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Background: linear problems (previous year’s work)

• Let d ≥ 2, Ω ⊂ Rd be a bounded domain.

• We consider the elliptic problem{
−div(G∇u) + ηu = g,
u∂Ω = 0,

(1.1)

where η = η(x) and G is a constant matrix.
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Construction of the discretization

• Let Vh ⊂ H1
0(Ω) be a FEM subspace. We look for uh in Vh:∫

Ω
(G∇uh · ∇v + ηuhv) =

∫
Ω

gv, v ∈ Vh. (1.2)

The corresponding linear algebraic system:

Bh︸︷︷︸
(Gh+Dh)

c = gh.

Preconditioned form:

G−1
h Bh︸ ︷︷ ︸

(Ih+G−1
h Dh)

c = g̃h︸︷︷︸
G−1

h gh

. (1.3)

• Preconditioned conjugate gradient method (PCGM)= CGM for (1.3).
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PCGM Algorithm

• Let u0 ∈ H arbitrary, ρ0 = Bhu0 − g, Ghp0 = ρ0, r0 = ρ0.

• For k ∈ N: 
uk+1 = uk + αkpk,

rk+1 = rk + αkG−1
h Bhpk,

pk+1 = rk+1 + βkpk.

• Auxiliary problems:
Ghzk = Bhpk.

They can be solved easily with fast solvers due to the special structure
of Gh, [9], [5].
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Results

• Derive mesh-independent superlinear convergence of the precondi-
tioned CGM.

• Estimate the rate of superlinear convergence.

• Extend the results of [8] from η ∈ C(Ω) to η ∈ Lq(Ω).
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Assumptions

(i) G is positive definite.

(ii) There exists 2 < p < 2d
d−2 :

η ∈ Lp/(p−2)(Ω).
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Main theorem

Theorem 1 (Superlinear convergence rate estimation)

Let 2 < p < 2d
d−2 . Then there exists C > 0 such that

(
∥ek∥Ah

∥e0∥Ah

) 1
k

≤ C
kα

→ 0, as k → ∞, (2.4)

where α = 1
d − 1

2 + 1
p .
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Extension to elliptic systems

Systems of PDE’s:{
−∆ui + ηi1u1 + . . . ηisus = gi,

ui|∂Ω = 0, (i = 1, . . . , s),
(2.5)

where H = {ηij}s
i,j=1 : Ω → Rs×s

symm such that:

∀i, j ∈ {1, . . . , s} : ηij ∈ Lp/(p−2)(Ω).

Main result
Theorem 1 holds for (2.5) as well. If H is not symmetric, we substitute
CGM with GMRES, and Theorem 1 still holds.
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Advantages of the preconditioner

The auxiliary problem Shwk = Qhpk for the PCGM becomes

−∆(wk)1 =
∑s

j=1 η1j(pk)j,

−∆(wk)2 =
∑s

j=1 η2j(pk)j,

.

.

.

−∆(wk)s =
∑s

j=1 ηsj(pk)j,

(wi)|∂Ω = 0, ∀i = 1, . . . , s.

These equations are independent of one another, hence they can be
solved in parallel.
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Non-linear problems

Goal: Generalize previous results for nonlinear elliptic systems.

The nonlinear problem: elliptic transport system of the form{
−div(Ki∇ui) + bi · ∇ui + fi(x, u1, . . . , ul) = gi;

ui|∂Ω = 0,
(3.6)

where i = 1, . . . , l.

Objective
Solve FEM discretization of (3.6) with a Newton iteration plus GM-
RES technique and prove superlinear convergence.
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Operator equation for the weak form of the system

• Let F : H1
0(Ω)

l → H1
0(Ω)

l given by

⟨F(u), v⟩H1
0(Ω) =

∫
Ω

l∑
i=1

Ki∇ui · ∇vi + (bi · ∇ui)vi + fi(x,u)vi).

• There exists a unique g ∈ H1
0(Ω)

l such that∫
Ω

gv = ⟨g, v⟩H1
0(Ω) (v ∈ H1

0(Ω)). (3.7)

Altogether,
F(u) = g, in H1

0(Ω)
l. (3.8)
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FEM discretization

• Let Vh ∈ H1
0(Ω)

l be a N-dimensional subspace. We look for uh ∈ Vh
such that

⟨F(uh), vh⟩H1
0(Ω) = ⟨g, vh⟩H1

0(Ω) (vh ∈ Vh). (3.9)

• Denote Fh = PhF and gh = Phg.

The projected problem:

Fh(uh) = gh in Vh (3.10)

is then solved using the Damped Inexact Newton (DIN) method
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Construction of the DIN iteration

• Let u0 ∈ Vh arbitrary. DIN iteration (un) ⊂ Vh constructed recur-
sively as

un+1 = un + τnpn (n ∈ N),

where 0 < τn ≤ 1.

• Here pn ∈ Vh is the approximate solution of the linear auxiliary prob-
lem

⟨F′
h(un)pn, vh⟩H1

0(Ω) = −⟨Fh(un)− gh, vh⟩H1
0(Ω). (3.11)
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DIN as an outer-inner iteration process

• Let un be constructed in the DIN iteration.
• Linearized problem (3.11) :

F′
h(un)ph = rh, (3.12)

where rh = gh − Fh(un).

