
Asynchronous parallel iterative domain
decomposition methods

Frédéric Magoulès
Univ. Paris Saclay, CentraleSupélec (France)

Motivation

F. Magoulès Asynchronous Dom. Decomp. Meth. 2 / 87

Finite element analysis

Finite element methods ⇒ large data storage and computational
time

Question of the robustness of the algorithm

Question of load balancing (parallel context)

Question of the continuity of the local solutions

Question of the shape of the subdomains and of the interfaces

F. Magoulès Asynchronous Dom. Decomp. Meth. 3 / 87

Outline

01
Synchronous and asyn-
chronous iterative me-
thods

How synchronous iterations work ?
How asynchronous iterations work ?

F. Magoulès Asynchronous Dom. Decomp. Meth. 4 / 87

Asynchronous iterative methods
Problem

Ax = b, x ∈ Cn

F. Magoulès Asynchronous Dom. Decomp. Meth. 5 / 87

Asynchronous iterative methods
Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

F. Magoulès Asynchronous Dom. Decomp. Meth. 6 / 87

Asynchronous iterative methods
Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

F. Magoulès Asynchronous Dom. Decomp. Meth. 7 / 87

Asynchronous iterative methods
Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

F. Magoulès Asynchronous Dom. Decomp. Meth. 8 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

F. Magoulès Asynchronous Dom. Decomp. Meth. 9 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

F. Magoulès Asynchronous Dom. Decomp. Meth. 10 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

F. Magoulès Asynchronous Dom. Decomp. Meth. 11 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 12 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

F. Magoulès Asynchronous Dom. Decomp. Meth. 13 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 14 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

F. Magoulès Asynchronous Dom. Decomp. Meth. 15 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 16 / 87

Asynchronous iterative methods

Problem

Ax = b, x ∈ Cn

Splitting
A = M − N

Mapping

f (x) := M−1Nx + M−1b

Fixed-point problem

Ax = b ⇐⇒ x = f (x)

Iterative methods ⇒ sequence {xk}k∈N :

xk+1 = f (xk)

Convergence from any initial vector x0

lim
k→∞

xk = x∗, f (x∗) = x∗

Convergence condition (sufficient and
necessary)

ρ(M−1N) < 1

Parallel computing with p processors,
p ≤ n

f (x) =

[
f1(x) · · · fp(x)

]T

x =

[
x1 · · · xp

]T

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

wait x4
2 := f2(x3

1 , x
3
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 17 / 87

Asynchronous iterative methods
Asynchronous iterations Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

delay ⇒ speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

wait x4
2 := f2(x3

1 , x
3
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 18 / 87

Asynchronous iterative methods
Asynchronous iterations

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

delay ⇒ speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

wait x4
2 := f2(x3

1 , x
3
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 19 / 87

Asynchronous iterative methods
Asynchronous iterations

delay ⇒ low convergence rate

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

x2
1 := f1(x1

1 , x
0
2) x2

2 := f2(x0
1 , x

1
2)

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

delay ⇒ speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

wait x4
2 := f2(x3

1 , x
3
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 20 / 87

Asynchronous iterative methods
Asynchronous iterations

delay ⇒ low convergence rate

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

x2
1 := f1(x1

1 , x
0
2) x2

2 := f2(x0
1 , x

1
2)

x3
2 := f2(x1

1 , x
2
2)

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

delay ⇒ speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

wait x4
2 := f2(x3

1 , x
3
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 21 / 87

Asynchronous iterative methods
Asynchronous iterations

delay ⇒ low convergence rate

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

x2
1 := f1(x1

1 , x
0
2) x2

2 := f2(x0
1 , x

1
2)

x3
1 := x2

1 x3
2 := f2(x1

1 , x
2
2)

x4
1 := f1(x3

1 , x
2
2) x4

2 := f2(x2
1 , x

3
2)

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

delay ⇒ speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

wait x4
2 := f2(x3

1 , x
3
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 22 / 87

Asynchronous iterative methods
Asynchronous iterations

delay ⇒ low convergence rate

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

x2
1 := f1(x1

1 , x
0
2) x2

2 := f2(x0
1 , x

1
2)

x3
1 := x2

1 x3
2 := f2(x1

1 , x
2
2)

x4
1 := f1(x3

1 , x
2
2) x4

2 := f2(x2
1 , x

3
2)

x5
1 := f1(x4

1 , x
3
2) x5

2 := f2(x2
1 , x

4
2)

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

delay ⇒ speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

wait x4
2 := f2(x3

1 , x
3
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 23 / 87

Asynchronous iterative methods
Asynchronous iterations

xk+1
i = fi (x

τ i
1(k)

1 , . . . , x
τ i

p(k)
p), ∀i ∈ Pk

xk+1
i = xk

i , ∀i /∈ Pk

delay ⇒ low convergence rate

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

x2
1 := f1(x1

1 , x
0
2) x2

2 := f2(x0
1 , x

1
2)

x3
1 := x2

1 x3
2 := f2(x1

1 , x
2
2)

x4
1 := f1(x3

1 , x
2
2) x4

2 := f2(x2
1 , x

3
2)

x5
1 := f1(x4

1 , x
3
2) x5

2 := f2(x2
1 , x

4
2)

Pk ⊂ {1, . . . , p}, τ i
j (k) ≤ k

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

delay ⇒ speedup limit

x1
1 := f1(x0

1 , x
0
2) x1

2 := f2(x0
1 , x

0
2)

wait wait

x2
1 := f1(x1

1 , x
1
2) x2

2 := f2(x1
1 , x

1
2)

x3
1 := f1(x2

1 , x
2
2) wait

wait x3
2 := f2(x2

1 , x
2
2)

wait x4
2 := f2(x3

1 , x
3
2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 24 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

Asynchronous iterations

xk+1
i = fi (x

τ i
1(k)

