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Introduction

The maximum principle(MP) forms an important qualitative property
of second-order elliptic equations [8].
The discrete analogs, the so-called discrete maximum principles
(DMPs) have been studied by many researchers [1, 2, 3, 4, 9].

Motivation: The DMP is an important measure of the qualitative
reliability of the numerical scheme, otherwise one could get unphysical
numerical solutions like negative concentrations, etc.
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Illustration: Nonnegativity preservation(NNP) for mixed
boundary conditions

Let L be a linear differential operator of elliptic type:
Lu = f in Ω,

∂u
∂ν = γ on ΓN,

u = g ΓD,

(1)

where Ω is a bounded domain in Rd.

NNP holds:

If f ≥ 0, g ≥ 0 and γ ≥ 0 then u ≥ 0.
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2D-Example for NNP

Let Ω = (0, 1)2 be the unit square in 2D, and consider the BVP
−∆u = f in Ω,

∂u
∂ν = γ on ΓN,

u = 0 ΓD

(2)

where f(x, y) = 2x, γ(1, y) = y(1 − y) on

ΓN := {(x, y) ∈ ∂Ω : x = 1}, u(x, y) = xy(1 − y).

Then
f ≥ 0, g = 0, γ ≥ 0 and u ≥ 0.
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Graph NNP

Figure: (NNP) u(x, y) = xy(1 − y)
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Continuous maximum principles

Typical maximum principles arise in either the following forms:

max
Ω

u = max
∂Ω

u

i.e. the solution u attains its maximum on the boundary or

max
Ω

u ≤ max{0,max
∂Ω

u}

i.e. the solution u can attain a nonnegative maximum only on the
boundary.
Analogous minimum principles are defined by reversing signs.
A physically important special case is nonnegativity preservation.
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When does the continuous maximum principle hold? [8]
The maximum principle (MP) for elliptic operators (here a > 0, q ≥ 0).
We consider Dirichlet b.c. For the mixed b.c: γ ≤ 0 should also hold.

Strong MP(SMP) for Lu := −div(a∇u)
f ≤ 0 ⇒ max

Ω
u = max

∂Ω
g.

i.e. the maximum is attained on the boundary.
Weak Maximum Principle(WMP)for Lu := −div(a∇u) + qu

f ≤ 0 ⇒ max
Ω

u ≤ max{0,max
∂Ω

g} := max
∂Ω

g+

max
Ω

u ≤ max
∂Ω

g+

(a nonnegative maximum is attained on the boundary). That is:
If max∂Ω g ≥ 0, then

max
Ω

u = max
∂Ω

g.

If max∂Ω g ≤ 0, then
max
Ω

u ≤ 0.
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Continuous minimum principles
The minimum principle (mP) for elliptic operators ( here a > 0, q ≥ 0).
We consider Dirichlet b.c. For the mixed b.c: γ ≥ 0 should also hold.

Strong mP(SmP) for Lu := −div(a∇u)
f ≥ 0 ⇒ min

Ω
u = min

∂Ω
g.

i.e. the minimum is attained on the boundary.
Weak Minimum Principle(WmP) for Lu := −div(a∇u) + qu

f ≥ 0 ⇒ min
Ω

u ≥ min{0,min
∂Ω

g} := min
∂Ω

g−

min
Ω

u ≥ min
∂Ω

g−

(a nonpositive minimum is attained on the boundary).
If min∂Ω g ≤ 0, then

min
Ω

u = min
∂Ω

g.

If min∂Ω g ≥ 0, then
min
Ω

u ≥ 0.
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DMPs for the FE solution of linear PDEs

The discrete maximum principle(DMP): Analogous of the MP for the FE
solution uh.

Let us see the FE solution of a 1D reaction-diffusion problem where
nonpositivity (a consequence of the MP) can fail for coarse mesh, refer to
[1].

PDE BVP:
−ϵ∆u + u = −(2x − 1)2, (3)

where ϵ = 2−10, x ∈ (0, 1) and u = 0 on the boundary of the domain.

The graphs below illustrate how the numerical solutions look like, for
different meshes.
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FE solution of (3) for coarse meshes

Nonpositivity should hold since f ≤ 0.
Here the numerical solution is expected to be uh ≤ 0, but uh ≰ 0.

uh for h = 0.25 uh for h = 0.17
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FE Solution of (3) for fine meshes

Here the numerical solution uh ≤ 0, since h is small enough.

uh for h = 0.05 uh for h = 0.01

Now, we extend our study to the DMPs for nonlinear models.

Note: for discrete case ” h must be small enough”.
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DMPs for the FE solution of nonlinear PDEs

The goal of our research is to establish explicit conditions for preserving
qualitative properties such as nonnegativity preservation and DMPs for
nonlinear BVPs.

Motivation: Similar results in [4, 6] for ”small enough mesh size h”.

