Discrete maximum principles for the Courant finite element solution of some nonlinear elliptic problems

Supervisors: Prof. János Karátson Prof. Ferenc Izsák

Institute of Mathematics Faculty of Science, Eötvös Loránd University

December 7, 2023

Farkas Miklós Seminar

1/31

1 Introduction, Motivation, and Goals

2 Achieved results with Example

- The maximum principle(MP) forms an important qualitative property of second-order elliptic equations [8].
- The discrete analogs, the so-called discrete maximum principles (DMPs) have been studied by many researchers [1, 2, 3, 4, 9].

Motivation: The DMP is an important measure of the qualitative reliability of the numerical scheme, otherwise one could get unphysical numerical solutions like negative concentrations, etc.

Illustration: Nonnegativity preservation(NNP) for mixed boundary conditions

Let L be a linear differential operator of elliptic type:

$$\begin{cases}
Lu = f & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = \gamma & \text{on } \Gamma_N, \\
u = g & \Gamma_D,
\end{cases}$$
(1)

where Ω is a bounded domain in \mathbf{R}^d .

NNP holds:

If $f \ge 0$, $g \ge 0$ and $\gamma \ge 0$ then $u \ge 0$.

4/31

Let $\Omega = (0,1)^2$ be the unit square in 2D, and consider the BVP

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \gamma & \text{on } \Gamma_N, \\ u = 0 & \Gamma_D \end{cases}$$
(2)

where f(x, y) = 2x, $\gamma(1, y) = y(1 - y)$ on

$$\Gamma_N := \{(x, y) \in \partial\Omega : x = 1\}, \quad u(x, y) = xy(1 - y).$$

Then

$$f \ge 0, \quad g = 0, \quad \gamma \ge 0 \quad and \quad u \ge 0.$$

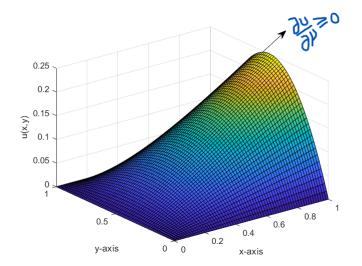


Figure: (NNP) u(x, y) = xy(1 - y)

э

• Typical maximum principles arise in either the following forms:

 $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$

i.e. the solution u attains its maximum on the boundary or

$$\max_{\overline{\Omega}} u \leq \max\{0, \max_{\partial\Omega} u\}$$

i.e. the solution u can attain a nonnegative maximum only on the boundary.

- Analogous minimum principles are defined by reversing signs.
- A physically important special case is nonnegativity preservation.

When does the continuous maximum principle hold? [8]

The maximum principle (MP) for elliptic operators (here a > 0, $q \ge 0$). We consider Dirichlet b.c. For the mixed b.c: $\gamma \le 0$ should also hold.

• Strong MP(SMP) for $Lu := -div(a\nabla u)$

 $f \leq 0 \Rightarrow \max_{\overline{\Omega}} u = \max_{\partial \Omega} g.$

i.e. the maximum is attained on the boundary.

• Weak Maximum Principle(WMP) for $Lu := -div(a\nabla u) + qu$

$$f \le 0 \Rightarrow \max_{\overline{\Omega}} u \le \max\{0, \max_{\partial\Omega} g\} := \max_{\partial\Omega} g^{+}$$
$$\max_{\overline{\Omega}} u \le \max_{\partial\Omega} g^{+}$$

(a nonnegative maximum is attained on the boundary). That is:

• If $\max_{\partial\Omega} g \ge 0$, then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} g.$$

• If $\max_{\partial\Omega} g \leq 0$, then

$$\max_{\overline{\Omega}} u \leq 0.$$

Menghis Teweldebrhan (ELTE)

8/31

Continuous minimum principles

The minimum principle (mP) for elliptic operators (here a > 0, $q \ge 0$). We consider Dirichlet b.c. For the mixed b.c: $\gamma \ge 0$ should also hold.

• Strong mP(SmP) for $Lu := -div(a\nabla u)$

 $f \ge 0 \Rightarrow \min_{\overline{\Omega}} u = \min_{\partial \Omega} g.$

i.e. the minimum is attained on the boundary.

• Weak Minimum Principle(WmP) for $Lu := -div(a\nabla u) + qu$

$$f \ge 0 \Rightarrow \min_{\overline{\Omega}} u \ge \min\{0, \min_{\partial\Omega} g\} := \min_{\partial\Omega} g^{-}$$
$$\min_{\overline{\Omega}} u \ge \min_{\partial\Omega} g^{-}$$

(a nonpositive minimum is attained on the boundary).

