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Recently, there has been a considerable interest in different aspects of polynomial approximation (orthog-
onal polynomials, interpolation) with respect to Freud and Erdős weights on the real line. In this paper we
extend some of these results for a more general class of weights. We will consider weights which have finitely
many zeros on the real line, and prove density theorems for polynomial approximation in the corresponding
space of functions. Also, we will construct systems of nodes of interpolation where the weighted Lebesgue
constant is of optimal order. Allowing roots for the weight opens the possibility of considering spaces of
piecewise continuous (unbounded) functions. As far as we know, it was D. S. Lubinsky and E. B. Saff [1,
Theorems 3.4–3.5] who considered such weights (from different aspects).

Our starting point is the following result, attributed to Akhiezer, Babenko, Carleson and Dzrbasjan (see
D. S. Lubinsky [2]).

THEOREM A. Let w = e−Q where Q is even on R, Q(ex) is convex on (0,∞), and let

(1) Cw(R) := {f | f ∈ C(R), lim
|x|→∞

(f(x)w(x)) = 0}.

For an f ∈ Cw(R) define the best polynomial approximation

En(f)w := inf
p∈Πn

||w(f − p)||

where || · || is the supremum norm over R, and Πn is the set of polynomials of degree at most n. Then

(2) lim
n→∞

En(f)w = 0 for all f ∈ Cw(R)

if and only if ∫ ∞

0

Q(x)

1 + x2
dx = ∞.

Our first result generalizes the ”if” part of this theorem for a wider class of weights defined below.

DEFINITION 1. The set of weight-functions w(x) = e−Q(x) ∈ W1 is defined by the following conditions.
Let −∞ < t1 < . . . < ts <∞ be arbitrary fixed real numbers, and let Q(x) satisfy the following properties:

(i) 0 < Q ∈ C(R \ ∪s
i=1{ti}), limx→ti Q(x) = ∞ (i = 1, . . . , s),

(ii) lim sup
x→∞

|Q(x)−Q(−x)| <∞,

(iii) Q(ex) is convex for x large, and
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(iv)
∞∫

ts+1

Q(x)dx
1+x2 = ∞.

This class of weights W1 is more general than those considered in the above cited theorem, since w ∈ W1

vanishes at ti (i = 1, . . . , s). Also, condition (ii) permits a certain asymmetry of the weight at ±∞. Finally,
(iii) requires convexity only for large x.

Here are two characteristic examples for weights in W1:

(3) w(x) = e−|x|α
s∏

i=1

|x− ti|αi | log |x− ti||βi

(α ≥ 1, αi ≥ 0, βi ∈ R, βi < 0 if αi = 0, i = 1, . . . , s),

and

(4) w(x) = exp

(
−|x|α −

s∑
i=1

bi
|x− ti|αi

)
(α ≥ 1, bi, αi > 0, i = 1, . . . , s).

Now let (compare (1))

Cw(R) := {f | f ∈ C(R \ ∪s
i=1{ti}), lim

x→ti
(w(x)f(x)) = 0, i = 0, 1, . . . , s+ 1},

where t0 = −ts+1 = −∞. Hence Cw(R) contains functions which are unbounded at the ti’s.

THEOREM 1. We have (2) for all w ∈ W1 and f ∈ Cw(R).

PROOF. Let f ∈ Cw(R) and ε > 0 be arbitrary. Then there exists δ = δ(ε) > 0 such that

(5) w(x)|f(x)| < ε if x ∈ Ii := (ti − δ, ti + δ), i = 1, . . . , s.

Let li(x) be the linear function which interpolates f(x) at ti ± δ, i = 1, . . . , s, and let

(6) fε(x) :=

{
f(x) if x ̸∈ ∪s

i=1Ii,
min{f(x), li(x)} if x ∈ Ii, i = 1, . . . , s.

Now let max(|t1|, |ts|) < a < b be such that the continuous function

Q̃(x) :=

min|x|≤aQ(x) if 0 ≤ x ≤ a,
linear if a ≤ x ≤ b,
Q(x) if x ≥ b

has the property that Q̃(ex) is convex for all x ≥ 0. Such a and b exist by the properties of Q. But then,

extending Q̃ to (−∞, 0) as an even function, the resulting weightfunction w̃(x) := e−Q̃(x) evidently satisfies
the conditions of Theorem A. Besides, by definition

(7) Q̃(x) ≤ Q(x) +M, where M := sup
x≥a

|Q(x)−Q(−x)|.

