mathrm{D})=q^{9}-q^{3}, \operatorname{deg}(\mathrm{~T})=q^{3}+1$ and the intersection divisor is

$$
\mathscr{H}_{q} \cdot \mathscr{H}_{q^{3}}=(q+1) \mathrm{T}
$$

Let $H_{q}(X, Y)=X^{q+1}-Y^{q}-Y$ be the affine polynomial of \mathscr{H}_{q}. From [9, Theorem 6.42],

$$
\begin{equation*}
\operatorname{Div}\left(H_{q}\right)=(q+1) \mathrm{T}-\left(q^{3}+1\right)(q+1) P_{\infty} \tag{6}
\end{equation*}
$$

in $\mathbb{F}_{q^{6}}\left(\mathscr{H}_{q^{3}}\right)$. In particular,

$$
\begin{equation*}
(q+1) \mathrm{T} \equiv\left(q^{3}+1\right)(q+1) P_{\infty} \tag{7}
\end{equation*}
$$

2.6. Equivalence of functional and differential Hermitian codes

Lemma 2.3. For any divisor G of $\mathscr{H}_{q^{3}}$,

$$
\Omega(\mathrm{G}-\mathrm{D})=d x R_{q^{3}}^{-1} \mathscr{L}\left(-\mathrm{G}-\mathrm{T}+\left(q^{6}-1\right)\left(q^{3}+1\right) P_{\infty}\right)
$$

Proof. The proof is similar to that of [13, Lemma 2.1]. Since x is a separable variable of $\mathbb{F}_{q^{6}}\left(\mathscr{H}_{q^{3}}\right)$, we may write the differential ω as $\omega=h d x$. Then

$$
\begin{aligned}
\omega=h d x \in & \Omega(\mathrm{G}-\mathrm{D}) \Leftrightarrow \operatorname{Div}(\omega) \succeq \mathrm{G}-\mathrm{D} \\
& \Leftrightarrow \operatorname{Div}(h) \succeq \mathrm{G}-\mathrm{D}-\operatorname{Div}(d x) \\
& \Leftrightarrow \operatorname{Div}\left(R_{q^{3}} h\right) \succeq \mathrm{G}-\mathrm{D}-\operatorname{Div}(d x)+\operatorname{Div}\left(R_{q^{3}}\right) \\
& \Leftrightarrow \operatorname{Div}\left(R_{q^{3}} h\right) \succeq \mathrm{G}+\mathrm{T}-\left(q^{6}-1\right)\left(q^{3}+1\right) P_{\infty}
\end{aligned}
$$

In the last step, we used the following facts: $\operatorname{Div}(d x)=(2 \mathfrak{g}-2) P_{\infty}, \operatorname{Div}\left(R_{q^{3}}\right)=\mathrm{D}+\mathrm{T}-\left(q^{9}+1\right) P_{\infty}$, and $q^{9}-2 \mathfrak{g}+1=\left(q^{6}-1\right)\left(q^{3}+1\right)$. Therefore

$$
\omega=h d x \in \Omega(\mathrm{G}-\mathrm{D}) \Leftrightarrow h \in R_{q^{3}}^{-1} \mathscr{L}\left(-\mathrm{G}-\mathrm{T}+\left(q^{6}-1\right)\left(q^{3}+1\right) P_{\infty}\right)
$$

which proves the lemma.
Proposition 2.4. Let G be an effective divisor on $\mathscr{H}_{q^{3}}$, with $\operatorname{supp}(\mathrm{G}) \cap \operatorname{supp}(\mathrm{D})=\emptyset$. The differential code $C_{\Omega}(\mathrm{D}, \mathrm{G})$ and the functional code $C_{L}\left(\mathrm{D},-\mathrm{G}-\mathrm{T}+\left(q^{6}-1\right)\left(q^{3}+1\right) P_{\infty}\right)$ are monomially equivalent.
Proof. By Lemma 2.3, every differential in $\Omega(\mathrm{G}-\mathrm{D})$ can be written as $\omega=R_{q^{3}}^{-1} f d x$ with $f \in \mathscr{L}(-\mathrm{G}-$ $\left.\mathrm{T}+\left(q^{6}-1\right)\left(q^{3}+1\right) P_{\infty}\right)$. As G and T are effective, f only has poles at infinity. From the Horizon Theorem [17, Section 4.3] f is a polynomial in x and y. Also, P_{∞} is not a pole of ω. Hence $\operatorname{res}_{P_{\infty}}(\omega)=0$.

Take a point $S(a, b) \in \mathscr{H}_{q^{3}} \backslash\left\{P_{\infty}\right\}$. Then, $b^{q^{3}}+b=a^{q^{3}+1}, t=x-a$ is a local parameter at S, and the local expansion of y at S is $y(t)=b+t a^{q^{3}}+t^{q^{3}+1}[\ldots]$. Therefore $f(a+t, y(t))=f(a, b)+t[\ldots]$ while $R_{q^{3}}(a, b)=0$ and $R_{q^{3}}(a+t, y(t))=u t+t^{2}[\ldots]$ with nonzero $u=u(S)$ given by

$$
u=\left\{\begin{array}{l}
\prod_{c \in \mathbb{F}_{q^{6}}, c^{q^{3}}+c \neq 0}(b-c), \quad \text { for } a=0 . \\
a^{q^{3}+1} \prod_{c \in \mathbb{F}_{q^{6}}, c^{q^{3}}+c \neq 0, c \neq b}(b-c), \quad \text { for } a \neq 0 .
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
g(a+t, y(t)) & =R_{q^{3}}(a+t, y(t))^{-1} f(a+t, y(t)) \\
& =u^{-1} f(a, b) t^{-1}+\cdots
\end{aligned}
$$

whence

$$
\operatorname{res}_{S}(g d x)=\operatorname{res}_{t}\left(u^{-1} f(a, b) t^{-1}+\cdots\right)=u^{-1} f(S)
$$

showing the monomial equivalence between the codes $C_{\Omega}(\mathrm{D}, \mathrm{G})$ and $C_{L}\left(\mathrm{D},-\mathrm{G}-\mathrm{T}+\left(q^{6}-1\right)\left(q^{3}+\right.\right.$ 1) P_{∞}).

