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Outline and aims of the talk

1 Abstract system of non-linear equations inspired by elasto-plasticity.

- to explain selected features of elasto-plastic problems within algebraic level

- specify assumptions for di�erent type of elasto-plastic models

2 Semismooth Newton method, its modi�cations and convergence analysis.

- survey of selected Newton-like methods used in elasto-plasticity

- illustration of convergence results on numerical examples

3 Determination of the limit load in perfect plasticity.

- important framework for solvability analysis and stability assessment of structures

- advanced continuation method and related Newton-like solver

4 Brief notes to slope stability assessment.

- overview of �nite element methods on stability analysis

- illustrative examples from geotechnical practice
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1. Elasto-plastic system of non-linear equations

1. Abstract system of non-linear equations inspired by

elasto-plasticity
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1. Elasto-plastic system of non-linear equations

Elasto-plastic system of equations

Elasto-plastic problem in terms of displacement after time and space discretization:

�nd u∗h ∈ Vh :

∫
Ω
T (e(u∗h )) : e(vh)dx = b(vh) ∀vh ∈ Vh,

Vh ⊂
{
v ∈ H1(Ω;R3) | v = 0 on ΓD

}
, e(v) =

1
2

(
∇v + (∇v)T

)
.

Investigated example of the stress-strain operator T � the von Mises model:

T (e) =
1
3
(3λ+ 2µ)(tr e)I + (1− α)2µeD + αj(2µ|eD |)

eD

|eD |
, j(z) =

{
z, z ≤ γ
γ, z ≥ γ

j � continuous, piecewise linear scalar function, switch between elasticity and plasticity

α ∈ (0, 1) � hardening parameter, α = 0 � linear elasticity, α = 1 � elastic-perfectly plasticity

Nonlinear system of equations in Rn:

�nd u∗ ∈ Rn : F (u∗) = b, F : Rn → Rn, b ∈ Rn

F (v)Tw :=

∫
Ω
T (e(vh)) : e(wh) dx ∀vh,wh ∈ Vh,

Properties of F depend on properties of T .
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1. Elasto-plastic system of non-linear equations

Basic properties of elasto-plastic functions

(A1) F is Lipschitz continuous in Rn.

F is almost everywhere di�erentiable in Rn, there exists a generalized derivative of F .

There exists F o : Rn → Rn×n such that F o(u) = F ′(u) for almost all u ∈ Rn.

F o(u) ∈ ∂F (u) � subdi�erential in Clarke's sense

(A2) F is strongly semismooth in Rn:

∀u ∈ Rn, ∃Lu , ϵu > 0 : ∥F (v)− F (u)− F o(v)(v − u)∥ ≤ Lu∥u − v∥2 ∀v ∈ B(u; ϵu),

F (v)− F (u) =

∫
1

0

F o
(
u + θ(v − u)

)
(v − u) dθ ∀u, v ∈ Rn.

Continuous piecewise linear functions are strongly semismooth with Lu = 0.

Smooth functions with locally Lipschitz derivatives are strongly semismooth.

Finite sums, products or compositions of semismooth functions are again semismooth.

Implicit function theorem for semismooth functions (E-P operators may be implicit!).
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1. Elasto-plastic system of non-linear equations

Additional properties for associated plasticity

(A3) F has a convex potential in Rn with linear growth at in�nity, i.e.,

∃ I : Rn → R (convex) : I′(v) = F (v) ∀v ∈ Rn,

∃ c1, c2 > 0 : I(v) ≥ c1∥v∥ − c2 ∀v ∈ Rn.

Consequences:

F is monotone, i.e. (F (u)− F (v), u − v) ≥ 0 for any u, v ∈ Rn.

F o(v) is symmetric and positive semide�nite for any v ∈ Rn.

Equivalent minimization problem to F (u∗) = b:

J (u∗) ≤ J (v) ∀v ∈ Rn, J (v) = I(v)− b⊤v .

Su�cient condition for the existence of u∗: ∥b∥ < c1,

[J (v) ≥ (c1 − ∥b∥)∥v∥ − c2 → +∞ as ∥v∥ → +∞ (coercivity)]

(A3) is convenient for E-P models with bounded hardening or perfect plasticity.