Hence and by (6), fε(x) ∈ Cw̃(R), and by Theorem A there exists a polynomial p(x) such that

(8) ||w̃(x)[fε(x)− p(x)]|| < ε.

Hence and by (7)
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w(x)|f(x)− p(x)| ≤ w(x)[|f(x)− fε(x)|+ |fε(x)− p(x)|] ≤

≤ w(x)|f(x)− fε(x)|+ eM w̃(x)|fε(x)− p(x)| ≤ w(x)|f(x)− fε(x)|+ eMε.

Here by (6), the first term is zero if x ̸∈ ∪s
i=1Ii. Now by (5) and (6)

w(x)|f(x)− fε(x)| ≤ w(x)|f(x)|+ w(x)|fε(x)| ≤

≤ 2w(x)|f(x)| ≤ 2ε (x ∈ ∪s
i=1Ii).

Collecting our estimates we get

w(x)|f(x)− p(x)| ≤ (2 + eM )ε (x ∈ R),

which proves the theorem.

Now we define a subset W2 of W1.

DEFINITION 2. We shall say that w(x) = v(x)e−Q(x) ∈ W2 if the following conditions hold:
(a) Q is even, continuous in R, 0 < Q′ ∈ C(0,∞), and there exist 1 < A ≤ B <∞ such that

(9) A ≤ (xQ′)′

Q′ ≤ B (x ≥ 0);

(b) v(x) ≥ 0 is continuous in R, v(x) > 0 if x ∈ R \ ∪s
i=1{ti}, and there exist integers mi ≥ 0 (i −

1, . . . , s) and constants c1, c2, c3 ≥ 0 such that1

(10) c1

∣∣∣∣x− ti
y − ti

∣∣∣∣mi+1

≤ v(x)

v(y)
≤ c2

∣∣∣∣x− ti
y − ti

∣∣∣∣mi

(|x− ti| ≤ |y − ti| ≤ c3, i = 1, . . . , s).

(c) v(x) is twice differentiable for large |x|, and 2

(11) v(x) ∼ v(−x) (x→ ∞),

(12)

∣∣∣∣∣
(
v′(x)

v(x)

)′
∣∣∣∣∣ = o(|x|A−2) (|x| → ∞).

It is easy to see that W2 ⊂ W1. Namely, with the notation

Q̃(x) := Q(x)− log v(x),

we can show that (i), (ii) with Q̃ instead of Q follow from (b), (a)-(11), respectively, while (iii) follows from
the fact that Q̃(ex) is convex for large x. Namely,

1 In what follows, c1, . . . will denote positive constants possibly depending on the weights but independent
of n.

2 ∼ means that the ratio of the two sides remains between two positive constants as x→ ∞.
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(13) Q′(x) ≥ Q′(1)min(xA−1, xB−1) (x ≥ 0)

(cf. G. Criscuolo, B. DellaVecchia, D. S. Lubinsky and G. Mastroianni [3], Lemma 4.1(a)-(b)), and since (12)
evidently implies

(14)
|v′(x)|
v(x)

= o(|x|A−1) (|x| → ∞),

we get from (9)

(xQ̃′(x))′ = (xQ′(x))′ −
(
xv′(x)

v(x)

)′

≥ AQ′(x)− o(xA−1) ≥ cxA−1 > 0 (x ≥ 1)

with some constant c > 0. Finally, (iv) follows from

Q̃(x) ≥ cxA − o(xA) (x large)

(see (13) and (14)).

A characteristic example for weight in W2 is the function (3). The only difficulty in checking this is to
choose the mi’s in (10):

mi =

 [αi] if αi is not an integer,
αi if αi is an integer and βi < 0,
αi − 1 if αi is an integer and βi ≥ 0.

However, it is easy to see that the function in (4) is not in W2, since (10) does not hold because of the
non-polynomial decrease of the weight near the singularities. The weights with Q(x) = |x|α and

v(x) =


−x if −1 ≤ x ≤ 0,
x2 if 0 ≤ x ≤ 1,
1 if |x| ≥ 1

or

v(x) = |x|
(
|x|+

∣∣∣∣sin 1

x

∣∣∣∣)
are also not in W2; the first because of the asymmetry and the second because of the oscillation at the
singularity (again, the critical condition (10) does not fulfil). Nevertheless, these weights are easily seen to
be in W1.

