PhD research theme
BME, Doctoral School of Mathematics and Computer Science

Name of the supervisor: Marianna Bolla
Degree: CSc
Title of the topic: Mixed Graphical Models

Short description:
Graphical models provide a framework for describing statistical dependencies in (possibly large) collections of random variables. At their core lie various correspondences between the conditional independence properties of a random vector and the structural properties of the graph used to represent interactions (directed or undirected) between the vertices assigned to the random variables. These so-called causality models have been investigated since the 1980s, the first steps were made by J. Pearl. However, it was S. L. Lauritzen who showed how loglinear models can be used to estimate joint, marginal, and conditional probabilities taking into consideration the graph structure. The candidate is assumed to master some routine in hierarchical and decomposable loglinear models, based on the book of S. L. Lauritzen (Graphical Models, Oxford Univ. Press, 1995). Then the task of the candidate would be to develop the models and algorithms in the following. The underlying variables are usually categorical (e.g., symptoms, medical diagnoses), but so-called mixed models, incorporating continuously distributed random variables (mainly Gaussian, conditioned on the discrete ones) are also proposed in the above book. The estimation methods could be extended to these mixed types of models, via standard methods of multivariate statistics working with covariances. The models are applicable in machine learning for building artificial intelligence (e.g., in medical diagnostic systems), so testing the models on real-life data is also welcome.

Requirements: to be graduated in introductory Probability, Statistics, and Graph Theory

Contact:
Phone: 36 1 463 1101

E-mail: marib@math.bme.hu

Place of work: Department of Stochastics, Institute of Mathematics, BME

Statement
The conditions of the research above are satisfied, the theme is confirmed by the head of the Department
PhD research theme

BME, Doctoral School of Mathematics and Computer Science

Name of the supervisor: Miklós Ferenczi

Degree: DSc

Title of the topic: Investigations in Algebraic Logic

Short description:
Algebraic Logic is at the borderline of Mathematical Logic and Abstract Algebra. George Boole developed the connection between these two topics already in the 19th century. In Algebraic Logic, it is investigated how logical problems can be translated to algebraic problems and conversely, how algebraic problems can be translated into Logic and how these problems can be solved in the new area. Inside Algebra, Universal Algebra is the topic which has priority from the viewpoint of Algebraic Logic. The candidate is supposed to have some routine both in Logic and in Algebra, of course. Furthermore, one of the tasks of the candidate to deepen this routine in the future. Today, Algebraic Logic is a classical area of the mathematical researches. Some famous researchers of the area are: George Boole, Alfred Tarski, Paul Halmos, Leon Henkin, William Craig, Roman Sikorski, Donald Monk.

Requirements: To graduate introductory courses from Mathematical Logic, Set Theory and Abstract Algebra

Contact:
Phone: 36 1 4632094
e-mail: ferenczi@math.bme.hu

Place of work: Department of Algebra, Institute of Mathematics, BME

Statement
The conditions of the research above are satisfied, the theme is confirmed by the head of the Department
PhD theme

Doctoral School of Mathematics and Computer Science

Name of the supervisor: Erzsébet Horváth

Degree: PhD

Title of the topic: Representation theory with computers

Short description:

The PhD student gets acquainted with the computer algebra system GAP and with the basics of the ordinary and modular representation theory of finite groups. To this the following special courses give help:

- Representation theory with computers,
- Modular representation theory,
- Representation theory seminar.

The student makes researches on up to date problems of representation theory, coordinated and supervised by the advisor. The student uses the GAP program system in these researches.

Requirements:

MSC degree in mathematics, physics or informatics

Contact:

Telephone: 5670

email: he@math.bme.hu

Place of the work: BME Faculty of Natural Sciences. Math. Inst. Dept. of Algebra

H-1111 Budapest, Egry J. u.1.

