Newton-Krylov methods for non-linear elliptic systems

Author: Sebastian Josué Castillo Jaramillo Advisor: Dr. Karátson János

Eötvös Loránd University, Budapest

December 2023

ELTE

Outline

Background: linear problems (previous year's work)

- Let $d \ge 2$, $\Omega \subset \mathbb{R}^d$ be a bounded domain.
- We consider the elliptic problem

$$\begin{cases} -\operatorname{div}(G\nabla u) + \eta u = g, \\ u_{\partial\Omega} = 0, \end{cases}$$
(1.1)

where $\eta = \eta(x)$ and *G* is a constant matrix.

Construction of the discretization

• Let $V_h \subset H^1_0(\Omega)$ be a FEM subspace. We look for u_h in V_h :

$$\int_{\Omega} (G\nabla u_h \cdot \nabla v + \eta u_h v) = \int_{\Omega} gv, \quad v \in V_h.$$
(1.2)

The corresponding linear algebraic system:

$$\underbrace{\mathbf{B}_h}_{\mathbf{G}_h+\mathbf{D}_h} \mathbf{c} = \mathbf{g}_h$$

Preconditioned form:

$$\underbrace{\mathbf{G}_{h}^{-1}\mathbf{B}_{h}}_{\mathbf{I}_{h}+\mathbf{G}_{h}^{-1}\mathbf{D}_{h}}\mathbf{c} = \underbrace{\tilde{\mathbf{g}}_{h}}_{\mathbf{G}_{h}^{-1}\mathbf{g}_{h}}.$$
(1.3)

• Preconditioned conjugate gradient method (PCGM)= CGM for (1.3).

PCGM Algorithm

- Let $u_0 \in H$ arbitrary, $\rho_0 = \mathbf{B}_h u_0 g$, $\mathbf{G}_h p_0 = \rho_0$, $r_0 = \rho_0$.
- For $k \in \mathbb{N}$:

$$u_{k+1} = u_k + \alpha_k p_k,$$

$$r_{k+1} = r_k + \alpha_k \mathbf{G}_h^{-1} \mathbf{B}_h p_k,$$

$$p_{k+1} = r_{k+1} + \beta_k p_k.$$

• Auxiliary problems:

$$\mathbf{G}_{h\mathcal{Z}_{k}}=\mathbf{B}_{h}p_{k}.$$

They can be solved easily with fast solvers due to the special structure of G_h , [9], [5].

Results

- Derive mesh-independent superlinear convergence of the preconditioned CGM.
- Estimate the rate of superlinear convergence.
- Extend the results of [8] from $\eta \in C(\overline{\Omega})$ to $\eta \in L^q(\Omega)$.

Assumptions

(i) G is positive definite.

(ii) There exists 2 :

 $\eta \in \mathcal{L}^{p/(p-2)}(\Omega).$

Main theorem

Theorem 1 (Superlinear convergence rate estimation)

Let
$$2 . Then there exists $C > 0$ such that

$$\left(\frac{\|e_k\|_{\mathbf{A}_h}}{\|e_0\|_{\mathbf{A}_h}}\right)^{\frac{1}{k}} \leq \frac{C}{k^{\alpha}} \to 0, \qquad \text{as } k \to \infty,$$$$

(2.4)

where $\alpha = \frac{1}{d} - \frac{1}{2} + \frac{1}{p}$.

Extension to elliptic systems

Systems of PDE's:

$$\begin{cases} -\Delta u_i + \eta_{i1}u_1 + \dots \eta_{is}u_s = g_i, \\ u_i|_{\partial\Omega} = 0, \quad (i = 1, \dots, s), \end{cases}$$
(2.5)

where
$$\boldsymbol{H} = \{\eta_{ij}\}_{i,j=1}^s : \Omega \to \mathbb{R}_{symm}^{s \times s}$$
 such that:

$$\forall i,j \in \{1,\ldots,s\}: \quad \eta_{ij} \in \mathcal{L}^{p/(p-2)}(\Omega).$$

Main result

Theorem 1 holds for (2.5) as well. If **H** is not symmetric, we substitute CGM with GMRES, and Theorem 1 still holds.