Since Theorem 1 ensures the density of polynomials for weights in the class W∞, it makes sense to look
for systems of nodes of interpolation for which the weighted Lebesgue constant

λw :=

∥∥∥∥∥w(x)
n∑

k=1

|lk(x)|
w(xk)

∥∥∥∥∥
(cf. e.g. Szabados [4]) is optimal in order for w ∈ W2.

THEOREM 2. For any w ∈ W2, there exists a system of nodes {xk}nk=1 ⊂ R such that

λw = O(log n).

This order of magnitude of the Lebesgue constant is probably optimal, but we do not address this
problem here. Theorem 2 is a generalization of Theorem 1, (7) from [4].

PROOF. Let a > max1≤i≤s |ti| and
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(15) V (x) :=

{√
v(x)v(−x)
u(x)u(−x) if |x| ≥ a,

V (a)eα(|x|
B−aB)+β(|x|B−aB)2 if |x| < a,

where

(16) u(x) :=
s∏

i=1

|x− ti|mi

and

(17) α :=
1

BaB−1

V ′

V
(a), β :=

1

2B2a2B−2

(
V ′

V

)′

(a)− B − 1

2B2a2B−1

V ′

V
(a).

(Here V ′(a) and V ′′(a) are meant to be right derivatives calculated from the first part of the definition of
V (x) in (15).)

First we show that w1(x) := e−Q1(x), where

(18) Q1(x) := Q(x)− log V (x),

is a Freud weight, i.e. it satisfies (a) of Definition 2 (with Q1 instead of Q). Q̄ is, by definition, even and
continuous in R. An easy calculation shows that the values of α and β in (17) are defined such that V (x) is
twice differentiable at x = ±a, and thus by (c) of Definition 2, for all x ∈ R. Further, we obtain from (15),
(16) and (14)

(19)

∣∣∣∣V ′

V
(x)

∣∣∣∣ = 1

2

∣∣∣∣v′v (x)− u′

u
(x)− v′

v
(−x) + u′

u
(−x)

∣∣∣∣
= o(xA−1) +O(x−1) = o(xA−1) (x→ ∞).

Hence and from (17)

(20) |α| = o(aA−B) (a→ ∞).

Similarly, using also (12)

(21)

∣∣∣∣∣
(
V ′

V

)′

(x)

∣∣∣∣∣ = o(xA−2) +O(x−2) = o(xA−2) (x→ ∞).

Thus from (17)

(22) |β| = o(aA−2B) (a→ ∞).

Now, in order to show condition (9) for Q1 and for some A1, B1 instead of Q,A,B, respectively, we
write
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(23)
(xQ̄′(x))′

Q̄′(x)
= 1 +

xQ′′(x)
Q′(x) − x

Q′(x)

(
V ′

V

)
′(x)

1− 1
Q′(x)

V ′

V (x)
.

Here, by the definition of V (x), (13), (19), (20)-(22) and (14)

1

Q′(x)

V ′

V
(x) =

{
BxB−1

Q′(x) [α+ 2β(xB − aB)] = O(|α|aB−A + |β|a2B−A = o(1) if |x| ≤ a,

o(|x|A−1)
Q′(1)|x|A−1 = o(1) if |x| > a,

i.e.

(24) M1 :=

∥∥∥∥ 1

Q′(x)

V ′

V
(x)

∥∥∥∥ < 1

provided a is large enough.
Similarly, using (14) and (20)-(22)

x

Q′(x)

(
V ′

V

)′

(x) =


B(B−1)xB−1(α−2βaB)+2B(2B−1)βx2B−1

Q′(x)

= O((|α|+ |β|aB)aB−A + |β|a2B−A) = o(1) if |x| ≤ a,
o(|x|A−1)

Q′(1)|x|A−1 = o(1) if |x| > a,

i.e.

