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The aim of this paper is to investigate p-stable fusion systems,
where p is an odd prime. We examine realisable fusion systems
and prove a generalisation of a result of G. Glauberman. Then
we prove that p-stability is determined by the normaliser
systems of centric radical subgroups. Finally, we prove that
all p-stable fusion systems are realisable provided there exists
a stable p-functor.
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0. Introduction

Throughout this paper, p denotes an odd prime. All groups considered in this paper

are finite. The concept of p-stability was originally defined for groups by D. Gorenstein

and J.H. Walter (see [8]). The definition used now is due to G. Glauberman (see [7]).

In a joint work with Professor A.E. Zalesski (see [10]), we generalised this concept to
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fusion systems. All fusion systems are assumed to be saturated. The aim of this paper

is to investigate further properties of p-stable fusion systems.

In Section 1, we give the main definitions and preliminary results that we need later.

In Section 2, we investigate realisable p-stable fusion systems and prove a generalisation

of Theorem B of G. Glauberman (see [6]):

Theorem 1. Let p > 3 and let G be a p-stable group. Then NG(Z(J(P ))) controls strong

fusion in P .

Here, J(P ) denotes the Thompson subgroup of P , the subgroup generated by the

Abelian subgroups of maximal order.

Section 3 is devoted to the local properties of p-stability. We prove there the following:

Theorem 2. Let F be a fusion system defined on P . Then F is p-stable if and only if

NF (Q) is p-stable for all fully normalised, centric, radical subgroups Q of P .

In Section 4 we introduce the concept of a stable p-functor and show the following:

Theorem 3. If there exists a stable p-functor, then every p-stable fusion system is realis-

able.

1. Preliminaries

In this section we introduce the main definitions and results used later in this article.

We begin with p-stability and continue with fusion systems. The following definition is

due to G. Glauberman, see [7].

Definition 1.1. A finite group G is called p-stable if for all p-subgroups Q of G and all

elements x ∈ NG(Q) whenever

[Q, x, x] = 1,

then the coset

xCG(Q) ∈ Op(NG(Q)/CG(Q)).

The smallest group which is not p-stable is the group Qd(p) = V ⋊ SL2(p), where

V ∼= C2
p and SL2(p) acts in the natural way. It is shown in [6] that all sections of a group

are p-stable if and only if the group does not involve Qd(p). A group is called Qd(p)-free

if it does not involve Qd(p). By Glauberman’s result a Qd(p)-free group is p-stable. The

converse is false; Professor O. Yakimova has called our attention to the following group:

There is a uniserial FpSL2(p)-module U of dimension p+ 1 with a factor isomorphic to

the natural SL2(p)-module. Then the semidirect product of SL2(p) with U is a p-stable
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group possessing a factor group isomorphic to Qd(p). For more details, see Example 1.12

in [10].

Definition 1.2. Let G be a finite group with Sylow p-subgroup P . Let H 6 G. Then H

is said to control strong fusion in P if for all subgroups Q of P and all elements g ∈ G

such that Qg 6 P there exists an element h ∈ H and c ∈ CG(Q) with g = ch.

Note that by Definition 1.2, the group homomorphism cg: Q → Qg defined by x 7→ xg

coincides with the homomorphism ch defined in a similar way.

For a subgroup Q 6 P , it is often said in the literature that ‘Q controls strong fusion

in P ’ for ‘NG(Q) controls strong fusion in P .’ To avoid confusion, we always use control

of fusion in the sense as in Definition 1.2.

The notion of saturated fusion system has now become standard. For the main defi-

nitions, we refer to [4], [12] or [1]. In this paper, all fusion systems are saturated, so we

omit the adjective ‘saturated’.

For a morphism χ ∈ AutF (Q) and an element a ∈ Q we let [a, χ] = a−1(aχ). (Note

that morphisms are written from the right as in [4].)

Definition 1.3. Let F be a fusion system on the p-group P . Then F is called p-stable if

for all Q 6 P and for all χ ∈ AutF (Q) whenever

[Q,χ, χ] = 1,

then χ ∈ Op(AutF (Q)).

A stronger notion for both groups and fusion systems is section p-stability as defined

in [10]. In both cases it turns out to be equivalent to Qd(p)-freeness (the latter having

been defined for fusion systems in [11]).

The fusion system of a group G on a Sylow p-subgroup P is denoted by FP (G).

