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» Neural networks in general

» general application fields
P approximation properties

» main tools - benefits.

> Application to the numerical solution of PDE's

» a conventional family of methods,
» several other approaches,

» results, main problems, questions.
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Neural networks (NN) in general: a figure

Input Hidden Hidden Hidden Outpt
layer layer 1 layer 2 layer 3 layer

Figure: A simple neural network with dense layers.
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Neural networks (NN) in general: formulas

» In a half sentence: a graph structure with some parameters
(weights) + activation functions.

» Here: the so-called “feedforward” setting.

> Nodes are organized into “layers”.

» With two specific ones: input layer, output layer.

» We have some input and want to compute some output.

» Parameters define affine linear maps between consecutive
layers.

» Layer-sizes: sp,S1,---,SN-
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Neural networks: the setup with formulas

> Value at layer#): x;.

» Transformation from layer #j — 1 to layer #j:
Xj-1 = pi(Ajxji-1 + bj) = x;.
> A € R9-1%5 b € RS,
» p;j : R — R given; applied componentwise.

> In the softwares (MATLAB or Python) this can be chosen
from a given family: Relu, tanh, sigmoid, Id, ...

» Responsible for nonlinearity.
> The NN can be characterized by  {p;, Aj, bj},_;, -
> {pj}j=12,...n and sizes are fixed,

» the entries of A; and bj: parameters that are tuned/optimized.
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Neural networks: the setup - summary, remarks

> In this way, a function is associated to the NN.
» Full notation: NNy p : R — RV,

» Overall aim: find the parameters A, b such that NN,
approximates a given “function” F.

» Examples (discrete and continuous):

> F . {pictures} — {cat, dog, mouse}
» F : {medical images} — {symptomg, symptom;,symptom, }

»> F(u(0,-) : initial data of a PDE) = u(t, )

» |n common words: the NN should “learn” the function F.
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Neural networks: the setup - remarks

» First two examples:

» inputs are, indeed, matrices or rather 3D arrays
> output-set: {(0,0,1),(0,1,0),(1,0,0)}
> many times, also Aj(x) = max Xk is applied.

» Here there is not even a definite function.

» This is true; therefore, the neural network (or its setup) is
called “the model".

» This is a perfect tool, if there is no model for a phenomenon.
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Neural networks: basic properties - mathematical statements

» NN can “learn” any function F:

Functions of type N N4 p : R® — R*N can approximate any
function F : R0 — RV,

» Name of the corresponding family of statements: universal
approximation theorems.

> Why a “family of ..."?

» \We can ask:

» How accurately can approximate a fixed type of neural network
our function F?

» How should we change the setup neural network to
approximate our function F7?

> taking larger and larger layers

> taking more and more layers.
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Neural networks: universal approximation theorems

Theorem (Cybenko '90)

For any non-polynomial p, € > 0,s9,5 € N, K C R® compact and
F € C(K,RR%) there are s; € N and matrices Ay, Az, vector by
such that

sup ||Az2 - p(A1x + b1) — F(x)|| < e.

xeK

» A NN with one (but wide enough) hidden layer with no final
activation can approximate any continuous function on a
compact set with a given accuracy.
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Neural networks: universal approximation theorems

» Similar statements hold if the size of the layers if fixed
(maximized) and we can increase the number of them.

e Interesting question: For a given ¢ how can we achieve this
with a minimal number of parameters?

» In general: no answer for this.

» It depends on the function to approximate.

e Important question: For a given F what kind of NN should be
used?

» The most important question.

» No general answer.
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Neural networks: making them work

e In practice, for a given structure, how to choose the best
parameters?

How to learn the function F?

» We should optimize the weights {A;, b;} to get the best
approximation.

» One can recognize it as a fitting problem.
» For this, we should know F(xi) for a number of inputs.

» {(xk, F(xx)) k=12, K - “training set”

» A number of input - output pairs.
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Neural networks: learning procedure

» This is the optimization of parameters; in formulas:
Ab .
LOSS ({f(xk) _NNAb(xk)}k:l,z,...,K) ———— min

» Here we use a real-valued loss function
1 K
» Common example: LOSS(wy, wa, ..., wk) = ra Z [ wic ||
k=1

» Correlation type losses for discrete data.

» A family of possible choices in Python or Matlab.

» The engine of the learning: a highly efficient optimization
procedure.

» Analysis comes into the play.
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Neural networks: what kind of optimization

» Mostly simple gradient-based algorithms
» Supported with automatic differentiation.
» Advance of simple setup of the NN.

» Adaptive choice of step lengths.
» Mostly: stochastic gradient algorithms.

» Epoch: consecutive gradient steps, while all data is used.

» Why just “gradient”.

» For so many parameters avoid computing of second derivatives.

» Think of a million of parameters.