(25) M2 :=

∥∥∥∥∥ x

Q′(x)

(
V ′

V

)′

(x)

∥∥∥∥∥ < A

provided a is large enough.3 Now (9) and (23)-(25) yield

1 < 1 +
A−M2

2
<

(xQ′
1(x))

′

Q′
1(x)

< 1 +
B

1−M1
<∞ (x ∈ R)

which shows that w1(x) is indeed a Freud weight.
We now construct the point system realizing the optimal order of magnitude of the Lebesgue constant.

Let

(26) r :=
s∑

i=1

mi,

and consider the roots of the polynomial pn+r−2(x) of degree n+ r− 2 orthogonal with respect to the Freud
weight w1(x)

2. Let n be sufficiently large, and for each 1 ≤ i ≤ s, let yi,1, yi,2, . . . , yi,mi+2 be the mi + 2
roots of this polynomial nearest to ti, in such an order that

(27) |ti − yi,1| ≤ |ti − yi,2| ≤ . . . ≤ |ti − yi,mi+2| (i = 1, . . . , s).

We drop the first mi + 1 of these roots from, and add

3 The ”O” and ”o” signs in the previous formulas refer to either x→ ∞ or a→ ∞.
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(28) zi :=

{
λyi,1+yi,2

λ+1 if sgn (ti − yi,1) = sgn (ti − yi,2),
λti+yi,2

λ+1 otherwise
(i = 1, . . . , s)

to the set of roots of pn+r−2, where λ > 0 is a constant to be chosen later. In this way we get n− 2 roots.
Further let z0 > 0 be a point where the norm ∥w1pn+r−2∥ is attained; we add ±z0 to the previous system of
nodes. These n nodes x1, . . . , xn will be our system. In other words, these are the roots of the polynomial

(29) ωn(x) := pn+r−2(x)(x
2 − z20)

s∏
i=1

x− zi∏mi+1
j=1 (x− yi,j)

of degree n.
We shall prove a series of lemmas estimating quantities related to this polynomial. Let an be the

Mhaskar–Rahmanov–Saff number belonging to the Freud weight w1 = e−Q1 (i.e. Q1 satisfies (a) of Definition
2), that is for any polynomial p of degree at most n we have

∥w1p∥ = max
|x|≤an

w1(x)|p(x)|

(cf. e.g. Mhaskar and Saff [5]).

LEMMA 1. Given a Freud weight w1 = e−Q1 , there exist constants 0 < c4 < 1 < c5 such that for any
polynomial of degree at most n we have

w1(x)|p(x)| ≤ ∥w1p∥cn4 (|x| ≥ c5an).

PROOF. By the above definition of an and the monotonicity of Q1 we get

|p(x)| ≤ ∥w1p∥
w1(an)

(|x| ≤ an).

Then, as it is well-known, outside this interval p can be estimated as

|p(x)| ≤ ∥w1p∥
w1(an)

(
2|x|
an

)n

(|x| ≥ an).

Hence, using mean value theorem, the relation

anQ
′
1(an) ≥ c6n,

as well as the monotonicity of Q′
1 (cf. Levin–Lubinsky [6, Lemma 3.1] and [7, Lemma 5.1(d)]) we obtain for

c5 ≥ 1/c6

w1(x)|p(x)| ≤ ∥w1p∥
(

2

an

)n

|x|neQ1(an)−Q1(x) ≤ ∥w1p∥
(

2

an

)
|x|ne−(x−an)Q

′
1(an)

≤ ∥w1p∥
(

2

an

)n

|x|ne−c6(x−an)n/an ≤ ∥w1p∥(2c5)ne−c6(c5−1)n ≤ ∥w1p∥cn4 (|x| ≥ c5an)

provided c5 is large enough.

LEMMA 2. Let x ∈ R and

(30) |x− xj | := min
1≤k≤n

|x− xk|.
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Then we have

(31) w(x)

∣∣∣∣ ωn(x)

x− xj

∣∣∣∣ = O

(
v(x)na

1/2
n ψ

5/4
n (x)

u(x)V (x)

)
(x ∈ R),

where

(32) ψn(x) := max{n−2/3, 1− |x|/an}.

Here in case

(33) |x− xj | ≤
ηan

nψn(x)1/2

with a small enough η > 0 the estimate is sharp in the sense of the order of magnitude.