Advantages of the preconditioner

The auxiliary problem $\mathbf{S}_h w_k = \mathbf{Q}_h p_k$ for the PCGM becomes

$$\begin{cases} -\Delta(w_k)_1 &= \sum_{j=1}^{s} \eta_{1j}(p_k)_j, \\ -\Delta(w_k)_2 &= \sum_{j=1}^{s} \eta_{2j}(p_k)_j, \\ & \cdot \\ & \cdot \\ & -\Delta(w_k)_s &= \sum_{j=1}^{s} \eta_{sj}(p_k)_j, \\ (w_i)|_{\partial\Omega} &= 0, \quad \forall i = 1, \dots, s. \end{cases}$$

These equations are independent of one another, hence they can be solved in parallel.

Non-linear problems

Goal: Generalize previous results for nonlinear elliptic systems.

The nonlinear problem: elliptic transport system of the form

$$\begin{cases} -\operatorname{div}(K_i \nabla u_i) + \mathbf{b}_i \cdot \nabla u_i + f_i(x, u_1, \dots, u_l) &= g_i;\\ u_i|_{\partial \Omega} &= 0, \end{cases}$$
(3.6)

where i = 1, ..., l.

Objective

Solve FEM discretization of (3.6) with a Newton iteration plus GM-RES technique and prove superlinear convergence.

Operator equation for the weak form of the system

• Let $F: \mathrm{H}^1_0(\Omega)^l \to \mathrm{H}^1_0(\Omega)^l$ given by

$$\langle F(\mathbf{u}), \mathbf{v} \rangle_{\mathrm{H}_{0}^{1}(\Omega)} = \int_{\Omega} \sum_{i=1}^{l} K_{i} \nabla u_{i} \cdot \nabla v_{i} + (\mathbf{b}_{i} \cdot \nabla u_{i}) v_{i} + f_{i}(x, \mathbf{u}) v_{i}).$$

- There exists a unique $\overline{\mathbf{g}} \in \mathrm{H}_0^1(\Omega)^l$ such that

$$\int_{\Omega} \mathbf{g} \mathbf{v} = \langle \overline{\mathbf{g}}, \mathbf{v} \rangle_{\mathbf{H}_{0}^{1}(\Omega)} \quad (\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega)).$$
(3.7)

Altogether,

$$F(\mathbf{u}) = \overline{\mathbf{g}}, \quad \text{in } \mathbf{H}_0^1(\Omega)^l.$$
(3.8)

FEM discretization

• Let $V_h \in H_0^1(\Omega)^l$ be a *N*-dimensional subspace. We look for $\mathbf{u}_h \in V_h$ such that

$$\langle F(\mathbf{u}_h), \mathbf{v}_h \rangle_{\mathrm{H}^1_0(\Omega)} = \langle \mathbf{g}, \mathbf{v}_h \rangle_{\mathrm{H}^1_0(\Omega)} \quad (\mathbf{v}_h \in V_h).$$
 (3.9)

• Denote
$$F_h = P_h F$$
 and $\mathbf{g}_h = P_h \mathbf{g}$.

The projected problem:

$$F_h(\mathbf{u}_h) = \mathbf{g}_h \quad \text{in } V_h \tag{3.10}$$

is then solved using the Damped Inexact Newton (DIN) method

Construction of the DIN iteration

• Let $\mathbf{u}_0 \in V_h$ arbitrary. DIN iteration $(\mathbf{u}_n) \subset V_h$ constructed recursively as

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \tau_n \mathbf{p}_n \quad (n \in \mathbb{N}),$$

where $0 < \tau_n \leq 1$.

• Here $\mathbf{p}_n \in V_h$ is the approximate solution of the linear auxiliary problem

$$\langle F'_h(\mathbf{u}_n)\mathbf{p}_n, \mathbf{v}_h \rangle_{\mathrm{H}^1_0(\Omega)} = -\langle F_h(\mathbf{u}_n) - \mathbf{g}_h, \mathbf{v}_h \rangle_{\mathrm{H}^1_0(\Omega)}.$$
(3.11)

DIN as an outer-inner iteration process

- Let **u**_n be constructed in the DIN iteration.
- Linearized problem (3.11) :

$$F_h'(\mathbf{u}_n)\mathbf{p}_h = \mathbf{r}_h,\tag{3.12}$$

where $\mathbf{r}_h = \mathbf{g}_h - F_h(\mathbf{u}_n)$.

