
Neural networks and numerical solution of PDE’s

Izsák Ferenc

ELTE TTK Institute of Mathematics & AI Research Group

Farkas Miklós Seminar
Budapest, 7th March, 2024

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Outline

I Neural networks in general

I general application fields

I approximation properties

I main tools - benefits.

I Application to the numerical solution of PDE’s

I a conventional family of methods,

I several other approaches,

I results, main problems, questions.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks (NN) in general: a figure

x0

x1

x2

x3

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

Hidden
layer 2

h
(2)
1

h
(2)
2

h
(2)
3

Hidden
layer 3

ŷ1

ŷ2

Output
layer

Figure: A simple neural network with dense layers.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks (NN) in general: formulas

I In a half sentence: a graph structure with some parameters
(weights) + activation functions.

I Here: the so-called “feedforward” setting.

I Nodes are organized into “layers”.

I With two specific ones: input layer, output layer.

I We have some input and want to compute some output.

I Parameters define affine linear maps between consecutive
layers.

I Layer-sizes: s0, s1, . . . , sN .

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: the setup with formulas

I Value at layer#j : xj .

I Transformation from layer #j − 1 to layer #j :

xj−1 7→ ρj(Ajxj−1 + bj) = xj .

I Aj ∈ Rsj−1×sj ,bj ∈ Rsj ,

I ρj : R→ R given; applied componentwise.

I In the softwares (MATLAB or Python) this can be chosen
from a given family: ReLu, tanh, sigmoid, Id, . . .

I Responsible for nonlinearity.

I The NN can be characterized by {ρj ,Aj ,bj}j=1,2,...,N .

I {ρj}j=1,2,...,N and sizes are fixed,

I the entries of Aj and bj : parameters that are tuned/optimized.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: the setup - summary, remarks

I In this way, a function is associated to the NN.

I Full notation: NNA,b : Rs0 → RsN .

I Overall aim: find the parameters A,b such that NNA,b
approximates a given “function” F .

I Examples (discrete and continuous):

I F : {pictures} 7→ {cat, dog, mouse}
I F : {medical images} 7→ {symptom0, symptom1, symptom2}
I F(u(0, ·) : initial data of a PDE) = u(t, ·)

I In common words: the NN should “learn” the function F .

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: the setup - remarks

I First two examples:

I inputs are, indeed, matrices or rather 3D arrays

I output-set: {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
I many times, also Aj(x) = max

k
xk is applied.

I Here there is not even a definite function.

I This is true; therefore, the neural network (or its setup) is
called “the model”.

I This is a perfect tool, if there is no model for a phenomenon.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: basic properties - mathematical statements

I NN can “learn” any function F :

Functions of type NNA,b : Rs0 → RsN can approximate any
function F : Rs0 → RsN .

I Name of the corresponding family of statements: universal
approximation theorems.

I Why a “family of ...”?

I We can ask:

I How accurately can approximate a fixed type of neural network
our function F?

I How should we change the setup neural network to
approximate our function F?

I taking larger and larger layers

I taking more and more layers.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: universal approximation theorems

Theorem (Cybenko ’90)

For any non-polynomial ρ, ε > 0, s0, s2 ∈ N, K ⊂ Rs0 compact and
F ∈ C (K ,Rs2) there are s1 ∈ N and matrices A1,A2, vector b1
such that

sup
x∈K
‖A2 · ρ(A1x + b1)−F(x)‖ < ε.

I A NN with one (but wide enough) hidden layer with no final
activation can approximate any continuous function on a
compact set with a given accuracy.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: universal approximation theorems

I Similar statements hold if the size of the layers if fixed
(maximized) and we can increase the number of them.

• Interesting question: For a given ε how can we achieve this
with a minimal number of parameters?

I In general: no answer for this.

I It depends on the function to approximate.

• Important question: For a given F what kind of NN should be
used?

I The most important question.

I No general answer.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: making them work

• In practice, for a given structure, how to choose the best
parameters?

How to learn the function F?

I We should optimize the weights {Aj ,bj} to get the best
approximation.

I One can recognize it as a fitting problem.

I For this, we should know F(xk) for a number of inputs.

I {(xk ,F(xk))}k=1,2,...,K - “training set”

I A number of input - output pairs.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: learning procedure

I This is the optimization of parameters; in formulas:

LOSS
({
F(xk)−NNA,b(xk)

}
k=1,2,...,K

)
A,b−−−−−→ min

I Here we use a real-valued loss function

I Common example: LOSS(w1,w2, . . . ,wK ) =
1
K
·

K∑
k=1

‖wk‖2.

I Correlation type losses for discrete data.

I A family of possible choices in Python or Matlab.

I The engine of the learning: a highly efficient optimization
procedure.

I Analysis comes into the play.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Neural networks: what kind of optimization

I Mostly simple gradient-based algorithms

I Supported with automatic differentiation.

I Advance of simple setup of the NN.

I Adaptive choice of step lengths.

I Mostly: stochastic gradient algorithms.

I Epoch: consecutive gradient steps, while all data is used.

I Why just “gradient”.

I For so many parameters avoid computing of second derivatives.