1 , . . . , x
τ i

p(k)
p), ∀i ∈ Pk

xk+1
i = xk

i , ∀i /∈ Pk

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

Convergence condition (necessary and
sufficient)

ρ(M−1N) < 1

F. Magoulès Asynchronous Dom. Decomp. Meth. 25 / 87

Outline

02
Mathematical conver-
gence of asynchronous
iterative methods

Fixed point iterations
Two-stage fixed point iterations
Two-stage with flexible communication or iterations with memory

F. Magoulès Asynchronous Dom. Decomp. Meth. 26 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

Asynchronous iterations

xk+1
i = fi (x

τ i
1(k)

1 , . . . , x
τ i

p(k)
p), ∀i ∈ Pk

xk+1
i = xk

i , ∀i /∈ Pk

Convergence condition (necessary and
sufficient)
[Chazan and Miranker, 1969]

ρ(|M−1N|) < 1

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

Convergence condition (necessary and
sufficient)

ρ(M−1N) < 1

F. Magoulès Asynchronous Dom. Decomp. Meth. 27 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

Asynchronous iterations

xk+1
i = fi (x

τ i
1(k)

1 , . . . , x
τ i

p(k)
p), ∀i ∈ Pk

xk+1
i = xk

i , ∀i /∈ Pk

Convergence condition (necessary and
sufficient)
[Chazan and Miranker, 1969]

ρ(M−1N) ≤ ρ(|M−1N|) < 1

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

Convergence condition (necessary and
sufficient)

ρ(M−1N) < 1

F. Magoulès Asynchronous Dom. Decomp. Meth. 28 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

Asynchronous iterations

xk+1
i = fi (x

τ i
1(k)

1 , . . . , x
τ i

p(k)
p), ∀i ∈ Pk

xk+1
i = xk

i , ∀i /∈ Pk

Convergence condition (necessary and
sufficient)
[Chazan and Miranker, 1969]

ρ(M−1N) ≤ ρ(|M−1N|) < 1

Synchronous iterations

xk+1
i = fi (xk

1 , . . . , x
k
p), ∀i ∈ {1, . . . , p}

Convergence condition (necessary and
sufficient)

ρ(M−1N) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

F. Magoulès Asynchronous Dom. Decomp. Meth. 29 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

F. Magoulès Asynchronous Dom. Decomp. Meth. 30 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

[Miellou, 1975] (sufficient)

|f (x)− f (y)| ≤ T |x − y |

T ≥ O, ρ(T) < 1, |x | = (|x1|, . . . , |xp |)

F. Magoulès Asynchronous Dom. Decomp. Meth. 31 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

[Miellou, 1975] (sufficient)

|f (x)− f (y)| ≤ T |x − y |

T ≥ O, ρ(T) < 1, |x | = (|x1|, . . . , |xp |)
[El Tarazi, 1982] (sufficient)

‖f (x)− f (y)‖w
∞ ≤ α‖x − y‖w

∞

w > 0, α < 1, ‖x‖w
∞ = max

i
|xi |/wi

F. Magoulès Asynchronous Dom. Decomp. Meth. 32 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

[Miellou, 1975] (sufficient)

|f (x)− f (y)| ≤ T |x − y |

T ≥ O, ρ(T) < 1, |x | = (|x1|, . . . , |xp |)
[El Tarazi, 1982] (sufficient)

‖f (x)− f (y)‖w
∞ ≤ α‖x − y‖w

∞

w > 0, α < 1, ‖x‖w
∞ = max

i
|xi |/wi

[Bertsekas, 1983] (sufficient)

f (S(t)) ⊂ S(t+1) ⊂ S(t)

S(t) = S
(t)
1 ×· · ·×S

(t)
p , lim

t→∞
S(t) = {x∗}

F. Magoulès Asynchronous Dom. Decomp. Meth. 33 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

[Miellou, 1975] (sufficient)

|f (x)− f (y)| ≤ T |x − y |

T ≥ O, ρ(T) < 1, |x | = (|x1|, . . . , |xp |)
[El Tarazi, 1982] (sufficient)

‖f (x)− f (y)‖w
∞ ≤ α‖x − y‖w

∞

w > 0, α < 1, ‖x‖w
∞ = max

i
|xi |/wi

[Bertsekas, 1983] (sufficient)

f (S(t)) ⊂ S(t+1) ⊂ S(t)

S(t) = S
(t)
1 ×· · ·×S

(t)
p , lim

t→∞
S(t) = {x∗}

m = 1

[Frommer and Szyld, 1994] (sufficient)

‖f (k)(x)− f (k)(y)‖w
∞ ≤ α‖x−y‖w

∞, ∀k

w > 0, α < 1, ‖x‖w
∞ = max

i
|xi |/wi

F. Magoulès Asynchronous Dom. Decomp. Meth. 34 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

[Miellou, 1975] (sufficient)

|f (x)− f (y)| ≤ T |x − y |

T ≥ O, ρ(T) < 1, |x | = (|x1|, . . . , |xp |)
[El Tarazi, 1982] (sufficient)

‖f (x)− f (y)‖w
∞ ≤ α‖x − y‖w

∞

w > 0, α < 1, ‖x‖w
∞ = max

i
|xi |/wi

[Bertsekas, 1983] (sufficient)

f (S(t)) ⊂ S(t+1) ⊂ S(t)

S(t) = S
(t)
1 ×· · ·×S

(t)
p , lim

t→∞
S(t) = {x∗}

m = 1

[Frommer and Szyld, 1994] (sufficient)