Equivalent to the FEM approximation of

$$\begin{cases} -\operatorname{div}(K_i \nabla p_i) + \mathbf{b}_i \cdot \nabla p_i + \sum_{j=1}^{l} \underbrace{V_{ij}}_{\partial_j f_i(\cdot, \mathbf{u}_n)} p_j = r_i \\ p_i|_{\partial \Omega} = 0 \end{cases} \quad (i = 1, \dots, l), \end{cases}$$

$$(3.13)$$

where $r_i = g_i + \operatorname{div}(K_i \nabla u_{n,i}) - \mathbf{b}_i \cdot \nabla u_{n,i} - f_i(x, \mathbf{u}_n)$.

• The corresponding algebraic system:

$$\mathbf{L}_{h}^{(n)}\mathbf{c} = \mathbf{d},\tag{3.14}$$

where **c** and **d** are the coefficient vectors of \mathbf{p}_h and \mathbf{r}_h , respectively.

• Construction of the preconditioner: for any $u_i|_{\partial\Omega} = 0$ let

$$S_i u_i = -\operatorname{div}(K_i \nabla u_i) + h_i u_i \quad (i = 1, \dots, l), \qquad (3.15)$$

where $h_i \in L^{\infty}(\Omega)$ and $h_i \ge 0$. Denote by S_h the stiffness matrix of the operator *S* given by:

$$S\mathbf{u} = (S_1 u_1, \dots S_l u_l). \tag{3.16}$$

• Preconditioned system:

$$\mathbf{S}_{h}^{-1}\mathbf{L}_{h}^{(n)}\mathbf{c} = \mathbf{f} := \mathbf{S}_{h}^{-1}\mathbf{d}.$$
 (3.17)

We have the decomposition

$$\mathbf{S}_h^{-1}\mathbf{L}_h^{(n)} = \mathbf{I} + \mathbf{Q}_{\mathbf{S}_h}^{(n)},$$

where $\mathbf{Q}_{\mathbf{S}_{\mathbf{h}}}^{(\mathbf{n})}$ is the corresponding Gram matrix in V_h of the operator $Q_S^{(n)}$ defined implicitly as follows:

$$\langle \mathcal{Q}_{S}^{(n)}\mathbf{v},\mathbf{z}\rangle_{S} \equiv \int_{\Omega} ((\mathbf{b}\cdot\nabla\mathbf{v})\cdot\mathbf{z} + (f_{\xi}'(x,\mathbf{u}_{n}) - \mathbf{h}\mathbf{I})\mathbf{v}\cdot\mathbf{z}) \quad (\mathbf{v},\mathbf{z}\in\mathrm{H}_{0}^{1}(\Omega)^{l}).$$

Proposition

The operator $Q_S^{(n)}: \mathrm{H}^1_0(\Omega)^l \to \mathrm{H}^1_0(\Omega)^l$ satisfies

$$|\mathcal{Q}_{S}^{(n)}\mathbf{v}\|_{S} \leq C_{\mathcal{Q}}\|\mathbf{v}\|_{\mathrm{L}^{p}(\Omega)} \quad (\mathbf{v} \in \mathrm{H}_{0}^{1}(\Omega)^{l}), \tag{3.18}$$

for some $C_Q > 0$.

Theorem

The GMRES algorithm with \mathbf{S}_h -inner product, applied for the $N \times N$ preconditioned system $\mathbf{S}_h^{-1} \mathbf{L}_h^{(n)} \mathbf{c} = \mathbf{S}_h^{-1} \mathbf{d}$, yields

$$\left(\frac{\|r_k\|_{\mathbf{S}_{\mathbf{h}}}}{\|r_0\|_{\mathbf{S}_{\mathbf{h}}}}\right)^{1/k} \le C\frac{1}{k^{\alpha}}, \quad \text{where } \alpha = \frac{1}{d} - \frac{1}{2} + \frac{1}{p}.$$
 (3.19)

Specifically,

$$C = \max\{l \| Q_S^{(n)} \|, R_{l,\alpha} \cdot C_Q (1-\alpha)^{-1}\}.$$

We proved that the estimation of the superlinear convergence rate is independent of the outer Newton iterate \mathbf{u}_n and V_h .