Proposition 2.5. Let m be a positive integer. The codes $C_{\Omega}(\mathrm{D}, m \mathrm{~T})$ and $C_{L}\left(\mathrm{D},\left(q^{6}-m-2\right) \mathrm{T}\right)$ are monomially equivalent.

Proof. This follows from Proposition 2.4 and Equation (7).

3. The gap sequence of $\mathscr{H}_{q^{3}}$ at $\operatorname{supp}(T)$

In this section we prove some results on the Riemann-Roch space $\mathscr{L}(m \mathrm{~T})$ of $\mathscr{H}_{q^{3}}$. We keep our notation of the previous section. Moreover \mathscr{R}_{q} stands for the completely reducible plane curve with affine equation $R_{q}(X, Y)=0$. For $Q \in \operatorname{supp}(\mathrm{~T})$, we have $I\left(Q, \mathscr{R}_{q} \cap \mathscr{H}_{q^{3}}\right)=1$. In particular, for the intersection divisor $\mathscr{R}_{q} \cdot \mathscr{H}_{q^{3}}=\mathrm{T}+\mathrm{T}^{\prime} \succeq \mathrm{T}$.

Lemma 3.1. Let $0<m \leq q^{3}-2$ be an integer and write $m=m_{0}(q+1)+m_{1}, 0 \leq m_{1} \leq q$. Define the polynomial $G(X, Y)=H_{q}(X, Y)^{m_{0}} R_{q}(X, Y)^{m_{1}}$. Then

$$
\operatorname{deg} G=m_{0}(q+1)+m_{1}\left(q^{2}-q+1\right)
$$

and

$$
\mathbf{v}(G) \cdot \mathscr{H}_{q^{3}}=m_{0}\left(\mathscr{H}_{q} \cdot \mathscr{H}_{q^{3}}\right)+m_{1}\left(\mathscr{R}_{q} \cdot \mathscr{H}_{q^{3}}\right)=m \mathrm{~T}+m_{1} \mathrm{~T}^{\prime} \succeq m \mathrm{~T}
$$

Furthermore, for the Riemann-Roch space,

$$
\mathscr{L}(m \mathrm{~T})=\left\{\left.\frac{F(x, y)}{G(x, y)} \right\rvert\, \operatorname{deg} F \leq \operatorname{deg} G \text { and } \mathbf{v}(F) \cdot \mathscr{H}_{q^{3}} \succeq m_{1} \mathrm{~T}^{\prime}\right\}
$$

Proof. This follows from Equation (3), applied to $\mathscr{F}=\mathscr{H}_{q^{3}}$ and $\mathrm{G}=m \mathrm{~T}$.
Theorem 3.2. Let $0<m \leq q^{3}-2$ be an integer and write $m=m_{0}(q+1)+m_{1}, 0 \leq m_{1} \leq q$.
a) If $\left(m_{0}+1\right)(q+1)<\left(q+1-m_{1}\right)\left(q^{2}-q+1\right)$ then

$$
\begin{aligned}
\mathscr{L}(m \mathrm{~T}) & =\mathscr{L}\left(m_{0}(q+1) \mathrm{T}\right) \\
& =\left\{\left.\frac{F(x, y)}{H_{q}(x, y)^{m_{0}}} \right\rvert\, \operatorname{deg} F \leq m_{0}(q+1)\right\} .
\end{aligned}
$$

In particular, $\ell(m \mathrm{~T})=\ell\left(m_{0}(q+1) \mathrm{T}\right)=\binom{m_{0}(q+1)+2}{2}$.
b) If $\left(m_{0}+1\right)(q+1) \geq\left(q+1-m_{1}\right)\left(q^{2}-q+1\right)$ then

$$
\frac{R_{q}^{q+1-m_{1}}}{H_{q}^{m_{0}+1}} \in \mathscr{L}(m \mathrm{~T}) \backslash \mathscr{L}((m-1) \mathrm{T})
$$

Proof. a) We use the notation of Lemma 3.1. Let $F(X, Y)$ be a polynomial with $\operatorname{deg} F \leq \operatorname{deg} G$ and $\mathbf{v}(F) \cdot \mathscr{H}_{q^{3}} \succeq m_{1} \mathrm{~T}^{\prime}$. By assumption,

$$
\operatorname{deg} F \leq m_{0}(q+1)+m_{1}\left(q^{2}-q+1\right)<q^{3}-q
$$

We prove that $R_{q}^{m_{1}} \mid F$. Otherwise $m_{1} \geq 1$ and there is a linear component $\ell: L=0$ of \mathscr{R}_{q} such that $F=F_{0} L^{k}, L \nmid F_{0}$ and $k<m_{1}$. As ℓ is not a tangent of $\mathscr{H}_{q^{3}}$, for all points Q in $\ell \backslash \mathscr{H}_{q}$ we have

$$
I\left(Q, \mathbf{v}\left(F_{0}\right) \cap \mathscr{H}_{q^{3}}\right) \geq m_{1}-k \geq 1
$$

