Selected Newton's methods in computational elasto-plasticity

Stanislav Sysala

Institute of Geonics of the Czech Academy of Sciences, Ostrava, Czech Republic

stanislav.sysala@ugn.cas.cz

joint work with O. Axelsson, J. Karátson, M. Béreš, J. Haslinger et al.

The Czech Academy of Sciences

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023

Outline and aims of the talk

O Abstract system of non-linear equations inspired by elasto-plasticity.

- to explain selected features of elasto-plastic problems within algebraic level
- specify assumptions for different type of elasto-plastic models

Semismooth Newton method, its modifications and convergence analysis.

- survey of selected Newton-like methods used in elasto-plasticity
- illustration of convergence results on numerical examples
- Oetermination of the limit load in perfect plasticity.
 - important framework for solvability analysis and stability assessment of structures
 - advanced continuation method and related Newton-like solver
- Brief notes to slope stability assessment.
 - overview of finite element methods on stability analysis
 - illustrative examples from geotechnical practice

1. Abstract system of non-linear equations inspired by elasto-plasticity

Selected Newton methods in plasticity

Budapest 12.10.2023

Elasto-plastic system of equations

Elasto-plastic problem in terms of displacement after time and space discretization:

find
$$u_h^* \in V_h$$
: $\int_{\Omega} T(e(u_h^*)) : e(v_h) dx = b(v_h) \quad \forall v_h \in V_h,$
 $V_h \subset \{ v \in H^1(\Omega; \mathbb{R}^3) \mid v = 0 \text{ on } \Gamma_D \}, \quad e(v) = \frac{1}{2} \left(\nabla v + (\nabla v)^T \right).$

Investigated example of the stress-strain operator T – the von Mises model:

$$T(e) = \frac{1}{3}(3\lambda + 2\mu)(tr e)I + (1 - \alpha)2\mu e^{D} + \alpha j(2\mu|e^{D}|)\frac{e^{D}}{|e^{D}|}, \qquad j(z) = \begin{cases} z, & z \leq \gamma \\ \gamma, & z \geq \gamma \end{cases}$$

j - continuous, piecewise linear scalar function, switch between elasticity and plasticity $\alpha \in (0, 1)$ - hardening parameter, $\alpha = 0$ - linear elasticity, $\alpha = 1$ - elastic-perfectly plasticity

Nonlinear system of equations in \mathbb{R}^n :

find
$$u^* \in \mathbb{R}^n$$
: $F(u^*) = b$, $F: \mathbb{R}^n \to \mathbb{R}^n$, $b \in \mathbb{R}^n$

$$F(v)^T w := \int_{\Omega} T(e(v_h)) : e(w_h) dx \quad \forall v_h, w_h \in V_h,$$

Properties of F depend on properties of T.

Stanislav Sysala

Selected Newton methods in plasticity

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basic properties of elasto-plastic functions

(\mathcal{A}_1) F is Lipschitz continuous in \mathbb{R}^n .

- F is almost everywhere differentiable in \mathbb{R}^n , there exists a generalized derivative of F.
- There exists $F^o: \mathbb{R}^n \to \mathbb{R}^{n \times n}$ such that $F^o(u) = F'(u)$ for almost all $u \in \mathbb{R}^n$.
- $F^{o}(u) \in \partial F(u)$ subdifferential in Clarke's sense

(\mathcal{A}_2) F is strongly semismooth in \mathbb{R}^n :

$$\begin{aligned} \forall u \in \mathbb{R}^n, \ \exists L_u, \epsilon_u > 0: \quad \|F(v) - F(u) - F^{\circ}(v)(v-u)\| \leq L_u \|u-v\|^2 \quad \forall v \in B(u; \epsilon_u), \\ F(v) - F(u) &= \int_0^1 F^{\circ}(u + \theta(v-u))(v-u) \, d\theta \qquad \forall u, v \in \mathbb{R}^n. \end{aligned}$$

- Continuous piecewise linear functions are strongly semismooth with $L_u = 0$.
- Smooth functions with locally Lipschitz derivatives are strongly semismooth.
- Finite sums, products or compositions of semismooth functions are again semismooth.
- Implicit function theorem for semismooth functions (E-P operators may be implicit!).

Additional properties for associated plasticity

 (\mathcal{A}_3) F has a convex potential in \mathbb{R}^n with linear growth at infinity, i.e.,

- $\exists \mathcal{I} : \mathbb{R}^n \to \mathbb{R} \text{ (convex)} : \quad \mathcal{I}'(v) = F(v) \quad \forall v \in \mathbb{R}^n,$
- $\exists c_1, c_2 > 0$: $\mathcal{I}(v) \geq c_1 \|v\| c_2 \quad \forall v \in \mathbb{R}^n.$

Consequences:

- F is monotone, i.e. $(F(u) F(v), u v) \ge 0$ for any $u, v \in \mathbb{R}^n$.
- $F^o(v)$ is symmetric and positive semidefinite for any $v \in \mathbb{R}^n$.
- Equivalent minimization problem to $F(u^*) = b$:

$$\mathcal{J}(u^*) \leq \mathcal{J}(v) \ \forall v \in \mathbb{R}^n, \qquad \mathcal{J}(v) = \mathcal{I}(v) - b^\top v.$$

• Sufficient condition for the existence of u^* : $\|b\| < c_1$,

$$[\mathcal{J}(v) \geq (c_1 - \|b\|) \|v\| - c_2 o +\infty$$
 as $\|v\| o +\infty$ (coercivity)]

(A₃) is convenient for E-P models with bounded hardening or perfect plasticity.

