On the role of the basic reproduction number in systems modelling disease propagation

Written by: Noémi Gyúró
Supervisors: Dr. Sándor Kovács, Szilvia György
Eötvös Loránd University

Content

1. Introduction: Linearized stability
1.1 Linearized stability in systems of autonomous ordinary differential equations
1.2 Linearized stability in systems of autonomous ordinary difference equations
1.3 Linearized stability in systems of reaction-diffusion equations
2. The algorythm
2.1 Ordinary differential equations
2.2 Difference equations
2.3 Reaction-diffusion equations
3. Applications
3.1 A systems modelling disease propagation
3.2 Discretizations
3.2.1 Explicit Euler discretization
3.2.2 Nonstandard discretization
3.3 A reaction-diffusion version

Autonomous system of ordinary differential equations

$$
\begin{gathered}
\Omega \subset \mathbb{R}^{d}, \quad \mathrm{f}: \Omega \rightarrow \mathbb{R}^{d}: \mathrm{f} \in \mathbb{C}^{1} \\
\dot{\mathbf{x}}=\mathbf{f} \circ \mathbf{x} \\
\mathbf{f}\left(\mathbf{x}_{*}\right)=0, \quad \sigma\left(\mathbf{f}^{\prime}\left(x_{*}\right)\right) \stackrel{?}{\subset} \mathbb{C}^{-} \quad / \text { Hurwitz - stability } /
\end{gathered}
$$

- Routh-Hurwitz criterion,
- Liénard-Chipart criterion,
- Mikhailov criterion.

$$
\mathrm{x}_{*} \in \partial \Omega^{+} \quad \sim \quad \mathrm{x}_{*} \text { is AS/US } \Longleftarrow \mathcal{R}_{0}<>1 .
$$

Autonomous system of ordinary difference equations

$$
\begin{gathered}
\Omega \subset \mathbb{R}^{d}, \quad \mathrm{f}: \Omega \rightarrow \mathbb{R}^{d}: \mathrm{f} \in \mathfrak{C}^{1} \\
\mathbf{x}_{n+1}=\mathbf{f} \circ \mathbf{x}_{n} \quad(n \in \mathbb{N}) \\
\mathrm{f}\left(\mathrm{x}_{*}\right)=\mathrm{x}_{*}, \quad \sigma\left(\mathrm{f}^{\prime}\left(\mathrm{x}_{*}\right)\right) \stackrel{?}{\subset} \mathbb{T}:=\{z \in \mathbb{C}:|z|<1\} \quad \text { /Schur-stability/ }
\end{gathered}
$$

- Schur-Cohn criterion,
- Gerschgorin discs,
- Kakeya criterion;
- Möbius transformation.

$$
\mathrm{x}_{*} \in \partial \Omega^{+} \quad \sim \quad \mathrm{x}_{*} \text { is AS/US } \Longleftarrow \mathcal{R}_{0}<>1 .
$$

Reaction－diffusion equations

$$
\mathbf{f}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}, \quad \mathbf{f} \in \mathfrak{C}^{1}, \quad \mathbf{f}\left(\mathbf{x}_{*}\right)=\mathbf{0}
$$

$$
D:=\left[d_{i} \delta_{i j}\right] \in \mathbb{R}^{d \times d}, \quad \Omega \subset \mathbb{R}^{d}: \quad \text { domain, } \quad \partial \Omega \quad \text { piecewise } \quad \mathfrak{C}^{1}
$$