• If $\min_{\partial\Omega} g \leq 0$, then

$$\min_{\overline{\Omega}} u = \min_{\partial \Omega} g.$$

• If $\min_{\partial\Omega} g \ge 0$, then

$$\min_{\overline{\Omega}} u \geq 0.$$

Menghis Teweldebrhan (ELTE)

The discrete maximum principle(DMP): Analogous of the MP for the FE solution u_h .

Let us see the FE solution of a 1D reaction-diffusion problem where nonpositivity (a consequence of the MP) can fail for coarse mesh, refer to [1].

PDE BVP:

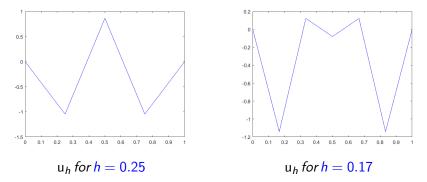
$$-\epsilon\Delta u + u = -(2x - 1)^2, \tag{3}$$

where $\epsilon = 2^{-10}, x \in (0, 1)$ and u = 0 on the boundary of the domain.

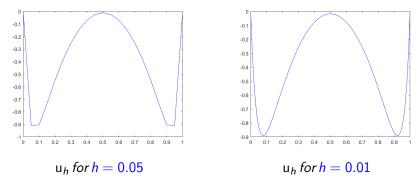
The graphs below illustrate how the numerical solutions look like, for different meshes.

FE solution of (3) for coarse meshes

Nonpositivity should hold since $f \le 0$. Here the numerical solution is expected to be $u_h \le 0$, but $u_h \le 0$.



FE Solution of (3) for fine meshes



Now, we extend our study to the DMPs for nonlinear models.

Note: for discrete case " h must be small enough".

The goal of our research is to establish explicit conditions for preserving qualitative properties such as nonnegativity preservation and DMPs for nonlinear BVPs.

- Motivation: Similar results in [4, 6] for "small enough mesh size h".
- Achieved results: We have determined explicit conditions under Courant FEM for suitable mesh size in relation to angle condition for a nonlinear PDE.

Let us consider the following nonlinear elliptic model:

$$\begin{cases} -\operatorname{div}\left(b(x, u, \nabla u) \nabla u\right) + r(x, u, \nabla u)u = f(x) \quad \text{in } \Omega, \\ b(x, u, \nabla u)\frac{\partial u}{\partial \nu} = \gamma(x) \quad \text{on } \Gamma_N, \\ u = g(x) \quad \text{on } \Gamma_D, \end{cases}$$
(4)

where Ω is a bounded domain in **R**².

Assumptions

- (a) Ω has a piecewise smooth and Lipschitz continuous boundary $\partial \Omega$; $\Gamma_N, \Gamma_D \subset \partial \Omega$ are measurable open sets, such that $\Gamma_N \cap \Gamma_D = \emptyset$ and $\overline{\Gamma}_N \cup \overline{\Gamma}_D = \partial \Omega$.
- (b) The scalar functions $b: \overline{\Omega} \times \mathbf{R} \times \mathbf{R}^2 \to \mathbf{R}$ and $r: \overline{\Omega} \times \mathbf{R} \times \mathbf{R}^2 \to \mathbf{R}$ are continuous functions. Further, $f \in L^2(\Omega)$, $\gamma \in L^2(\Gamma_N)$ and $g = g^*|_{\Gamma_D}$ with $g^* \in H^1(\Omega)$.
- (c) The functions *b* and *r* are bounded such that

 $0 < \mu_0 \le b(x,\xi,\eta) \le \mu_1, \quad 0 \le r(x,\xi,\eta) \le \beta$ $\forall (x,\xi,\eta) \in \overline{\Omega} \times \mathbf{R} \times \mathbf{R}^2,$ (5)

where $\mu_{0}\,$, μ_{1} and β are positive constants.

Finite element approximation

Courant FEM:

The obtained nonlinear algebraic system of equations is:

$$\overline{\mathbf{A}}(\overline{\mathbf{c}})\overline{\mathbf{c}} = \overline{\mathbf{b}},\tag{6}$$

where the structure of the matrix is :

$$\overline{\mathbf{A}}(\overline{\mathbf{c}}) = \begin{pmatrix} \mathbf{A}(\overline{\mathbf{c}}) & \widetilde{\mathbf{A}}(\overline{\mathbf{c}}) \\ & & \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$
(7)

- In (7), I is an $m \times m$ identity matrix, **0** is a $m \times n$ zero matrix and $\overline{\mathbf{A}}(\overline{\mathbf{c}})$ (n+m) by (n+m) matrix.
- The vector $\overline{\mathbf{c}} = (c_1, ..., c_{n+m})^T$ contains the values of the finite element solution u_h at all the nodal points. i.e. $c_i = u_h(P_i)$ and $u_h = \sum_{i=1}^{n+m} c_i \phi_i$, where $\phi_1, ..., \phi_n$ are the interior basis functions and $\phi_{n+1}, ..., \phi_{n+m}$ are the boundary basis functions. We use the theory from [5] on linear systems.