Stronger assumptions are available for E-P models with unbounded hardening.

Additional property for plasticity with hardening

 (\mathcal{A}_4) (uniform positive definitness of F^o)

$$\exists \beta_1, \beta_2 > 0: \quad \beta_1 \|v\|^2 \le (F^o(u)v, v) \le \beta_2 \|v\|^2 \quad \forall u, v \in \mathbb{R}^n$$

Consequences:

- Inverses of F^o(u) are also uniformly positive definite.
- F is strongly monotone, i.e. $(F(u) F(v), u v) \ge \beta_1 ||u v||^2$ for any $u, v \in \mathbb{R}^n$.
- \mathcal{J} is strictly convex and coercive in \mathbb{R}^n .
- There exists a unique solution u^* satisfying $F(u^*) = b$

Remarks:

- (A_4) will be considered within convergence analysis in Section 2.
- (A_4) will not be considered within convergence analysis in Section 3.

2. Semismooth Newton method, its modifications and convergence analysis

Selected Newton methods in plasticity

Budapest 12.10.2023

Semismooth Newton method

Algorithm:

$$F^{o}(u^{k})(u^{k+1}-u^{k})=b-F(u^{k}), \ k=0,1,\ldots, \ u^{0}-$$
 given,

Local quadratic convergence under the assumptions $(A_1) - (A_4)$:

$$||u^* - u^{k+1}|| = O(||u^* - u^k||^2)$$

Sketch of the proof: if u^k is sufficiently close to u^* then

$$u^{*} - u^{k+1} = u^{*} - u^{k} - F^{o}(u^{k})^{-1} [b - F(u^{k})]$$

= $F^{o}(u^{k})^{-1} [F(u^{k}) - F(u^{*}) - F^{o}(u^{k})(u^{k} - u^{*})]$
 $||u^{*} - u^{k+1}|| \le ||F^{o}(u^{k})^{-1}|| ||F(u^{k}) - F(u^{*}) - F^{o}(u^{k})(u^{k} - u^{*})||$
 $\le \frac{(\mathcal{A}_{2}, \mathcal{A}_{4})}{\beta_{1}} \frac{1}{\mathcal{L}_{u^{*}}} ||u^{*} - u^{k}||^{2}.$

Remark: This result holds for more general assumptions than $(A_1) - (A_4)$, [Qi and Sun 1993]

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなる

ÚGN

Quasi-Newton method and its nonsmooth variant

Algorithm: [Faragó, Karátson 2002], [Karátson, Faragó 2003], [Borsos, Karátson 2022]

$$u^{k+1} := u^k + \frac{2}{M_k + m_k} B_k^{-1}(b - F(u^k))$$
 $k = 0, 1, ..., u^0 - \text{given},$

where $B_k \in \mathbb{R}_{sym}^{n imes n}$, $0 < m_{min} \leq m_k \leq M_k \leq M_{max}$ and

$$m_k(B_kv,v) \leq (F^o(u^k)v,v) \leq M_k(B_kv,v) \quad \forall u,v \in \mathbb{R}^n, \ \forall k \in \mathbb{N}.$$

Original convergence results for smooth operators:

Let $(A_1) - (A_4)$ hold and F has a Lipschitz continuous derivative F'. Then

$$\limsup \frac{\|F(u^{k+1})\|_*}{\|F(u^k)\|_*} \leq \limsup \frac{M_k - m_k}{M_k + m_k} < 1, \qquad \|v\|_* := (F'(u^*)^{-1}v, \, v)^{1/2} + \frac{1}{M_k + m_k} < 1.$$

Remarks:

- only linear convergence, but faster assembling of B_k than $F'(u^k)$
- Examples when the quasi-Newton method is faster than the Newton method: [Borsos, Karátson 2022], in nonlinear elasticity: [Karátson, S., Béreš 2024]
- Recommendation: combination of the quasi-Newton method with deflated CG method

Selected Newton methods in plasticity

Budapest 12.10.2023

Quasi-Newton method and its nonsmooth variant

Local linear convergence for non-smooth operators I: Let $(A_1) - (A_4)$ hold. Then

$$||u^* - u^{k+1}|| \le \frac{\beta_2}{\beta_1} \frac{M_k - m_k}{M_k + m_k} ||u^* - u^{k+1}|| + O(||u^* - u^{k+1}||^2).$$

$$\text{criterion:} \quad \frac{\beta_2}{\beta_1} \frac{M_k - m_k}{M_k + m_k} \leq q < 1 \quad \forall k \in \mathbb{R}^n, \qquad \text{however} \quad \frac{\beta_2}{\beta_1} > 1$$