Stronger assumptions are available for E-P models with unbounded hardening.
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1. Elasto-plastic system of non-linear equations

Additional property for plasticity with hardening

(A4) (uniform positive de�nitness of F o)

∃β1, β2 > 0 : β1∥v∥2 ≤ (F o(u)v , v) ≤ β2∥v∥2 ∀u, v ∈ Rn

Consequences:

Inverses of F o(u) are also uniformly positive de�nite.

F is strongly monotone, i.e. (F (u)− F (v), u − v) ≥ β1∥u − v∥2 for any u, v ∈ Rn.

J is strictly convex and coercive in Rn.

There exists a unique solution u∗ satisfying F (u∗) = b

Remarks:

(A4) will be considered within convergence analysis in Section 2.

(A4) will not be considered within convergence analysis in Section 3.
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2. Semismooth Newton method and its modi�cations

2. Semismooth Newton method, its modi�cations and

convergence analysis
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2. Semismooth Newton method and its modi�cations

Semismooth Newton method

Algorithm:
F o(uk )(uk+1 − uk ) = b − F (uk ) , k = 0, 1, . . . , u0 − given,

Local quadratic convergence under the assumptions (A1)− (A4):

∥u∗ − uk+1∥ = O(∥u∗ − uk∥2)

Sketch of the proof: if uk is su�ciently close to u∗ then

u∗ − uk+1 = u∗ − uk − F o(uk )−1
[
b − F (uk )

]
= F o(uk )−1

[
F (uk )− F (u∗)− F o(uk )(uk − u∗)

]
∥u∗ − uk+1∥ ≤ ∥F o(uk )−1∥∥F (uk )− F (u∗)− F o(uk )(uk − u∗)∥

(A2,A4)

≤
1
β1

Lu∗∥u∗ − uk∥2.

Remark: This result holds for more general assumptions than (A1)− (A4), [Qi and Sun 1993]
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2. Semismooth Newton method and its modi�cations

Quasi-Newton method and its nonsmooth variant

Algorithm: [Faragó, Karátson 2002], [Karátson, Faragó 2003], [Borsos, Karátson 2022]

uk+1 := uk +
2

Mk +mk
B−1

k (b − F (uk )) k = 0, 1, . . . , u0 − given,

where Bk ∈ Rn×n
sym , 0 < mmin ≤ mk ≤ Mk ≤ Mmax and

mk (Bkv , v) ≤ (F o(uk )v , v) ≤ Mk (Bkv , v) ∀u, v ∈ Rn, ∀k ∈ N.

Original convergence results for smooth operators:

Let (A1)− (A4) hold and F has a Lipschitz continuous derivative F ′. Then

lim sup
∥F (uk+1)∥∗
∥F (uk )∥∗

≤ lim sup
Mk −mk

Mk +mk
< 1, ∥v∥∗ := (F ′(u∗)−1v , v)1/2.

Remarks:

only linear convergence, but faster assembling of Bk than F ′(uk )

Examples when the quasi-Newton method is faster than the Newton method:
[Borsos, Karátson 2022], in nonlinear elasticity: [Karátson, S., Bére² 2024]

Recommendation: combination of the quasi-Newton method with de�ated CG method
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2. Semismooth Newton method and its modi�cations

Quasi-Newton method and its nonsmooth variant

Local linear convergence for non-smooth operators I: Let (A1)− (A4) hold. Then

∥u∗ − uk+1∥ ≤
β2

β1

Mk −mk

Mk +mk
∥u∗ − uk+1∥+ O(∥u∗ − uk+1∥2).

criterion:
β2

β1

Mk −mk

Mk +mk
≤ q < 1 ∀k ∈ Rn, however

β2

β1
> 1

Sketch of the proof: if uk is su�ciently close to u∗ then

u∗ − uk+1 =

(
I −

2
Mk +mk

B−1

k F o(uk )

)
(u∗ − uk )+

+
2

Mk +mk
B−1

k

[
F (uk )− F (u∗)− F o(uk )(uk − u∗)