Clearly we have $q^{3}-q$ choices for Q, and since $\operatorname{deg} F_{0} \leq \operatorname{deg} F<q^{3}-q$, our assumption $L \nmid F_{0}$ is inconsistent with the theorem of Bézout. Hence, $F=F_{1} R_{q}^{m_{1}}$ and $F / G=F_{1} / H_{q}^{m_{0}}$ is the generic element of $\mathscr{L}(m \mathrm{~T})$, with $\operatorname{deg} F_{1} \leq m_{0}(q+1)$.
b) Equation (6) together with

$$
\operatorname{Div}\left(R_{q}\right)=\mathrm{T}+\mathrm{T}^{\prime}-\left(q^{3}+1\right)\left(q^{2}-q+1\right) P_{\infty}
$$

yield

$$
\begin{aligned}
\operatorname{Div}\left(\frac{R_{q}^{q+1-m_{1}}}{H_{q}^{m_{0}+1}}\right)= & -m \mathrm{~T}+\left(q+1-m_{1}\right) \mathrm{T}^{\prime} \\
& +\left(q^{3}+1\right)\left(\left(m_{0}+1\right)(q+1)\right. \\
& \left.-\left(q+1-m_{1}\right)\left(q^{2}-q+1\right)\right) P_{\infty}
\end{aligned}
$$

Our assumption $\left(m_{0}+1\right)(q+1) \geq\left(q+1-m_{1}\right)\left(q^{2}-q+1\right)$ implies the claim.
Since $2 \mathfrak{g}-2=\left(q^{3}+1\right)\left(q^{3}-2\right)$, if $m>q^{3}-2$ then $\operatorname{deg}(m \mathrm{~T})>2 \mathfrak{g}-2$ and

$$
\ell(m \mathrm{~T})=\operatorname{deg}(m \mathrm{~T})+1-\mathfrak{g}=\left(q^{3}+1\right)\left(m-\frac{q^{3}-2}{2}\right)
$$

Corollary 3.3. The Weierstrass gap sequence at T is

$$
\mathbf{G}(\mathbf{T})=\left\{m_{0}(q+1)+m_{1} \left\lvert\, \quad 1 \leq m_{1}<q+1-\frac{\left(m_{0}+1\right)(q+1)}{q^{2}-q+1}\right.\right\} .
$$

Proof. The claim follows from Theorem 3.2, except for $m_{1}=0$. In this case, $1 / H_{q}^{m_{0}} \in \mathscr{L}(m \mathrm{~T}) \backslash$ $\mathscr{L}((m-1) \mathrm{T})$, which shows that $m=m_{0}(q+1) \notin \mathbf{G}(\mathrm{T})$.

4. Hermitian codes $C_{\Omega}(\mathrm{D}, k \mathrm{~T})$

In this section we exhibit some values of m which produce good Hermitian codes. We compare our code with the one-point Hermitian code of the same length and dimension. We rely on the following result by Carvalho and Torres [4, Theorem 3.4].

Proposition 4.1. Suppose that $\alpha, \alpha+1, \ldots, \beta$ is a sequence of consecutive numbers in $\mathbf{G}(\mathrm{T})$. Let $k:=\alpha+\beta-1$. Then, the minimum distance of the differential code $C_{\Omega}(\mathrm{D}, k \mathrm{~T})$ satisfies

$$
d \geq k\left(q^{3}+1\right)-\left(q^{3}-2\right)\left(q^{3}+1\right)+(\beta-\alpha+1)\left(q^{3}+1\right)
$$

where the last term is the improvement on the designed minimum distance.

Proof. With notation of [4, Section 3], $n_{i}=\alpha, p_{i}=\beta$ for $i=1, \ldots, q^{3}+1, m=q^{3}+1$ and $\mathrm{T}=Q_{1}+\cdots+Q_{m}$.
Lemma 4.2. Let $q>3$ be a prime power and define the integer

$$
k^{\prime}= \begin{cases}\left(q^{6}-q^{3}-q^{2}-\frac{1}{2} q-1\right)\left(q^{3}+1\right) & \text { for } q \text { even, } \\ \left(q^{6}-q^{3}-q^{2}+\frac{1}{2}(q-1)\right)\left(q^{3}+1\right) & \text { for } q \text { odd. }\end{cases}
$$

Then the one-point functional code $C_{L}\left(\mathrm{D}, k^{\prime} P_{\infty}\right)$ has parameters

$$
\left[q^{9}-q^{3},\left(q^{6}-\frac{3}{2} q^{3}-q^{2}-\frac{q}{2}\right)\left(q^{3}+1\right),\right.
$$

$$
\left.\leq\left(q^{2}+\frac{q}{2}+1\right)\left(q^{3}+1\right)+q^{3}\right]
$$

for q even, and

$$
\begin{aligned}
& {\left[q^{9}-q^{3},\left(q^{6}-\frac{3}{2} q^{3}-q^{2}+\frac{q+1}{2}\right)\left(q^{3}+1\right),\right.} \\
& \left.\quad \leq\left(q^{2}-\frac{q-1}{2}\right)\left(q^{3}+1\right)+q^{3}\right]
\end{aligned}
$$

for q odd.
Proof. We give the proof for q even, the odd case is similar. It is straightforward to see that the length is $n=q^{9}-q^{3}$, the dimension is as given, and

$$
\delta=n-k^{\prime}=\left(q^{2}+\frac{q}{2}+1\right)\left(q^{3}+1\right)
$$

is the designed minimum distance. For

$$
\begin{aligned}
& a=q^{3}-q^{2}-\frac{1}{2} q-3 \\
& b=q^{3}-q^{2}-\frac{1}{2} q-1
\end{aligned}
$$

we compute $k^{\prime}=q^{9}-q^{6}+a q^{3}+b$. Let D^{\prime} be the sum of the affine points of $\mathscr{H}_{q^{3}}$. As $a<b=a+2$, [20, line 4) of Table 1] implies that the true minimum distance of $C_{L}\left(\mathrm{D}^{\prime}, k^{\prime} P_{\infty}\right)$ is

$$
q^{9}-k^{\prime}=\delta+q^{3}=\left(q^{2}+\frac{q}{2}+1\right)\left(q^{3}+1\right)+q^{3} .
$$