Consider the group Ḡ = G/Op′(G). Then P̄ = POp′(G)/Op′(G) is a Sylow p-subgroup

of Ḡ. Observe that P and P̄ are isomorphic, so we may and do identify them. Then the

fusion systems FP (G) and FP̄ (Ḡ) coincide (for the details see e.g. Lemma 8.7 in [10,

p. 290]). A group is called p′-reduced if Op′(G) = 1.

A fusion system F is said to be realisable if it is the fusion system of some group G.

By the above paragraph G may be assumed to be p′-reduced.

The largest subgroup of P that is normal in the fusion system F is denoted by

Op(F). We call F constrained if CP (Op(F)) 6 Op(F). Each constrained fusion system

is realisable. More precisely, there is a p-constrained, p′-reduced group G with Sylow

p-subgroup P such that F = FP (G), see [3]. Such a group is called model of F .

By a result of Aschbacher (see [2]), each soluble fusion system is constrained and

hence realisable. In [11] it is shown that every Qd(p)-free fusion system is soluble (and

hence constrained and realisable).
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2. On realisable p-stable fusion systems

In this section we prove some theorems concerning realisable fusion systems.

Proposition 2.1. Let G be a finite group and let P be a Sylow p-subgroup of G. Set

F = FP (G). Assume F is p-stable. Then Op(F) 6= 1.

Proof. Assume to the contrary and let G be a minimal counterexample to the statement.

Observe that the fusion systems of G and of G/Op′(G) coincide. Hence Op′(G) = 1

otherwise the factor group would be a smaller counterexample. If G is simple, then it is

Qd(p)-free by Theorem 2 in [10, p. 254]. Therefore, it is soluble and hence G is not a

counterexample. So G is non-simple.

Let 1 < N ⊳ G be a proper normal subgroup of G and let Q = N ∩ P be a Sylow

p-subgroup of N . Then G = N · NG(Q) by the Frattini argument. Therefore, Q 6= N

since otherwise Q⊳F which is impossible. Similarly, Q 6= 1 as it would imply Op′(G) 6= 1.

Now, FQ(N) is p-stable being a subsystem of F . Since N < G, it follows that

Op(FQ(N)) 6= 1. On the other hand, FQ(N) is weakly normal in F (see Lemma 5.32

in [4, p. 151]) and hence Op(FQ(N)) 6 Op(F) by Proposition 5.47 in [4, p. 158]. Then

Op(F) 6= 1, a contradiction. ✷

Lemma 2.2. Let Z be a central subgroup of G. Assume G/Z is p-stable. Then so is G.

Proof. Although in [5, p. 83] an earlier definition of p-stability is used, a slight modifica-

tion of the proof gives the following result: an arbitrary group H is p-stable if and only

if H/Op′(H) is p-stable. Then a similar statement follows with an arbitrary p′ normal

subgroup (instead of Op′(H)).

Put Z = Zp × Zp′ . By the above, G/Zp is p-stable if and only if so is G/Z ∼=

(G/Zp)/(Z/Zp). Therefore, we may assume Z is a p-group.

Let Ḡ = G/Z ad let us denote images under the natural homomorphism G → Ḡ

by bars. Let Q be a p-subgroup of G and let x ∈ NG(Q) be a p-element such that

[Q, x, x] = 1. Then [Q̄, x̄, x̄] = 1̄ and hence

x̄CḠ(Q̄) ∈ Op(NḠ(Q̄)/CḠ(Q̄))

as Ḡ is p-stable. Now, NḠ(Q̄) = NG(ZQ) by the homomorphism theorem. Observe that

NG(ZQ) > NG(Q) and CG(ZQ) = CG(Q) since Z is central. Moreover, CG(Q) 6 CḠ(Q̄).

Let C be the full preimage of CḠ(Q̄) under the natural homomorphism, that is,

C = {g ∈ G | [Q, g] ⊆ Z}.

Let A = NG(Q)/CG(Q) and B = NḠ(Q̄)/CḠ(Q̄). Then there is a natural homomorphism



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: L. Héthelyi, M. Szőke, Realisability of p-stable fusion systems, J.
Algebra (2019), https://doi.org/10.1016/j.jalgebra.2018.11.029

JID:YJABR AID:16973 /FLA [m1L; v1.248; Prn:13/12/2018; 14:17] P.5 (1-10)

L. Héthelyi, M. Szőke / Journal of Algebra ••• (••••) •••–••• 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Ψ: A → B,

whose kernel is C/CG(Q).

By construction,

x̄CḠ(Q̄) ∈ Op(B) ∩ Ψ(A) 6 Op(Ψ(A)).