I Think of a million of parameters.

I Again: a family of possible choices in Python or Matlab.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Move to PDE’s: The main conventional setup

I Name: physics informed neural networks (PINN’s).
I Origin: ≈ 2017, Karniadakis et. al, MIT

I A chief problem: there is no learning dataset.
I Therefore, learning is not the conventional one.
I In some cases, we can construct some learning data.

I The basic setup: we have a time-dependent problem
∂tu(t, x) = Lu(t, x) x ∈ Ω, t ∈ (0,T )

u(t, x) = ub(t, x) x ∈ ∂Ω0 ⊂ ∂Ω, t ∈ (0,T )

u(0, x) = u0(t, x) x ∈ Ω

with given functions ub, u0 and diff. operator L.
I We perform discretizations:

I Ωh - spatial discretization,
I t1, t2, . . . , tN - time discretization.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Example, geometric setup

I The solution u : (t, x) 7→ u(t, x) has to be approximated.

I NN-inputs: (tk , xk), outputs: NNA,b(tk , xk).

I Loss function: how much is the equation failed?

I Line 1, line 2 and line 3 in the equations:

I Loss1 = ‖(∂t − L)NNA,b(tk , xk)‖ for “interior” (tk , xk) inputs.

I Automated symbolic differentiation of NN’s.

I Loss2 = ‖NNA,b(tk , xk)− ub(tk , xk)‖ for “boundary” (tk , xk)
inputs.

I Loss3 = ‖NNA,b(0, xk)− u0(xk)‖ for inputs (0, xk).

I Loss = Loss1 + Loss2 + Loss3

I Or similar with squares or with some weights.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



PINN’s: a computational example

I X. Jin, S. Cai, H. Li, G. Em Karniadakis, NSFnets
(Navier-Stokes flow nets): Physics-informed neural networks
for the incompressible Navier–Stokes equations, JCP, 2021.

I Applied to the Navier–Stokes equations

I conventional and vorticity formulation

I 10 hidden dense layers with 300 neurons

I Altogether ≈ 820 000 parameters.

I ≈ 8000 epochs

I Initial learning rate ≈ 10−3, finally ≈ 10−3

I 100,000 points inside the domain, 26,048 points on the
boundary, 147,968 points at the initial time step.

I 17 time steps

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



PINN’s: a computational example - discussion

I Simulation time:

I Given just for a smaller problem: 12 times smaller w.r.t. each
parameter.

I This took 20-30 min using 6000 GPUs.

I A number of similar works

I and a number of corresponding publications.

I This is really brute force

I with using minimal knowledge on these problems.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



NN’s and PDE’s: any other ideas?

I Main idea: use NN’s to enhance the performance

I of some compound of a conventional numerical method.

I Rather useful for real life problems.

I I do not have a full overview of them:

I many publications on conferences,

I many publications on Arxive.

I Two of them will be presented.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



An NN-based solver for conservation laws

I The equation to solve:

∂tu(t, x) + ∂x(f (u(t, x)) = 0, (t, x) ∈ (0,T )× Ω

I For well-posedness: appropriate initial and boundary
conditions.

I A model of preservation of the quantity given with u.

I Common examples (for taking vector quantity u):

Euler’s equations, Navier–Stokes equations, shallow water
equations

I f : flux of u.
I can depend on ∇u.

I A number of numerical methods for the solution; they are
non-trivial:
I If we use a linear method for linear equations, then its

convergence order w.r.t. time is at most 1. [S.K. Godunov ’54]
Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Sketch of a conventional numerical method

I Discretize first w.r.t. x .

I Take uniform intervals Ij of length h.

I Introduce: uj≈ total amount of u on Ij .

I A system of ODE’s for these:
I u̇j = − 1

h (f̂j+ 1
2
− f̂j− 1

2
)

I f̂j+ 1
2
: approx of the flux on the right-end of Ij .

I In concrete terms, any of them is OK (Taylor):

I f 1
j+ 1

2
= 1

6 · (2f (uj−2)− 7f (uj−1) + 11f (uj))

f 2
j+ 1

2
= 1

6 · (−f (uj−1) + 5f (uj) + 2f (uj+1))

f 3
j+ 1

2
= 1

6 · (2f (uj) + 5f (uj+1)− 1f (uj+2))

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Sketch of the WENO method (continued)

I Choose a weighted sum of these:

f̂j+ 1
2

= ω1 · f 1
j+ 1

2
+ ω2 · f 2

j+ 1
2

+ ω3 · f 3
j+ 1

2
.

with the weights
I ωk = αk

α1+α2+α3
, with αk = dk

(ε+βk )2
, k = 1, 2, 3

I (d1, d2, d3) = (0.1, 0.6, 0.3), βk : ensure low oscillations.

I Seems to be rather heuristic but it works.

I Try to find them instead with a NN.

I In [1] just carefully: instead of βk : βk(1 + δj ,k)

I optimizing δk .