Equivalent to the FEM approximation of
−div(Ki∇pi) + bi · ∇pi +

∑l
j=1 Vij︸︷︷︸

∂jfi(·,un)

pj = ri

pi|∂Ω = 0

(i = 1, . . . , l),

(3.13)
where ri = gi + div(Ki∇un,i)− bi · ∇un,i − fi(x,un).
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• The corresponding algebraic system:

L(n)
h c = d, (3.14)

where c and d are the coefficient vectors of ph and rh, respectively.
• Construction of the preconditioner: for any ui|∂Ω = 0 let

Siui = −div(Ki∇ui) + hiui (i = 1, . . . , l), (3.15)

where hi ∈ L∞(Ω) and hi ≥ 0. Denote by Sh the stiffness matrix of
the operator S given by:

Su = (S1u1, . . . Slul). (3.16)

• Preconditioned system:

S−1
h L(n)

h c = f := S−1
h d. (3.17)
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We have the decomposition

S−1
h L(n)

h = I + Q(n)
Sh
,

where Q(n)
Sh

is the corresponding Gram matrix in Vh of the operator

Q(n)
S defined implicitly as follows:

⟨Q(n)
S v, z⟩S ≡

∫
Ω
((b · ∇v) · z + (f ′ξ(x,un)− hI)v · z) (v, z ∈ H1

0(Ω)
l).

Proposition

The operator Q(n)
S : H1

0(Ω)
l → H1

0(Ω)
l satisfies

∥Q(n)
S v∥S ≤ CQ∥v∥Lp(Ω) (v ∈ H1

0(Ω)
l), (3.18)

for some CQ > 0.
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Theorem
The GMRES algorithm with Sh-inner product, applied for the N × N
preconditioned system S−1

h L(n)
h c = S−1

h d, yields(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ C
1

kα
, where α =

1
d
− 1

2
+

1
p
. (3.19)

Specifically,

C = max{l∥Q(n)
S ∥,Rl,α · CQ(1 − α)−1}.

We proved that the estimation of the superlinear convergence rate is
independent of the outer Newton iterate un and Vh.
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A numerical example: single equation

Let us solve the following PDE numerically:{
−∆u + ηu3 = f , in Ω = [0, 1]2,
u|∂Ω = 0,

(3.20)

where η and f are defined by

η(x, y) = ((x − 0.5)2 + (y − 0.5)2)−µ,

f (x, y) = 10((x − 0.5)2 + (y − 0.5)2)−γ , (x, y) ∈ Ω.

We look for approximate solutions using the DIN plus PCGM tech-
nique.
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• Given un from the DIN iteration, we solve the linearized problem

F′(un)pn = −(F(un)− f ),

i.e.,
−∆pn + 3ηu2

npn = ∆un − ηu3
n + f︸ ︷︷ ︸

rn

.

• Apply FEM with stepsize h = 1
N+1 . Algebraic system:

(Sh + Dn
h)pn = dn, (3.21)

where dn := −Ghun + h2(f − ηu3
n).

• Choose Sh as a preconditioner and apply PCGM.
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• Theory holds whenever ηu2
n ∈ Lp/p−2(Ω) and g ∈ Lq(Ω), where

1
q + 1

p = 1.
• We define the numbers

δn
k =

(
∥rn

k∥Sh

∥rn
0∥Sh

) 1
k

kα,

where k denotes the inner steps of the process and n the outer ones.

By the previous theorem:

δn
k ≤ C︸︷︷︸

Expectation

,

whenever
α <

1 − µ

4
, γ < 1 − α.
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• We check that these numbers are independent of un.
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Figure: Numerical solution of (3.20) and behaviour of δn
k for µ = 0.1,

γ = 0.75. The right picture is obtained for α = 0.22
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Numerical solution of a nonlinear system

• We consider the following set of problems:{
−ϵ∆ui + (|u|2 + β)ui = gi, in Ω = [0, 1]2,
ui|∂Ω = 0, i = 1, . . . l,

(3.22)

for β > 0 and gi ∈ Lq(Ω), where 1
q + 1

p = 1.

• New choice of preconditioner:

Su = (S1u1, . . . Slul),

where
Siui = −ϵ∆ui + βui (i = 1, . . . , l).
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• Let l = 10, ϵ = 0.1, β = 10 and gi(x, y) = ((x−0.3)2+(y−0.3)2)−γ .
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Figure: Behaviour of δn
k for α = 0.24, γ = 0.75 and α = 0.5, γ = 0.9,

respectively.
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Conclusions

• Superlinear convergence rate estimation when PCGM is applied to
single equations or symmetric systems:(

∥ek∥Ah

∥e0∥Ah

) 1
k

≤ Ck−α, α =
1
d
− 1

2
+

1
p
.

• This also holds for the non-symmetric case when replacing PCGM
with GMRES.