We claim C/CG(Q) is a p-group. To see this, let g ∈ C. Then for each q ∈ Q, there is

some z ∈ Z such that

qg = zq.

Then

qg
2

= (zq)g = zqg = z2q

and by induction qg
j

= zjq. Then g|Z| ∈ CG(Q) as z ∈ Z. Since, by assumption, Z is a

p-group, the claim follows.

Therefore, Ψ(Op(A)) = Op(Ψ(A)) and hence xCG(Q) ∈ Op(A) whence the lemma. ✷

Proposition 2.3. Let p > 3. Let F = FP (G). Assume F is p-stable. Then F is constrained.

Proof. Let G be a minimal counterexample to the statement. Set Q = Op(F). Then

Q 6= 1 by Proposition 2.1. Consider the centraliser subsystem C = CF (Q). Then C =

FCP (Q)(CG(Q)) by Theorem 4.27 in [4, p. 108].

Assume C ( F . Then, by assumption, C is constrained. Now, C is weakly normal in

F and hence

Op(C) = CP (Q) ∩Q = Z(Q)

by [4, Proposition 5.47]. Then CCP (Q)(Z(Q)) ⊆ Z(Q) follows by the constraint of C.

Since

CCP (Q)(Z(Q)) = CP (Q),

we have CP (Q) ⊆ Q contradicting the assumption that F is not constrained.

Therefore, F = C and hence P = CP (Q), so Q 6 Z(P ). Furthermore, G = CG(Q) as

otherwise CG(Q) would be a smaller counterexample. Now, G is not simple, otherwise it

would be Qd(p)-free and hence constrained, see [10] and [11]. Let N be a maximal normal

subgroup of G. Then Q 6 N since otherwise NQ would be a larger normal subgroup

of G.

Let R = N ∩ P be a Sylow p-subgroup of N and let N = FR(N). Then N is weakly

normal in F and hence Op(N ) = Q ∩R = Q.
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By the minimality ofG, N is constrained, so CR(Q) ⊆ Q. On the other hand, CR(Q) =

R as Q is central in G. Thus R = Q follows, so Q is a central Sylow p-subgroup of N .

Hence by Burnside’s normal p-complement theorem N = K × Q follows, where K is a

p′-group. Then K ⊳ G, whence K = 1 and N = Q is a p-group.

Therefore, Ḡ = G/Q is simple and Q is a central p-subgroup of G. Furthermore,

Ḡ is non-Abelian as G cannot be soluble. In particular, G = QG′. We claim G′ is a

counterexample to the statement. Let P1 = P ∩ G′ and Q1 = Q ∩ G′ so that P = QP1

by construction. Moreover, F ′ = FP1
(G′) is p-stable. Observe that Q1 = Op(F

′) since

F ′ is weakly normal in F . Q1 is central in G′ and hence F ′ is not constrained unless

Q1 = P1. This is, however, impossible since then G′ would have a normal p-complement,

which would be a normal p′-subgroup in G.

Therefore, G = G′ and hence G is a stem extension of the non-Abelian simple group Ḡ

by the p-group Q. Looking at the list of finite simple groups and their Schur multipliers,

we obtain Ḡ ∼= PSLn(q) or PSUn(q), where p| gcd(n, q−1) or p| gcd(n, q+1), respectively.

Then G is a central factor of G̃ = SLn(q) or SUn(q). By Lemma 2.2, G̃ is p-stable as G

is so. However, by [10], Ḡ is p-stable if an only if so is G̃. Hence Ḡ is p-stable. Theorem 1

in [10] then implies that the fusion system F̄ of Ḡ is soluble. Now, F̄ = F/Q, so F is

soluble and hence constrained, a contradiction. ✷

Proposition 2.3 enables us to prove a generalisation of Theorem B of Glauberman in

[6, p. 1105]:

Theorem 2.4 (Glauberman 1968). Let G be a Qd(p)-free group. Then NG(Z(J(P ))) con-

trols strong fusion in P .

We now prove that for p > 3 the condition on G to be Qd(p)-free can be replaced by

the weaker condition of p-stability.

Theorem 2.5. Let p > 3 and let G be a p-stable group. Then NG(Z(J(P ))) controls strong

fusion in P .