]
,

∥u∗ − uk+1∥
(A2,A4)

≤
∥∥∥∥I − 2

Mk +mk
B−1

k F o(uk )

∥∥∥∥ ∥u∗ − uk∥+ O(∥u∗ − uk∥2),

∥∥∥∥I − 2
Mk +mk

B−1

k F o(uk )

∥∥∥∥ ≤
∥∥∥∥F o(uk )

−1 −
2

Mk +mk
B−1

k

∥∥∥∥ ∥F o(uk )∥
(A4)

≤
β2

β1

Mk −mk

Mk +mk
.
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2. Semismooth Newton method and its modi�cations

Quasi-Newton method and its nonsmooth variant

Local linear convergence for non-smooth operators II: Let (A1)− (A4) hold. Then

∥u∗ − uk+1∥u∗ ≤
√

γ2,k

γ1,k

Mk −mk

Mk +mk
∥u∗ − uk+1∥u∗ + O(∥u∗ − uk+1∥2u∗),

where

∥v∥u∗ :=
√

(F o(u∗)v , v), ∥v∥uk =
√

(F o(uk )v , v) ∀u, v ∈ Rn,

γ1,k∥v∥2u∗ ≤ ∥v∥2
uk

≤ γ2,k∥v∥2u∗ ∀u, v ∈ Rn, ∀k ∈ N, γ1,k ≥ γmin > 0

criterion:

√
γ2,k

γ1,k

Mk −mk

Mk +mk
≤ q < 1 ∀k ∈ N, realistic assumption:

√
γ2,k

γ1,k
≈ 1

Sketch of the proof: if uk is su�ciently close to u∗ then

∥u∗ − uk+1∥uk
(A2,A4)

≤
∥∥∥∥I − 2

Mk +mk
B−1

k F o(uk )

∥∥∥∥
uk

∥u∗ − uk∥uk + O(∥u∗ − uk∥2
uk
),∥∥∥∥I − 2

Mk +mk
B−1

k F o(uk )

∥∥∥∥
uk

≤
Mk −mk

Mk +mk
,

∥u∗ − uk+1∥uk
∥u∗ − uk+1∥u∗

≥ √
γ1,k ,

∥u∗ − uk∥uk
∥u∗ − uk∥u∗

≤ √
γ2,k
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2. Semismooth Newton method and its modi�cations

Examples of the preconditioners Bk

Quasi-Newton 1: Bk = Kelast

elastic sti�ness matrix with �xed material parameters

advantage: a constant matrix with a simple assembling

disadvantage: poor approximation of F o(uk )

Quasi-Newton 2: Bk = Kelast,k

elastic sti�ness matrix with variable material parameters

advantage: better approximation of F o(uk )

disadvantage: assembling in each iteration

Smoothing Newton method: [Qi, Sun 2002] Bk = F ′
ϵ(u

k )

Fϵ is a smooth approximation of F

advantage: Mk and mk are close to one as ϵ → 0

disadvantage: assembling of F ′
ϵ(u

k ) is not faster than assembling of F o(uk )

The operator F ′
ϵ will be used later, within the continuation Newton method.
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2. Semismooth Newton method and its modi�cations

Numerical example in 3D � strip footing

ccccc
ccccc
ccccc
ccccc

cccccccccccccccccccc ccccc
ccccc
ccccc
ccccc

cccccccccccccccccccc

??

-
6

γ2

x1

x2

1 9

10

2 investigated values of the hardening: α = 0.5 and α = 0.9 (stronger nonlinearity)

3 investigated meshes with 38 400, 307 200 and 1 036 800 elements

comparison of the Newton, Quasi-Newton 1 and Quasi-Newton 2 methods

similar results for smooth version of the E-P problem, see [Karátson, S., Bére² 2024]
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2. Semismooth Newton method and its modi�cations

Comparison of iteration numbers

α = 0.5

�nest mesh, DCG

Newton: 7 iterations

q-Newton1: 27 it.

q-Newton2: 19 it.