‖f (k)(x)− f (k)(y)‖w
∞ ≤ α‖x−y‖w

∞, ∀k

w > 0, α < 1, ‖x‖w
∞ = max

i
|xi |/wi

[Frommer and Szyld, 2000] (sufficient)

f (k)(S(t)) ⊂ S(t+1) ⊂ S(t), ∀k

S(t) = S
(t)
1 ×· · ·×S

(t)
p , lim

t→∞
S(t) = {x∗}

F. Magoulès Asynchronous Dom. Decomp. Meth. 35 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

[Miellou, 1975] (sufficient) :
|.|-contraction

[El Tarazi, 1982] (sufficient) :
‖.‖w
∞-contraction

[Bertsekas, 1983] (sufficient) :
{S(t)}-contraction

m = 1

[Frommer & Szyld, 1994] (sufficient) :
‖.‖w
∞-contraction, ∀k

[Frommer & Szyld, 2000] (sufficient) :
{S(t)}-contraction, ∀k

m ≥ 1, f (k) ≡ f , ∀k

F. Magoulès Asynchronous Dom. Decomp. Meth. 36 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

[Miellou, 1975] (sufficient) :
|.|-contraction

[El Tarazi, 1982] (sufficient) :
‖.‖w
∞-contraction

[Bertsekas, 1983] (sufficient) :
{S(t)}-contraction

m = 1

[Frommer & Szyld, 1994] (sufficient) :
‖.‖w
∞-contraction, ∀k

[Frommer & Szyld, 2000] (sufficient) :
{S(t)}-contraction, ∀k

m ≥ 1, f (k) ≡ f , ∀k

X := (x(1), . . . , x(m)), Y := (y (1), . . . , y (m))

[Baudet, 1978] (sufficient)

|f (X)−f (Y)| ≤ T max{|x(1)−y (1)|, . . . , |x(m)−y (m)|}

T ≥ O, ρ(T) < 1, (max{|x |, |y |})i = max{|xi |, |yi |}

F. Magoulès Asynchronous Dom. Decomp. Meth. 37 / 87

Asynchronous iterative methods

Linear problems
Ax = b ⇐⇒ M−1Nx + M−1b = x

[Chazan and Miranker, 1969] (necessary and sufficient) : ρ(|M−1N|) < 1

General fixed-point problems

f (k)(x , x , . . . , x) = x , ∀k ∈ N, f (k) : E m 7→ E , m ∈ N∗

m = 1, f (k) ≡ f , ∀k

[Miellou, 1975] (sufficient) :
|.|-contraction

[El Tarazi, 1982] (sufficient) :
‖.‖w
∞-contraction

[Bertsekas, 1983] (sufficient) :
{S(t)}-contraction

m = 1

[Frommer & Szyld, 1994] (sufficient) :
‖.‖w
∞-contraction, ∀k

[Frommer & Szyld, 2000] (sufficient) :
{S(t)}-contraction, ∀k

m ≥ 1, f (k) ≡ f , ∀k

X := (x(1), . . . , x(m)), Y := (y (1), . . . , y (m))

[Baudet, 1978] (sufficient)

|f (X)−f (Y)| ≤ T max{|x(1)−y (1)|, . . . , |x(m)−y (m)|}

T ≥ O, ρ(T) < 1, (max{|x |, |y |})i = max{|xi |, |yi |}

[El Tarazi, 1982] (sufficient)

‖f (X)−x∗‖w
∞ ≤ αmax{‖x(l)−x∗‖w

∞}1≤l≤m

w > 0, α < 1, ‖x‖w
∞ = max

i
|xi |/wi

F. Magoulès Asynchronous Dom. Decomp. Meth. 38 / 87

Outline

03
History of Schwarz do-
main decomposition
methods

Motivation and definition
H.A. Schwarz (1870)
P.-L. Lions (1988)
P.-L. Lions (1990)

F. Magoulès Asynchronous Dom. Decomp. Meth. 39 / 87

Definition and motivation

Definition (Domain decomposition)

Domain decomposition (DD) is a “divide and conquer” technique for
arriving at the solution of problem defined over a domain from the
solution of related subproblems posed on subdomains.

Motivating assumption #1 : the solution of the subproblems is
qualitatively or quantitatively easier than the original

Motivating assumption #2 : the original problem does not fit into
the available memory space

Motivating assumption #3 (parallel context) : the subproblems
can be solved with some concurrency

F. Magoulès Asynchronous Dom. Decomp. Meth. 40 / 87

Remarks on definition

“Divide and conquer’ is not a fully satisfactory description
I “divide, conquer, and combine” is better
I combination is often through iterative means

True “divide-and-conquer” (only) algorithms are rare in computing
(unfortunately)

It might be preferable to focus on “subdomain composition” rather
than “domain decomposition”

We often think we know all about“two”because two is“one and
one”. We forget that we have to make a study of “and.”

A.S. Eddington (1882-1944)

F. Magoulès Asynchronous Dom. Decomp. Meth. 41 / 87

Remarks on definition

Domain decomposition has generic and specific senses within the
universe of parallel algorithms

I generic sense : any data decomposition (considered in contrast to
task decomposition)

I specific sense : the domain is the domain of definition of an operator
equation (differential, integral, algebraic)

In a generic sense the process of constructing a parallel program
consists of

I Decomposition into tasks
I Assignment of tasks to processes
I Orchestration of processes

I Communication and synchronization

I Mapping of processes to processors

F. Magoulès Asynchronous Dom. Decomp. Meth. 42 / 87

On the early history of domain decomposition

H.A. Schwarz (1870). Über einen Grenzübergang durch alternierendes
Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich,
15 :272-286, 1870.

“Die unter dem Namen Dirichletsches Princip
bekannte Schlussweise, welche in gewissem
Sinne als das Fundament des von Riemann
entwickelten Zweiges der Theorie der
analytischen Functionen angesehen werden
muss, unterliegt, wie jetzt wohl allgemein
zugestanden wird, hinsichtlich der Strenge
sehr begründeten Einwendungen, deren
vollst ?ndige Entfernung meines Wissens den
Anstrengungen der Mathematiker bisher
nicht gelungen ist.”