Sketch of the proof: if u^k is sufficiently close to u^* then

$$u^{*} - u^{k+1} = \left(I - \frac{2}{M_{k} + m_{k}} B_{k}^{-1} F^{o}(u_{k})\right) (u^{*} - u^{k}) + \frac{2}{M_{k} + m_{k}} B_{k}^{-1} \left[F(u^{k}) - F(u^{*}) - F^{o}(u^{k})(u^{k} - u^{*})\right],$$
$$\|u^{*} - u^{k+1}\| \stackrel{(A_{2}, A_{4})}{\leq} \left\|I - \frac{2}{M_{k} + m_{k}} B_{k}^{-1} F^{o}(u_{k})\right\| \|u^{*} - u^{k}\| + O(\|u^{*} - u^{k}\|^{2}),$$

$$\left\|I - \frac{2}{M_k + m_k} B_k^{-1} F^{\circ}(u_k)\right\| \leq \left\|F^{\circ}(u_k)^{-1} - \frac{2}{M_k + m_k} B_k^{-1}\right\| \|F^{\circ}(u_k)\| \stackrel{(\mathcal{A}_4)}{\leq} \frac{\beta_2}{\beta_1} \frac{M_k - m_k}{M_k + m_k}.$$

Selected Newton methods in plasticity

ÚGN

Quasi-Newton method and its nonsmooth variant

Local linear convergence for non-smooth operators II: Let $(\mathcal{A}_1)-(\mathcal{A}_4)$ hold. Then

$$\|u^* - u^{k+1}\|_{u^*} \leq \sqrt{\frac{\gamma_{2,k}}{\gamma_{1,k}}} \frac{M_k - m_k}{M_k + m_k} \|u^* - u^{k+1}\|_{u^*} + O(\|u^* - u^{k+1}\|_{u^*}^2),$$

where

$$\begin{aligned} \|v\|_{u^*} &:= \sqrt{(F^o(u^*)v, v)}, \quad \|v\|_{u^k} = \sqrt{(F^o(u^k)v, v)} \quad \forall u, v \in \mathbb{R}^n, \\ \gamma_{1,k} \|v\|_{u^*}^2 &\leq \|v\|_{u^k}^2 \leq \gamma_{2,k} \|v\|_{u^*}^2 \quad \forall u, v \in \mathbb{R}^n, \ \forall k \in \mathbb{N}, \ \gamma_{1,k} \geq \gamma_{min} > 0 \end{aligned}$$

criterion:
$$\sqrt{\frac{\gamma_{2,k}}{\gamma_{1,k}}} \frac{M_k - m_k}{M_k + m_k} \le q < 1 \quad \forall k \in \mathbb{N},$$
 realistic assumption: $\sqrt{\frac{\gamma_{2,k}}{\gamma_{1,k}}} \approx 1$

Sketch of the proof: if u^k is sufficiently close to u^* then

$$\|u^{*} - u^{k+1}\|_{u^{k}} \overset{(\mathcal{A}_{2}, \mathcal{A}_{4})}{\leq} \|I - \frac{2}{M_{k} + m_{k}} B_{k}^{-1} F^{o}(u_{k})\|_{u^{k}} \|u^{*} - u^{k}\|_{u^{k}} + O(\|u^{*} - u^{k}\|_{u^{k}}^{2}),$$

$$\|I - \frac{2}{M_{k} + m_{k}} B_{k}^{-1} F^{o}(u_{k})\|_{u^{k}} \leq \frac{M_{k} - m_{k}}{M_{k} + m_{k}}, \quad \frac{\|u^{*} - u^{k+1}\|_{u^{k}}}{\|u^{*} - u^{k+1}\|_{u^{*}}} \geq \sqrt{\gamma_{1,k}}, \quad \frac{\|u^{*} - u^{k}\|_{u^{k}}}{\|u^{*} - u^{k}\|_{u^{*}}} \leq \sqrt{\gamma_{2,k}}$$
School Subscription Subscrip

ÚGN

Examples of the preconditioners B_k

Quasi-Newton 1: $B_k = K_{elast}$

- elastic stiffness matrix with fixed material parameters
- advantage: a constant matrix with a simple assembling
- disadvantage: poor approximation of $F^o(u^k)$

Quasi-Newton 2: $B_k = K_{elast,k}$

- elastic stiffness matrix with variable material parameters
- advantage: better approximation of $F^o(u^k)$
- disadvantage: assembling in each iteration

Smoothing Newton method: [Qi, Sun 2002] $B_k = F'_{\epsilon}(u^k)$

- F_{ϵ} is a smooth approximation of F
- advantage: M_k and m_k are close to one as $\epsilon
 ightarrow 0$
- disadvantage: assembling of $F'_{\epsilon}(u^k)$ is not faster than assembling of $F^o(u^k)$
- The operator F'_{ϵ} will be used later, within the continuation Newton method.