[1]: T. Kossaczká, M. Ehrhardt, M. Günther: Enhanced fifth order
WENO Shock-Capturing Schemes with Deep Learning. Res. Appl.
Math., 12, 2021.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



The NN for optimized WENO approximations

I The authors used the following NN for a Burgers equation:

Figure: Optimizing the coefficient δ for the the inputs f (xj+1)− f (xj−1)
and f (xj+1)− 2f (xj) + f (xj−1).

I In the loss function, they compared some analytic solutions
with the rsult of the optimized WENO approach using the
above δ.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Another idea: NN-based discretization

I Example in case of the Laplacian.

I Well-known 5-point FD discretization on

I a uniform 2D h-grid

I gridpoints: {zj,k} rácspontokkal.

I Classic 5-point approximation: ∆u(zj,k) ≈

1
h2 · (u(zj−1,k) + u(zj+1,k) + u(zj ,k−1) + u(zj ,k+1)− 4u(zj ,k))

I 2nd order in space (w.r.t. both space variables)

I leads to a linear system for solving some Laplacian problem.

I What happens in case of non-uniform grids??

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



NN-based FD approximation (continued)

I We are looking for coefficients {as,j ,k}
I giving accurate approximation of ∆u(zj,k):

a−1,0u(zj−1,k)+a1,0u(zj+1,k)+a0,−1u(zj,k−1)+a0,−1u(zj,k+1)+a0,0u(zj,k)

zj−1,k ; a−1,0

zj ,k ; a0,0

zj+1,k ; a1,0

zj ,k−1; a0,−1

zj ,k+1; a0,1

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



A method to compute such coefficients

I Take a fixed geometry.

I Take, e.g., polynomials p of order 0, 1, 1, 2, 2, 2, 3, 3, 3, 3.

I Find such coefficients

I that deliver the best approximation of p in the midpoint;

I this is called the optimization.

I We should solve over-determined systems for this

I Number of unknowns: 5.

I Number of “equations”: 10.

I Summarized: for all local geometry a separate LSQ solver (or
another optimization process).

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Apply NN instead: how and why?

I Try to learn this optimization step:

I local geometry NN−−−−−→ coefficients {as,j,k}

I Perform the optimization for many geometries:

I we obtain a learning set.

I NN should perform faster compared to the optimization

I Possible benefits:

I can be vectorized,

I or compute parallel.

I Possible application: moving domains

I we have to perform space discretization in each time-step.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Finite elements: a possible alternative

I It can deal with an arbitrary triangular/tetrahedral grid.

I At the same time:

I On a simple triangular grid that can be only of first order.

I Needs an involved data structure.

I Can hardly be vectorized, or parallel processed.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



The NN in concrete terms

I We encode the local geometry into R6.

I to compute with less and structured variables.

I Also, we take
∑

as,j ,k = 0

I ensuring ∆(const.) = 0.

I Input of the NN:

I deviation from the code of the standard geometry.

I Output of the NN:

I the four coefficients {a1,0, a0,1, a−1,0, a0,−1}.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



The structure of the NN

Input layer,
dim. = 8

Layer 1, dim. = 4

Layer 2, dim. = 12

Output layer,
dim. = 4

dense activation: SeLu

dense activation: SeLu

dense activation: none

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



A domain for numerical simulation

I Geometry: only position of the points and their neighbors
should be registered.

Figure: Pointwise discretization of a wave-shaped realistic domain.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Using the NN-based discretization

I Application to solve a Laplacian problem:

I Apply pointwise the NN.

I Get the discretization matrix of the Laplacian.

I This can be vectorized: np.apply_along_axis

I Solve the corresponding linear system.

I Result:

I ≈ 4-times smaller computational error compared to the
computation with the coefficients 1, 1, 1, 1,−4.

• Published article, poster on this issue.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



continuation of this work, present studies

I Increase the accuracy of the approximation

I try to develop an NN-based 8-point stencil:

zj−1,k ; a−1,0

zj−1,k+1; a−1,1

zj−1,k−1; a−1,−1

zj ,k ; a0,0

zj+1,k ; a1,0

zj+1,k+1; a1,1

zj+1,k−1; a1,−1
zj ,k−1; a0,−1

zj ,k+1; a0,1

I But a bit more structure in the mesh:

I grid points below each other.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Jelenlegi munka: részeredmények, problémák

I The optimization finds exactly the coefficients for the standard
geometry:
I 1, 4, 1, 4, 1, 4, 1, 4,−20.
I A NN using 280 parameters learns quite well,
I no overfitting.

Figure: Training and validation losses.
Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Recent work: problems, further questions

I Problem: global approximation of the Laplacian is not
accurate.

I One should also consider stability issues.

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s



Acknowledgements (in Hungarian)

I A fentiekkel kapcsolatos újabb kutatások a Nemzeti Kutatási,
Fejlesztési és Innovációs Hivatal támogatásával a Tématerületi
Kiválósági Program 2021 - Nemzeti Kiválósági Alprogram
„Mesterséges intelligencia, nagy hálózatok, adatbiztonság:
matematikai megalapozás és alkalmazások” elnevezésű
pályázatának keretében valósultak meg.

Thank you for your attention!

Izsák Ferenc ELTE TTK Institute of Mathematics & AI Research GroupNeural networks and numerical solution of PDE’s