Since $C_{L}\left(\mathrm{D}, k^{\prime} P_{\infty}\right)$ is obtained from $C_{L}\left(\mathrm{D}^{\prime}, k^{\prime} P_{\infty}\right)$ by deleting q^{3} positions, the minimum distance of $C_{L}\left(\mathrm{D}, k^{\prime} P_{\infty}\right)$ is at most $\delta+q^{3}$.
Theorem 4.3. Let $q>3$ be a prime power and define the integer

$$
k= \begin{cases}q^{3}+q^{2}+\frac{q}{2}-1 & \text { for } q \text { even }, \\ q^{3}+q^{2}-\frac{q+1}{2}-1 & \text { for } q \text { odd. }\end{cases}
$$

Then the differential code $C_{\Omega}(\mathrm{D}, k \mathrm{~T})$ has parameters

$$
\left[q^{9}-q^{3},\left(q^{6}-\frac{3}{2} q^{3}-q^{2}-\frac{q}{2}\right)\left(q^{3}+1\right),\right.
$$

$$
\left.\geq \delta+\left(\frac{q}{2}-1\right)\left(q^{3}+1\right)\right]
$$

for q even, and

$$
\left[q^{9}-q^{3},\left(q^{6}-\frac{3}{2} q^{3}-q^{2}+\frac{q+1}{2}\right)\left(q^{3}+1\right),\right.
$$

$$
\left.\geq \delta+\frac{q-1}{2}\left(q^{3}+1\right)\right]
$$

for q odd, where

$$
\delta=\operatorname{deg}(k \mathrm{D})-2 \mathfrak{g}+2=\left(q^{3}+1\right)\left(k-q^{3}+2\right)
$$

is the designed minimum distance of $C_{\Omega}(\mathrm{D}, k \mathrm{~T})$.
Proof. Let $q \geq 4$ be even and $m_{0}:=q^{2} / 2$. Then

$$
\frac{\left(m_{0}+1\right)(q+1)}{q^{2}-q+1}=\frac{q^{3}+q^{2}+2 q+2}{2\left(q^{2}-q+1\right)}=\frac{q}{2}+1+\frac{3 q}{2\left(q^{2}-q+1\right)}
$$

This implies

$$
\left\lfloor q+1-\frac{\left(m_{0}+1\right)(q+1)}{q^{2}-q+1}\right\rfloor=\left\lfloor\frac{q}{2}-\frac{3 q}{2\left(q^{2}-q+1\right)}\right\rfloor=\frac{q}{2}-1
$$

for $q>2$. By Corollary 3.3,

$$
\alpha=\frac{q^{2}(q+1)}{2}+1, \ldots, \beta=\frac{q^{2}(q+1)}{2}+\frac{q}{2}-1
$$

is a sequence of consecutive gap numbers. Moreover, $k=\alpha+\beta-1$. As $\operatorname{deg}(k \mathrm{~T})>2 \mathfrak{g}-2$, we have

$$
\begin{aligned}
\operatorname{dim}\left(C_{\Omega}(\mathrm{D}, k \mathrm{~T})\right) & =n+\mathfrak{g}-\operatorname{deg}(k \mathrm{~T})-1 \\
& =\left(q^{6}-\frac{3}{2} q^{3}-q^{2}-\frac{1}{2} q\right)\left(q^{3}+1\right)
\end{aligned}
$$

Proposition 4.1 improves the designed minimum distance

$$
\delta=\operatorname{deg}(k \mathrm{~T})-2 \mathfrak{g}+2=\left(q^{2}+\frac{q}{2}+1\right)\left(q^{3}+1\right)
$$

of $C_{\Omega}(\mathrm{D}, k \mathrm{~T})$ by

$$
(\beta-\alpha+1) \operatorname{deg}(\mathrm{T})=\left(\frac{q}{2}-1\right)\left(q^{3}+1\right)
$$

This proves the theorem for $q \geq 4$ even. Similar computation applies for $q \geq 5$ odd with $m_{0}=$ $\left(q^{2}-1\right) / 2$.
Remark 4.4. (i) Lemma 4.2 and Theorem 4.3 show that the code $C_{\Omega}(\mathrm{D}, k \mathrm{~T})$ performs much better than the one-point Hermitian code of the same length and dimension; the improvement is approximatively $q^{4} / 2$.
(ii) In [20, Theorem 2.5], the authors show the existence of a divisor G such that $C_{\Omega}(\mathrm{D}, k \mathrm{~T})$ and $C_{\Omega}(\mathrm{D}, \mathrm{G})$ have the same length and dimension, and $C_{\Omega}(\mathrm{D}, \mathrm{G})$ has a minimum distance $\delta+O\left(q^{6}\right)$. While the parameter of $C_{\Omega}(\mathrm{D}, \mathrm{G})$ is better, no explicit construction for G is known.

5. The permutation automorphisms of $C_{L}(\mathrm{D}, m \mathrm{~T})$

Definition 5.1. Let \mathscr{X} be a smooth irreducible curve over $\mathbb{F}_{q}, Q_{1}, \ldots, Q_{n} \in \mathscr{X}\left(\mathbb{F}_{q}\right), \mathrm{D}=Q_{1}+\cdots+Q_{n}$, and C be an \mathbb{F}_{q}-rational divisor on \mathscr{X} with $\operatorname{supp}(\mathrm{D}) \cap \operatorname{supp}(\mathrm{C})=\emptyset$. A monomial automorphism of $C_{L}(\mathrm{D}, \mathrm{C})$ is a triple (α, β, γ), where α is an automorphism of $\mathscr{L}(\mathrm{C}), \beta$ is a permutation of $\left\{Q_{1}, \ldots, Q_{n}\right\}$ and γ is a $\left\{Q_{1}, \ldots, Q_{n}\right\} \rightarrow \mathbb{F}_{q}$ map. Moreover, for all $P \in\left\{Q_{1}, \ldots, Q_{n}\right\}$ and $f \in \mathscr{L}(\mathrm{C})$ yields

$$
\begin{equation*}
\alpha(f)(P)=\gamma(P) f(\beta(P)) \tag{8}
\end{equation*}
$$

If $\gamma=1$ is constant then (α, β) is called a permutation automorphism of $C_{L}(\mathrm{D}, \mathrm{C})$. If β is the identity permutation and γ is constant then one speaks of a pure monomial automorphism.