PROOF. We distinguish three cases.
Case 1: xj = z0 (the case xj = −z0 can be handled similarly). Then we get from (29)

w(x)

∣∣∣∣ ωn(x)

x− xj

∣∣∣∣ = v(x)

V (x)
w1(x)|pn+r−2(x)|(x+ z0)

s∏
i=1

|x− zi|∏mi+1
j=1 |x− yi,j |

.

Here by the definition of yi,j we have

(34) |x− yi,j | ∼ |x− ti| (j = 1, . . . ,mi + 1, i = 1, . . . , s)

(35) |x− zi| ∼ |x− ti| (i = 1, . . . , s),

and4

(36) w1(x)|pn+r−2(x)(x+ z0)|

=

{
O(a

−1/2
n ψn(x)

−1/4an) = O(na
1/2
n ψn(x)

5/4) if an ≤ |x| ≤ c5an,

O(n1/6a
1/2
n cn4 ) if |x| ≥ c5an

(cf. [3, Lemma 4.2(b)] and [4, Lemma 2]). Note that in case (33), with a sufficiently small η > 0, the last
estimate is sharp (cf. [3, Lemma 4.2(d)]). Using these relations, as well as (16), we get

w(x)

∣∣∣∣ ωn(x)

x− xj

∣∣∣∣ = O

(
v(x)

u(x)V (x)
a−1/2
n ψn(x)

−1/4an

)
= O

(
v(x)

u(x)V (x)
a1/2n ψn(x)

−1/4

)
,

which is equivalent to (31), since in this case ψn(x) ∼ ψn(an) = n−2/3 (cf. [4, Lemma 2]). Also, the estimate
is sharp if (33) holds.

Case 2: xj is a zµ. Then

w(x)

∣∣∣∣ ωn(x)

x− xj

∣∣∣∣ = v(x)

V (x)

w1(x)|pn+r−2(x)|(z20 − x2)∏mµ+1
j=1 |x− yµ,j |

s∏
i=1
i ̸=µ

|x− zi|∏mi+1
j=1 |x− yi,j |

.

4 Here we use the relation an+r−1 ∼ an (cf. [3, Lemma 4.5(c)]).
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Here z20 − x2 ∼ a2n, further (3) holds again. Moreover, (35) also holds except for i = µ. Using again (36), as
well as (32), ψn(x) ∼ 1 and |x− yµ,j | ∼ an/n we get

w(x)

∣∣∣∣ ωn(x)

x− xj

∣∣∣∣ = O

(
v(x)

V (x)u(x)

a
−1/2
n a2n

an

n

)
= O

(
v(x)

V (x)u(x)
na1/2n

)
,

which proves (31) in this case. Again, the estimate is sharp when (33) holds.
Case 3: xj is not ±z0, z1, . . . , zs. Then

w(x)

∣∣∣∣ ωn(x)

x− xj

∣∣∣∣ = v(x)

V (x)

w1(x)|pn+r−2(x)|
|x− xj |

|x2 − z20 |
s∏

i=1

|x− zi|∏mi+1
j=1 |x− yi,j |

.

Now (34)–(35) still holds, and we also have

w1(x)|pn+r−2(x)|
|x− xj |

|x2 − z20 | = O(na−3/2
n ψn(x)

1/4a2nψn(x)) = O(na1/2n ψn(x)
5/4)

(|x| ≤ an(1 + cn−2/3))

(cf. [3, Lemma 4.2(d)]; and this is sharp in case (33) holds);

w1(x)|pn+r−2(x)|
|x− xj |

|x2 − z20 | = w1(x)|pn+r−2(x)| ·
∣∣∣∣x− z0
x− xj

∣∣∣∣ · |x+ z0|

= O(a−1/2
n ψn(x)

−1/4an) = O(na1/2n ψn(x)
5/4) (an(1 + cn−2/3) ≤ |x| ≤ c5an)

(cf. [3, Lemma 4.2(b)]), since |z0|, |xj | ≤ an(1 + (c/2)n−2/3) if c is large enough (cf. [3, Lemma 4.4]); finally
by our Lemma 1

w1(x)|pn+r−2(x)|
|x− xj |

|x2 − z20 | = O(na1/2n cn4 ) (|x| ≥ c5an)

which is more than stated.
Collecting these estimates we obtain

w(x)

∣∣∣∣ ωn(x)

x− xj

∣∣∣∣ = O

(
v(x)

V (x)
na−3/2

n ψn(x)
1/4a2nψn(x)

s∏
i=1

1

|x− ti|mi

)

= O

(
v(x)

V (x)u(x)
na1/2n ψn(x)

5/4

)
,

and the lemma is completely proved.