F. Magoulès Asynchronous Dom. Decomp. Meth. 43 / 87

Motivation and explanation

Convenient analytic means (separation of variables) are available for
the regular problems in the subdomains,

but not for the irregular “keyhole” problem defined by their union

F. Magoulès Asynchronous Dom. Decomp. Meth. 44 / 87

Motivation and explanation

Convenient analytic means (separation of variables) are available for
the regular problems in the subdomains, but not for the irregular
“keyhole” problem defined by their union

Schwarz iteration defines a functional map from the values defined
along (either) artificial interior boundary segment completing a
subdomain (arc or segments) to an updated set of values

F. Magoulès Asynchronous Dom. Decomp. Meth. 44 / 87

Motivation and explanation

Convenient analytic means (separation of variables) are available for
the regular problems in the subdomains, but not for the irregular
“keyhole” problem defined by their union

Schwarz iteration defines a functional map from the values defined
along (either) artificial interior boundary segment completing a
subdomain (arc or segments) to an updated set of values

A contraction map is derived for the error

Rate of convergence is not necessarily rapid - this was not a concern
of Schwarz

Subproblems are not solved concurrently - neither was this Schwarz’
concern

F. Magoulès Asynchronous Dom. Decomp. Meth. 44 / 87

Classical alternating Schwarz method

Schwarz invents a method to proof that the infimum is attained : for a
general domain Ω := Ω1 ∪ Ω2

F. Magoulès Asynchronous Dom. Decomp. Meth. 45 / 87

Classical alternating Schwarz method

Schwarz invents a method to proof that the infimum is attained : for a
general domain Ω := Ω1 ∪ Ω2

Ω1 Ω2Γ1

∆u1
1 = 0, in Ω1

u1
1 = g , on ∂Ω ∩ Ω1

u1
1 = u0

2 , on Γ1

solve on the disk
With arbitrary u0

2 = 0

F. Magoulès Asynchronous Dom. Decomp. Meth. 45 / 87

Classical alternating Schwarz method

Schwarz invents a method to proof that the infimum is attained : for a
general domain Ω := Ω1 ∪ Ω2

Ω1 Ω2Γ2

∆u1
2 = 0, in Ω2

u1
2 = g , on ∂Ω ∩ Ω2

u1
2 = u1

1 , on Γ2

solve on the rectangle

F. Magoulès Asynchronous Dom. Decomp. Meth. 45 / 87

Classical alternating Schwarz method

Schwarz invents a method to proof that the infimum is attained : for a
general domain Ω := Ω1 ∪ Ω2

Ω1 Ω2Γ1

∆u2
1 = 0, in Ω1

u2
1 = g , on ∂Ω ∩ Ω1

u2
1 = u1

2 , on Γ1

solve on the disk

F. Magoulès Asynchronous Dom. Decomp. Meth. 45 / 87

Classical alternating Schwarz method

Schwarz invents a method to proof that the infimum is attained : for a
general domain Ω := Ω1 ∪ Ω2

Ω1 Ω2Γ2

∆u2
2 = 0, in Ω2

u2
2 = g , on ∂Ω ∩ Ω2

u2
2 = u2

1 , on Γ2

solve on the rectangle

F. Magoulès Asynchronous Dom. Decomp. Meth. 45 / 87

Classical alternating Schwarz method

Ω1 Ω2Γ1Γ2

∆un
1 = 0, in Ω1

un
1 = g , on ∂Ω ∩ Ω1

un
1 = un−1

2 , on Γ1

solve on the disk

∆un
2 = 0, in Ω2

un
2 = g , on ∂Ω ∩ Ω2

un
2 = un

1 , on Γ2

solve on the rectangle

F. Magoulès Asynchronous Dom. Decomp. Meth. 46 / 87

Classical alternating Schwarz method

Ω1 Ω2Γ1Γ2

∆un
1 = 0, in Ω1

un
1 = g , on ∂Ω ∩ Ω1

un
1 = un−1

2 , on Γ1

solve on the disk

∆un
2 = 0, in Ω2

un
2 = g , on ∂Ω ∩ Ω2

un
2 = un

1 , on Γ2

solve on the rectangle

Theorem (H.A. Schwarz, 1869)

The iterative algorithm converges and the convergence rate is linked with
the size of the overlap.

F. Magoulès Asynchronous Dom. Decomp. Meth. 46 / 87

On the early history of parallel Schwarz

P.-L. Lions (1988) On the Schwarz alternating method I. in First
International Symposium on Domain Decomposition Methods for Partial
Differential Equations (Paris, 1987), SIAM, Philadelphia, PA, pp.1-42,
1988.

“The final extension we wish to consider
concerns “parallel” versions of the Schwarz
alternating method . . . /. . . un+1

j
is solution of

−∆un+1
j

= f in Ωi and un+1
j

= un
j on

∂Ωi ∩ Ωj .”

F. Magoulès Asynchronous Dom. Decomp. Meth. 47 / 87

Alternating and parallel Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

F. Magoulès Asynchronous Dom. Decomp. Meth. 48 / 87

Alternating and parallel Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Parallel Schwarz method (P-L. Lions 1988) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un−1

1 , on x = 0

F. Magoulès Asynchronous Dom. Decomp. Meth. 48 / 87

Alternating and parallel Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Parallel Schwarz method (P-L. Lions 1988) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un−1

1 , on x = 0

Remark
Can be solved with two processors in parallel, one processor computes for
Ω1 and one processor computes for Ω2 !

F. Magoulès Asynchronous Dom. Decomp. Meth. 48 / 87

Illustration on an academic model

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Lu = ∂xx u
f = 0
Ω = (0, 1), Ω1 = (0, 1

2 + L
2), Ω2 = (1

2 −
L
2 , 1).