With the notation of the previous definition, let τ be an automorphism of the function field $\mathbb{F}_{q}(\mathscr{X})$ and assume that τ preserves the divisors D and C . Then, τ induces an automorphism α of $\mathscr{L}(\mathrm{C})$ and a permutation β of Q_{1}, \ldots, Q_{n}. In fact, α is the restriction of τ to $\mathscr{L}(\mathrm{C})$, and β is defined in such a way that (8) holds. We say that (α, β) is an inherited permutation automorphism of $C_{L}(\mathrm{D}, \mathrm{C})$, induced by τ.

The following proposition generalizes [15, Theorem 4.1] in such a way, that it can be applied to certain codes $C_{L}(\mathrm{D}, m \mathrm{~T})$ of the Hermitian curve $\mathscr{H}_{q^{3}}$.
Proposition 5.2. Let $\mathscr{X}: F(X, Y)=0$ be a smooth irreducible plane curve over $\mathbb{F}_{q}, Q_{1}, \ldots, Q_{n} \in$ $\mathscr{X}\left(\mathbb{F}_{q}\right), \mathrm{D}=Q_{1}+\cdots+Q_{n}$, and C be an \mathbb{F}_{q}-rational divisor on \mathscr{X} with $\operatorname{supp}(\mathrm{D}) \cap \operatorname{supp}(\mathrm{C})=\emptyset$. Let x, y be generators of the function field $\mathbb{F}_{q}(\mathscr{X})$ satisfying $F(x, y)=0$. Assume that the following hold:
(a) The points Q_{1}, \ldots, Q_{n} are affine.
(b) There is a curve $\mathscr{G}: G(X, Y)=0$ and an effective divisor B , defined over \mathbb{F}_{q}, such that $\mathscr{X} \cdot \mathscr{G}=\mathrm{C}+\mathrm{B}$.
(c) There is a polinomial $S(X, Y) \in \mathbb{F}_{q}[X, Y]$ such that $\frac{1}{S(x, y)}, \frac{x}{S(x, y)}, \frac{y}{S(x, y)} \in \mathscr{L}(\mathrm{C})$.
(d) $n>(\operatorname{deg} G)(\operatorname{deg} F)^{2}$.

Then all permutation automorphisms of $C_{L}(\mathrm{D}, \mathrm{C})$ are inherited.
Proof. Let (α, β) be a permutation automorphism of $C_{L}(\mathrm{D}, \mathrm{C})$. By (a) we can set $Q_{i}=\left(a_{i}, b_{i}\right)$ and $\beta\left(Q_{i}\right)=Q_{i^{\prime}}=\left(a_{i^{\prime}}, b_{i^{\prime}}\right)$ with $a_{i}, b_{i}, a_{i}^{\prime}, b_{i}^{\prime} \in \mathbb{F}_{q}$. Equation (3) and (b) imply the existence of polynomials $u(X, Y), v(X, Y), w(X, Y)$ of degree at $\operatorname{most} \operatorname{deg}(G)$ such that

$$
\begin{aligned}
& \alpha\left(\frac{1}{S(x, y)}\right)=\frac{w(x, y)}{G(x, y)}, \\
& \alpha\left(\frac{x}{S(x, y)}\right)=\frac{u(x, y)}{G(x, y)}, \\
& \alpha\left(\frac{y}{S(x, y)}\right)=\frac{v(x, y)}{G(x, y)} .
\end{aligned}
$$

By $\alpha(f)(P)=f(\beta(P))$ we have

$$
\begin{aligned}
\frac{u\left(a_{i}, b_{i}\right)}{G\left(a_{i}, b_{i}\right)} & =\alpha\left(\frac{x}{S(x, y)}\right)\left(a_{i}, b_{i}\right) \\
& =\left(\frac{x}{S(x, y)}\right)\left(a_{i^{\prime}}, b_{i^{\prime}}\right) \\
& =\frac{a_{i^{\prime}}}{S\left(a_{i^{\prime}}, b_{i^{\prime}}\right)}
\end{aligned}
$$

for all $i=1, \ldots, n$. This implies

$$
\begin{equation*}
a_{i^{\prime}}=\frac{u\left(a_{i}, b_{i}\right)}{w\left(a_{i}, b_{i}\right)}, \quad b_{i^{\prime}}=\frac{v\left(a_{i}, b_{i}\right)}{w\left(a_{i}, b_{i}\right)} . \tag{9}
\end{equation*}
$$

Define the polynomial

$$
F^{*}(X, Y)=w(X, Y)^{\operatorname{deg}(F)} F\left(\frac{u(X, Y)}{w(X, Y)}, \frac{v(X, Y)}{w(X, Y)}\right) .
$$

Clearly, $\operatorname{deg}\left(F^{*}\right) \leq \operatorname{deg}(F) \operatorname{deg}(G)$, and

$$
F^{*}\left(a_{i}, b_{i}\right)=w\left(a_{i}, b_{i}\right)^{\operatorname{deg}(F)} F\left(a_{i^{\prime}}, b_{i^{\prime}}\right)=0
$$

holds for $i=1, \ldots, n$. In particular $\mathscr{X}^{*}: F^{*}(X, Y)=0$ and \mathscr{X} have al least n points in common. The theorem of Bézout and (d) imply $F \mid F^{*}$.