Menghis Teweldebrhan (ELTE)

Farkas Miklós Seminar

The Definition and Theorem below are from [5]

Definition

The matrix \overline{A} in (7) satisfies the *discrete weak maximum principle* (DwMP) if for any vector $\overline{c} = (c_1, ..., c_{n+m})^T \in \mathbf{R}^{n+m}$ satisfying $(\overline{A}\overline{c})_i \leq 0, i = 1, ..., n$, one has

$$\max_{i=1,\ldots,n+m} c_i \leq \max\{0, \max_{i=n+1,\ldots,n+m} c_i\}.$$

Theorem

Let the matrix \overline{A} in (7) satisfy the following conditions, where a_{ij} denote the entries of \overline{A} :

(i)
$$a_{ij} \le 0$$
 $(\forall i = 1, ..., n, j = 1, ..., n + m; i \ne j),$
(ii) $\sum_{j=1}^{n+m} a_{ij} \ge 0$ $(\forall i = 1, ..., n),$

(iii) A is positive definite. Then \overline{A} possesses the DwMP.

Theorem 2

Angle condition on the mesh:

Definition

The family \mathcal{F} of triangulations of a bounded polygonal domain is said to be uniformly acute if there exists $\alpha_0 < \frac{\pi}{2}$ such that $\alpha_n \leq \alpha_0$ for any α_n in all \mathcal{T}_k in all \mathcal{T}_h , where $\mathcal{T}_h \in \mathcal{F}$.

For the proof of our main result, we need the following Theorem.

Theorem

Let the conditions (a)-(c) hold and the Courant finite element method be used with triangulations satisfying the Definition. Let the mesh size h satisfy

$$0 < h \le h_0 = \left(\frac{12\cos(\alpha_0)\mu_0}{\beta}\right)^{\frac{1}{2}},\tag{8}$$

where α_0 is the angle that obeys the Definition, μ_0 and β are positive constants from (5). Then the matrix in (7) satisfies the following:

The matrix in (7) satisfies

- (i) $a_{ij}(\bar{c}) \le 0$, i = 1, ..., n, j = 1, ..., n + m $(i \ne j)$,
- (ii) $\sum_{j=1}^{n+m} a_{ij}(\bar{c}) \ge 0, \quad i = 1, ..., n,$
- (iii) **A** is positive definite.

The proof of (i):

Let ϕ_i and ϕ_j be any basis functions of the given triangulation. Then the entries of the matrix $\bar{A}(\bar{c})$ are:

$$a_{ij}(\bar{c}) = \int_{\Omega} \left[b(x, u_h, \nabla u_h) \ \nabla \phi_i \cdot \nabla \phi_j + r(x, u_h, \nabla u_h) \ \phi_i \phi_j \right] dx.$$
(9)

To estimate (9) we calculate the bounds of the following integrals in terms of the mesh size and angle condition:

$$\int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j \, dx \quad \text{and} \quad \int_{\Omega} \phi_i \phi_j \, dx \quad (10)$$

Stiffness matrix

From the Definition we have the maximum angle α_0 , and $\sigma_0 > 0$ such that $\cos(\alpha_0) = \sigma_0$ which is independent of *i*, *j* and *h*.

The goal here is to find an upper bound of the stiffness matrix obtained from the first part of (10).

The inner product of the basis functions: for any acute angle α , we have

$$\nabla \phi_{i} \cdot \nabla \phi_{j} = |\nabla \phi_{i}| \cdot |\nabla \phi_{j}| \cos(180^{0} - \alpha)$$

$$= \frac{1}{h_{i}} \cdot \frac{1}{h_{j}} (-\cos(\alpha)) \leq \frac{-\cos(\alpha)}{h^{2}}$$

$$\leq \frac{-\cos(\alpha_{0})}{h^{2}} \quad \forall h_{i}, h_{j} \leq h, \forall \alpha \leq \alpha_{0}.$$

$$\Rightarrow \nabla \phi_{i} \cdot \nabla \phi_{j} \leq -\frac{\sigma_{0}}{h^{2}} < 0 \qquad (11)$$

$$\Rightarrow \int_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} \, dx \leq -\frac{\sigma_{0}}{h^{2}} meas(\Omega_{ij}). \qquad (12)$$

To estimate the mass matrix for general triangles, we use a reference triangle.