α = 0.9

�nest mesh, DCG

Newton: 8 iterations

q-Newton1: 144 it.

q-Newton2: 64 it.
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2. Semismooth Newton method and its modi�cations

Comparison of computational times

α = 0.5

3 meshes

Newton - slowest

q-N1 - fastest

α = 0.9

3 meshes

Newton - fastest

q-N2 -slowest
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2. Semismooth Newton method and its modi�cations

Comparison of physical arrays
α = 0.5 α = 0.9

Stanislav Sysala Selected Newton methods in plasticity Budapest 12.10.2023 17 / 44



2. Semismooth Newton method and its modi�cations

Semismooth Newton method with damping

Algorithm: (used in elasto-plasticity in [S. 2012])

uk+1 := uk + αk s
k k = 0, 1, . . . , u0 − given,

F o(uk )sk = b − F (uk )

αk = arg min
ω∈[0,1]

J (uk + ωsk ), J ′(v) = F (v)− b⊤v

Remarks:

Newton' methods without damping sometimes do not converge in elasto-plasticity

damping enables to investigate global convergence

optimization framework simpli�es convergence analysis

alternative line-search based on the Armijo rule: choose αk satisfying

J (uk + αk s
k )− J (uk ) ≤ −ϱαk (F

o(uk )sk , sk ), ϱ ∈ (0, 1)

similar convergence analysis for the Armijo line search
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2. Semismooth Newton method and its modi�cations

Global convergence of the damped method

Algorithm: uk+1 := uk + αk s
k , F o(uk )sk = b − F (uk ), αk = arg minβ∈[0,1] J (uk + βsk )

Key estimates derived under the assumptions (A1), (A3) and (A4):

(J ′(uk ), sk ) ≤ −β1∥sk∥2,

αk ≥
β1

β2
> 0, if sk ̸= 0,

J (uk+1)− J (uk ) ≤ −
1
2
β1α

2

k∥s
k∥2 ≤ −

β3
1

2β2
2

∥sk∥2,

+∞∑
k=0

∥sk∥2 ≤
2β2

2
(J (u0)− J (u∗))

β3
1

=⇒ sk → 0,

+∞∑
k=0

∥u∗ − uk∥2 ≤
2β4

2
(J (u0)− J (u∗))

β5
1

=⇒ uk → u∗.

Remarks:

The global convergence result can be extended to in�nite dimensional Hilbert spaces.

Semismoothness of F is not necessary for the global convergence.
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2. Semismooth Newton method and its modi�cations

Superlinear convergence of the damped method

Algorithm: uk+1 := uk + αk s
k , F o(uk )sk = b − F (uk ), αk = arg minβ∈[0,1] J (uk + βsk )

Key results under the assumptions (A1)�(A4):

lim
k→+∞

αk = 1

∥u∗ − uk+1∥ = (1− αk )∥u∗ − uk∥+ O(∥u∗ − uk∥2) = o(∥u∗ − uk∥)

Remark:

Semismoothness of F is crucial for local superlinear convergence of the damped method.

Superlinear convergence of the damped Newton was illustrated on numerical examples.

Numbers of iteration only slightly depend on mesh density, see [S. 2012].
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2. Semismooth Newton method and its modi�cations

Continuation Newton method [Axelsson, S. 2015]

Severely nonlinear system of equations with a nonsmooth function:

�nd u∗ ∈ Rn : F (u∗) = b F : Rn → Rn, b ∈ Rn

Load-based continuation method:

F (0) = 0, F (û(t)) = tb, 0 ≤ t ≤ 1, û(1) = u∗.

Smooth approximation of F :

{Fϵ}ϵ∈(0,ϵ0) − smooth : lim
ϵ→0

Fϵ(v) = F (v), lim
ϵ→0

F ′
ϵ(v) = F o(v) ∀v ∈ Rn

One-step smoothing Newton method: 0 = t0 < t1 < . . . < tN = 1, τk := tk+1 − tk

F ′
ϵ(u

k )(uk+1 − uk ) = tk+1b − F (uk ) , k = 0, 1, . . .N − 1, u0 = 0,

Aim: �nd assumptions guaranteeing that uk is close to û(tk ) for any k = 1, . . .N
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2. Semismooth Newton method and its modi�cations

Assumptions and their consequences

(A5) ∃M > 0 : ∥Fϵ(u)− F (u)− (Fϵ(v)− F (v)) ∥ ≤ Mϵ∥u − v∥ ∀u, v ∈ Rn, ∀ϵ ∈ (0, ϵ0).