Since $w(x, y) \neq 0$, the curve $\mathscr{W}: w(X, Y)=0$ has a finite number of points in common with \mathscr{X}. Take an arbitrary affine point $(a, b) \in \mathscr{X}\left(\overline{\mathbb{F}}_{q}\right)$, not on \mathscr{W}. We have

$$
0=F^{*}(a, b)=w(a, b)^{\operatorname{deg}(F)} F\left(\frac{u(a, b)}{w(a, b)}, \frac{v(a, b)}{w(a, b)}\right),
$$

which implies

$$
F\left(\frac{u(a, b)}{w(a, b)}, \frac{v(a, b)}{w(a, b)}\right)=0 .
$$

This means that the rational map

$$
\bar{\tau}(X, Y)=\left(\frac{u(X, Y)}{w(X, Y)}, \frac{v(X, Y)}{w(X, Y)}\right)
$$

maps any point of $\mathscr{X}\left(\overline{\mathbb{F}}_{q}\right)$ to \mathscr{X}, up to a finite number of exceptions. Since $\bar{\tau}$ is defined over \mathbb{F}_{q}, we obtain that

$$
\tau: x \mapsto \frac{u(x, y)}{w(x, y)}, \quad y \mapsto \frac{v(x, y)}{w(x, y)}
$$

extends to an homomorphism of the function field $\mathbb{F}_{q}(\mathscr{X})$ to itself. We show that τ is surjective. Notice that we identified the places of $\mathbb{F}_{q}(\mathscr{X})$ and the points of \mathscr{X}, and, the action of τ on the places and the action of $\bar{\tau}$ on the points are equivalent.

By Equation (9), τ induces β on Q_{1}, \ldots, Q_{n}. For all $f \in \mathscr{L}(\mathrm{C})$ we have $\tau(f)\left(Q_{i}\right)=f\left(Q_{i^{\prime}}\right)=$ $\alpha(f)\left(Q_{i}\right)$. As $n>\operatorname{deg}(\mathrm{C})$, the evaluation map $f \rightarrow\left(f\left(Q_{1}\right), \ldots, f\left(Q_{n}\right)\right)$ is injective and $\alpha(f)=\tau(f)$ holds. In particular, $1 / S(x, y), x / S(x, y)$ and $y / S(x, y)$ are in the image of τ, hence $x, y \in \operatorname{Im}(\tau)$, which shows that τ is indeed and automorphism of $\mathbb{F}_{q}(\mathscr{X})$. We have also seen that τ induces the permutation automorhism (α, β), which is therefore inherited.

We can extend this method to monomial automorphisms.
Proposition 5.3. Under the hypothesis of Proposition 5.2, if $\operatorname{deg}(G)<\operatorname{deg}(F)$ and (α, β, γ) is a monomial automorphism of $C_{L}(\mathrm{D}, \mathrm{C})$, then γ is constant. In particular, the monomial automorphism group of $C_{L}(\mathrm{D}, \mathrm{C})$ is the direct product of the permutation automorphism group by the pure monomial automorphism group.

Proof. With the notation of Proposition 5.2, we have

$$
\left.\alpha(f)\left(a_{i}, b_{i}\right)\right)=\gamma\left(a_{i}, b_{i}\right) f\left(a_{i^{\prime}}, b_{i^{\prime}}\right),
$$

for all $i=1, \ldots, n$. Therefore, as in the proof of that proposition, there exist polynomials $u(X, Y), v(X, Y)$ and $w(X, Y)$ of degree at $\operatorname{most} \operatorname{deg}(G)$ such that

$$
\begin{aligned}
& \frac{w\left(a_{i}, b_{i}\right)}{G\left(a_{i}, b_{i}\right)}=\gamma\left(a_{i}, b_{i}\right) \frac{1}{S\left(a_{i^{\prime}}, b_{i^{\prime}}\right)}, \\
& \frac{u\left(a_{i}, b_{i}\right)}{G\left(a_{i}, b_{i}\right)}=\gamma\left(a_{i}, b_{i}\right) \frac{a_{i^{\prime}}}{S\left(a_{i^{\prime}}, b_{i^{\prime}}\right)}, \\
& \frac{v\left(a_{i}, b_{i}\right)}{G\left(a_{i}, b_{i}\right)}=\gamma\left(a_{i}, b_{i}\right) \frac{b_{i^{\prime}}}{S\left(a_{i^{\prime}}, b_{i^{\prime}}\right)} .
\end{aligned}
$$

for all $i=1, \ldots, n$. Then (9) holds and as showed in the proof of Proposition 5.2

$$
\tau: x \mapsto \frac{u(x, y)}{w(x, y)}, \quad y \mapsto \frac{v(x, y)}{w(x, y)}
$$

is an automorphism of $\mathbb{F}_{q}(\mathscr{X})$. Let $\left(\alpha^{\prime}, \beta^{-1}\right)$ be the inverse of the permutation automorphism (α, β) induced by τ. Then $\left(\alpha^{*}, \beta^{*}, \gamma\right)=(\alpha, \beta, \gamma) \circ\left(\alpha^{\prime}, \beta^{-1}\right)$ is a pure monomial automorphism and

$$
\begin{equation*}
\alpha^{*}(f)\left(a_{i}, b_{i}\right)=\gamma\left(a_{i}, b_{i}\right) f\left(a_{i}, b_{i}\right) \tag{10}
\end{equation*}
$$

for all $i=1, \ldots, n$. Now, Equation (3) applied to the functions $\alpha^{*}\left(\frac{1}{S(x, y)}\right)$ and $\frac{1}{S(x, y)}$ implies the existence of polynomials $r^{*}(X, Y)$ and $s^{*}(X, Y)$ of degree at $\operatorname{most} \operatorname{deg}(G)$ such that

$$
\begin{equation*}
\frac{1}{S(X, Y)}=\frac{s^{*}(X, Y)}{G(X, Y)} \quad \text { and } \quad \alpha^{*}\left(\frac{1}{S(X, Y)}\right)=\frac{r^{*}(X, Y)}{G(X, Y)} \tag{11}
\end{equation*}
$$