Proof. Let F = FP (G). Then F is p-stable and, by Proposition 2.3, constrained. There-

fore, it has a model L by Proposition C in [3]. By definition, L is p′-reduced and

p-constrained and F = FL(P ). Moreover, L is p-stable by Theorem 6.3 in [10] since

F is p-stable. Then Theorem A in [6, p. 1105] applies and Z(J(P )) ⊳ L. Hence Z(J(P ))

is normal in F = FP (L) = FP (G). Therefore, F is the fusion system of NG(Z(J(P ))) on

P (see Theorem 4.27 in [4, p. 108]). This means that for any subgroup Q of P and any

element g ∈ G such that Qg ⊆ P , there is some n ∈ NG(Z(J(P ))) such that the conju-

gation action cg: Q → Qg coincides with cn: Q → Qn = Qg. Hence c = gn−1 ∈ CG(Q),

that is, g = cn. Therefore, NG(Z(J(P ))) controls strong fusion in P . ✷
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3. Local subgroups and p-stability

In [10] it has been shown that a fusion system is p-stable if and only if the local

subsystems NF (Q) are p-stable. Now we prove a refinement of this theorem.

Theorem 3.1. Let F be a fusion system defined on P . Then F is p-stable if and only if

NF (Q) is p-stable for all fully normalised, centric, radical subgroups Q of P .

Proof. If F is p-stable, then so are all subsystems of F (see [10, Proposition 6.4]) so we

only have to show the ‘if’ part.

Assume F is not p-stable. Then by definition of p-stability there is a fully F-normalised

subgroup S of P and an F-automorphism χ of S such that [S, χ, χ] = 1 and χ /∈

Op(AutF (S)).

Let Q = SCP (S) and let Q′ be a fully normalised F-conjugate of Q. Let ϕ: Q → Q′

be an F-isomorphism that extends to an F-morphism ϕ̃: NP (Q) → NP (Q′). Such a

morphism exists by [12, Lemma 2.6]. Let S′ = Sϕ. Observe that Q is normal in NP (S)

and hence ϕ̃ maps NP (S) into NP (Q′). Note that this image is contained in NP (S′).

Therefore, S′ is fully normalised and NP (S′) ⊆ NP (Q′).

Now, Q′ = S′CP (S′) is centric (see Lemma 4.42 in [4, p. 117]. Let N = NF (Q′).

We claim N is not p-stable. Let χ′ = ϕ−1χϕ ∈ AutF (S′). Then [S′, χ′, χ′] = 1 and

χ′ /∈ Op(AutF (S′)). This shows that N is not p-stability once we prove

AutN (S′) = AutF (S′).

Since S′ is fully normalised and hence receptive, each F-automorphism ψ of S′ extends

to Q′ = S′CP (S′) as the latter is certainly contained in Nψ. Hence by definition ψ is a

morphism in N and the claim follows.

To finish the proof, we have to show that there exists a fully normalised, centric,

radical subgroup R of P such that NF (R) is not p-stable. Let L be a model of N ,

which exists since Q′ is centric. In the proof of Proposition 6.1 of [11] it is shown that

L is contained in a model M of the normaliser system of some fully normalised, centric,

radical subgroup R of P . Since N is not p-stable, L and hence its overgroup M are

not p-stable as well (see Proposition 1.8. and Theorem 6.3 in [10]). Then NF (R) is not

p-stable and the theorem is proven. ✷

Recall that Alperin’s fusion theorem has several formulations. In one of them the

existence of a series of p-centric radical subgroups of P is stated while in another one

that of a series of essential subgroups. The question naturally arises whether it is enough

to test p-stability and Qd(p)-freeness on the normaliser systems of essential subgroups

and P rather than of centric, radical subgroups. We formulate this problem below.

Problem 3.2. Let F be a fusion system defined on P . Is F p-stable if (and only if) NF (P )

and NF (E) are p-stable for all essential subgroups E of P?
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4. Realisability and p-stability

We now investigate the relationship of p-stability and realisability of fusion systems.

To state our result concerning this relationship we need some preparation.

Definition 4.1. A positive characteristic p-functor is a mapping W defined on the class

of finite p-groups that assigns to each p-group P a non-trivial characteristic subgroup

W (P ) of P with the property that for each isomorphism ϕ: P → P ′ the image of W (P )

under ϕ is W (P ′).

A positive characteristic p-functor W is called Glauberman functor if it has the ad-

ditional property that W (P ) is normal in each p′-reduced, p-constrained group G which

does not involve Qd(p) and whose Sylow p-subgroup is P .

In [6, Theorem A] Glauberman shows that the assignment ZJ : P 7→ Z(J(P )) is a

Glauberman functor. This functor has another interesting property: if G is a p-stable

and p-constrained group with Sylow p-subgroup P , then NG(Z(J(P ))) controls strong

fusion in P (see [6, Theorem C]).