$$
\begin{gathered}
\mathbf{u}_{t}(\mathbf{r}, t)=D \Delta_{\mathrm{r}} \mathbf{u}(\mathbf{r}, t)+\mathbf{f}(\mathbf{u}(\mathbf{r}, t)) \quad(t>0, \mathbf{r} \in \Omega) \\
\left(\mathbf{n} \cdot \nabla_{\mathrm{r}} \mathbf{u}\right)(\mathbf{r}, t)=\mathbf{0} \quad\left((\mathrm{r}, t) \in \partial \Omega \times \mathbb{R}_{0}^{+}\right), \\
0 \neq \mathbf{u}_{0}(\mathbf{r}):=\mathbf{u}(\mathbf{r}, 0) \geq \mathbf{0} \quad((\mathrm{r}, t) \in \bar{\Omega} \times\{0\})
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{v}_{t}(\mathbf{r}, t) \equiv D \Delta_{\mathbf{r}} \mathbf{v}(\mathbf{r}, t)+\mathbf{f}^{\prime}\left(\mathbf{x}_{*}\right) \mathbf{v}(\mathbf{r}, t) \\
\left(\mathbf{n} \cdot \nabla_{\mathbf{r}} \mathbf{v}\right)(\mathbf{r}, t)=\mathbf{0} \quad\left((\mathbf{r}, t) \in \partial \Omega \times \mathbb{R}_{0}^{+}\right) \\
\mathbf{0} \not \equiv \mathbf{v}_{0}(\mathbf{r}):=\mathbf{v}(\mathbf{r}, 0) \geq \mathbf{0} \quad((\mathbf{r}, t) \in \bar{\Omega} \times\{0\})
\end{gathered}
$$

Fourier method

$$
\mathbf{v}(\mathbf{r}, t)=\sum_{n=0}^{\infty} \psi(\mathbf{r}) \exp \left(\mathfrak{A}_{n} t\right) \boldsymbol{\Lambda}_{n}
$$

where for $n \in \mathbb{N}_{0}$

$$
\mathfrak{A}_{n}:=\mathrm{f}^{\prime}\left(\mathbf{x}_{*}\right)-\lambda_{n} D, \quad \Lambda_{n}:=\int_{\Omega} \mathrm{v}_{0}(\mathrm{r}) \psi_{n}(\mathbf{r}) \mathrm{d} \mathbf{r}
$$

furthermore λ_{n} and ψ_{n} are solutions of

$$
\Delta_{\mathrm{r}} \psi=-\lambda \psi,\left.\quad \frac{\partial \psi}{\partial \mathbf{n}}\right|_{\partial \Omega}=0
$$

x_{*} is

asymptotically stable if	$\forall n \in \mathbb{N}_{0}: \quad \mathfrak{A}_{n}$ is Hurwitz-stable
unstable if	$\exists n \in \mathbb{N}_{0}: \quad \mathfrak{A}_{n}$ is unstable
$\mathrm{x}_{*} \in \partial \Omega^{+}$	
	x_{*} is AS $/ \mathrm{US} \Longleftarrow \mathcal{R}_{0}<>1$.

Ordinary differential equations

$$
\dot{u}_{i}=f_{i}(\mathbf{u})=f_{i}(\underbrace{\left(u_{1}, \ldots, u_{m}\right.}_{\text {infected }}, u_{m+1}, \ldots, u_{d})=: \mathcal{F}_{i}(\mathbf{u})-\mathcal{V}_{i}(\mathbf{u}) \quad(i \in\{1, \ldots, d\})
$$

$$
\begin{gathered}
\mathbf{f}\left(\mathbf{x}_{*}\right)=\mathbf{0}, \\
J_{\mathcal{F}}\left(\mathbf{u}^{*}\right)=\left[\begin{array}{ll}
F & O \\
O & O
\end{array}\right] \quad \text { and } \quad J_{\mathcal{V}}\left(\mathbf{u}^{*}\right)=\left[\begin{array}{cc}
V & O \\
J_{3} & J_{4}
\end{array}\right]
\end{gathered}
$$

where

$$
\begin{gathered}
F:=\left[\partial_{j} \mathcal{F}_{i}\left(\mathbf{u}^{*}\right)\right]_{1 \leq i, j \leq m} \in \mathbb{R}^{m \times m} \quad \text { and } \quad V:=\left[\partial_{j} \mathcal{V}_{i}\left(\mathbf{u}^{*}\right)\right]_{1 \leq i, j \leq m} \in \mathbb{R}^{m \times m} . \\
\mathcal{R}_{0}:=\rho\left(F V^{-1}\right)
\end{gathered}
$$

Difference equations

$$
\mathbf{u}_{n+1}=\mathbf{f}\left(\mathbf{u}_{n}\right) \quad\left(n \in \mathbb{N}_{0}\right) \quad \mathbf{f}\left(\mathbf{x}_{*}\right)=\mathbf{x}_{*}
$$

where

$$
\begin{gathered}
J_{\mathrm{f}}\left(\mathbf{u}^{*}\right)=\left[\begin{array}{cc}
F+T & O \\
A & C
\end{array}\right] \\
\mathcal{R}_{0}:=\rho\left(F\left(I_{m}-T\right)^{-1}\right) \\
\rho(F+T)<1 \quad \Longleftrightarrow \quad \mathcal{R}_{0}<1
\end{gathered}
$$