» Again: a family of possible choices in Python or Matlab.
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Move to PDE's: The main conventional setup

» Name: physics informed neural networks (PINN's).
» Origin: ~ 2017, Karniadakis et. al, MIT
» A chief problem: there is no learning dataset.
» Therefore, learning is not the conventional one.
> In some cases, we can construct some |earning data.
» The basic setup: we have a time-dependent problem
Oru(t,x) = Lu(t,x) x€Q, te(0,T)
u(t,x) = up(t,x) xe0Q COQ, te(0,T)
u(0,x) = up(t,x) xeQ
with given functions up, ugp and diff. operator L.
» We perform discretizations:
» Q - spatial discretization,
» t,tr,...,ty - time discretization.
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Example, geometric setup

» The solution u : (t,x) — u(t,x) has to be approximated.

» NN-inputs: (tx, xk), outputs: N Na p(tk, Xk).

» Loss function: how much is the equation failed?

>
>

>

Line 1, line 2 and line 3 in the equations:

Lossy = ||(0r — L)N'Nab(tk, x«)|| for “interior” (t, x) inputs.

» Automated symbolic differentiation of NN's.

Lossy = [N Nab(tk, xk) — up(tk, x«)|| for “boundary” (tx, x«)
inputs.

Losss = [N Nab(0, xx) — uo(xk)| for inputs (0, xx).

» Loss = Loss; + Lossy + Losss

Izsak Ferenc

>

Or similar with squares or with some weights.
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PINN's: a computational example

» X. Jin, S. Cai, H. Li, G. Em Karniadakis, NSFnets
(Navier-Stokes flow nets): Physics-informed neural networks
for the incompressible Navier-Stokes equations, JCP, 2021.

» Applied to the Navier-Stokes equations

» conventional and vorticity formulation
10 hidden dense layers with 300 neurons
Altogether ~ 820 000 parameters.
~ 8000 epochs

Initial learning rate = 1073, finally ~ 103

vV v v v VY

100,000 points inside the domain, 26,048 points on the
boundary, 147,968 points at the initial time step.

» 17 time steps
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PINN's: a computational example - discussion

» Simulation time:

» Given just for a smaller problem: 12 times smaller w.r.t. each
parameter.

» This took 20-30 min using 6000 GPUs.
» A number of similar works

» and a number of corresponding publications.

» This is really brute force

» with using minimal knowledge on these problems.
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NN's and PDE's: any other ideas?

» Main idea: use NN's to enhance the performance

» of some compound of a conventional numerical method.

» Rather useful for real life problems.
» | do not have a full overview of them:

» many publications on conferences,

» many publications on Arxive.

» Two of them will be presented.
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An NN-based solver for conservation laws

» The equation to solve:
Oru(t, x) 4+ Ox(f(u(t,x)) =0, (t,x)€(0,T)xQ

» For well-posedness: appropriate initial and boundary
conditions.

> A model of preservation of the quantity given with w.
» Common examples (for taking vector quantity u):

Euler's equations, Navier-Stokes equations, shallow water
equations
> f: flux of wu.
» can depend on Vu.

» A number of numerical methods for the solution; they are
non-trivial:

» If we use a linear method for linear equations, then its
convergence order w.r.t. time is at most 1. [S.K. Godunov '54]

Izsak Ferenc K Institute ot Math¢ Neural networks and numerical solution of PDE’s



Sketch of a conventional numerical method

» Discretize first w.r.t. x.

» Take uniform intervals /; of length h.

» Introduce: uj~ total amount of u on ;.

» A system of ODE's for these:

. _ 1 ~ o
> g = —p(f —f1)
> €+%: approx of the flux on the right-end of /;.

» In concrete terms, any of them is OK (Taylor):

> £y = b @A) - 7o) + 11A(w)
Cil = % (—f(uj—1) +5f(y;) + 2f (uj41))
1 =5 (2f(u) +5F(4j41) — 1f (uj12))
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Sketch of the WENO method (continued)

» Choose a weighted sum of these:

A

f'

1 2 3
1 =wy-fr g twr-fe w3
it3 Vg T TR

with the weights

ka: Wlthak:(Eer#)zy k:17273

o

aztaz+as’

» (di,d>,d3) =(0.1,0.6,0.3), Bk: ensure low oscillations.
» Seems to be rather heuristic but it works.

» Try to find them instead with a NN.

» In [1] just carefully: instead of Sy Bi(1 + dj«)
» optimizing k.

[1]: T. Kossaczka, M. Ehrhardt, M. Giinther: Enhanced fifth order
WENO Shock-Capturing Schemes with Deep Learning. Res. Appl.
Math., 12, 2021.
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The NN for optimized WENO approximations

» The authors used the following NN for a Burgers equation:

fairr1 '—‘ Convld Convld Convld
in_channels = 2 in_channels =5 in_channels = 3
out_channels = 5 ELU out_channels = 3 out_channels = 1
f kernel_size =5 kernel_size =5 kernel_size =1
diff2 adding =2 adding =2 padding =0

Figure: Optimizing the coefficient § for the the inputs f(xj;1) — f(xj—1)
and f(xj11) = 2F() + f(xj-1).