Numerical example in 3D – strip footing

- 2 investigated values of the hardening: $\alpha = 0.5$ and $\alpha = 0.9$ (stronger nonlinearity)
- 3 investigated meshes with 38 400, 307 200 and 1 036 800 elements
- comparison of the Newton, Quasi-Newton 1 and Quasi-Newton 2 methods
- similar results for smooth version of the E-P problem, see [Karátson, S., Béreš 2024]

Selected Newton methods in plasticity

Comparison of iteration numbers

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023 15 / 44

Comparison of computational times

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023

Comparison of physical arrays

 $\alpha = 0.5$ $\alpha = 0.9$

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023

18/44

Semismooth Newton method with damping

Algorithm: (used in elasto-plasticity in [S. 2012])

$$u^{k+1} := u^k + \alpha_k s^k \qquad k = 0, 1, \dots, \quad u^0 - \text{ given},$$

$$F^o(u^k)s^k = b - F(u^k)$$

$$\alpha_k = \arg\min_{\omega \in [0,1]} \mathcal{J}(u^k + \omega s^k), \qquad \mathcal{J}'(v) = F(v) - b^\top v$$

Remarks:

- Newton' methods without damping sometimes do not converge in elasto-plasticity
- damping enables to investigate global convergence
- optimization framework simplifies convergence analysis
- alternative line-search based on the Armijo rule: choose α_k satisfying

$$\mathcal{J}(u^k + \alpha_k s^k) - \mathcal{J}(u^k) \leq -\varrho \alpha_k (F^o(u^k) s^k, s^k), \quad \varrho \in (0, 1)$$

• similar convergence analysis for the Armijo line search

Global convergence of the damped method

Algorithm: $u^{k+1} := u^k + \alpha_k s^k$, $F^o(u^k)s^k = b - F(u^k)$, $\alpha_k = \arg \min_{\beta \in [0,1]} \mathcal{J}(u^k + \beta s^k)$ Key estimates derived under the assumptions (\mathcal{A}_1) , (\mathcal{A}_3) and (\mathcal{A}_4) :

$$\begin{split} (\mathcal{J}'(u^k), s^k) &\leq -\beta_1 \|s^k\|^2, \\ \alpha_k &\geq \frac{\beta_1}{\beta_2} > 0, \quad \text{if } s^k \neq 0, \\ \mathcal{J}(u^{k+1}) - \mathcal{J}(u^k) &\leq -\frac{1}{2}\beta_1 \alpha_k^2 \|s^k\|^2 \leq -\frac{\beta_1^3}{2\beta_2^2} \|s^k\|^2, \\ &\sum_{k=0}^{+\infty} \|s^k\|^2 \leq \frac{2\beta_2^2 (\mathcal{J}(u^0) - \mathcal{J}(u^*))}{\beta_1^3} \implies s^k \to 0, \\ &\sum_{k=0}^{+\infty} \|u^* - u^k\|^2 \leq \frac{2\beta_2^4 (\mathcal{J}(u^0) - \mathcal{J}(u^*))}{\beta_1^5} \implies u^k \to u^*. \end{split}$$

Remarks:

- The global convergence result can be extended to infinite dimensional Hilbert spaces.
- Semismoothness of F is not necessary for the global convergence.

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ◆ ●

Superlinear convergence of the damped method

Algorithm: $u^{k+1} := u^k + \alpha_k s^k$, $F^o(u^k)s^k = b - F(u^k)$, $\alpha_k = \arg \min_{\beta \in [0,1]} \mathcal{J}(u^k + \beta s^k)$ Key results under the assumptions $(\mathcal{A}_1) - (\mathcal{A}_4)$:

 $\lim_{k\to+\infty}\alpha_k=1$

$$\|u^* - u^{k+1}\| = (1 - \alpha_k)\|u^* - u^k\| + O(\|u^* - u^k\|^2) = o(\|u^* - u^k\|)$$

Remark:

- Semismoothness of F is crucial for local superlinear convergence of the damped method.
- Superlinear convergence of the damped Newton was illustrated on numerical examples.
- Numbers of iteration only slightly depend on mesh density, see [S. 2012].

Continuation Newton method [Axelsson, S. 2015]

Severely nonlinear system of equations with a nonsmooth function:

find $u^* \in \mathbb{R}^n$: $F(u^*) = b$ $F: \mathbb{R}^n \to \mathbb{R}^n$, $b \in \mathbb{R}^n$

Load-based continuation method:

$$F(0) = 0$$
, $F(\hat{u}(t)) = tb$, $0 \le t \le 1$, $\hat{u}(1) = u^*$.