F. Magoulès Asynchronous Dom. Decomp. Meth. 49 / 87

Alternating Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 50 / 87

Alternating Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 50 / 87

Alternating Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 50 / 87

Alternating Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 50 / 87

Alternating Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 50 / 87

Alternating Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 50 / 87

Alternating Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Alternating Schwarz method (H.A. Schwarz 1869) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 50 / 87

Parallel Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Parallel Schwarz method (P-L. Lions 1988) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un−1

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 51 / 87

Parallel Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Parallel Schwarz method (P-L. Lions 1988) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un−1

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 51 / 87

Parallel Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Parallel Schwarz method (P-L. Lions 1988) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un−1

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 51 / 87

Parallel Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Parallel Schwarz method (P-L. Lions 1988) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un−1

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 51 / 87

Parallel Schwarz method

For Lu = f in Ω = R2, Ω1 = (−∞, L)× R, Ω2 = (0,∞)× R.

Parallel Schwarz method (P-L. Lions 1988) :

Lun
1 = f , in Ω1

un
1 = un−1

2 , on x = L

Lun
2 = f , in Ω2

un
2 = un−1

1 , on x = 0

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 51 / 87

One possible improvement : other interface conditions

P.-L. Lions (1990) On the Schwarz alternating method III. A variant for
nonoverlapping subdomains, Partial Differential Equations (Houston, TX,
1989) SIAM, Philadelphia, PA, pp.202-223, 1990

−∆un
1 = f , in Ω1

un
1 = 0, on ∂Ω1 ∩ ∂Ω

(∂
∂n1

+ α)un
1 = (− ∂

∂n2
+ α)un−1

2 , on ∂Ω1 ∩ Ω

with n1 and n2 the outward normal on the boundary of the subdomains

−∆un
2 = f , in Ω2

un
2 = 0, on ∂Ω2 ∩ ∂Ω

(∂
∂n2

+ α)un
2 = (− ∂

∂n1
+ α)un−1

1 , on ∂Ω2 ∩ Ω

with α ∈ R and α > 0.

Theorem (P.L. Lions, 1990)

The iterative algorithm converges with and without overlap.

F. Magoulès Asynchronous Dom. Decomp. Meth. 52 / 87

One possible improvement : other interface conditions

P.-L. Lions (1990) On the Schwarz alternating method III. A variant for
nonoverlapping subdomains, Partial Differential Equations (Houston, TX,
1989) SIAM, Philadelphia, PA, pp.202-223, 1990

−∆un
1 = f , in Ω1

un
1 = 0, on ∂Ω1 ∩ ∂Ω

(∂
∂n1

+ α)un
1 = (− ∂

∂n2
+ α)un−1

2 , on ∂Ω1 ∩ Ω

with n1 and n2 the outward normal on the boundary of the subdomains

−∆un
2 = f , in Ω2

un
2 = 0, on ∂Ω2 ∩ ∂Ω

(∂
∂n2

+ α)un
2 = (− ∂

∂n1
+ α)un−1

1 , on ∂Ω2 ∩ Ω

with α ∈ R and α > 0.

Theorem (P.L. Lions, 1990)

The iterative algorithm converges with and without overlap.

F. Magoulès Asynchronous Dom. Decomp. Meth. 52 / 87

Outline

04
Why asynchronous
Schwarz domain decom-
position methods ?

Towards extreme-scale simulations
How does synchronous parallel Schwarz method work ?
How does asynchronous parallel Schwarz method work ?

F. Magoulès Asynchronous Dom. Decomp. Meth. 53 / 87

Towards extreme-scale simulations

Domain decomposition are extremely efficient for solving PDEs in
parallel, but data exchange synchronization between the processors
become a problem when dealing with more than 10.000 processors.

How to perform extremely large scale simulation ?

How to use large number of processors/core (> 10.000) ?

How to manage fault tolerance ?

Solution might be new chaotic or asynchronous parallel iterative
domain decomposition methods

F. Magoulès Asynchronous Dom. Decomp. Meth. 54 / 87

Iterative algorithms classification

Synchronous Iteration and Synchronous Communication
1 2 3 4

1 2 3 4

Process 1

Process 2

Synchronous Iteration and Asynchronous Communication
1 2 3 4

1 2 3 4

Process 1

Process 2

Asynchronous Iteration and Asynchronous Communication
Process 1

Process 2

1 2 3 4

1 2 3 4

F. Magoulès Asynchronous Dom. Decomp. Meth. 55 / 87

Iterative algorithms classification

Synchronous Iteration and Synchronous Communication
1 2 3 4

1 2 3 4

Process 1

Process 2

Synchronous Iteration and Asynchronous Communication
1 2 3 4

1 2 3 4

Process 1

Process 2

Asynchronous Iteration and Asynchronous Communication
Process 1

Process 2

1 2 3 4

1 2 3 4

F. Magoulès Asynchronous Dom. Decomp. Meth. 55 / 87

Iterative algorithms classification

Synchronous Iteration and Synchronous Communication
1 2 3 4

1 2 3 4

Process 1

Process 2

Synchronous Iteration and Asynchronous Communication
1 2 3 4

1 2 3 4

Process 1

Process 2

Asynchronous Iteration and Asynchronous Communication
Process 1

Process 2

1 2 3 4

1 2 3 4

F. Magoulès Asynchronous Dom. Decomp. Meth. 55 / 87

Introduction to asynchronous iterative algorithms

Principles
I When a process has finished one iteration, it start a new one

immediately
I It uses the latest available data
I It sends its data asynchronously

Remark
I When new data arrives, the previous one is discarded (even if it has

never been read)
I The sending of data may be skipped if the previous send is not

finished

F. Magoulès Asynchronous Dom. Decomp. Meth. 56 / 87

Introduction to asynchronous iterative algorithms

Advantages
I No time lost for synchronization
I Work with unreliable communication, i.e., fault tolerance
I Not limited by the slowest node, i.e., heterogeneous cluster/grid
I Take advantage of fast connection when available without been

limited by the slowest connection
I Also interesting for very large super computer . . .