» In the loss function, they compared some analytic solutions
with the rsult of the optimized WENQO approach using the

above 4.
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Another idea: NN-based discretization

» Example in case of the Laplacian.
» Well-known 5-point FD discretization on
» a uniform 2D h-grid
> gridpoints: {z; x} racspontokkal.
» Classic 5-point approximation: Au(z;x) ~
i (u(zim1k) + Uz k) + u(Z-1) + u(Zjkr1) — 4u(Zik))
» 2nd order in space (w.r.t. both space variables)

> leads to a linear system for solving some Laplacian problem.

» What happens in case of non-uniform grids??

Izsak Ferenc K Institute ot Math¢ Neural networks and numerical solution of PDE’s



NN-based FD approximation (continued)

» We are looking for coefficients {asj « }

> giving accurate approximation of Au(z; ):

a_1,0u(zj—1,k)+a1,0u(Zjt1,6)+a0,—1u(Zj k—1)+ao,—1u(Zj k+1)+a0,0u(Zj k)

Zj,k+1: 90,1

Zj 1k @10 Zj+1,ks 91,0

Zj k—1, 20,—1
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A method to compute such coefficients

Take a fixed geometry.

v

» Take, e.g., polynomials p of order 0,1,1,2,2,2,3,3,3,3.
» Find such coefficients

» that deliver the best approximation of p in the midpoint;

» this is called the optimization.

\4

We should solve over-determined systems for this

» Number of unknowns: 5.

» Number of “equations’: 10.

» Summarized: for all local geometry a separate LSQ solver (or
another optimization process).
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Apply NN instead: how and why?

» Try to learn this optimization step:

> local geometry — " coefficients {asjk}
» Perform the optimization for many geometries:

» we obtain a learning set.

» NN should perform faster compared to the optimization
» Possible benefits:

» can be vectorized,

» or compute parallel.

» Possible application: moving domains

» we have to perform space discretization in each time-step.
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Finite elements: a possible alternative

» It can deal with an arbitrary triangular/tetrahedral grid.
> At the same time:

» On a simple triangular grid that can be only of first order.
» Needs an involved data structure.

» Can hardly be vectorized, or parallel processed.
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The NN in concrete terms

» We encode the local geometry into RO.

» to compute with less and structured variables.
> Also, we take Y asjx =0
» ensuring A(const.) = 0.

» Input of the NN:

» deviation from the code of the standard geometry.

» Output of the NN:

» the four coefficients {a1,0.a0.1,3-1,0. 90,—1}-
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The structure of the NN

‘ Input layer, ’
dim. = 8

dense | activation: Selu

Layer 1, dim. = 4

dense | activation: Selu

Layer 2, dim. = 12

dense | activation: none

Output layer,
dim. =4
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A domain for numerical simulation

» Geometry: only position of the points and their neighbors
should be registered.

(XXX XY
124 ® H-EX
L ]
e
101 o .
01 o
. :
L] L3
s ® H
. .
] °
®
061 ® °
L4 .
L] [ ]
L]
0al ® °
XXX Y] P
ss0cccccee e
0o | ®eeessseee :
* L]
L] (A A X R R RN RN NNY Y]
001 o000 OOOOOOOOOOROOORONOROOIOROOROTRTS

T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 12 14 16

Figure: Pointwise discretization of a wave-shaped realistic domain.
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Using the NN-based discretization

» Application to solve a Laplacian problem:

» Apply pointwise the NN.

» Get the discretization matrix of the Laplacian.
» This can be vectorized: np.apply_along_axis
» Solve the corresponding linear system.
» Result:

» =~ 4-times smaller computational error compared to the
computation with the coefficients 1,1,1,1, —4.

e Published article, poster on this issue.
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continuation of this work, present studies

» Increase the accuracy of the approximation

» try to develop an NN-based 8-point stencil:
zj.kﬁ»: 40,1

e
[ ] Zj+1,k+15 91,1
Zj—1,k+159-1,1

Zj.k; Q0.0
®

L] e
Zj_1.,k; 21,0 Zj+1.ks 910

°
) o Zj k-1, 0,1 . ..
Zj 1,k—1, @-1,-1 Zjy1,k—1: 91,1

» But a bit more structure in the mesh:

» grid points below each other.
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Jelenlegi munka: részeredmények, problémak

» The optimization finds exactly the coefficients for the standard
geometry:

> 1.41.4,1,4,1,4,—20.
» A NN using 280 parameters learns quite well,

» no overfitting.

model loss

— train
101§ — test

o 100 200 300 400 500 600 700 800
epoch

Figure: Training and validation losses.
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Recent work: problems, further questions

» Problem: global approximation of the Laplacian is not
accurate.

» One should also consider stability issues.
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