Reaction-diffusion equations

$$
\begin{gathered}
\mathbf{u}_{t}(\mathbf{r}, t)=D \Delta_{\mathrm{r}} \mathbf{u}(\mathbf{r}, t)+\mathbf{f}(\mathbf{u}(\mathbf{r}, t)) \quad(t>0, \mathbf{r} \in \Omega), \quad f_{i}(\mathbf{u})=: \mathcal{F}_{i}(\mathbf{u})-\mathcal{V}_{i}(\mathbf{u}) \\
\left(\mathbf{n} \cdot \nabla_{\mathrm{r}} \mathbf{u}\right)(\mathbf{r}, t)=0 \quad\left((\mathbf{r}, t) \in \partial \Omega \times \mathbb{R}_{0}^{+}\right), \\
0 \neq \mathbf{u}_{0}(\mathbf{r}):=\mathbf{u}(\mathbf{r}, 0) \geq \mathbf{0} \quad((\mathbf{r}, t) \in \bar{\Omega} \times\{0\}) \\
F:=\left[\partial_{j} \mathcal{F}_{i}\left(\mathbf{u}^{*}\right)\right] \in \mathbb{R}^{m \times m} \quad \text { and } \quad V:=\left[\partial_{j} \mathcal{V}_{i}\left(\mathbf{u}^{*}\right)\right] \in \mathbb{R}^{m \times m} \\
J_{\mathcal{F}}\left(\mathbf{u}^{*}\right)=\left[\begin{array}{cc}
F & O \\
O & O
\end{array}\right] \quad \text { and } \quad J_{\mathcal{V}}\left(\mathbf{u}^{*}\right)=\left[\begin{array}{cc}
V & O \\
J & -C
\end{array}\right] \\
\\
\left(\mathbf{-} \cdot D_{I} \Delta_{\mathrm{r}} \phi+V \phi=\mu F \phi \quad(\text { on } \Omega)\right. \\
\mathcal{R}_{0}=\rho\left(-F B^{-1}\right)=\rho\left(-B^{-1} F\right)=\frac{1}{\mu_{0}}
\end{gathered}
$$

A systems modelling disease propagation

$$
\begin{align*}
\dot{S} & =\lambda-\frac{a S I}{S+l}+\beta I-\psi S-\delta_{S} S=: f_{1}(S, E, I) \\
\dot{E} & =\psi S+k I-\delta_{E} E=: f_{2}(S, E, I) \tag{1}\\
i & =\frac{a S I}{S+I}-k I-\beta I-\delta_{I} I=: f_{3}(S, E, I)
\end{align*}
$$

Proposition: (KovácsGyörgyGyúró) All solutions of (1) which are initiated in \mathbb{R}_{+}^{3} are uniformly bounded, more precisely

$$
\Omega:=\left\{(S, E, I) \in \mathbb{R}^{3}: 0<S+E+I \leq \frac{K}{\mu}\right\}
$$

is a positively invariant region for (1), where $K>0$ is a suitable constant and $0<\mu<\min \left\{\delta_{S}, \delta_{E}, \delta_{1}\right\}$.

$$
(\dot{S}, \dot{E}, \dot{I})=: \widehat{\mathcal{F}}(S, E, I)-\widehat{\mathcal{G}}(S, E, I)
$$