Statement

The conditions to do research in the proposed research topic is provided by the Department of Algebra. The announcement of this PhD research topic was approved by the head of the Department of Algebra.
PhD research theme
BME, Doctoral School of Mathematics and Computer Science

Name of the supervisor: Gábor Ivanyos

Degree: DSc

Title of the topic: Algebraic methods in quantum information processing

Short description:
Physicists proposed the study of the question of applicability of quantum phenomena in information processing. In this regard considerable progress has been achieved during the past few years. On the one hand, there already exist devices for transmitting information that are encrypted using quantum mechanics. On the other hand, in a certain model of quantum computers in principle it is possible to factor integers and computing discrete logarithms. It is not yet clear how realistic this model is. Anyway, there are some promising results with implementing simple quantum machines consisting of a very limited number of gates.
Here are some topics in which application of algebraic methods may result in further progress:
- comparing complexity classes defined by various models of quantum computers with classical complexity classes
- looking for novel computational problems from algebra and arithmetics that can be solved efficiently on quantum computers
- designing and testing quantum gates
- algebraic methods for quantification and classification of basic quantum mechanical phenomena (e.g., entanglement)
- study of quantum communication complexity using algebraic tools
- algebraic constructions for quantum error correcting codes

Requirements:
Msc/diploma in mathematics, physics, computer science, electrical engineering or related disciplines; solid background in algebra, skills in reading specialized literature in English.

Contact:
Email: Gabor.Ivanyos@sztaki.mta.hu
Tel: +36-1-27961764

Place of work: Mathematical Institute of Budapest University of Technology and Economics, Department of Algebra.

Statement
The conditions to do research in the proposed research topic is provided by the Department of Algebra. The announcement of this PhD research topic was approved by the head of the Department of Algebra.
Name of the supervisor: Károly Simon

Degree: DSc

Title of the topic: Fractal geometry

Short description: There is a very successful research group at our department, which investigates the chaotic systems. Part of our group is specialized in researching the geometry of fractals sets. These are sets which appear in all parts of natural sciences, and their geometry is significantly different from the geometry of the objects we are used to. In many cases there is a pattern which is repeated on every scale. The Ph.D. student will work on problems related to both deterministic of random fractals.

Requirements: Deep knowledge in Measure Theory and Probability Theory

Contact:

Phone: 36 1 4631607

e-mail: simonk@math.bme.hu

Place of work: Department of Stochastics, Institute of Mathematics, BME

Statement

The conditions of the research above are satisfied, the theme is confirmed by the head of the Department
PhD theme
Doctoral School of Mathematics and Computer Science

Name of the supervisor: Sándor Kiss

Degree: PhD

Title of the topic: Sumsets and difference sets

Short description:

The investigation of the sumsets and difference sets is a very important topic in Additive Number Theory. Among the plenty of beautiful and interesting results in this topic one of the oldest is the famous theorem of Cauchy and Davenport. There is some unsolved problems in this field as well. An immediate question arises when the size of the sumset and difference set is small: what can one say about the size of the original set? Another classical problem is to estimate the cardinality of a subset of the finite field of p elements with the property that the difference of any two elements from the subset is a quadratic residue modulo p. To handle these problems and similar questions there are new and exciting methods developed by outstanding research mathematicians recently. The task of the PhD student is to learn and improve the known methods and try to solve some problems in this field. The student have to publish his results in high quality journals.

Requirements: Basic knowledge of Algebra, Analysis and Combinatorics are needed. The PhD student should like to read and learn new tools from several fields of mathematics.

Contact:

Email: ksandor@math.bme.hu
Tel: +3614631785

Place of work: Mathematical Institute of Budapest University of Technology and Economics, Department of Algebra.

Statement

The conditions to do research in the proposed research topic is provided by the Department of Algebra. The announcement of this PhD research topic was approved by the head of the Department of Algebra.
Name of the supervisor: András Kornai

Degree: DSc

Title of the topic: Mathematical linguistics

Short description:
The research proposed here addresses several subjects within the study of semigroups and monoids. The main task of mathematical linguistics is to investigate the mathematical theories behind language technology algorithms such as spellchecking, speech- and optical character recognition (ASR, OCR) as well as speech synthesis, machine translation, semantic information retrieval and information extraction, etc. Because of their importance in applied work, we single out the methods based on finite automata, finite transducers, and their generalizations; machine learning of algorithms based on these; and vector-based semantic methods (semantic web, weak inferencing, glue semantics). Within formal language theory the central areas are the subregular families on the one hand, and the mildly context-sensitive classes of languages on the other. Their weighted (probabilistic) generalizations are of particular interest.