A numerical example: single equation

Let us solve the following PDE numerically:

$$\begin{cases} -\Delta u + \eta u^3 = f, & \text{in } \Omega = [0, 1]^2, \\ u|_{\partial\Omega} = 0, \end{cases}$$
(3.20)

where η and f are defined by

$$\begin{split} \eta(x,y) &= ((x-0.5)^2 + (y-0.5)^2)^{-\mu}, \\ f(x,y) &= 10((x-0.5)^2 + (y-0.5)^2)^{-\gamma}, \quad (x,y) \in \Omega. \end{split}$$

We look for approximate solutions using the DIN plus PCGM technique.

• Given u_n from the DIN iteration, we solve the linearized problem

$$F'(u_n)p_n = -(F(u_n) - f),$$

i.e.,

$$-\Delta p_n + 3\eta u_n^2 p_n = \underbrace{\Delta u_n - \eta u_n^3 + f}_{r_n}.$$

• Apply FEM with stepsize $h = \frac{1}{N+1}$. Algebraic system:

$$(\mathbf{S}_h + \mathbf{D}_h^n)\mathbf{p}_n = \mathbf{d}_n, \qquad (3.21)$$

where $\mathbf{d}_n := -\mathbf{G}_h \mathbf{u}_n + h^2 (\mathbf{f} - \eta \mathbf{u}_n^3)$.

• Choose S_h as a preconditioner and apply PCGM.

- Theory holds whenever $\eta u_n^2 \in L^{p/p-2}(\Omega)$ and $g \in L^q(\Omega)$, where $\frac{1}{q} + \frac{1}{p} = 1$.
- We define the numbers

$$\delta_k^n = \left(\frac{\|\boldsymbol{r}_k^n\|_{\mathbf{S}_h}}{\|\boldsymbol{r}_0^n\|_{\mathbf{S}_h}}\right)^{\frac{1}{k}} k^{\alpha},$$

where k denotes the inner steps of the process and n the outer ones.

By the previous theorem:

whenever

$$\alpha < \frac{1-\mu}{4}, \quad \gamma < 1-\alpha.$$

• We check that these numbers are independent of **u**_n.

Figure: Numerical solution of (3.20) and behaviour of δ_k^n for $\mu = 0.1$, $\gamma = 0.75$. The right picture is obtained for $\alpha = 0.22$

Numerical solution of a nonlinear system

• We consider the following set of problems:

$$\begin{cases} -\epsilon \Delta u_i + (|\mathbf{u}|^2 + \beta)u_i = g_i, & \text{in } \Omega = [0, 1]^2, \\ u_i|_{\partial\Omega} = 0, & i = 1, \dots l, \end{cases}$$
(3.22)

for $\beta > 0$ and $g_i \in L^q(\Omega)$, where $\frac{1}{q} + \frac{1}{p} = 1$.

• New choice of preconditioner:

$$S\mathbf{u}=(S_1u_1,\ldots,S_lu_l),$$

where

$$S_i u_i = -\epsilon \Delta u_i + \beta u_i \quad (i = 1, \dots, l).$$

• Let
$$l = 10$$
, $\epsilon = 0.1$, $\beta = 10$ and $g_i(x, y) = ((x-0.3)^2 + (y-0.3)^2)^{-\gamma}$.

Figure: Behaviour of δ_k^n for $\alpha = 0.24, \gamma = 0.75$ and $\alpha = 0.5, \gamma = 0.9$, respectively.

Conclusions

• Superlinear convergence rate estimation when PCGM is applied to single equations or symmetric systems:

$$\left(rac{\|m{e}_k\|_{\mathbf{A}_h}}{\|m{e}_0\|_{\mathbf{A}_h}}
ight)^{rac{1}{k}} \leq m{C}k^{-lpha}, \quad lpha = rac{1}{d} - rac{1}{2} + rac{1}{p}.$$

- This also holds for the non-symmetric case when replacing PCGM with GMRES.
- We applied these results in the nonlinear case to provide mesh independence estimations of the rate of superlinear convergence for inner iterations of a Newton-Krylov method.