(A6) ∃L > 0 : ∥Fϵ(v)− Fϵ(u)− F ′
ϵ(v)(v − u)∥ ≤

L

2ϵ
∥u − v∥2 ∀u, v ∈ Rn, ∀ϵ ∈ (0, ϵ0).

(A7) ∃q > 0 :

{
[F (u)− F (v)]T (u − v) ≥ q∥u − v∥2 ∀u, v ∈ Rn,

[Fϵ(u)− Fϵ(v)]T (u − v) ≥ q∥u − v∥2 ∀u, v ∈ Rn, ∀ϵ ∈ (0, ϵ0).

Hence: ∥û(tk+1)− û(tk )∥ ≤ 1

q
∥F (û(tk+1))− F (û(tk ))∥ = ∥b∥

q
τk ∀k = 0, 1, . . .N − 1

Hence: ∥[F ′
ϵ(u

k )]−1∥ ≤ 1

q
∀k = 1, 2 . . .N

If (A4) hold then q = β1.
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2. Semismooth Newton method and its modi�cations

Convergence of the algorithm

Let the assumptions (A5), (A6), (A7) hold with the constants M, L and q. Let

ϵ ≤
q

4M
, τk ≤

q2ϵ

4L∥b∥
∀k = 0, 1, . . . ,N − 1.

Then

∥û(tk )− uk∥ ≤
∥b∥
q

max
0≤l≤k−1

τl , k = 0, 1 . . . .

Sketch of the proof:

The result can be shown by mathematical induction

û(tk+1)− uk+1 = −(F ′
ϵ(u

k ))−1

[
F (û(tk+1))− Fϵ(û(tk+1))− (F (uk )− Fϵ(u

k ))
]

+(F ′
ϵ(u

k ))−1

[
Fϵ(u

k )− Fϵ(û(tk+1))− F ′
ϵ(u

k )(uk − û(tk+1))
]
.

Hence:

∥û(tk+1)− uk+1∥ ≤
1
q

[
Mϵ∥û(tk+1)− uk∥+

L

2ϵ
∥û(tk+1)− uk∥2

]
,

∥û(tk+1)− uk+1∥ ≤
∥b∥
2q

τk +

(
1
4
+

L

qϵ
∥û(tk )− uk∥

)
∥û(tk )− uk∥.
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2. Semismooth Newton method and its modi�cations

Regularization of the stress-strain operator

Algebraic notation (recalling):

F (v)Tw :=

∫
Ω
T (e(vh)) : e(wh) dx ∀vh,wh ∈ Vh,

Fϵ(v)
Tw :=

∫
Ω
Tϵ(e(vh)) : e(wh) dx ∀vh,wh ∈ Vh.

Stress-strain operator and its smooth approximation:

T (e) =
1
3
(3λ+ 2µ)(tr e)I + (1− α)2µeD + αj(2µ|eD |)

eD

|eD |
,

Tϵ(e) =
1
3
(3λ+ 2µ)(tr e)I + (1− α)2µeD + αjϵ(2µ|eD |)

eD

|eD |
,

j , jϵ � nonlinear scalar function and its smooth approximation
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2. Semismooth Newton method and its modi�cations

The function j and its smooth approximation jϵ

j(z) =

{
z, z ≤ γ
γ, z ≥ γ

, jϵ(z) :=


z, z ≤ γ − ϵ

γ − 1

4ϵ
(z − γ − ϵ)2, z ∈ [γ − ϵ, γ + ϵ]
γ, z ≥ γ + ϵ

-

6

�
�
�
�
�
�

γ z

j

q
q

γ − ϵ γ + ϵ

jϵ

Relationships between j and jϵ implying the assumptions (A5)�(A7):

|j(z)− jϵ(z)| ≤
ϵ

4
∀z ∈ R, ∀ϵ ∈ (0, γ),

|j(z1)− j(z2)− jϵ(z1) + jϵ(z2)| ≤
ϵ

2
|z1 − z2| ∀z1, z2 ∈ R, ∀ϵ > 0,∣∣jϵ(z2)− jϵ(z1)− j ′ϵ(z2)(z2 − z1)