Achieved results: We have determined explicit conditions under
Courant FEM for suitable mesh size in relation to angle condition for
a nonlinear PDE.
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Model problem

Let us consider the following nonlinear elliptic model:
− div

(
b(x, u,∇u)∇u

)
+ r(x, u,∇u)u = f(x) in Ω,

b(x, u,∇u) ∂u
∂ν = γ(x) on ΓN,

u = g(x) on ΓD,

(4)

where Ω is a bounded domain in R2.
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Assumptions

(a) Ω has a piecewise smooth and Lipschitz continuous boundary ∂Ω;
ΓN, ΓD ⊂ ∂Ω are measurable open sets, such that ΓN ∩ ΓD = ∅ and
ΓN ∪ ΓD = ∂Ω.

(b) The scalar functions b : Ω× R × R2 → R and r : Ω× R × R2 → R
are continuous functions. Further, f ∈ L2(Ω), γ ∈ L2(ΓN) and
g = g∗|ΓD with g∗ ∈ H1(Ω).

(c) The functions b and r are bounded such that

0 < µ0 ≤ b(x, ξ, η) ≤ µ1, 0 ≤ r(x, ξ, η) ≤ β (5)

∀(x, ξ, η) ∈ Ω× R × R2,

where µ0 ,µ1 and β are positive constants.
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Finite element approximation
Courant FEM:
The obtained nonlinear algebraic system of equations is:

A(c)c = b, (6)
where the structure of the matrix is :

A(c) =

A(c) Ã(c)

0 I

 (7)

In (7), I is an m × m identity matrix, 0 is a m × n zero matrix and
A(c) (n + m) by (n + m) matrix.
The vector c = (c1, ..., cn+m)T contains the values of the finite
element solution uh at all the nodal points. i.e. ci = uh(Pi) and

uh =
n+m∑
i=1

ciϕi, where ϕ1, ....ϕn are the interior basis functions and
ϕn+1, ..., ϕn+m are the boundary basis functions.
We use the theory from [5] on linear systems.
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The Definition and Theorem below are from [5]

Definition
The matrix Ā in (7) satisfies the discrete weak maximum principle
(DwMP) if for any vector c̄ = (c1, ..., cn+m)T ∈ Rn+m satisfying
(Āc̄)i ≤ 0, i = 1, ..., n, one has

max
i=1,...,n+m

ci ≤ max{0, max
i=n+1,...,n+m

ci}.

Theorem
Let the matrix Ā in (7) satisfy the following conditions, where aij denote
the entries of Ā:
(i) aij ≤ 0 (∀i = 1, . . . , n, j = 1, . . . , n + m; i ̸= j),

(ii)
n+m∑
j=1

aij ≥ 0 (∀i = 1, . . . , n),

(iii) A is positive definite. Then Ā possesses the DwMP.
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Theorem 2
Angle condition on the mesh:

Definition
The family F of triangulations of a bounded polygonal domain is said to
be uniformly acute if there exists α0 < π

2 such that αn ≤ α0 for any αn in
all Tk in all Th , where Th ∈ F .

For the proof of our main result, we need the following Theorem.

Theorem
Let the conditions (a)-(c) hold and the Courant finite element method be
used with triangulations satisfying the Definition. Let the mesh size h
satisfy

0 < h ≤ h0 =
( 12 cos(α0)µ0

β

) 1
2 , (8)

where α0 is the angle that obeys the Definition, µ0 and β are positive
constants from (5). Then the matrix in (7) satisfies the following:
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The matrix in (7) satisfies
(i) aij(c̄) ≤ 0, i = 1, ..., n, j = 1, ..., n + m (i ̸= j),

(ii)
n+m∑
j=1

aij(c̄) ≥ 0, i = 1, ..., n,

(iii) A is positive definite.

The proof of (i):

Let ϕi and ϕj be any basis functions of the given triangulation.
Then the entries of the matrix Ā(c̄) are:

aij(c̄) =
∫
Ω

[
b(x, uh,∇uh) ∇ϕi · ∇ϕj + r(x, uh,∇uh) ϕiϕj

]
dx. (9)

To estimate (9) we calculate the bounds of the following integrals in
terms of the mesh size and angle condition:∫

Ω

∇ϕi · ∇ϕj dx and
∫
Ω

ϕiϕj dx (10)
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Stiffness matrix
From the Definition we have the maximum angle α0, and σ0 > 0 such that
cos(α0) = σ0 which is independent of i, j and h.
The goal here is to find an upper bound of the stiffness matrix obtained
from the first part of (10).
The inner product of the basis functions: for any acute angle α, we have

∇ϕi · ∇ϕj = |∇ϕi|.|∇ϕj|cos(1800 − α)

=
1
hi
.
1
hj
(−cos(α)) ≤ −cos(α)

h2

≤ −cos(α0)

h2 ∀ hi, hj ≤ h, ∀α ≤ α0.