Then equations (10) and (11), give $\gamma\left(a_{i}, b_{i}\right)=\frac{r^{*}\left(a_{i}, b_{i}\right)}{s^{*}\left(a_{i}, b_{i}\right)}$ for all $i=1, \ldots, n$. Therefore we define $\gamma(X, Y)=\frac{r^{*}(X, Y)}{s^{*}(X, Y)}$. The same argument applied to each $f \in \mathscr{L}(\mathrm{C})$ yields

$$
\begin{equation*}
f(X, Y)=\frac{s(X, Y)}{G(X, Y)}, \quad \alpha^{*}(f)(X, Y)=\frac{r(X, Y)}{G(X, Y)} \tag{12}
\end{equation*}
$$

where $s(X, Y)$ and $r(X, Y)$ are polynomials of degree at most $\operatorname{deg}(G)$. Then, by equations (10) and (12) we have

$$
\frac{r\left(a_{i}, b_{i}\right)}{G\left(a_{i}, b_{i}\right)}=\gamma\left(a_{i}, b_{i}\right) \frac{s\left(a_{i}, b_{i}\right)}{G\left(a_{i}, b_{i}\right)}
$$

for all $i=1, \ldots, n$. In particular,

$$
r\left(a_{i}, b_{i}\right) s^{*}\left(a_{i}, b_{i}\right)-r^{*}\left(a_{i}, b_{i}\right) s\left(a_{i}, b_{i}\right)=0
$$

for all $i=1, \ldots, n$. Since $r(X, Y), r^{*}(X, Y), s(X, Y), s^{*}(X, Y)$ have degree at $\operatorname{most} \operatorname{deg}(G)$ and $(\operatorname{deg}(G))^{2}(\operatorname{deg}(F)) \leq(\operatorname{deg}(G))(\operatorname{deg}(F))^{2}<n$, Bézout's theorem yields $r s^{*}=r^{*} s$. In other words, $\alpha(f)=r^{*} / s^{*} f$ for all $f \in \mathscr{L}(\mathrm{C})$. We show that this only holds when r^{*} / s^{*} is a constant. Since α is an endomorphism of the finite dimensional vector space $\mathscr{L}(\mathrm{C})$ over \mathbb{F}_{q}, α is represented by a matrix A with respect to a fixed basis. By the classical Cayley-Hamilton Theorem, there exists a polynomial $u(T)$ over \mathbb{F}_{q} such that $u(A)$ is the zero matrix. Since $A^{i}(f)=\alpha^{i}(f)=\left(r^{*} / s^{*}\right)^{i} f$, this yields $u(A)=u\left(r^{*} / s^{*}\right) f$ for all $f \in \mathscr{L}(\mathbf{C})$. Therefore, $u\left(r^{*} / s^{*}\right)=0$ in $\mathbb{K}(\mathscr{X})$. In particular, for any $\left(a_{i}, b_{i}\right)$, $u\left(r^{*} / s^{*}\right)$ valuated in $\left(a_{i}, b_{i}\right)$ equals zero. On the other hand, since r^{*} / s^{*} valuated in $\left(a_{i}, b_{i}\right)$ gives an element, say k, in $\mathbb{F}_{q}, T-k$ is a factor of $u(T)$. Therefore, $u(T)=(T-k)^{i} v(T)$. This factorization, interpreted in $\mathbb{K}(\mathscr{X})[T]$, gives $u\left(r^{*} / s^{*}\right)=\left(r^{*} / s^{*}-k\right)^{i} v\left(r^{*} / s^{*}\right)$. If $r^{*} / s^{*} \neq k$, then $v\left(r^{*} / s^{*}\right)=0$, and the above argument can be repeated for $v(T)$. Since $\operatorname{deg} v(t)<\operatorname{deg} u(T)$, this ends up with $r^{*} / s^{*}=k$, a constant. To conclude the proof observe that every pure monomial automorphism with constant γ commutes with any permutation automorphism.

Now, we are able to compute the group of monomial automorphisms of the functional code $C_{L}(\mathrm{D}, m \mathrm{~T})$ for several values of m.

Theorem 5.4. Let $0<m \leq q^{3}-2$ be an integer and write $m=m_{0}(q+1)+m_{1}, 0 \leq m_{1} \leq q$. If $m_{1} \leq \frac{q^{3}-2-m}{q(q+1)}$, then the following hold:
(i) The group of permutation automorphisms of $C_{L}(\mathrm{D}, m \mathrm{~T})$ is isomorphic to the projective unitary group $P G U(3, q)$.
(ii) The group of monomial automorphisms of $C_{L}(\mathrm{D}, m \mathrm{~T})$ is isomorphic to the direct product of the projective unitary group $\operatorname{PGU}(3, q)$ by a cyclic group of order $q^{6}-1$.

