Supremum and infimum of positive operators

Ábel Göde

December 6, 2023

Partial ordering of operators

Let \mathcal{H} be a Hilbert space, and consider the $\mathcal{B}_+(\mathcal{H})$ cone of positive operators and $A, B \in \mathcal{B}_+(\mathcal{H})$ arbitrary operators. We say $A \leq B$ if $B - A \in \mathcal{B}(\mathcal{H})$ is a positive operator. **Question:** What is the necessary and sufficient condition for the existence of the $A \vee B$ supremum and the $A \wedge B$ infimum within $\mathcal{B}_+(\mathcal{H})$.

Theorem

(Kadison; 1951) There exists an $A \lor B \in \mathcal{B}_+(\mathcal{H})$ supremum if and only if $A \sim B$ ($A \ge B$ of $A \le B$).

Lebesgue type decomposition of operators

We say an operator *B* is absolutely continuous with respect to the operator A ($B \ll A$), if for any sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, $(Ax_n|x_n) \to 0$ and $(B(x_n - x_m)|x_n - x_m) \to 0$ imply $(Bx_n|x_n) \to 0$. We say *A* and *B* are mutually singular $(A \perp B)$, if $C \leq A$ and $C \leq B$ imply C = 0 for any $C \in \mathcal{B}_+(\mathcal{H})$. The Lebesgue type decomposition of operators to absolutely continuous and singular parts is not unique in general, but there is an extremal decomposition B = [A]B + (B - [A]B), where [A]B is the absolutely continuous and B - [A]B is the singular part. This can be easily constructed using parallel addition.

Theorem

(Ando; 1999) There exists an $A \land B \in \mathcal{B}_+(\mathcal{H})$ infimum if and only if $[B]A \sim [A]B$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Anti-dual pairs

Let *E* and *F* be complex vector spaces and $\langle \cdot, \cdot \rangle : F \times E \to \mathbb{C}$ be a sesquilinear function which separates the points of *E* and *F*. We call the triple $(E, F, \langle \cdot, \cdot \rangle)$ (shortly $\langle F, E \rangle$) and anti-dual pair, and denote by $\mathcal{L}(E, F)$ the set of continuous linear operators from *E* to *F*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Anti-dual pairs, partial ordering

We say an operator $A \in \mathcal{L}(E, F)$ is positive if $\langle Ax, x \rangle \ge 0$ for all $x \in E$, and $A \le B$ if B - A is positive. We denote by $\mathcal{L}_+(E, F)$ the cone of positive operators within $\mathcal{L}(E, F)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Anti-dual pairs, sequential completeness

We may endow *E* and *F* with the corresponding weak topologies $\sigma(E, F)$ resp. $\sigma(F, E)$ induced by families $\{\langle f, \cdot \rangle : f \in F\}$ resp. $\{\langle \cdot, e \rangle : e \in E\}$.

We call the sequence $(x_n)_{n \in \mathbb{N}} \subset F$ a Cauchy sequence if for any neighborhood U of 0 there exist such $N \in \mathbb{N}$ that for all n, m > N, $x_n - x_m \in U$.

We call the anti-dual pair $\langle F, E \rangle$ weak-* sequentially complete if $(F, \sigma(F, E))$ is sequentially complete, that means all Cauchy sequences are convergent.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Main results

THEOREM

Let $\langle F, E \rangle$ be a weak-* sequentially complete anti-dual pair and let $A, B \in \mathcal{L}_+(E, F)$ be positive operators. There exists an $A \lor B \in \mathcal{L}_+(E, F)$ supremum if and only if $A \sim B$.

Theorem

Let $\langle F, E \rangle$ be a weak-* sequentially complete anti-dual pair and let $A, B \in \mathcal{L}_+(E, F)$ be positive operators. There exists an $A \wedge B \in \mathcal{L}_+(E, F)$ infimum if and only if $[B]A \sim [A]B$.

Remark

Lebesgue type decomposition of operators of weak-* sequentially complete anti-dual pairs can be defined and constructed similarly to the Hilbert space case.

Bibliography

- Göde Ábel, Tarcsay Zsigmond Operators on anti-dual pairs: supremum and infimum of positive operators, https://doi.org/10.1016/j.jmaa.2023.127893
- Tarcsay Zsigmond Operators on anti-dual pairs: Lebesgue decomposition of positive operators, J. Math. Appl. Anal., 484 (2020), 123753
- Richard Kadison

Order properties of bounded self-adjoint operators, Proceedings of the American Mathematical Society, 2 (1951), no. 3. 505-510.

Tsuyoshi Ando

Problem of infimum in the positive cone, Math. Appl, 478 (1999), 1–12