If E is the reference triangle with vertices (0, 0), (h, 0), and (0, h) then one can calculate

$$\int_{E} \phi_i \phi_j \, d\mathbf{x} = \frac{h^2}{24} \,. \tag{13}$$

Based on the reference triangle, we can calculate the mass matrix for general triangles T_k using affine mappings from the reference element onto T_k such that $L_k : E \to T_k$.

We also define $J_k = L'_k$. If the reference triangle *E* is considered with h = 1 in (13) and T_k is a fixed general triangle then

$$\int_{T_k} \phi_i \phi_j \, d\mathbf{x} = \det(J_k) \int_E \tilde{\phi}_i \tilde{\phi}_j \, d\mathbf{x} = \frac{|T_k|}{12} \tag{14}$$

by change of variables and using the fact that $det(J_k) = 2|T_k|$, where $|T_k|$ is the area of the triangle, and $\tilde{\phi}_i$ and $\tilde{\phi}_j$ are respectively given by $\tilde{\phi}_i = \phi_i o L_k$, $\tilde{\phi}_j = \phi_j o L_k$. Therefore, (14) implies

$$\int_{\Omega_{ij}} \phi_i \phi_j \, dx = \sum_{T_k \in \Omega_{ij}} \int_{T_k} \phi_i \phi_j \, dx = \frac{1}{12} \operatorname{meas}(\Omega_{ij}). \tag{15}$$

Nonpositivity

where $\Omega_{ii} := supp \ \phi_i \cap supp \ \phi_i$. Using (5),(12), and (15) in (9), we have

$$a_{ij}(\bar{c}) \leq \mu_0 \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j \, dx + \beta \int_{\Omega} \phi_i \phi_j \, dx$$

$$\leq -\frac{\sigma_0}{h^2}\mu_0 \max\left(\Omega_{ij}\right) + \frac{\beta}{12} \; \textit{meas}(\Omega_{ij}) = \textit{meas}(\Omega_{ij}) \left(\frac{-\sigma_0}{h^2}\mu_0 + \frac{\beta}{12}\right).$$

Let

$$a_{ij}(h) := meas(\Omega_{ij}) \left(-\frac{\sigma_0}{h^2} \mu_0 + \frac{\beta}{12} \right)$$
(16)

then

$$a_{ij}(\bar{c}) \le a_{ij}(h). \tag{17}$$

Image: A matrix

This implies $a_{ij}(h) \leq 0$ if h is small enough.

3

The main task here is to find how much h should be to get the nonpositivity.

To determine the optimal $h = h_0$, the following equation must hold,

$$-\frac{\sigma_0}{h_0^2}\mu_0 + \frac{\beta}{12} = 0.$$

This implies $h_0 = \left(\frac{12\sigma_0\mu_0}{\beta}\right)^{\frac{1}{2}}$. In summary, if $0 < h \le h_0 = \left(\frac{12\sigma_0\mu_0}{\beta}\right)^{\frac{1}{2}}$, then $a_{ij}(\bar{c}) \le 0$ from (17). In summary, the mesh size h is crucial to ensure the DMP of the proposed problem. With this, we state the main result.

Theorem

Under the conditions of Theorem 2 and letting $f \leq \mathbf{0}$ and $\gamma \leq \mathbf{0}$ we have

$$\max_{\overline{\Omega}} u_h \le \max\{0, \max_{\Gamma_D} g_h\}.$$
 (18)

In particular, if $\Gamma_D \neq \emptyset$ and $g \ge 0$, then

$$\max_{\overline{\Omega}} u_h = \max_{\Gamma_D} g_h, \tag{19}$$

and if $\Gamma_D \neq \emptyset$ and $g \leq 0$, or if $\Gamma_D = \emptyset$, then we have the nonpositivity property

$$\max_{\overline{\Omega}} u_h \le 0. \tag{20}$$

A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Theorem 3 (the main theorem) is proved using the consequence of Theorem 2, Theorem 1 (which deals with the DMPs for the coordinates), and the effect of the right-hand side of the problem (4).
 - Since $f \leq 0, \gamma \leq 0$ and $0 \leq \phi_i \leq 1$, we obtain

$$(\bar{b})_i = \int_{\Omega} f\phi_i \, dx + \int_{\Gamma_N} \gamma \phi_i \, d\sigma \leq 0 \qquad (i = 1, \dots, n).$$

This implies DMP for the coordinates. That is,

$$\max_{i=1,\ldots,n+m} c_i \leq \max\{0, \max_{i=n+1,\ldots,n+m} c_i\}$$
$$\max_{\overline{\Omega}} u_h \leq \max\{0, \max_{\Gamma_{\Omega}} g_h\}$$

The figure below illustrates the finite element solution u_h at the nodal points in 1D.