Smooth approximation of F:

$$\{F_{\epsilon}\}_{\epsilon \in (0,\epsilon_0)} - \text{ smooth}: \quad \lim_{\epsilon \to 0} F_{\epsilon}(v) = F(v), \quad \lim_{\epsilon \to 0} F'_{\epsilon}(v) = F^o(v) \ \forall v \in \mathbb{R}^n$$

One-step smoothing Newton method: $0 = t_0 < t_1 < \ldots < t_N = 1$, $\tau_k := t_{k+1} - t_k$

$$F'_{\epsilon}(u^k)(u^{k+1}-u^k) = t_{k+1}b - F(u^k), \ k = 0, 1, \dots N-1, \ u^0 = 0,$$

Aim: find assumptions guaranteeing that u^k is close to $\hat{u}(t_k)$ for any k = 1, ..., N

Assumptions and their consequences

$$(\mathcal{A}_5) \quad \exists M > 0: \quad \|F_{\epsilon}(u) - F(u) - (F_{\epsilon}(v) - F(v))\| \leq M\epsilon \|u - v\| \quad \forall u, v \in \mathbb{R}^n, \ \forall \epsilon \in (0, \epsilon_0).$$

$$(\mathcal{A}_6) \quad \exists L > 0: \quad \|F_{\epsilon}(v) - F_{\epsilon}(u) - F'_{\epsilon}(v)(v-u)\| \leq \frac{L}{2\epsilon} \|u-v\|^2 \quad \forall u, v \in \mathbb{R}^n, \ \forall \epsilon \in (0, \epsilon_0).$$

$$(\mathcal{A}_7) \quad \exists q > 0: \quad \begin{cases} [F(u) - F(v)]^T (u - v) \ge q \|u - v\|^2 & \forall u, v \in \mathbb{R}^n, \\ [F_\epsilon(u) - F_\epsilon(v)]^T (u - v) \ge q \|u - v\|^2 & \forall u, v \in \mathbb{R}^n, \, \forall \epsilon \in (0, \epsilon_0). \end{cases}$$

- Hence: $\|\hat{u}(t_{k+1}) \hat{u}(t_k)\| \le \frac{1}{q} \|F(\hat{u}(t_{k+1})) F(\hat{u}(t_k))\| = \frac{\|b\|}{q} \tau_k \quad \forall k = 0, 1, \dots N-1$
- Hence: $\|[F'_{\epsilon}(u^k)]^{-1}\| \leq \frac{1}{q} \quad \forall k = 1, 2 \dots N$
- If (\mathcal{A}_4) hold then $q = \beta_1$.

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ◆ ●

Convergence of the algorithm

Let the assumptions (A_5) , (A_6) , (A_7) hold with the constants M, L and q. Let

$$\epsilon \leq rac{q}{4M}, \quad au_k \leq rac{q^2\epsilon}{4L\|b\|} \quad \forall k = 0, 1, \dots, N-1.$$

Then

$$\|\hat{u}(t_k) - u^k\| \le \frac{\|b\|}{q} \max_{0 \le l \le k-1} \tau_l, \quad k = 0, 1 \dots.$$

Sketch of the proof:

The result can be shown by mathematical induction

$$\hat{u}(t_{k+1}) - u^{k+1} = -(F'_{\epsilon}(u^{k}))^{-1} \left[F(\hat{u}(t_{k+1})) - F_{\epsilon}(\hat{u}(t_{k+1})) - (F(u^{k}) - F_{\epsilon}(u^{k})) \right] \\ + (F'_{\epsilon}(u^{k}))^{-1} \left[F_{\epsilon}(u^{k}) - F_{\epsilon}(\hat{u}(t_{k+1})) - F'_{\epsilon}(u^{k})(u^{k} - \hat{u}(t_{k+1})) \right].$$

Hence:

$$\begin{aligned} \|\hat{u}(t_{k+1}) - u^{k+1}\| &\leq \frac{1}{q} \left[M\epsilon \|\hat{u}(t_{k+1}) - u^k\| + \frac{L}{2\epsilon} \|\hat{u}(t_{k+1}) - u^k\|^2 \right], \\ \|\hat{u}(t_{k+1}) - u^{k+1}\| &\leq \frac{\|b\|}{2q} \tau_k + \left(\frac{1}{4} + \frac{L}{q\epsilon} \|\hat{u}(t_k) - u^k\|\right) \|\hat{u}(t_k) - u^k\|. \end{aligned}$$

Selected Newton methods in plasticity

Budapest 12.10.2023

Regularization of the stress-strain operator

Algebraic notation (recalling):

$$\begin{split} F(v)^T w &:= \int_{\Omega} T(e(v_h)) : e(w_h) \, \mathrm{d}x \quad \forall v_h, w_h \in V_h, \\ F_{\epsilon}(v)^T w &:= \int_{\Omega} T_{\epsilon}(e(v_h)) : e(w_h) \, \mathrm{d}x \quad \forall v_h, w_h \in V_h. \end{split}$$