$$
\begin{gathered}
\widehat{\mathcal{F}}(S, E, I):=\left[\begin{array}{c}
0 \\
0 \\
\frac{a S I}{S+1}
\end{array}\right], \quad \widehat{\mathcal{G}}(S, E, I):=\left[\begin{array}{c}
-\lambda+\frac{a S I}{S+1}-\beta I+\left(\psi+\delta_{S}\right) S \\
-\psi S-\kappa I+\delta_{E} E \\
\left(\kappa+\beta+\delta_{I}\right) I
\end{array}\right] \\
\mathfrak{E}_{b}:=\left(S_{b}, E_{b}, I_{b}\right):=\left(\frac{\lambda}{\delta_{S}+\psi}, \frac{\lambda \psi}{\delta_{E}\left(\delta_{S}+\psi\right)}, 0\right) \\
D \widehat{\mathcal{F}}\left(\mathfrak{E}_{b}\right):=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & a
\end{array}\right], \quad D \widehat{\mathcal{G}}\left(\mathfrak{E}_{b}\right):=\left[\begin{array}{ccc}
\psi+\delta_{S} & 0 & a-\beta \\
-\psi & \delta_{E} & -k \\
0 & 0 & \kappa+\beta+\delta_{l}
\end{array}\right] . \\
D \widehat{\mathcal{F}}\left(\mathfrak{E}_{b}\right)=:\left[\begin{array}{ll}
\mathbf{0} & 0 \\
0 & F
\end{array}\right], \quad D \widehat{\mathcal{G}}\left(\mathfrak{E}_{b}\right)=:\left[\begin{array}{cc}
J_{1} & J_{2} \\
0 & G
\end{array}\right] \\
F:=\partial_{3} \widehat{\mathcal{F}}_{3}\left(\mathfrak{E}_{b}\right)=a \quad \text { and } \quad G:=\partial_{3} \widehat{\mathcal{G}}_{3}\left(\mathfrak{E}_{b}\right)=\kappa+\beta+\delta_{l} .
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{R}_{0}:=\rho\left(F G^{-1}\right)=\frac{a}{\kappa+\beta+\delta_{1}} . \\
\kappa^{*}:=a-\beta-\delta_{1} \\
\kappa\left\{\begin{array}{ccc}
<\kappa^{*} & \Longleftrightarrow & \mathcal{R}_{0}>1, \\
=\kappa^{*} & \Longleftrightarrow & \mathcal{R}_{0}=1, \\
>\kappa^{*} & \Longleftrightarrow & \mathcal{R}_{0}<1 .
\end{array}\right.
\end{gathered}
$$

Proposition: If

1. $\mathfrak{K}>\mathfrak{K}^{*}$ then system (1) has only one equilibrium \mathfrak{E}_{b} on the boundary of the phase space $[S, E, I]$ which is locally asymptotically stable, and
2. the factor κ^{*} satisfies $\kappa^{*} \geq \kappa$, then a new (endemic) equilibrium \mathfrak{E}_{e} bifurcates from \mathfrak{E}_{b} (as \mathbb{K} crosses the value κ^{*}) and becomes the one locally asymptotically stable as $\kappa^{*}>k$, whereas \mathfrak{E}_{b} is a repeller as $\kappa^{*}>\kappa$.

Explicit Euler discretization

$$
\begin{aligned}
& S_{n+1}=S_{n}+h\left(\lambda-\frac{a S_{n} I_{n}}{S_{n}+I_{n}}+\beta I_{n}-\psi S_{n}-\delta_{S} S_{n}\right)=: f_{1}^{e E}\left(S_{n}, E_{n}, I_{n}\right), \\
& E_{n+1}=E_{n}+h\left(\psi S_{n}+\kappa I_{n}-\delta_{E} E_{n}\right)=: f_{2}^{e E}\left(S_{n}, E_{n}, I_{n}\right), \\
& I_{n+1}=I_{n}+h\left(\frac{a S_{n} I_{n}}{S_{n}+I_{n}}-\kappa I_{n}-\beta I_{n}-\delta, I_{n}\right)=: f_{3}^{e E}\left(S_{n}, E_{n}, I_{n}\right) .
\end{aligned}
$$

Proposition: Let $\delta:=\min \left\{\delta_{S}, \delta_{E}, \delta_{1}\right\}$ and

$$
h<h^{*}:=\min \left\{\frac{1}{a+\psi+\delta_{S}}, \frac{1}{\delta_{E}}, \frac{1}{k+\beta+\delta_{1}}, \delta\right\}
$$

Then

1. if $S_{0}, E_{0}, I_{0}>0$ then $S_{n}, E_{n}, I_{n}>0$ for all $n \in \mathbb{N}$.
2. If $I_{0}=0$ but $S_{0}, E_{0}>0$ then $S_{n}, E_{n}>0$ and $I_{n}=0$ for all $n \in \mathbb{N}$;
3. $\Omega:=\left\{(S, E, I) \in \mathbb{R}^{3}: 0<S+E+I \leq \frac{K}{\mu}\right\}$ is positively invariant.