Requirements: Basic knowledge of Algebra, the PhD student should like to read and learn new tools from several fields of mathematics.

Contact:
Email: kornai@math.bme.hu
Tel: +3614632094

Place of work: Mathematical Institute of Budapest University of Technology and Economics, Department of Algebra.

Statement
The conditions to do research in the proposed research topic is provided by the Department of Algebra. The announcement of this PhD research topic was approved by the head of the Department of Algebra.
PhD research theme
BME, Doctoral School of Mathematics and Computer Science

Name of the supervisor: Edith Alice Kovacs

Degree: PhD

Title of the topic: Approximation of regular vine copulas by using truncated vine copulas and cherry-tree copulas

Short description: Copulas are a useful tool in modeling multivariate probability distribution which play an important role in generating scenarios for different fields: Finance: estimate the credit risk and the market risk, Insurance, Hydrology. As Fisher (1997) notes in the Encyclopedia of Statistical Sciences: “Copulas are of interest to statisticians for two main reasons: First, as a way of studying scale-free measures of dependence; and secondly, as a starting point for constructing families of bivariate distributions, […]” For the fitting of two dimensional copulas to sample data there are a lot a very good algorithms and programs.

In higher dimensions often appear different types of dependences between the random variables involved. For this aim there were introduced the regular vine copulas, which can model many types of dependences between different pairs of random variables. However this is also a drawback since the number of parameters becomes very large, as the dimension of the multivariate random variables grows. To reduce this large number of parameters, the Truncated vine copulas and the Cherry-tree copulas were introduced. The candidate is supposed to do research in developing the modeling of cherry tree copulas and truncated vines.

The candidate is supposed to have some routine in Probability Theory. Furthermore, one of the tasks of the candidate will be deepening this knowledge by adding Copula Theory and some parts of Information Theory.

Requirements: To graduate introductory courses from Algebra, Probability Theory.

Contact:
Phone: (36-1)-4631397

e-mail: kovacsea@math.bme.hu

edith_kovacs@yahoo.com

Place of work: Department of Differential Equations, Institute of Mathematics, BME

Statement
The conditions of the research above are satisfied, the theme is confirmed by the head of the Department
PhD research theme
BME, Doctoral School of Mathematics and Computer Science

Name of the supervisor: Edith Alice Kovacs

Degree: PhD

Title of the topic: Algorithms for fitting cherry-tree copulas to sample data and their applications

Short description:
Copulas became a popular tool in modelling multivariate probability distributions. Copulas make possible the modelling separately the one dimensional marginal probability distributions and the dependency between the random variables. In higher dimensions often appear different types of dependences between the random variables involved. To model these there were introduced the regular vine copulas, however this regular vine copulas use a large number of parameters, as the dimension of the multivariate random variables grows. To reduce this large number of parameters, the Truncated vine copulas and the Cherry-tree copulas were introduced. The candidate is supposed to do research on developing algorithms for finding good fitting cherry tree copulas and truncated vines, and to implement them.

The candidate is supposed to have some routine in Probability Theory and Algorithms furthermore, one of the tasks of the candidate to deepen this knowledge by adding Copula Theory and some parts of Information Theory.

Requirements: To graduate introductory courses from Algebra, Probability Theory, Algorithms.

Contact:
Phone: (36-1)-4631397
e-mail: kovacsea@math.bme.hu

Place of work: Department of Differential Equations, Institute of Mathematics, BME

Statement
The conditions of the research above are satisfied, the theme is confirmed by the head of the Department
PhD research theme

BME, Doctoral School of Mathematics and Computer Science

Name of the supervisor: András Kroó
Degree: DSc
Title of the topic: Modern Aspects of Constructive Function Theory

Short description:
The main goal of this PhD Programme is to introduce the students to the main topics and methods of the Constructive Function Theory and Approximation Theory. By the completion of the course the students are enabled to conduct independent study and research in fields touching on the topics of the course. They also learn how to use these methods to solve specific problems. In addition, the students develop some special expertise in the Constructive Function Theory, which they can use efficiently in other mathematical fields, and in applications, as well.