COROLLARY 1.We have

w(x)|ωn(x)| = O

(
v(x)a

3/2
n ψ

3/4
n (x)

u(x)V (x)

)
(x ∈ R).

This follows from (31) by taking into account that

|x− xj | = O

(
an

nψn(x)1/2

)
,

which is a consequence of the root distance relation

(37) ∆xi := xi − xi+1 ∼ an
nψn(xi)1/2

(i = 1, . . . , n− 1)
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(cf. [3, Lemma 4.4]). The applicability of the last relations for xi’s instead of the original roots of the
polynomial pn+r−2 follows from the construction of these nodes.

COROLLARY 2.We have

w(xj)|ω′
n(xj)| ∼

v(xj)ψn(xj)
5/4

u(xj)V (xj)
na1/2n (j = 1, . . . , n).

This follows again from (31) by letting x→ xj and using the sharpness of the estimate.

We now return to the proof of Theorem 2. Using the notation (30), Lemma 2 and Corollaries 1 and 2
we get

(38) w(x)
n∑

k=1

|lk(x)|
w(xk)

= O

(
v(x)

u(x)

u(xj)

v(xj)

V (xj)

V (x)

(
ψn(x)

ψn(xj)

)5/4

+
v(x)ψn(x)

3/4an
u(x)V (x)n

n∑
k=1
k ̸=j

u(xk)V (xk)

v(xk)ψn(xk)5/4|x− xk|

 .

Here in the first term ψn(x) = O(ψn(xj)), and in case |x| ≥ a we have v(x)
u(x)V (x) = O(1) by (15). If |x| < a

then again by (10)

v(x)

v(xj)
= O

(
u(x)

u(xj)

(
1 +

∣∣∣∣ x− ti
xj − ti

∣∣∣∣)) = O

(
u(x)

u(xj)

)
,

where ti is the nearest to x, and by (15) V (x) ∼ 1, V (xj) ∼ 1. This shows that the first term in (38) is O(1).
For the rest of the right-hand side in (38), applying (37) we get

O

∑
k ̸=j

v(x)

u(x)V (x)

u(xk)

v(xk)V (xk)

(
ψn(x)

ψn(xk)

)3/4
∆xk

|x− xk|


≤

s∑
i=1

∑
|x−ti|≤|xk−ti|≤c3

k ̸=j

+
s∑

i=1

∑
|xk−ti|<|x−ti|≤c3

k ̸=j

+
∑

|xk−ti|≥c3, 1
2
(ti−1+ti)≤xk≤ 1

2
(ti+ti+1)

k ̸=j

+
∑

xk< 1
2
(t0+t1)orxk> 1

2
(ts+ts+1)

k ̸=j

= A1 +A2 +A3 +A4,

where now t0 = −a = ts+1.
For A1, we get from (10), (15) and (32)

v(x)

v(xk)
= O

(
u(x)

u(xk)

)
,

(39) V (x) ∼ 1, V (xk) ∼ 1

and

(40)
ψn(x)

ψn(xk)
= O(1),

10



whence

(41) A1 = O

∑
k ̸=j

∆xk
|x− xk|

 = O(log n)

(cf. [4, Lemma 6]). For A2, (39) and (40) still hold, and again by (10)

v(x)

v(xk)
= O

(
u(x)

u(xk)

∣∣∣∣ x− ti
xk − ti

∣∣∣∣) = O

(
u(x)

u(xk)

(
1 +

∣∣∣∣ x− ti
xk − ti

∣∣∣∣)) ,
whence

A2 = O(A1) +O

∑
k ̸=j

∆xk
|ti − xk|

 = O(log n),

again by Lemma 6 in [3].
For A3, by (10) and (15)

v(x) ∼ u(x)V (x), u(xk) ∼ v(xk)V (xk),

and (40) still holds. Therefore A3 has the same estimate as A1 in (41).
Finally, A4 is estimated the same way as A3. Theorem 2 is completely proved.
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