Proof. We apply Proposition 5.2 for the curve $\mathscr{H}_{q^{3}}$ over $\mathbb{F}_{q^{6}}$. Condition (a) is immediate. Conditions (b) and (c) follow from Lemma 3.1 with $G(X, Y)=H_{q}^{m_{0}} R_{q}^{m_{1}}$ and $S(X, Y)=H_{q}^{m_{0}}$. Hence,

$$
\operatorname{deg}(G)=m_{0}(q+1)+m_{1}\left(q^{2}+q+1\right)=m+m_{1} q(q+1) \leq q^{3}-2
$$

and

$$
\operatorname{deg}(G) \operatorname{deg}\left(H_{q^{3}}\right)^{2} \leq\left(q^{3}-2\right)\left(q^{3}+1\right)^{2}<q^{9}-q^{3}=n
$$

This means that Condition (d) of Proposition 5.2 holds, and all permutation automorphisms of $C_{L}(\mathrm{D}, m \mathrm{~T})$ are inherited. It is known that $\operatorname{Aut}\left(\mathbb{F}_{q^{6}}\left(\mathscr{H}_{q^{3}}\right)\right) \cong P G U\left(3, q^{3}\right)$, and the action of $\operatorname{Aut}\left(\mathbb{F}_{q^{6}}\left(\mathscr{H}_{q^{3}}\right)\right)$ on the $\mathbb{F}_{q^{6}}$-rational places is equivalent to the action of $\operatorname{PGU}\left(3, q^{3}\right)$ on the points of $\mathscr{H}_{q^{3}}$. Clearly, if $\tau \in \operatorname{Aut}\left(\mathbb{F}_{q^{6}}\left(\mathscr{H}_{q^{3}}\right)\right)$ induces a permutation automorphism of $C_{L}(\mathrm{D}, m \mathrm{~T})$, then τ preserves D . Thus, it preserves $\operatorname{supp}(\mathrm{T})=\mathscr{H}_{q}$ and $\tau^{\prime} \in P G U(3, q)$. This finishes the proof of (i). Since $\operatorname{deg}(G)<\operatorname{deg}\left(H_{q^{3}}\right)=$ $q^{3}+1$, Proposition 5.3 implies (ii).

+ MAKE REMARK on the importance of these m 's ??

References

[1] I. Blake, C. Heegard, T. Hoholdt and Victor Wei, Algebraic geometric codes, IEEE Trans. Inform. Theory 44 (1998), 2596-2618.
[2] W. Bosma, J. Cannon and C. Playoust, The MAGMA algebra system. I. The user language, J. Symbolic Comput. 24 235-265, (1997).
[3] C. Carvalho and T. Kato, On Weierstrass semigroups and sets: review of new results, Geom. Dedicata 239 195-210, (2009).
[4] C. Carvalho and F. Torres, On Goppa codes and Weierstrass gaps at several points, Des. Codes Cryptogr. 35, 211-225 (2005).
[5] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12; 2008, (http://www.gap-system.org)
[6] A. Garcia, S.J. Kim and R.F. Lax, Consecutive Weierstrass gaps and minimum distance of Goppa codes. J. Pure Appl. Algebra 84, 199-207 (1993).
[7] V.D. Goppa, Geometry and codes. Translated from the Russian by N. G. Shartse. Mathematics and its Applications (Soviet Series), 24. Kluwer Academic Publishers Group, Dordrecht, 1988. $\mathrm{x}+157 \mathrm{pp}$.
[8] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, second ed., Oxford Univ. Press, Oxford, 1998, xiv+555 pp.
[9] J. W. P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic curves over a finite field. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2008. xx+696 pp
[10] T. Hoholdt and R. Pellikaan, On the decoding of algebraic-geometric codes, IEEE Trans. Inform. Theory 41 (1995), 1589-1614.
[11] M. Homma, The Weierstrass semigroup of a pair of points on a curve, Arch. Math. 67, 337-348 (1996).
[12] D.R. Hughes and F.C. Piper, Projective Planes, Graduate Texts in Mathematics 6, Springer, New York, 1973, x+291 pp.
[13] G. Korchmáros, G.P. Nagy, Hermitian codes from higher degree places. J. Pure Appl. Algebra 217 (2013), no. 12, 2371-2381.
[14] G. Korchmáros, G.P. Nagy, Lower bounds on the minimum distance in Hermitian one-point differential codes. Sci. China Math. 56 (2013), no. 7, 1449-1455.
[15] G. Korchmáros, P. Speziali, Hermitian codes with automorphism group isomorphic to PGL(2,q) with q odd. Finite Fields Appl. 44 (2017), 1-17.
[16] G.L. Matthews, The Weierstrass Semigroup of an m-Tuple of Collinear Points on a Hermitian Curve. Finite Fields and Applications. Lecture Notes in Computer Science, vol. 2948, pp. 12-24. Springer, Berlin (2004)
[17] O. Pretzel, Codes and Algebraic Curves, Oxford Lecture Series in Mathematics and its Applications, 8. The Clarendon Press, Oxford University Press, New York, 1998. xii+192 pp.
[18] H. Stichtenoth, Algebraic Function Fields and Codes, Second edition. Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009. xiv +355 pp.
[19] C.P. Xing and H. Chen, Improvements on parameters of one-point AG-codes from Hermtian codes, IEEE Trans. Inform. Theory 48 2002, 535-537.
[20] K. Yang and P. V. Kumar, On the True Minimum Distance of Hermitian Codes, in Coding theory and algebraic geometry, Lecture Notes in Mathematics, 1992, Volume 1518/1992, 99-10.

[^0]: Email addresses: gabor.korchmaros@unibas.it (G. Korchmáros), nagyg@math.bme.hu (G.P. Nagy), marco.timpanella@unibas.it (M. Timpanella)
 ${ }^{1}$ Partially supported by OTKA grant 119687.
 ${ }^{2}$ Partially supported by OTKA grant 115288.
 ${ }^{3}$ Partially supported by the OTKA-ARRS Slovenian-Hungarian Joint Research Project, grant no. NN 114614 (in Hungary) and N1-0032 (in Slovenia).