The main topics covered by this PhD Programme are as follows:
3. Lacunary polynomial approximation, incomplete polynomials, M’untz type theorems.
4. Bernstein-Markov type inequalities for multivariate polynomials on convex and star like domains in uniform and integral norms.
5. Markov type inequalities for homogeneous polynomials on convex bodies and Tangential Bernstein-Markov type inequalities.
6. Remez type inequalities for multivariate polynomials on star like domains and convex bodies and their application.
7. Admissible and optimal meshes for multivariate polynomials.
8. Approximation by ridge functions and incomplete polynomials in several variables.
9. Weierstrass type theorems for approximation by homogeneous polynomials on the boundary of convex domains.
10. Approximation of convex bodies by convex algebraic level surfaces.

Requirements:

Contact:
Phone: 36 1 463 1111 /5705 ext.
e-mail: kroo@math.bme.hu

Place of work: Department of Analysis, Institute of Mathematics, BME

Statement
The conditions of the research above are satisfied, the theme is confirmed by the head of the Department
PhD thesis research topic
Doctoral School of Mathematics and Computer Science, Budapest Univ. Techn.

Name of supervisor, research degree (in case of external supervisor also the data of the departmental supervisor):
Supervisor: Gábor Domokos, member of of Hungarian Academy of Sciences
Co-supervisor: Zsolt Lángi, PhD

The title of the PhD topic:
The morphology of convex solids

Brief description of the task:
A physically extremely interesting area of convex geometry deals with the description of convex solids with the aim to identify, categorize and track the evolution of natural shapes. In addition to convex geometry, mathematical tools include geometric partial differential equations, in particular, curvature-driven flows which are closely related to the heat equation. An equilibrium point of a convex solid is a stationary point of the distance function measured from the center of gravity, placing the solid on a horizontal plane it can be statically balanced at these points. We can distinguish between maximum, minimum and saddle points, the numbers of which we denote by S, U and H, respectively. In case of convex solids, the Poincaré-Hopf Theorem implies the relationship
\[S + U - H = 2, \]
and based on this any convex solid can be assigned to an \(\{S,U\} \) equilibrium class. In addition to the number of equilibrium points, the topology of the integral curves in the gradient flow connecting these points also describes convex solids. Based on this aspect, within each equilibrium class we can distinguish topological subclasses. By the equilibrium class and subclasses, a very interesting and from geological point of view very useful classification system can be defined for shapes that can be found in nature (e.g. pebble shapes). Our former research verified that both the system of equilibrium and that of topological classes are complete in the sense there is neither empty class, nor empty subclass. This classification system, complemented with ideas from shape evolution led to the verification of the mathematical model with the aid of which a research team from Budapest, Philadelphia and NASA found compelling evidence of fluvial activity on ancient Mars, based alone on the pictures of Martian pebbles shapes, taken by NASA’s Curiosity rover. In the present PhD research we investigate some particularly interesting geometric properties of the above defined classification system. Our goal, among other things, is to find out how robust these classes and subclasses are; that is, by what probability a convex solid can move from one class or subclass into another one by abrasion. We already have some initial results, but many questions are not yet answered which are essential from physical applications.

Expectations for the applicant (e.g. knowledge of foreign languages, deeper knowledge of certain areas of mathematics, etc.):
The topic essentially is geometrically motivated, within this knowledge of classical differential geometry is important. Expertise in low-dimensional dynamical systems is an asset, and also familiarity with numeric computations and programming is very useful. The topic has also statistical aspects, we welcome applicants with such interest as well. Primarily we expect the applications of students with a degree in mathematics or physics.

Contact information of the supervisor (in case of external supervisor also the data of the departmental supervisor):
Phone: 463-1493
E-mail: domokos@iit.bme.hu

Contact information for the co-supervisor:
Phone: 463-1145
E-mail: zlangi@math.bme.hu
Research place (name of the department, in case of external supervisor also the name of the external research place): Department of Geometry

Declaration
The conditions for research in the suggested topic are satisfactory at the department, the announcement of the topic has been approved by the department head.
PhD research theme
BME, Doctoral School of Mathematics and Computer Science

Name of the supervisor: Molnár Lajos

Degree: DSc

Title of the topic: Transformations on structures of matrices, operators, and functions

Short description:
In Hermann Weyl's fundamental book "Symmetry" one can read the following famous sentences: "Whenever you have to do with a structure-endowed entity Σ, try to determine its group of automorphisms, the group of those element-wise transformations which leave all structural relations undisturbed. You can expect to gain a deep insight into the constitution of Σ in this way."