REFERENCES I

ELTE

REFERENCES II

I. GOHBERG, S. GOLDBERG, AND M. A. KAASHOEK, *Operator theory: Advances and applications*, Classes of Linear Operators, 49 (1992).

T. ROSSI AND J. TOIVANEN, A parallel fast direct solver for the discrete solution of separable elliptic equations., in PPSC, Citeseer, 1997.

J. VYBIRAL, *Widths of embeddings in function spaces*, Journal of Complexity, 24 (2008), pp. 545–570.

R. WINTHER, *Some superlinear convergence results for the conjugate gradient method*, SIAM Journal on Numerical Analysis, 17 (1980), pp. 14–17.

Z. ZLATEV, *Numerical treatment of large air pollution models*, in Computer Treatment of Large Air Pollution Models, Springer, 1995, pp. 69–109.

Thank you for your attention!

A numerical example

Let us solve the following PDE numerically:

$$\begin{cases} -\Delta u + \eta u = f, & \text{in } \Omega = [0, 1]^2, \\ u|_{\partial \Omega} = 0 \end{cases}$$
(6.23)

0

Here $\eta \in L^{\frac{p}{p-2}}(\Omega)$ is defined as

$$\eta(x,y) = (x - 0.5)^2 + (y - 0.5)^2)^{-\beta}, \qquad 0 < \beta < \frac{p-2}{p}$$

and

$$f(x,y) = 1.$$

• Apply FEM with stepsize $h = \frac{1}{N+1}$. Algebraic system: $(\mathbf{G}_h + \mathbf{D}_h)\mathbf{c} = \mathbf{g}_h$.

(6.24)

• Choose **G**_h as a preconditioner and apply PCGM.

Figure: Graph of the numerical solution with $\beta = 3/4$ and N = 40.

• To measure the error of the PCGM, we use the energy norm

$$\|e\|_{\mathbf{A}_h} = \langle \mathbf{A}_h e, e \rangle^{\frac{1}{2}} \qquad (e \in \mathbb{R}^{N^2}),$$

where $\mathbf{A}_h = \mathbf{G}_h + \mathbf{D}_h$.

• Notice:

$$\|e_k\|_{\mathbf{A}_h} = \|\mathbf{A}_h^{-1/2}r_k\|$$

Recall our main result:

Here o

Superlinear convergence rate

There exists C > 0 such that

$$\left(\frac{\|e_k\|_{\mathbf{A}_h}}{\|e_0\|_{\mathbf{A}_h}}\right)^{\frac{1}{k}} \le \frac{C}{k^{\alpha}} \to 0, \text{ as } k \to \infty.$$
$$\mathbf{e} = \frac{1}{d} - \frac{1}{2} + \frac{1}{p}.$$

To test this result, we study the values of

$$\hat{\delta}_k = \left(\frac{\|\boldsymbol{r}_k\|_{\boldsymbol{G}_h}}{\|\boldsymbol{r}_0\|_{\boldsymbol{G}_h}}\right)^{\frac{1}{k}} k^{\alpha}$$

We performed several runs for different mesh-size and

 $\alpha = 0.12, \beta = 3/4.$

Notice that the theorem holds when $\alpha < \frac{1-\beta}{2}$.

	N = 20	N = 40	N = 80
1	1.0000	1.0000	1.0000
2	0.5838	0.6236	0.6518
3	0.2865	0.3229	0.3499
4	0.1620	0.1907	0.2129
5	0.1037	0.1239	0.1412
6	0.1320	0.0946	0.0997
7	0.1069	0.1188	0.0999
8	0.1018	0.0921	0.1009
9	0.1001	0.0893	0.0802
10	0.1026	0.0901	0.0781

Table: Values of $\hat{\delta}_k$ for different mesh sizes.

Sketch of the proof

• We define the operators

$$Su \equiv -\operatorname{div}(G\nabla u), \quad u \in D \quad \text{and} \quad Qu \equiv \eta u, \quad u \in \operatorname{H}_0^1(\Omega).$$

• Energy space: $H_S = H_0^1(\Omega)$ with

$$\langle u, v \rangle_S = \int_{\Omega} G \nabla u \cdot \nabla v.$$
 (6.25)

It can be proved that there exists a unique operator $Q_S \in \mathcal{B}(H_s)$ such that

$$\langle Q_S u, v \rangle_S = \langle Q u, v \rangle$$

for all $u, v \in H_S$.