Stress-strain operator and its smooth approximation:

$$T(e) = \frac{1}{3}(3\lambda + 2\mu)(tr e)I + (1 - \alpha)2\mu e^{D} + \alpha j(2\mu|e^{D}|)\frac{e^{D}}{|e^{D}|},$$

$$T_{\epsilon}(e) = \frac{1}{3}(3\lambda + 2\mu)(tr e)I + (1 - \alpha)2\mu e^{D} + \alpha j_{\epsilon}(2\mu|e^{D}|)\frac{e^{D}}{|e^{D}|},$$

 j, j_{ϵ} - nonlinear scalar function and its smooth approximation

The function *j* and its smooth approximation j_{ϵ}

$$j(z) = \begin{cases} z, & z \leq \gamma \\ \gamma, & z \geq \gamma \end{cases}, \qquad j_{\epsilon}(z) := \begin{cases} z, & z \leq \gamma - \epsilon \\ \gamma - \frac{1}{4\epsilon}(z - \gamma - \epsilon)^2, & z \in [\gamma - \epsilon, \gamma + \epsilon] \\ \gamma, & z \geq \gamma + \epsilon \end{cases}$$

Relationships between j and j_{ϵ} implying the assumptions $(\mathcal{A}_5)-(\mathcal{A}_7)$:

$$\begin{aligned} |j(z) - j_{\epsilon}(z)| &\leq \quad \frac{\epsilon}{4} \quad \forall z \in \mathbb{R}, \ \forall \epsilon \in (0, \gamma), \\ |j(z_1) - j(z_2) - j_{\epsilon}(z_1) + j_{\epsilon}(z_2)| &\leq \quad \frac{\epsilon}{2} |z_1 - z_2| \quad \forall z_1, z_2 \in \mathbb{R}, \ \forall \epsilon > 0, \\ |j_{\epsilon}(z_2) - j_{\epsilon}(z_1) - j'_{\epsilon}(z_2)(z_2 - z_1)| &\leq \quad \frac{1}{4\epsilon} (z_1 - z_2)^2 \quad \forall z_1, z_2 \in \mathbb{R}, \ \forall \epsilon > 0 \end{aligned}$$

Stanislav Sysala

Selected Newton methods in plasticity

- 3 Budapest 12.10.2023 25/44

Assumptions $(A_5)-(A_7)$ for the E-P operators

$$\begin{split} (1-\alpha)\|v\|_{e}^{2} &\leq v^{T}K_{\epsilon}'(w)v \leq \|v\|_{e}^{2} \quad \forall v, w \in \mathbb{R}^{n}, \ \forall \epsilon \in (0,\epsilon_{0}), \\ v^{T}(F(w+v)-F(w)) \geq (1-\alpha)\|v\|_{e}^{2} \quad \forall v, w \in \mathbb{R}^{n}, \\ \|F(v)-F(w)-K_{\epsilon}(v)+K_{\epsilon}(w)\|_{*} &\leq M\epsilon\|v-w\|_{e} \quad \forall v, w \in \mathbb{R}^{n}, \ \forall \epsilon \in (0,\epsilon_{0}), \\ \|K_{\epsilon}(v)-K_{\epsilon}(u)-K_{\epsilon}'(v)(v-u)\|_{*} &\leq \frac{L}{2\epsilon}\|v-w\|_{e,L^{4}}^{2} \quad \forall u, w \in S, \ \forall \epsilon \in (0,\epsilon_{0}), \end{split}$$

where

$$\|v\|_e, \|v\|_{e,L^4} - \text{energy norms}, \quad \|v\|_* := \sup_{w \in \mathbb{R}^n, \|w\|_e = 1} |v^T w| \quad \forall v \in \mathbb{R}^n.$$

Remarks:

- The estimates are dependent on the hardening parameter α .
- The estimates are independent of the discretization parameter.
- The convergence result could be extended to the functional setting, unlike $\epsilon \rightarrow 0$.

Numerical example

ÚGN

Numerical results - comparison of solution paths

$$F(\hat{u}(t_k)) = t_k b, \quad u^k = u^{k-1} + (F'_{\epsilon}(u^{k-1}))^{-1}[t_k b - F(u^{k-1})]$$

Comparison of exact solution path $\{\hat{u}(t)\}_{t\in[0,1]}$ with its approximation $\{u^k\}_{k=0}^N$:

- the quantity $b^{\top} \hat{u}(t)$ is used for the visualization, where b is r.h.s
- the curves almost coincide with the exception of $t \in (0.45, 0.55)$
- linear elastic branch for $t \le 0.45$, hardening branch of the curve for $t \in (0.55, 1)$

ÚGN

Numerical results – convergence of the algorithm

Dependence of $\|\hat{u}(t_k) - u^k\|_e$ on $\tau = t_k - t_{k-1} = const.$:

- error measure is minimal for $t \in [0, 0.45]$ and $t \in [0.55, 1]$
- error measure tends to zero as au
 ightarrow 0

Selected Newton methods in plasticity

3. Determination of the limit load in perfect plasticity by Newton-like methods

Selected Newton methods in plasticity

Budapest 12.10.2023

23 30/44

Elastic-perfectly plastic problem and limit load

About the elastic-perfectly plastic problem:

- $T(e) = \frac{1}{3}(3\lambda + 2\mu)(tr e)I + (1 \alpha)2\mu e^{D} + \alpha j(2\mu|e^{D}|)\frac{e^{D}}{|e^{D}|}, \quad \alpha = 1.$
- Assumptions $(A_1) (A_3)$ hold (F is semismooth and has a potential with linear growth).
- Assumption (A₄) does not hold (F is not strongly monotone).
- Problem $F(u^*) = b$ has the solution u^* only for sufficiently small b.