$$
F=\left[\begin{array}{cc}
a h & 0 \\
h(\beta-a) & 0
\end{array}\right], \quad T=\left[\begin{array}{cc}
1-h\left(\kappa+\beta+\delta_{l}\right) & 0 \\
0 & 1-h\left(\psi+\delta_{S}\right)
\end{array}\right]
$$

い い山い い

$$
\begin{aligned}
\mathcal{R}_{0} & =\rho\left(F \cdot\left(I_{2}-T\right)^{-1}\right)=\rho\left(F \cdot\left[\begin{array}{cc}
h\left(\kappa+\beta+\delta_{1}\right) & 0 \\
0 & h\left(\psi+\delta_{S}\right)
\end{array}\right]^{-1}\right)= \\
& =\rho\left(\left[\begin{array}{cc}
a h & 0 \\
h(\beta-a) & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
1 / h\left(\kappa+\beta+\delta_{1}\right) & 0 \\
0 & 1 / h\left(\psi+\delta_{S}\right)
\end{array}\right]\right)= \\
& =\rho\left(\left[\begin{array}{cc}
\frac{a}{\kappa+\beta+\delta_{1}} & 0 \\
\frac{\beta-a}{\kappa+\beta+\delta_{1}} & 0
\end{array}\right]\right)=\frac{a}{\kappa+\beta+\delta_{1}} .
\end{aligned}
$$

Proposition: Supppose that $d \in \mathbb{N}, A \in \mathbb{R}^{d \times d}, B:=I_{d}+h A$, furthermore conditions

$$
\lambda \in \sigma(A) \quad \text { and } \quad h<\frac{-\max ^{2}(\Im(\lambda))-2 s(A)}{s^{2}(A)}
$$

hold. Then $s(A)<0$ implies $\rho(B)<1$.

Proposition: Suppose that $d \in \mathbb{N}, A \in \mathbb{R}^{d \times d}$,

$$
B:=I_{d}+h A \text {. }
$$

Then $s(A)>0$ implies $\rho(B)>1$ independent of h.

Nonstandard discretization

$$
\begin{aligned}
S_{n+1} & =S_{n}+\varphi(h)\left(\lambda-\frac{a S_{n+1} I_{n}}{S_{n}+I_{n}}+\beta I_{n}-\psi S_{n}-\delta_{S} S_{n}\right), \\
E_{n+1} & =E_{n}+\varphi(h)\left(\psi S_{n}+\kappa I_{n}-\delta_{E} E_{n}\right) \\
I_{n+1} & =I_{n}+\varphi(h)\left(\frac{a S_{n+1} I_{n}}{S_{n}+I_{n}}-\kappa I_{n}-\beta I_{n}-\delta, I_{n}\right)
\end{aligned}
$$

Proposition: Let $\delta:=\min \left\{\delta_{S}, \delta_{E}, \delta_{1}\right\}$ and

$$
\varphi(h)<h^{* *}:=\min \left\{\frac{1}{\psi+\delta_{S}}, \frac{1}{\delta_{E}}, \frac{1}{\kappa+\beta+\delta_{l}}, \frac{1}{\delta}\right\} .
$$

Then

1. if $S_{0}, E_{0}, I_{0}>0$ then $S_{n}, E_{n}, I_{n}>0$ for all $n \in \mathbb{N}$;
2. if $I_{0}=0$ but $S_{0}, E_{0}>0$ then $S_{n}, E_{n}>0$ and $I_{n}=0$ for all $n \in \mathbb{N}$;
3. Ω is positively invariant.