Disadvantages
I Much more complex mathematical convergence conditions
I More complicated to program, i.e., need of a new communication

library

F. Magoulès Asynchronous Dom. Decomp. Meth. 57 / 87

Short bibliography - Async. iterations theory

Rosenfeld (1969) : A case study in programming for
parallel-processors

Chazan, Miranker (1969) : Chaotic relaxation

Miellou (1975) : Algorithmes de relaxation chaotique à retards

Baudet (1978) : Async. iterative methods for multiprocessors

El Tarazi (1982) : Some convergence results for async. algorithms

Bertsekas, Tsitsiklis (1989) : Parallel and distributed computation :
Numerical methods (book)

Üresin, Dubois (1990) : Parallel async. algorithms for discrete data

Frommer, Szyld (1994) : Async. two-stage iterative methods

El Baz, Spiteri, Miellou, Gazen (1996) : Async. iterative algorithms
with flexible communication for nonlinear problems

Frommer, Szyld (1998) : Async. iterations with flexible
communication for linear systems

Strikwerda (2002) : A probabilistic analysis of async. iteration

F. Magoulès Asynchronous Dom. Decomp. Meth. 58 / 87

Short bibliography - Async. domain decomposition

Miellou (1982) : Variantes synchrones et asynchrones de la méthode
alternée de Schwarz (Report, Univ. de Besancon)

Hart, McCormick (1989) : Async. multilevel adaptive methods for
solving partial differential equations on multiprocessors : Basic ideas

Evans, Deren (1991) : An async. parallel algorithm for solving a class
of nonlinear simultaneous equations → Async. Schwarz alternating
method

Bru, Migallón, Penadés, Szyld (1995) : Parallel, synchronous and
async. two-stage multisplitting methods

Spitéri, Miellou, El Baz (1995) : Async. Schwarz alternating method
for the solution of nonlinear partial differential equations

Bahi, Miellou, Rhofir (1997) : Async. multisplitting methods for
nonlinear fixed point problems

Frommer, Schwandt, Szyld (1997) : Async. weighted additive
Schwarz methods

F. Magoulès Asynchronous Dom. Decomp. Meth. 59 / 87

Short bibliography - Async. domain decomposition

Magoulès, Szyld, Venet (2017) : Async. optimized Schwarz methods
with and without overlap

Magoulès, Venet (2018) : Async. iterative sub-structuring methods

Wolfson-Pou, Chow (2019) : Async. multigrid methods

Glusa, Boman, Chow, Rajamanickam, Szyld (2020) : Scalable async.
domain decomposition solvers

. . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 60 / 87

“Possibly the kind of methods which will allow the next
generation of parallel machines to attain the expected
potential.”

Frommer and Szyld, 2000

F. Magoulès Asynchronous Dom. Decomp. Meth. 61 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, all
other processors are waiting for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

. . . when processor 3 has finished its iteration, all other processors start
the next iteration.

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Synchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 62 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

When processor 3 meets unexpected delay during iteration number 5, no
processors wait for it, and . . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

. . . when processor 3 has finished iteration number 5, it joins other
processors work and benefits from their last results.

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Asynchronous parallel Schwarz method

Screenshots of Schwarz solution (left) versus number of iterations
(right) :

F. Magoulès Asynchronous Dom. Decomp. Meth. 63 / 87

Outline

05
Synchronous optimized
Schwarz domain decom-
position

Extension to Helmholtz equation
Optimized Schwarz for Helmholtz equation
From a model problem to an industrial one
Engineering applications

F. Magoulès Asynchronous Dom. Decomp. Meth. 64 / 87

Extension to the Helmholtz equation

Schwarz algorithm
. with overlap ⇒ convergence for the high frequencies only
. without overlap ⇒ no convergence

Introduction of new interface conditions

(−∆− ω2)un+1
1 = 0, in Ω1

(∂x +A1)un+1
1 (L, y) = (∂x +A1)un

2 (L, y)

(−∆− ω2)un
2 = 0, in Ω2

(∂x −A2)un
2 (0, y) = (∂x −A2)un−1

1 (0, y)

How to define the ”best” operators A1 and A2 ?

How to define ”easy to use” operators ?

F. Magoulès Asynchronous Dom. Decomp. Meth. 65 / 87

Short bibliography

Després (1991) : Helmholtz, interface conditions

Charton, Nataf, Rogier (1991) : Convection diffusion, interface
conditions

Nataf, Rogier, de Sturler (1994) : Optimal interface conditions, one
way splitting

Benamou (1995) : Helmholtz, interface conditions

Collino, Ghanemi, Joly (1998) : Maxwell, optimal operator

Chevalier, Nataf (1998) : Helmholtz, optimized second order
interface conditions

Cai, Cassarin, Eliott, Widlund (1998) : Helmholtz, interface
conditions

Gander, Halpern, Nataf (1998) : Parabolic, optimized interface
conditions

F. Magoulès Asynchronous Dom. Decomp. Meth. 66 / 87

Short bibliography (cont.)

Toselli (1999) : Helmholtz, Schwarz with overlap and PML

Dolean, Lanteri (2001) : Euler Equation, optimized interface
conditions

Gander, Magoulès, Nataf (2001) : Helmholtz, optimized zeroth and
second order interface conditions, asymptotic analysis

Garbey, Tromeur-Dervout (2002) : Aitken-Schwarz method

Magoulès, Ivanyi, Topping (2004) : Helmholtz, engineering
science

Maday, Magoulès (2005) : Optimized interface conditions for highly
heterogeneous media

. . .

F. Magoulès Asynchronous Dom. Decomp. Meth. 67 / 87

Robin type interface conditions

With an operator of the form

A1 u = (p + iq) u, and A2 u = (p + iq) u

Theorem (Gander, Magoulès, Nataf)

The optimal choice is

p∗ = q∗ =

√√√√√ω2 − ω2
−
√

k2
max − ω2

2
,

and the asymptotic convergence rate upon h for kmax = π/h is

κ(p, q, k) = 1− 2

√
2(ω2 − ω2

−)1/4

√
π

√
h + O(h).