Problem parametrization and the limit load:

- $F(\hat{u}(t)) = tb$, $t \ge 0$, t is a scalar load factor
- t_{lim} limit load factor = supremum of t for which $\hat{u}(t)$ exists.
- t_{lim} important for safety assessment of structures.
- Solution exists for any $t \in [0, t_{lim})$, but is unbounded in vicinity of t_{lim} .
- Continuation over t is not too numerically stable.

Advanced continuation technique for finding t_{lim}

Energy-based control the loading path:

- Idea: use the dependence between t and $b^{ op} \hat{u}(t)$ and its inverse
- [S., Haslinger, Hlaváček, Čermák 2015], [S., Haslinger, Reddy, Repin 2021]

Selected Newton methods in plasticity

Rudanost 1210

Budapest 12.10.2023 32 / 44

ÚGN

Advanced continuation method and limit analysis

Nonlinear system with additional equation:

find $\bar{u}(\omega) \in \mathbb{R}^n$, $t(\omega) \ge 0$: $F(\bar{u}(\omega)) = t(\omega)b$, $b^T \bar{u}(\omega) = \omega$.

- ω is a given parameter, t is additional unknown
- $\bullet \ \ \bar{u}(\omega) = \hat{u}(t(\omega)), \quad \omega \to +\infty \quad \Rightarrow \quad t(\omega) \to t_{\textit{lim}}, \ \|\bar{u}(\omega)\| \to \infty, \ \|\bar{u}(\omega)/\omega\| \to c < \infty$

Transformed problem and its optimization form: $v(\omega) = ar{u}(\omega)/\omega$

find
$$v(\omega) \in \mathbb{R}^n$$
, $t(\omega) \ge 0$: $F(\omega v(\omega)) = t(\omega)b$, $b^T v(\omega) = 1$.

$$\mathcal{I}_{\omega}(\mathbf{v}(\omega)) = \min_{\substack{\mathbf{v}\in\mathbb{R}^n\\b^{\top}\mathbf{v}=\mathbf{1}}} \mathcal{I}_{\omega}(\mathbf{v}), \qquad \mathcal{I}_{\omega}(\mathbf{v}) = \frac{1}{\omega}\mathcal{I}(\omega\mathbf{v}), \ \ \mathcal{I}'(\mathbf{v}) = F(\mathbf{v})$$

Limit analysis problem: $\omega \to +\infty$

$$t_{lim} = \inf_{\substack{oldsymbol{v} \in \mathbb{R}^n \ b^ op oldsymbol{v} = 1}} \mathcal{I}_\infty(oldsymbol{v}), \qquad \mathcal{I}_\infty = \lim_{\omega o +\infty} \mathcal{I}_\omega$$

• \mathcal{I}_{∞} is convex, 1-positively homogeneous, not finite-valued everywhere

• On a functional level, problem is defined on BD spaces, hidden constraint: $\operatorname{div} v = 0$

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023 33 / 44

Continuation strategy for determining t_{lim}

Generate (adaptively) a sequence 0 < ω₁ < ω₂ < ... < ω_N
 For any ω belonging to the sequence, find v(ω) ∈ ℝⁿ, t(ω) ≥ 0:

$$F(\omega v(\omega)) = t(\omega)b, \quad b^T v(\omega) = 1.$$

 $1 t_{lim} \approx t(\omega_N)$

Remarks:

- The increment of ω is increased if the increment of t is too small.
- The solver for fixed ω is initiated using solutions from previous 2 steps.

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023 34 / 44

Newton-like method for constraint optimization

The problem for given $\omega > 0$:

$$F_{\omega}(v^*) = t^*b, \ b^T v^* = 1 \quad \text{or} \quad \mathcal{I}_{\omega}(v^*) = \min_{\substack{v \in \mathbb{R}^n \\ b^T v = 1}} \mathcal{I}_{\omega}(v), \qquad F_{\omega}(v) = F(\omega v)$$

Semismooth Newton method as sequential quadratic programming:

$$\begin{aligned} u^{k+1} &:= u^k + s^k \qquad k = 0, 1, \dots, \quad u^0 - \text{ given}, \ b^\top u^0 = 1 \\ s^k &= \arg \min_{\substack{s \in \mathbb{R}^n \\ b^\top s = 0}} \left[\frac{1}{2} (F^o_\omega(u^k)s, s) + (F_\omega(u^k), s) \right] \\ \text{or } s^k &= h^k + \delta_k g^k, \quad F^o_\omega(u^k) g^k = b, \ F^o_\omega(u^k) h^k = -F_\omega(u^k), \ \delta_k = -\frac{b^\top h^k}{b^\top g^k} \end{aligned}$$

Crucial estimates implying local quadratic convergence:

$$\left(F_{\omega}^{o}(u^{k})(u^{k+1}-u^{*}), u^{k+1}-u^{*}\right) \leq \left(F_{\omega}(u^{k})-F_{\omega}(u^{*})-F_{\omega}^{o}(u^{k})(u^{k}-u^{*}), u^{*}-u^{k+1}\right)$$

• The algorithm can also be used for contact problems of E-P bodies.