Other examples of Glauberman functors are K∞ and K∞. For the definition, see

[7]. These functors satisfy CP (K∞(P )) ⊆ K∞(P ) and CP (K∞(P )) ⊆ K∞(P ) (see

e.g. [9, Lemma 8.5]). It is not known (at least to us), however, whether NG(K∞) or

NG(K∞) controls strong fusion in every p-stable and p-constrained group G with Sylow

p-subgroup P .

It is also not known whether there exists a positive characteristic p-functor that enjoys

both of the properties mentioned in the previous two paragraphs.

Definition 4.2. We call a positive characteristic p-functor W stable p-functor if

• CP (W (P )) ⊆ W (P ) for all P ; and

• NG(W (P )) controls strong fusion in P whenever G is a p-stable and p-constrained

group with Sylow p-subgroup P .

Problem 4.3. Does there exist a stable p-functor?

We now prove the main result of this section.

Theorem 4.4. Assume there exists a stable p-functor W . Then every p-stable fusion sys-

tem is realisable.

Proof. Assume to the contrary and let F be a minimal counterexample to the statement.

If W (P )⊳F , then F is constrained (as the centric subgroup W (P ) 6 Op(F)). Therefore,

F is realisable. So we can assume W (P ) ⋪ F and hence

N = NF (W (P )) ( F .
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Then by Alperin’s fusion theorem (see Theorem 4.51 in [4, p. 121]), there exists a fully

normalised essential subgroup R of P such that

AutN (R) � AutF (R).

Let P1 = NP (R). Assume P1 = P . Since R is centric, NF (R) is realisable and hence

W (P ) ⊳NF (R). Thus NF (R) ⊆ N . But then

AutF (R) = AutNF (R)(R) 6 AutN (R),

a contradiction.

Therefore, P1 < P . Now, N1 = NF (R) is realisable and p-stable because it is a proper

subsystem of F and F is a minimal counterexample. Let L be a model of NF (R). Then

NL(W (P1)) controls strong fusion in P1 and thus W (P1)⊳NF (R). Let W1 = W (P1) and

P2 = NP (W1). Then P2 > NP (P1) > P1 as P1 < P and W1 is characteristic in P1. Let

N2 = NF (W1). Then

F ⊇ N2 ) NF (R)

because W1 is normal in NF (R) and N2 is defined on a larger subgroup than NF (R). If

F 6= N2, then N2 is realisable and hence it is constrained by Proposition 2.3. Therefore,

W2 = W (P2) ⊳N2 as W is a stable p-functor.

Proceeding similarly, for each integer i > 1 we define Pi = NP (Wi−1), Wi = W (Pi),

and Ni = NF (Wi−1). Then Pi > NP (Pi−1) for each i and hence there is some t such that

Pt−1 < Pt = P . Furthermore, if Ni ( F , then Ni is realisable and Wi is normal in Ni

by repeating the above argument for a general i instead of i = 2. Therefore, Ni+1 ⊇ Ni.

Note that this containment is proper if Pi < P . Summarising the above, we have:

N1 (N2 (. . . ( Nt

and

P1 <P2 <. . . < Pt = P.

Now, Nt is defined on Pt = P . If Nt 6= F , then W (P ) = Wt is normal in Nt by the

above argument. So Nt ⊆ NF (W (P )) = N in this case. But then

AutF (R) = AutN1
(R) 6 AutNt

(R) 6 AutN (R),

which contradicts the choice of R. Hence we can conclude Nt = F , so Wt−1 ⊳ F .

Therefore, C = CF (Wt−1) is a weakly normal subsystem of F . Let O = Op(C). Then

O = Op(F) ∩ CP (Wt−1). Being the intersection of two strongly F-closed subgroups, O

itself is strongly F-closed. Then by Theorem 9.1 in [12], O ⊳ F .
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Since W is a stable p-functor, CPt−1
(Wt−1) 6 Wt−1 < Pt−1. Hence C is defined on a

proper subgroup of P and, as such, it is a proper subsystem of F . By assumption C is

then realisable and p-stable, whence constrained by Proposition 2.3.

Let Q = Wt−1 ·O. Being a product of normal subgroups of F , Q ⊳ F . Now,

CP (Q) = CP (Wt−1) ∩ CP (O) = CCP (Wt−1)(O) 6 O 6 Q.

This means that Q is a centric normal subgroup of F , whence F is constrained and hence

realisable, contradicting the assumption. ✷
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