Lemma 1

There exists C > 0 such that

$$\|Q_{S}v\|_{H_{S}} \leq C\|v\|_{L^{p}(\Omega)}, \quad \forall v \in H_{S}.$$
(6.26)

Altogether, Q_S is compact and self-adjoint in H_S .

Proposition 1

Let
$$A = I + Q_S$$
. For any $k = 1, 2, ..., n$

$$\sum_{j=1}^{k} |\lambda_j(\mathbf{G}_h^{-1}\mathbf{D}_h)| \le \sum_{j=1}^{k} \lambda_j(\mathcal{Q}_S).$$
(6.27)

Moreover,

$$\left(\frac{\|e_k\|_{\mathbf{A}_h}}{\|e_0\|_{\mathbf{A}_h}}\right)^{1/k} \le 2\|A^{-1}\|\frac{1}{k}\sum_{j=1}^k \lambda_j(Q_S).$$
(6.28)

Now we wish to get a rate estimation from (6.28).

Useful results

1. Let $\lambda_n = \lambda_n(Q_S)$. Since Q_S is a compact self-adjoint operator in H_S , we have the characterization, [7, Ch.6, Th.1.5]:

$$\lambda_n(Q_S) = \min\{\|Q_S - L_{n-1}\| / L_{n-1} \in \mathcal{L}(H_S), \operatorname{rank}(L_{n-1}) \le n-1\}.$$

Let a_n(I) denote the approximation numbers of the compact embedding I: H¹₀(Ω) → L^p(Ω), defined as

$$a_n(\mathcal{I}) = \min\{\|\mathcal{I}-L_{n-1}\|/L_{n-1} \in \mathcal{L}(\mathrm{H}^1_0(\Omega), \mathrm{L}^p(\Omega)), \operatorname{rank}(L_{n-1}) \le n-1\}.$$

3. From [6] we have the estimation

$$a_n(\mathcal{I}) \leq \hat{C}n^{-lpha}, \quad lpha = rac{1}{d} - rac{1}{2} + rac{1}{p},$$

for some constant $\hat{C} > 0$.

Proposition 2

There exists C > 0, such that for all $n \in \mathbb{N}$,

$$\lambda_n(Q_S) \le Ca_n(\mathcal{I}). \tag{6.29}$$

Proposition 3

There exists C > 0 such that

$$\frac{1}{k}\sum_{n=1}^k \lambda_n(Q_S) \le C\frac{1}{k^\alpha}$$

Finally, by (6.28), the theorem is proved. \Box

• Given u_n from the DIN iteration, we solve the linearized problem

$$F'(u_n)p_n = -(F(u_n) - f).$$

In matrix form:

$$(\mathbf{A}^h + \mathbf{B}^h_n)\mathbf{p}_n = \mathbf{r}_n.$$

Here

i

$$\mathbf{A}^{h} = \epsilon \begin{pmatrix} -\Delta_{h} & \\ & \ddots & \\ & & -\Delta_{h} \end{pmatrix} \in \mathbb{R}^{lN^{2} \times lN^{2}},$$
$$\mathbf{B}^{h}_{n} = (\mathbf{B}_{t,k})_{i,j} = \left(\int_{\Omega} \partial_{k} f_{t}(u_{1}^{n}, \dots, u_{s}^{n}) \psi_{i} \psi_{j} \right)_{i,j} \in \mathbb{R}^{lN^{2} \times lN^{2}}.$$
$$(\mathbf{r}_{\mathbf{n}})_{i} = \left(\epsilon \int_{\Omega} \nabla u_{i}^{n} \cdot \nabla \psi_{j} + (|\mathbf{u}^{n}|^{2} + \beta) u_{i}^{n} \psi_{j} - \int_{\Omega} g_{i} \psi_{j} \right) \in \mathbb{R}^{lN^{2}},$$
$$= 1, \dots, l \text{ and } j = 1, \dots, N^{2}.$$