We have also used damped and regularized versions of this algorithm.

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023 35/44

Solution corresponding to limit load factor t_{lim}

- solution for t_{lim} represents plastic collapse
- failure zone zone with discontinuity
- P1 elements lead to locking phenomena [Repin, S., Haslinger 2018]

Selected Newton methods in plasticity

Budapest 12.10.2023

Mesh adaptive solution concept

- Apply the continuation over ω only on the coarsest mesh.
- Fix sufficiently large ω and use it for all finer meshed.
- Refine elements where higher strains appear.
- interpolate solution from the coarser mesh and use it for the initialization on a finer mesh.
- Use damped semismooth Newton method for finer meshes and the fixed ω_{\cdot}

Selected Newton methods in plasticity

Budapest 12.10.2023

4. Brief notes to slope stability assessment.

Selected Newton methods in plasticity

Budapest 12.10.2023

। 2023 38/44

Limit vs. shear strength reduction analysis

Limit analysis:

- Factor of safety represents the limit load factor.
- Robust method supported by mathematical theory.
- Not so conventional in slope stability.

Shear strength reduction method:

- Conventional method in slope stability, implemented in many commercial codes.
- Strength parameters are reduced by a scalar factor up to the critical state. The safety factor represents the critical value.
- Iterative limit load methods can be applied [Tschuchnigg, Schweiger, Sloan 2015]
- Relationship between these two methods [S., Hrubešová, Michalec, Tschuchnigg 2021]

Basic elasto-plastic models used in geotechnics:

- Mohr-Coulomb or Drucker-Pragers yield criteria.
- They distinguish different behavior in tension and compression.
- Limit analysis for geotechnical models leads to conic optimization.

Application I – slope stability

- case study of a real slope in locality Doubrava (north-east part of Czechia)
- unstable slope with observed landslides, and various soil layers
- ullet numerical results confirmed that FoSpprox 1, mesh adaptivity was used
- [S., Hrubešová, Michalec, Tschuchnigg 2021]

Application II – river embankment

- case studies of a real river embankment in Lužec (near Prague)
- influence of pore pressure unconfined seepage problem, phreatic surface
- mesh adaptive solution for porous flow and mechanical problems
- [S., Tschuchnigg, Hrubešová, Michalec 2023]

Selected Newton methods in plasticity

Budapest 12.10.2023

Application III – embankment dam

- benchmark problem with high embankment dam (more than 100 meters)
- sizes of the computational domain: 1200 x 500 meters
- one-sided coupling of porous flow and mechanical models
- [S., Tschuchnigg, Hrubešová, Michalec 2023]

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023

Conclusion

Summary:

- Selected Newton-like methods used in computational plasticity.
- Semismooth variants of the methods.
- Convergence analysis and numerical examples.
- Limit load and stability assessment.

Other related topics:

- Verification of the semismoothness for various E-P operators: [S. 2014], [S., Cermak, Kruis et al. 2016], [S., Cermak, Ligursky 2017]
- Development of in house codes in Matlab: [S., Cermak, Ligursky 2017], [Cermak, S., Valdman 2019], [Karátson, S., Béreš 2024]
- Duality and a posteriori error analysis for limit loads: [Repin, S., Haslinger 2018], [Haslinger, Repin, S. 2019], [S., Haslinger, Reddy, Repin 2021]
- Contact of E-P bodies and strain-gradient plasticity: [S., Haslinger, Hlaváček, Cermak 2015], [Reddy, S. 2020], [Reddy, S. 2024]

References on semismooth Newton methods

Semismooth and smoothing Newton methods (in general):

- L. Qi, J. Sun, A nonsmooth version of Newton's method, Mathematical Programming 58 (1993) 353-367.
- L. Qi, D. Sun. Smoothing functions and smoothing Newton method for complementarity and variational inequality problems. Journal of Optimization Theory and Applications, 113(1), 121-147 (2002).
- M. Hintermüler, K. Ito, K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim. 13 (2003) 865-888.

Semismooth Newton method in elasto-plasticity:

- R. Blaheta, Numerical methods in elasto-plasticity, Documenta Geonica 1998, PERES Publishers, Prague, 1999.
- P. G. Gruber, J. Valdman: Solution of One-Time Step Problems in Elastoplasticity by a Slant Newton Method, SIAM J. Sci. Comput. 31 (2009), 1558–1580.
- S. Sysala: Application of a modified semismooth Newton method to some elasto-plastic problems. Math. Comp. Sim., 82 (2012), 2004–2021.

Thank you for your attention!

Stanislav Sysala

Selected Newton methods in plasticity

Budapest 12.10.2023

12.10.2023 44/44