$$
\begin{aligned}
& F=\left[\begin{array}{cc}
a \varphi(h) & 0 \\
\varphi^{3}(h)\left(\delta_{S} a\right)+\varphi^{2}(h) \lambda(a-a \psi)+\varphi(h) \lambda(\beta-a) & 0
\end{array}\right] \\
& T=\left[\begin{array}{cc}
1-\varphi(h)\left(\kappa+\beta+\delta_{l}\right) & 0 \\
0 & 1-\varphi(h)\left(\psi+\delta_{S}\right)
\end{array}\right] . \\
& \mathcal{R}_{0}=\rho\left(F \cdot\left(I_{2}-T\right)^{-1}\right)=\rho\left(F \cdot\left[\begin{array}{cc}
\varphi(h)\left(\kappa+\beta+\delta_{l}\right) & 0 \\
0 & \varphi(h)\left(\psi+\delta_{S}\right)
\end{array}\right]^{-1}\right) \\
& =\rho\left(F \cdot\left[\begin{array}{cc}
1 / \varphi(h)\left(\kappa+\beta+\delta_{l}\right) & 0 \\
0 & 1 / \varphi(h)\left(\psi+\delta_{S}\right)
\end{array}\right]\right)= \\
& =\quad \rho\left(\left[\begin{array}{cc}
\frac{a}{k+\beta+\delta_{1}} & 0 \\
\frac{\varphi^{2}(h)\left(\delta_{s a}\right)+\varphi(h) \lambda(a-a \psi)+\lambda(\beta-a)}{\kappa+\beta+\delta_{1}} & 0
\end{array}\right]\right)=\frac{a}{\kappa+\beta+\delta_{1}} .
\end{aligned}
$$

A reaction－diffusion version

$$
\begin{aligned}
& \partial_{t} S(\mathrm{r}, t)=\mathfrak{o}_{S} \Delta_{\mathrm{r}} S(\mathbf{r}, t)+f_{1}(S, E, I), \\
& \left.\partial_{t} E(\mathrm{r}, t)=\mathfrak{d}_{E} \Delta_{\mathrm{r}} E(\mathrm{r}, t)+f_{2}(S, E, I), \quad(\mathrm{r}, t) \in \Omega \times \mathbb{R}_{0}^{+}\right) \\
& \partial_{t} I(\mathrm{r}, t)=\mathfrak{d}_{l} \Delta_{\mathrm{r}} I(\mathrm{r}, t)+f_{3}(S, E, I)
\end{aligned}
$$

い い い い い

$$
\begin{aligned}
& \partial_{t} S(\mathbf{r}, t)=\mathfrak{d}_{S} \Delta_{\mathrm{r}} S(\mathbf{r}, t)-\left(\psi+\delta_{S}\right) S+(\beta-a) I, \\
& \partial_{t} E(\mathbf{r}, t)=\mathfrak{d}_{E} \Delta_{\mathrm{r}} E(\mathbf{r}, t)+\psi S-\delta_{E} E+\kappa I, \\
& \partial_{t} I(\mathbf{r}, t)=\mathfrak{d}_{I} \Delta_{\mathrm{r}} I(\mathbf{r}, t)+\left(a-\kappa-\beta-\delta_{I}\right) E \\
& \left.C=\left[\begin{array}{cc}
-\psi-\delta_{S} & 0 \\
\psi & -\delta_{E}
\end{array}\right] \quad \text { and } \quad \quad(\mathbf{r}, t) \in \Omega \times \mathbb{R}_{0}^{+}\right) \\
&
\end{aligned}
$$

resp．

$$
F=a \quad \text { and } \quad V=k+\beta+\delta_{l}
$$

$$
\begin{equation*}
\phi^{\prime \prime}=\frac{\mu a-\left(\kappa+\beta+\delta_{l}\right)}{\mathfrak{d}_{l}} \cdot \phi \quad(\text { on }(0,1)), \quad \phi^{\prime}(0)=0=\phi^{\prime}(1) \tag{2}
\end{equation*}
$$

The solutions of (2) are clearly

$$
\phi(x)=\cos (\sqrt{\lambda} x) \quad(x \in[0,1])
$$

where

$$
\lambda=\frac{k+\beta+\delta_{l}-\mu a}{\mathfrak{d}_{l}}
$$

provided that

$$
\sqrt{\lambda}=k \pi \quad\left(k \in \mathbb{N}_{0}\right)
$$

The values

$$
\lambda_{k}=(k \pi)^{2} \quad \longleftrightarrow \quad \mu_{k}=\frac{\kappa+\beta+\delta_{l}-k \pi \mathfrak{o}_{l}}{a}
$$

are the eigenvalues. Thus

$$
\mathcal{R}_{0}=\frac{1}{\mu_{0}}=\frac{a}{\kappa+\beta+\delta_{l}} .
$$

Thank you very much for your attention!