F. Magoulès Asynchronous Dom. Decomp. Meth. 68 / 87

Unequal Robin type interface conditions

With an operator of the form

A1 u = (p1 + iq1) u, and A2 u = (p2 + iq2) u

Theorem (Gander, Halpern, Magoulès)

The optimal choice is

p∗1 = q∗1 = 1√
2

(
(ω2 − ω2

−)(k2
max − ω2)

) 3
8 ×

(√
ω2 − ω2

− +
√

k2
max − ω2 +

√
k2

max − ω2
− +

√
ω2 − ω2

−
√

k2
max − ω2

)− 1
2

,

p∗2 = q∗2 = 1√
2

(
(ω2 − ω2

−)(k2
max − ω2)

) 1
8 ×

(√
ω2 − ω2

− +
√

k2
max − ω2 +

√
k2

max − ω2
− +

√
ω2 − ω2

−
√

k2
max − ω2

) 1
2

and the asymptotic convergence rate upon h for kmax = C/h is

κ(p∗1 , q
∗
1 , p
∗
2 , q
∗
2 , k) = 1− 4π

3
4

C
(ω2 − ω2

−)
1
4 h

1
4 + O(

√
h).

F. Magoulès Asynchronous Dom. Decomp. Meth. 69 / 87

Interface conditions with tangential derivatives

With an operator of the form

A1 u = α1 u + β1
∂2u

∂τ 2
, and ,A2 u = α2 u + β2

∂2u

∂τ 2

Theorem (Gander, Halpern, Magoulès)

The iterative algorithm with optimized second order interface conditions
converges two times faster than with optimized zeroth order interface
conditions. The optimal choice is

α∗1 = α∗2 =
α∗β∗ − ω2

α∗ + β∗
, β∗1 = β∗2 =

1

α∗ + β∗

where α∗ = p∗1 + iq∗1 and β∗ = p∗2 + iq∗2 are the optimized coefficients
issued from the unequal Robin type interface conditions.

F. Magoulès Asynchronous Dom. Decomp. Meth. 70 / 87

Comparison of some convergence rates

Remark
CPU time for one iteration is the same for all methods !

F. Magoulès Asynchronous Dom. Decomp. Meth. 71 / 87

From a model problem to an industrial one

Optimized interface conditions developed
for

I a two sub-domains splitting with a
straight line interface

I regular meshes

x

y

Ω(1) Ω(2)

F. Magoulès Asynchronous Dom. Decomp. Meth. 72 / 87

From a model problem to an industrial one

Optimized interface conditions developed
for

I a two sub-domains splitting with a
straight line interface

I regular meshes

x

y

Ω(1) Ω(2)

Optimized interface conditions appear to
be

I extensible to arbitrary mesh partitioning
I robust with regular and non-regular

meshes
I weakly dependent upon the shape of

interfaces

F. Magoulès Asynchronous Dom. Decomp. Meth. 72 / 87

From a model problem to an industrial one

Optimized interface conditions developed
for

I a two sub-domains splitting with a
straight line interface

I regular meshes

x

y

Ω(1) Ω(2)

Optimized interface conditions appear to
be

I extensible to arbitrary mesh partitioning
I robust with regular and non-regular

meshes
I weakly dependent upon the shape of

interfaces

F. Magoulès Asynchronous Dom. Decomp. Meth. 72 / 87

Architectural engineering - Appartment soundproofing

Optimized 0th (1022 iter.), Optimized 2nd (524 iter., 451 iter., 340 iter.)

F. Magoulès Asynchronous Dom. Decomp. Meth. 73 / 87

Environmental engineering - Noise pollution

F. Magoulès Asynchronous Dom. Decomp. Meth. 74 / 87

Environmental engineering - Noise pollution

Taylor (3254 iter.), Optimized 0th (1656 iter.), Optimized 2nd (947 iter.)

F. Magoulès Asynchronous Dom. Decomp. Meth. 75 / 87

Environmental engineering - Noise pollution

F. Magoulès Asynchronous Dom. Decomp. Meth. 76 / 87

Aerospace engineering - Sound radiation from airplane

Optimized interface conditions reduces significantly the CPU time.
Taylor 0th (194 iter.), Optimized 0th (142 iter.), Optimized 2nd (72 iter.)

F. Magoulès Asynchronous Dom. Decomp. Meth. 77 / 87

Automotive engineering - Engine compartment

Optimized interface conditions reduces significantly the CPU time.
Taylor 0th (1069 iter.), Optimized 0th (531 iter.), Taylor 2nd (1105
iter.), Optimized 2nd (354 iter.)

F. Magoulès Asynchronous Dom. Decomp. Meth. 78 / 87

Automotive engineering - Car compartment

Optimized interface conditions reduces significantly the CPU time.
Taylor (702 iter.), Optimized 0th (390 iter.), Optimized 2nd (162 iter.)

F. Magoulès Asynchronous Dom. Decomp. Meth. 79 / 87

Outline

06
Asynchronous optimi-
zed Schwarz domain de-
composition methods

F. Magoulès Asynchronous Dom. Decomp. Meth. 80 / 87

Asynchronous optimized Schwarz method

Theorem (Magoulès, Szyld, Venet)

In the case of a one way splitting, the asynchronous iterative parallel
Schwarz algorithm with optimal interface conditions converges with and
without overlap.

process optimized Schwarz # iterations total time

4096 asynch 3465–3886 2345 sec.

4096 synch 3948 3198 sec.

The efficiency of the synchronous algorithm is rapidly decreasing with the
number of process. Opposite the asynchronous version scales much more.

F. Magoulès, D.B. Szyld, and C. Venet. Asynchronous optimized Schwarz me-
thods with and without overlap. Numerische Mathematik, 137(1) :199-227,
2017.