• We applied these results in the nonlinear case to provide mesh inde-
pendence estimations of the rate of superlinear convergence for inner
iterations of a Newton-Krylov method.
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Thank you for your attention!
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A numerical example

Let us solve the following PDE numerically:{
−∆u + ηu = f , in Ω = [0, 1]2,
u|∂Ω = 0

(6.23)

Here η ∈ L
p

p−2 (Ω) is defined as

η(x, y) = (x − 0.5)2 + (y − 0.5)2)−β, 0 < β <
p − 2

p

and
f (x, y) = 1.
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• Apply FEM with stepsize h = 1
N+1 . Algebraic system:

(Gh + Dh)c = gh. (6.24)

• Choose Gh as a preconditioner and apply PCGM.

Figure: Graph of the numerical solution with β = 3/4 and N = 40.
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• To measure the error of the PCGM, we use the energy norm

∥e∥Ah = ⟨Ahe, e⟩
1
2 (e ∈ RN2

),

where Ah = Gh + Dh.

• Notice:
∥ek∥Ah = ∥Ah

−1/2rk∥
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Recall our main result:

Superlinear convergence rate
There exists C > 0 such that(

∥ek∥Ah

∥e0∥Ah

) 1
k

≤ C
kα

→ 0, as k → ∞.

Here α = 1
d − 1

2 + 1
p .

To test this result, we study the values of

δ̂k =

(
∥rk∥Gh

∥r0∥Gh

) 1
k

kα
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We performed several runs for different mesh-size and

α = 0.12, β = 3/4.

Notice that the theorem holds when α < 1−β
2 .

N = 20 N = 40 N = 80
1 1.0000 1.0000 1.0000
2 0.5838 0.6236 0.6518
3 0.2865 0.3229 0.3499
4 0.1620 0.1907 0.2129
5 0.1037 0.1239 0.1412
6 0.1320 0.0946 0.0997
7 0.1069 0.1188 0.0999
8 0.1018 0.0921 0.1009
9 0.1001 0.0893 0.0802
10 0.1026 0.0901 0.0781

Table: Values of δ̂k for different mesh sizes.
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Figure: Graphical representation of Table 1.

ELTE



Introduction
The main results

Extension to non-linear elliptic systems
Conclusions

References

Sketch of the proof

• We define the operators

Su ≡ −div(G∇u), u ∈ D and Qu ≡ ηu, u ∈ H1
0(Ω).

• Energy space: HS = H1
0(Ω) with

⟨u, v⟩S =

∫
Ω

G∇u · ∇v. (6.25)
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It can be proved that there exists a unique operator QS ∈ B(Hs) such
that

⟨QSu, v⟩S = ⟨Qu, v⟩

for all u, v ∈ HS.

Lemma 1

There exists C > 0 such that

∥QSv∥HS ≤ C∥v∥Lp(Ω), ∀v ∈ HS. (6.26)

Altogether, QS is compact and self-adjoint in HS.
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Proposition 1
Let A = I + QS. For any k = 1, 2, . . . , n

k∑
j=1

|λj(G−1
h Dh)| ≤

k∑
j=1

λj(QS). (6.27)

Moreover, (
∥ek∥Ah

∥e0∥Ah

)1/k

≤ 2∥A−1∥1
k

k∑
j=1

λj(QS). (6.28)

Now we wish to get a rate estimation from (6.28).
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Useful results

1. Let λn = λn(QS). Since QS is a compact self-adjoint operator in HS,
we have the characterization, [7, Ch.6, Th.1.5]:

λn(QS) = min{∥QS −Ln−1∥ / Ln−1 ∈ L(HS), rank(Ln−1) ≤ n− 1}.

2. Let an(I) denote the approximation numbers of the compact embed-
ding I : H1

0(Ω) 7→ Lp(Ω), defined as

an(I) = min{∥I−Ln−1∥/ Ln−1 ∈ L(H1
0(Ω),L

p(Ω)), rank(Ln−1) ≤ n−1}.

3. From [6] we have the estimation

an(I) ≤ Ĉn−α, α =
1
d
− 1

2
+

1
p
,

for some constant Ĉ > 0.
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Proposition 2
There exists C > 0, such that for all n ∈ N,

λn(QS) ≤ Can(I). (6.29)

Proposition 3
There exists C > 0 such that

1
k

k∑
n=1

λn(QS) ≤ C
1

kα
.

Finally, by (6.28), the theorem is proved. □
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• Given un from the DIN iteration, we solve the linearized problem

F′(un)pn = −(F(un)− f ).

In matrix form:
(Ah + Bh

n)pn = rn.

Here

Ah = ϵ


−∆h

. . .
−∆h

 ∈ RlN2×lN2
,

Bh
n = (Bt,k)i,j =

(∫
Ω
∂kft(un

1, . . . , u
n
s )ψiψj

)
i,j
∈ RlN2×lN2

.

(rn)i =

(
ϵ

∫
Ω
∇un

i · ∇ψj + (|un|2 + β)un
i ψj −

∫
Ω

giψj

)
∈ RlN2

,

i = 1, . . . , l and j = 1, . . . ,N2.
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