The proposed PhD research topic concerns the determination of the automorphisms/symmetries of structures of rather wide range which consist of matrices, linear operators or functions. The particular area we are interested in is now labeled by the term "preserver problems" and it represents a rather vivid research field on the border of functional analysis and linear algebra. Generally speaking, the central problem here is to describe the maps (called preservers which are kinds of symmetries) that preserve certain important characteristics (numerical quantities, relations, operations, etc) of a given mathematical structure. Immediate and well-known examples for preservers are isometries (distance preserving maps) in various geometries, and algebraic automorphisms (operation preserving maps) in various parts of algebra.

In this doctoral topic we are concerned with structures which consists of matrices, linear operators, or scalar valued functions. Hence the research is connected to linear algebra, analysis, and functional analysis. Its aim is to contribute to and make developments in a chosen subfield of the area of preserver problems.

Requirements: ---

Contact:
Phone: 36 1 463 1111 /5704 ext.
e-mail: molnarl@math.bme.hu

Place of work: Department of Analysis, Institute of Mathematics, BME

Statement
The conditions of the research above are satisfied, the theme is confirmed by the head of the Department
PhD research theme

BME, Doctoral School of Mathematics and Computer Science

Name of the supervisor: Mosonyi Milán

Degree: PhD

Title of the topic: PhD in Quantum Information Theory

Short description:
Quantum Information Theory is one of the most active research fields in present days, thanks partly to its great technological promises (quantum computer, unconditionally secure communication, ultra-precise metrology) and to the host of exciting problems it poses in Mathematics, Physics, and Computer Science. The candidate's task will be to work on problems at the mathematical/statistical foundations of Quantum Information Theory. The aim of the project is to identify the ultimate theoretical limits of the performance of coding strategies in various problems, like source compression, channel coding and hypothesis testing, by finding explicit descriptions of the exact trade-off curves between the competing quantities characterizing each problem, and linking them to measures of information, correlation, and dissimilarity of quantum states. An important part of the project is the study of various information quantities by the help of matrix analysis and other mathematical tools.

Requirements: The ideal candidate should have a solid background in mathematics. Prior experience (specialized courses, students projects, etc.) in any of the following fields is an advantage, though not necessary: Matrix analysis, functional analysis, operator algebras, information theory, quantum physics.

Contact:
Phone: 36 1 463 2767
e-mail: mosonyi@math.bme.hu

Place of work: Department of Analysis, Institute of Mathematics, BME

Statement
The conditions of the research above are satisfied, the theme is confirmed by the head of the Department
PhD research theme,
BME, Doctoral School of Mathematics and Computer Science

Name of the advisor: Attila Nagy

Degree: PhD

Title of the topic: Algebraic examinations of semigroups

Short description:

The task of the PhD student is to study the algebraic theory of semigroups and try to solve problems in this fields. The following two topics are in the center:

Congruence permutable semigroups: A semigroup S is said to be congruence permutable if $\alpha o \beta = \beta o \alpha$ is satisfied for every congruences α and β of S, where o denotes the usual composition of binary relations. The object is to determine congruence permutable semigroups in special classes of semigroups.

By the Birkhoff’s theorem, every semigroup is a subdirect product of subdirectly irreducible semigroups. Thus it is an interesting problem to find subdirectly irreducible semigroups. The object is to determine subdirectly irreducible semigroups in special classes of semigroups.

The student have to publish his results in high quality journals.

Requirements: MSc degree from mathematics

Contact:

Email: nagyat@math.bme.hu

Tel: +3614632094

Place of work: Mathematical Institute of Budapest University of Technology and Economics, Department of Algebra.