∣∣ ≤
1
4ϵ

(z1 − z2)
2 ∀z1, z2 ∈ R, ∀ϵ > 0
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2. Semismooth Newton method and its modi�cations

Assumptions (A5)�(A7) for the E-P operators

(1− α)∥v∥2e ≤ vTK ′
ϵ(w)v ≤ ∥v∥2e ∀v ,w ∈ Rn, ∀ϵ ∈ (0, ϵ0),

vT (F (w + v)− F (w)) ≥ (1− α)∥v∥2e ∀v ,w ∈ Rn,

∥F (v)− F (w)− Kϵ(v) + Kϵ(w)∥∗ ≤ Mϵ∥v − w∥e ∀v ,w ∈ Rn, ∀ϵ ∈ (0, ϵ0) ,

∥Kϵ(v)− Kϵ(u)− K ′
ϵ(v)(v − u)∥∗ ≤

L

2ϵ
∥v − w∥2e,L4 ∀u,w ∈ S , ∀ϵ ∈ (0, ϵ0) ,

where
∥v∥e , ∥v∥e,L4 � energy norms, ∥v∥∗ := sup

w∈Rn, ∥w∥e=1
|vTw | ∀v ∈ Rn.

Remarks:

The estimates are dependent on the hardening parameter α.

The estimates are independent of the discretization parameter.

The convergence result could be extended to the functional setting, unlike ϵ → 0.
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2. Semismooth Newton method and its modi�cations

Numerical example

�ccccc
ccccc
ccccc
ccc

cccccccccccccccccc

6666666666666
f

Ω

1 9

10

f = (0, 1000), E = 206900 (Young's modulus), ν = 0.29 (Poisson's ratio),

1− α = 4.2 ∗ 10−4 << 1, γ = 450
√
2/3 (yield stress), ϵ = 1 << γ (regularization),
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2. Semismooth Newton method and its modi�cations

Numerical results � comparison of solution paths

F (û(tk )) = tkb, uk = uk−1 + (F ′
ϵ(u

k−1))−1[tkb − F (uk−1)]

Comparison of exact solution path {û(t)}t∈[0,1] with its approximation {uk}Nk=0:
the quantity b⊤û(t) is used for the visualization, where b is r.h.s
the curves almost coincide with the exception of t ∈ (0.45, 0.55)
linear elastic branch for t ≤ 0.45, hardening branch of the curve for t ∈ (0.55, 1)

t ∈ [0, 1] Detail of the curve for t ∈ [0, 0.5)
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2. Semismooth Newton method and its modi�cations

Numerical results � convergence of the algorithm

Dependence of ∥û(tk )− uk∥e on τ = tk − tk−1 = const.:

error measure is minimal for t ∈ [0, 0.45] and t ∈ [0.55, 1]
error measure tends to zero as τ → 0
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3. Determination of the limit load by Newton-like methods

3. Determination of the limit load in perfect plasticity by

Newton-like methods
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3. Determination of the limit load by Newton-like methods

Elastic-perfectly plastic problem and limit load

About the elastic-perfectly plastic problem:

T (e) = 1

3
(3λ+ 2µ)(tr e)I +(1− α)2µeD + αj(2µ|eD |) eD

|eD | , α = 1.

Assumptions (A1)− (A3) hold (F is semismooth and has a potential with linear growth).

Assumption (A4) does not hold (F is not strongly monotone).

Problem F (u∗) = b has the solution u∗ only for su�ciently small b.

Problem parametrization and the limit load:

F (û(t)) = tb, t ≥ 0, t is a scalar load factor

tlim � limit load factor = supremum of t for which û(t) exists.

tlim � important for safety assessment of structures.