Goal:

The finite element solution u_h at all the nodal points

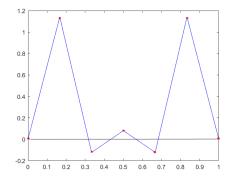


Figure: $u_h(P_i) = c_i$

Thus, using the fact that $0 \le \phi_i \le 1$ and $\sum_{i=1}^{n+m} \phi_i = 1$,

 $\max_{i=1,...,n+m} c_i = \max_{\overline{\Omega}} u_h \quad and \quad \max_{i=n+1,...,n+m} c_i = \max_{\Gamma_D} g_h.$ Hence DMP for the solution itself holds.

• As a consequence of the main theorem the corresponding discrete minimum principle and, as a special case, discrete non-negativity for system (4) can be verified in the same way by reversing signs.

A special case of problem (4): Steady-state concentration u of some substrate in an enzyme-catalyzed reaction

$$\begin{cases} \operatorname{div} (D(x)\nabla u) = q(x, u) \quad \text{in} \quad \Omega, \\ \frac{\partial u}{\partial n} = 0 \quad \text{on} \ \Gamma_N, \\ u = u_0 \quad \text{on} \ \Gamma_D, \end{cases}$$
(21)

э

• Reaction rate by Michaelis-Menten theory:

$$q(x,\xi) = \frac{\epsilon^{-1}\xi}{\xi+k} \quad \text{for} \quad \xi \ge 0,$$
(22)

where k > 0 is the Michaelis constant and $\epsilon > 0$ [7].

- The condition of D(x): $0 < \mu_0 \le D(x) \le \mu_1$, where μ_0 and μ_1 are positive constants. Further, $u_0 \ge 0$ and $\beta = \frac{1}{\epsilon k}$. $q(x,\xi) = r(x,\xi)\xi$, where $r(x,\xi) = \frac{\epsilon^{-1}}{\xi+k}$ and $0 \le r \le \frac{1}{\epsilon k}$.
- Bounds of the FE solution under the conditions of Theorem 3:

$$\min_{\overline{\Omega}} u_h \ge 0 \quad and \qquad \max_{\overline{\Omega}} u_h = \max_{\Gamma_D} u_{0h}$$

since $u_{0h} \ge 0$.

30/31

• We have been able to determine the threshold mesh size h using the acute angle condition and thus ensure the validity of DMPs for Courant FEM for suitably small mesh size for nonlinear elliptic PDEs.

References

- Jan H Brandts, Sergey Korotov, and Michal Křížek. "The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem". In: *Linear Algebra and its Applications* 429.10 (2008), pp. 2344–2357.
- [2] Philippe G Ciarlet. "Discrete maximum principle for finite-difference operators". In: Aequationes mathematicae 4.3 (1970), pp. 338–352.
- [3] Andrei Drăgănescu, Todd Dupont, and LR Scott. "Failure of the discrete maximum principle for an elliptic finite element problem". In: *Mathematics of computation* 74.249 (2005), pp. 1–23.
- [4] János Karátson and Sergey Korotov. "Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions". In: *Numerische Mathematik* 99.4 (2005), pp. 669–698.
- [5] János Karátson and Sergey Korotov. "Some discrete maximum principles arising for nonlinear elliptic finite element problems". In:

Computers & Mathematics with Applications 70.11 (2015), pp. 2732–2741.

- [6] János Karátson, Sergey Korotov, and Michal Křížek. "On discrete maximum principles for nonlinear elliptic problems". In: *Mathematics* and Computers in Simulation 76.1-3 (2007), pp. 99–108.
- [7] Herbert B Keller. "Elliptic boundary value problems suggested by nonlinear diffusion processes". In: Archive for Rational Mechanics and Analysis 35.5 (1969), pp. 363–381.
- [8] Murray H Protter and Hans F Weinberger. *Maximum principles in differential equations*. Springer Science & Business Media, 2012.
- [9] Tomáš Vejchodský. "The discrete maximum principle for Galerkin solutions of elliptic problems". In: *Open Mathematics* 10.1 (2012), pp. 25–43.

Thank you for your attention!