Statement
The conditions to do research in the proposed research topic is provided by the Department of Algebra. The announcement of this PhD research topic was approved by the head of the Department of Algebra.
PhD theme

Doctoral School of Mathematics and Computer Science

Advisor: prof. Lajos Rónyai

Title of the theme: Algebraic methods in computer science

Short description:
Algebraic tools and techniques have proved to be very efficient in the study of some problems of discrete mathematics and computer science. Particularly interesting are here the explicit constructions of algebraic nature. As examples, one can mention notable error correcting codes, such as Reed-Solomon codes. Some cryptographic techniques (such as ElGamal encryption, Diffie-Hellmann key exchange, or ECC) also involve algebraic ideas. Algebraic methods have led to important constructions in combinatorics, such as the norm graphs. The main objective of the project would be the study and development of constructive applications in the spirit of the above examples. From this very wide area we could select specific topics according to the interest and background of the student. There are important theoretical problems as well as questions close to computational applications.

Requirements from applicants: MSc degree from mathematics, or computer science, or engineering.

Contact of the advisor:
Telephone:+36-1-4632094
e-mail: lajos@math.bme.hu

Place of work: Mathematical Institute of Budapest University of Technology and Economics, Department of Algebra.

Statement
The conditions to do research in the proposed research topic is provided by the Department of Algebra. The announcement of this PhD research topic was approved by the head of the Department of Algebra.
PhD kutatási témajavaslat
BME, Matematika és Számítástudományok Doktori Iskola

A témavezető neve, tud. fokozata (külső témavezető esetén tanszéki konzulens adatai is):

Dr. Szirmai Jenő, PhD

A PhD témá címe:
Ball packings, coverings and Dirichlet-Voronoi cells in Thurston geometries

A kidolgozandó feladat tömör leírása:

The classical sphere packing problems concern arrangements of non-overlapping equal spheres (rather balls) which fill a space. Space is the usual three-dimensional Euclidean space. However, ball (sphere) packing problems can be generalized to the other 3-dimensional Thurston geometries

\[E^3, \ S^3, \ H^3, \ S^2 \times R, \ H^2 \times R, \ SL_2 R, \ Nil, \ Sol \]

and to higher dimensional various spaces.

In an n-dimensional space of constant curvature \(d_{n}(r) \) be the density of \(n+1 \) spheres of radius \(r \) mutually touching one another with respect to the simplex spanned by the centres of the spheres. L. Fejes Tóth and H.S.M. Coxeter conjectured that in an n-dimensional space of constant curvature the density of packing spheres of radius \(r \) can not exceed \(d_{n}(r) \). This conjecture has been proved by C. Roger in the Euclidean space. The 2-dimensional case has been solved by L. Fejes Tóth. In an 3-dimensional space of constant curvature the problem has been investigated by Böröczky and Florian and it has been studied by K. Böröczky for n-dimensional space of constant curvature (\(n> 3 \)).

We have studied some new aspects of the horoball and hyperball packings in n-dimensional hyperbolic space and we have realized that the ball, horoball and hyperball packing problems are not settled yet in the n-dimensional \(n>2 \) hyperbolic space.

The goal of this PhD program to generalize the above problem of finding the densest geodesic and translation ball (or sphere) packing and covering to the other 3-dimensional homogeneous geometries (Thurston geometries) \(S^2 \times R, \ H^2 \times R, \ SL_2 R, \ Nil, \ Sol \). Moreover, we will study the structure of Dirichlet-Voronoi cells related to the packing configurations.

We note here that the greatest known packing density is realized in \(S^2 \times R \) geometry with packing density is \(\sim 0.87499429 \).

We will use the unified interpretation of the Thurston geometries in the projective 3-sphere.

További információk: www.math.bme.hu/~szirmai

A jelentkezõvel szemben támogatott elvárások (pl. idegen nyelv ismeret, matematika bizonyos irányainak alaposabb ismerete, stb.):

A témavezető elérhetősége (külső témavezető esetén tanszéki konzulens adatai is):
Telefon: 2645
E-mail: szirmai@math.bme.hu

A doktori munka készítésének helye (tanszék megnevezése, külső témavezető esetén külső kutatóhely is):
BME, MI, Geometria Tanszék

Nyilatkozat
A javasolt témában kutatási feltételei a tanszéken biztosítottak, a téma meghirdetését a tanszékvezető jóváhagyta.