F. Magoulès Asynchronous Dom. Decomp. Meth. 81 / 87

Asynchronous optimized Schwarz method

Theorem (Magoulès, Szyld, Venet)

In the case of a one way splitting, the asynchronous iterative parallel
Schwarz algorithm with optimal interface conditions converges with and
without overlap.

process optimized Schwarz # iterations total time

4096 asynch 3465–3886 2345 sec.

4096 synch 3948 3198 sec.

The efficiency of the synchronous algorithm is rapidly decreasing with the
number of process. Opposite the asynchronous version scales much more.

F. Magoulès, D.B. Szyld, and C. Venet. Asynchronous optimized Schwarz me-
thods with and without overlap. Numerische Mathematik, 137(1) :199-227,
2017.

F. Magoulès Asynchronous Dom. Decomp. Meth. 81 / 87

Asynchronous optimized Schwarz method

Theorem (El Haddad, Garay, Magoulès, Szyld)

For any positive value of the relative overlap, there exist a computable
range of value for which the asynchronous optimized Schwarz method
converges.

process optimized Schwarz # iterations total time

16 asynch 151–224 1.73 sec.

16 synch 109 2.79 sec.

25 asynch 261–497 1.10 sec.

25 synch 187 2.42 sec.

M El Haddad, F Garay, JC, Magoules, DB Szyld. Synchronous and asynchro-
nous optimized Schwarz methods for one-way subdivision of bounded domains.
Numerical Linear Algebra with Applications 27(2), 2020.

F. Magoulès Asynchronous Dom. Decomp. Meth. 82 / 87

Asynchronous optimized Schwarz method

Theorem (El Haddad, Garay, Magoulès, Szyld)

For any positive value of the relative overlap, there exist a computable
range of value for which the asynchronous optimized Schwarz method
converges.

process optimized Schwarz # iterations total time

16 asynch 151–224 1.73 sec.

16 synch 109 2.79 sec.

25 asynch 261–497 1.10 sec.

25 synch 187 2.42 sec.

M El Haddad, F Garay, JC, Magoules, DB Szyld. Synchronous and asynchro-
nous optimized Schwarz methods for one-way subdivision of bounded domains.
Numerical Linear Algebra with Applications 27(2), 2020.

F. Magoulès Asynchronous Dom. Decomp. Meth. 82 / 87

Outline

07
Asynchronous substruc-
turing domain decompo-
sition method

Asynchronous substructuring method

F. Magoulès Asynchronous Dom. Decomp. Meth. 83 / 87

Asynchronous substructuring method

Theorem (Magoulès, Venet)

The asynchronous substructuring method converges.

process sub-structuring # iterations total time

1024 asynch.. 122945-147245 656 sec.

1024 synch. 128024 834 sec.

The efficiency of the synchronous algorithm is rapidly decreasing with the
number of process. Opposite the asynchronous version scales much more.

F. Magoulès and C. Venet. Asynchronous iterative sub-structuring methods.
Mathematics and Computers in Simulation, 145 :34-49, 2018.

F. Magoulès Asynchronous Dom. Decomp. Meth. 84 / 87

Asynchronous substructuring method

Theorem (Magoulès, Venet)

The asynchronous substructuring method converges.

process sub-structuring # iterations total time

1024 asynch.. 122945-147245 656 sec.

1024 synch. 128024 834 sec.

The efficiency of the synchronous algorithm is rapidly decreasing with the
number of process. Opposite the asynchronous version scales much more.

F. Magoulès and C. Venet. Asynchronous iterative sub-structuring methods.
Mathematics and Computers in Simulation, 145 :34-49, 2018.

F. Magoulès Asynchronous Dom. Decomp. Meth. 84 / 87

Monitoring convergence

30 years of asynchronous convergence detection, including

Modification of the iterative procedure to ensure finite-time termination

Predictive approximation of the number of iterations required to reach
convergence

Monitoring of consistency and persistence of local convergence

Evaluation of diameter of solutions nested sets
S(∗) ⊂ · · · ⊂ S(k+1) ⊂ S(k) ⊂ · · · S(0) by means of “macro-iterations”

Explicit evaluation of r(x̄) from global state snapshot

Explicit evaluation of an upper bound of r(x̄) from global state snapshot

Explicit evaluation of an upper bound of r(x̄) without snapshot

F. Magoulès, G. Gbikpi-Benissan. Distributed convergence detection based on
global residual error under asynchronous iterations. IEEE Transactions on Pa-
rallel and Distributed Systems 29 (4), 819-829, 2018

G. Gbikpi-Benissan, F. Magoulès. Protocol-free asynchronous iterations termi-
nation. Advances in Engineering Software 146, 102827, 2020

F. Magoulès Asynchronous Dom. Decomp. Meth. 85 / 87

“The learning curve is steep, but the productivity gains are
well worth the effort.”

Ryan Paul, Vim’s 20th anniversary, 2011

F. Magoulès Asynchronous Dom. Decomp. Meth. 86 / 87

The End

F. Magoulès Asynchronous Dom. Decomp. Meth. 87 / 87

	Synchronous and asynchronous iterative methods
	How synchronous iterations work ?
	How poplytechniqueasynchronous iterations work ?

	Mathematical convergence of asynchronous iterative methods
	Fixed point iterations
	Two-stage fixed point iterations
	Two-stage with flexible communication or iterations with memory

	History of Schwarz domain decomposition methods
	Motivation and definition
	H.A. Schwarz (1870)
	P.-L. Lions (1988)
	P.-L. Lions (1990)

	Why asynchronous Schwarz domain decomposition methods ?
	Towards extreme-scale simulations
	How does synchronous parallel Schwarz method work ?
	How does poplytechniqueasynchronous parallel Schwarz method work ?

	Synchronous optimized Schwarz domain decomposition
	Extension to Helmholtz equation
	Optimized Schwarz for Helmholtz equation
	From a model problem to an industrial one
	Engineering applications

	Asynchronous optimized Schwarz domain decomposition methods
	Asynchronous substructuring domain decomposition method
	Asynchronous substructuring method