⇒ ∇ϕi · ∇ϕj ≤ −σ0
h2 < 0 (11)

⇒
∫
Ω

∇ϕi · ∇ϕj dx ≤ −σ0
h2 meas(Ωij). (12)
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Mass matrix

To estimate the mass matrix for general triangles, we use a reference
triangle.
If E is the reference triangle with vertices (0, 0), (h, 0), and (0, h) then
one can calculate ∫

E

ϕiϕj dx =
h2

24 . (13)

Based on the reference triangle, we can calculate the mass matrix for
general triangles Tk using affine mappings from the reference element onto
Tk such that Lk : E → Tk.
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Mass matrix

We also define Jk = L′
k. If the reference triangle E is considered with h = 1

in (13) and Tk is a fixed general triangle then∫
Tk

ϕiϕj dx = det(Jk)

∫
E

ϕ̃iϕ̃j dx =
|Tk|
12 (14)

by change of variables and using the fact that det(Jk) = 2|Tk|, where |Tk|
is the area of the triangle, and ϕ̃i and ϕ̃j are respectively given by
ϕ̃i = ϕioLk , ϕ̃j = ϕjoLk. Therefore, (14) implies∫

Ωij

ϕiϕj dx =
∑

Tk∈Ωij

∫
Tk

ϕiϕj dx =
1
12meas(Ωij). (15)
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Nonpositivity

where Ωij := supp ϕi ∩ supp ϕj . Using (5),(12), and (15) in (9), we have

aij(c̄) ≤ µ0

∫
Ω

∇ϕi · ∇ϕj dx + β

∫
Ω

ϕiϕj dx

≤ − σ0
h2 µ0 meas (Ωij) +

β

12 meas(Ωij) = meas(Ωij)
(−σ0

h2 µ0 +
β

12
)
.

Let
aij(h) := meas(Ωij)

(
−σ0

h2 µ0 +
β

12
)

(16)

then
aij(c̄) ≤ aij(h). (17)

This implies aij(h) ≤ 0 if h is small enough.
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Choice of h

The main task here is to find how much h should be to get the
nonpositivity.
To determine the optimal h = h0, the following equation must hold,

−σ0
h2

0
µ0 +

β

12 = 0.

This implies h0 =
(

12σ0µ0
β

)
1
2 .

In summary, if 0 < h ≤ h0 =
(

12σ0µ0
β

)
1
2 , then aij(c̄) ≤ 0 from (17).
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Theorem 3

In summary, the mesh size h is crucial to ensure the DMP of the proposed
problem. With this, we state the main result.

Theorem
Under the conditions of Theorem 2 and letting f ≤ 0 and γ ≤ 0
we have

max
Ω

uh ≤ max{0,max
ΓD

gh}. (18)

In particular, if ΓD ̸= ∅ and g ≥ 0, then

max
Ω

uh = max
ΓD

gh, (19)

and if ΓD ̸= ∅ and g ≤ 0, or if ΓD = ∅, then we have the nonpositivity
property

max
Ω

uh ≤ 0. (20)
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The main idea of the proof:

Theorem 3 (the main theorem) is proved using the consequence of
Theorem 2, Theorem 1 (which deals with the DMPs for the
coordinates), and the effect of the right-hand side of the problem (4).

Since f ≤ 0, γ ≤ 0 and 0 ≤ ϕi ≤ 1, we obtain

(b̄)i =

∫
Ω

fϕi dx +

∫
ΓN

γϕi dσ ≤ 0 (i = 1, . . . , n).

This implies DMP for the coordinates.That is,

max
i=1,...,n+m

ci ≤ max{0, max
i=n+1,...,n+m

ci}

Goal:
max
Ω

uh ≤ max{0,max
ΓD

gh}

The figure below illustrates the finite element solution uh at the nodal
points in 1D.
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The finite element solution uh at all the nodal points

Figure: uh(Pi) = ci

Thus, using the fact that 0 ≤ ϕi ≤ 1 and
∑n+m

i=1 ϕi = 1,
max

i=1,...,n+m
ci = max

Ω
uh and max

i=n+1,...,n+m
ci = max

ΓD
gh.

Hence DMP for the solution itself holds.
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Consequence

As a consequence of the main theorem the corresponding discrete
minimum principle and, as a special case, discrete non-negativity for
system (4) can be verified in the same way by reversing signs.
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Example

A special case of problem (4): Steady-state concentration u of some
substrate in an enzyme-catalyzed reaction

div (D(x)∇u) = q(x, u) in Ω,

∂u
∂n = 0 on ΓN,

u = u0 on ΓD,

(21)
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Michaelis-Menten theory

Reaction rate by Michaelis-Menten theory:

q(x, ξ) = ϵ−1ξ

ξ + k for ξ ≥ 0, (22)

where k > 0 is the Michaelis constant and ϵ > 0 [7].
The condition of D(x): 0 < µ0 ≤ D(x) ≤ µ1, where µ0 and µ1 are
positive constants. Further, u0 ≥ 0 and β = 1

ϵk .
q(x, ξ) = r(x, ξ)ξ, where r(x, ξ) = ϵ−1

ξ+k and 0 ≤ r ≤ 1
ϵk .

Bounds of the FE solution under the conditions of Theorem 3:

min
Ω

uh ≥ 0 and max
Ω

uh = max
ΓD

u0h

since u0h ≥ 0.
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Conclusion

We have been able to determine the threshold mesh size h using the
acute angle condition and thus ensure the validity of DMPs for
Courant FEM for suitably small mesh size for nonlinear elliptic PDEs.
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Thank you for your attention!
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