Solution exists for any t ∈ [0, tlim), but is unbounded in vicinity of tlim.

Continuation over t is not too numerically stable.
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3. Determination of the limit load by Newton-like methods

Advanced continuation technique for �nding tlim

Energy-based control the loading path:

Idea: use the dependence between t and b⊤û(t) and its inverse

[S., Haslinger, Hlavá£ek, �ermák 2015], [S., Haslinger, Reddy, Repin 2021]

-

6

�����

�
�
�
�
�
�

t

b⊤û(t)

α < 1

α = 1

tlim
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3. Determination of the limit load by Newton-like methods

Advanced continuation method and limit analysis

Nonlinear system with additional equation:

�nd ū(ω) ∈ Rn, t(ω) ≥ 0 : F (ū(ω)) = t(ω)b, bT ū(ω) = ω.

ω is a given parameter, t is additional unknown

ū(ω) = û(t(ω)), ω → +∞ ⇒ t(ω) → tlim, ∥ū(ω)∥ → ∞, ∥ū(ω)/ω∥ → c < ∞

Transformed problem and its optimization form: v(ω) = ū(ω)/ω

�nd v(ω) ∈ Rn, t(ω) ≥ 0 : F (ωv(ω)) = t(ω)b, bT v(ω) = 1.

Iω(v(ω)) = min
v∈Rn

b⊤v=1

Iω(v), Iω(v) =
1
ω
I(ωv), I′(v) = F (v)

Limit analysis problem: ω → +∞

tlim = inf
v∈Rn

b⊤v=1

I∞(v), I∞ = lim
ω→+∞

Iω

I∞ is convex, 1-positively homogeneous, not �nite-valued everywhere

On a functional level, problem is de�ned on BD spaces, hidden constraint: div v = 0
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3. Determination of the limit load by Newton-like methods

Continuation strategy for determining tlim

6

-�
�
�
�

t

t(ω)
tlim

ω

1 Generate (adaptively) a sequence 0 < ω1 < ω2 < . . . < ωN

2 For any ω belonging to the sequence, �nd v(ω) ∈ Rn, t(ω) ≥ 0:

F (ωv(ω)) = t(ω)b, bT v(ω) = 1.

3 tlim ≈ t(ωN)

Remarks:

The increment of ω is increased if the increment of t is too small.

The solver for �xed ω is initiated using solutions from previous 2 steps.
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3. Determination of the limit load by Newton-like methods

Newton-like method for constraint optimization

The problem for given ω > 0:

Fω(v
∗) = t∗b, bT v∗ = 1 or Iω(v∗) = min

v∈Rn

b⊤v=1

Iω(v), Fω(v) = F (ωv)

Semismooth Newton method as sequential quadratic programming:

uk+1 := uk + sk k = 0, 1, . . . , u0 − given, b⊤u0 = 1

sk = arg min
s∈Rn

b⊤s=0

[
1
2
(F o

ω(u
k )s, s) + (Fω(u

k ), s)

]

or sk = hk + δkg
k , F o

ω(u
k )gk = b, F o

ω(u
k )hk = −Fω(u

k ), δk = −
b⊤hk

b⊤gk

Crucial estimates implying local quadratic convergence:(
F o
ω(u

k )(uk+1 − u∗), uk+1 − u∗
)
≤

(
Fω(u

k )− Fω(u
∗)− F o

ω(u
k )(uk − u∗), u∗ − uk+1

)
The algorithm can also be used for contact problems of E-P bodies.

We have also used damped and regularized versions of this algorithm.
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3. Determination of the limit load by Newton-like methods

Solution corresponding to limit load factor tlim

�ccccc
ccccc
ccccc
ccc

cccccccccccccccccc

6666666666666
f

Ω

1 9

10

solution for tlim represents plastic collapse

failure zone � zone with discontinuity

P1 elements lead to locking phenomena [Repin, S., Haslinger 2018]
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3. Determination of the limit load by Newton-like methods

Mesh adaptive solution concept

Apply the continuation over ω only on the coarsest mesh.

Fix su�ciently large ω and use it for all �ner meshed.

Re�ne elements where higher strains appear.

interpolate solution from the coarser mesh and use it for the initialization on a �ner mesh.

Use damped semismooth Newton method for �ner meshes and the �xed ω.
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4. Brief notes to slope stability assessment.

4. Brief notes to slope stability assessment.
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4. Brief notes to slope stability assessment.

Limit vs. shear strength reduction analysis

Limit analysis:

Factor of safety represents the limit load factor.

Robust method supported by mathematical theory.

Not so conventional in slope stability.

Shear strength reduction method:

Conventional method in slope stability, implemented in many commercial codes.

Strength parameters are reduced by a scalar factor up to the critical state. The safety
factor represents the critical value.

Iterative limit load methods can be applied [Tschuchnigg, Schweiger, Sloan 2015]

Relationship between these two methods [S., Hrube²ová, Michalec, Tschuchnigg 2021]

Basic elasto-plastic models used in geotechnics:

Mohr-Coulomb or Drucker-Pragers yield criteria.

They distinguish di�erent behavior in tension and compression.

Limit analysis for geotechnical models leads to conic optimization.
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4. Brief notes to slope stability assessment.

Application I � slope stability

case study of a real slope in locality Doubrava (north-east part of Czechia)

unstable slope with observed landslides, and various soil layers

numerical results con�rmed that FoS ≈ 1, mesh adaptivity was used

[S., Hrube²ová, Michalec, Tschuchnigg 2021]
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4. Brief notes to slope stability assessment.

Application II � river embankment

case studies of a real river embankment in Luºec (near Prague)

in�uence of pore pressure � uncon�ned seepage problem, phreatic surface

mesh adaptive solution for porous �ow and mechanical problems

[S., Tschuchnigg, Hrube²ová, Michalec 2023]
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4. Brief notes to slope stability assessment.

Application III � embankment dam

benchmark problem with high embankment dam (more than 100 meters)

sizes of the computational domain: 1200 x 500 meters

one-sided coupling of porous �ow and mechanical models

[S., Tschuchnigg, Hrube²ová, Michalec 2023]
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Conclusion

Conclusion

Summary:

Selected Newton-like methods used in computational plasticity.

Semismooth variants of the methods.

Convergence analysis and numerical examples.

Limit load and stability assessment.

Other related topics:

Veri�cation of the semismoothness for various E-P operators:
[S. 2014], [S., Cermak, Kruis et al. 2016], [S., Cermak, Ligursky 2017]

Development of in house codes in Matlab:
[S., Cermak, Ligursky 2017], [Cermak, S., Valdman 2019], [Karátson, S., Bére² 2024]

Duality and a posteriori error analysis for limit loads:
[Repin, S., Haslinger 2018], [Haslinger, Repin, S. 2019], [S., Haslinger, Reddy, Repin 2021]

Contact of E-P bodies and strain-gradient plasticity:
[S., Haslinger, Hlavá£ek, Cermak 2015], [Reddy, S. 2020], [Reddy, S. 2024]
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Conclusion

References on semismooth Newton methods

Semismooth and smoothing Newton methods (in general):

L. Qi, J. Sun, A nonsmooth version of Newton's method, Mathematical Programming 58
(1993) 353-367.

L. Qi, D. Sun. Smoothing functions and smoothing Newton method for complementarity
and variational inequality problems. Journal of Optimization Theory and Applications,
113(1), 121�147 (2002).

M. Hintermüler, K. Ito, K. Kunisch, The primal-dual active set strategy as a semismooth
Newton method, SIAM J. Optim. 13 (2003) 865-888.

Semismooth Newton method in elasto-plasticity:

R. Blaheta, Numerical methods in elasto-plasticity, Documenta Geonica 1998, PERES
Publishers, Prague, 1999.

P. G. Gruber, J. Valdman: Solution of One-Time Step Problems in Elastoplasticity by a
Slant Newton Method, SIAM J. Sci. Comput. 31 (2009), 1558�1580.

S. Sysala: Application of a modi�ed semismooth Newton method to some elasto-plastic
problems. Math. Comp. Sim., 82 (2012), 2004�2021.

Thank you for your attention!
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