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Abstract

We study the Nikol’skii type inequality for even entire functions of given exponential type between the

uniform norm on the half-line [0,∞) and the norm
(∫∞

0
|f(x)|q x2α+1dx

)1/q
of the space Lq((0,∞), x2α+1)

with the Bessel weight for 1 ≤ q < ∞ and α > −1/2. An extremal function is characterized. In particular,
we prove that the uniform norm of an extremal function is attained only at the end point x = 0 of the
half-line. To prove these results, we use the Bessel generalized translation.

Key words and phrases: entire functions of exponential type, Nikol’skii type inequality, Bessel gener-
alized translation.

1 INTRODUCTION

1.1 Notation. Problem statement

For 1 ≤ q < ∞ and α > −1, denote by Lq
α = Lq((0,∞), x2α+1) the space of complex-valued Lebesgue

measurable functions f on the half-line R+ = [0,∞) such that the function |f(x)|q x2α+1 is integrable
over (0,∞). The space Lq

α is equipped with the norm

∥f∥q,α = ∥f∥Lq
α
=

(∫ ∞

0

|f(x)|q x2α+1dx

)1/q

, f ∈ Lq
α.

In the case q = ∞ (α > −1), we assume that L∞
α is the space L∞ = L∞(0,∞) of functions f measurable

and essentially bounded on R+ with the norm

∥f∥∞ = ess sup {|f(x)| : x ∈ (0,∞)}, f ∈ L∞.

Along with L∞, we consider the space C = C[0,∞) of functions continuous and bounded on the half-line
[0,∞) with the uniform norm

∥f∥C[0,∞) = sup{|f(x)| : x ∈ [0,∞)}.

Denote byE (σ, q, α) the set of even entire functions of exponential type (at most) σ > 0 whose restrictions
to the half-line [0,∞) belong to the space Lq

α. Platonov [29] studied the approximative and extremal
properties of the classE (σ, q, α) in the space Lq

α in details. In particular, he proved that, for 1 ≤ q < p ≤ ∞
and α > −1/2, the Nikol’skii type inequality

(1.1) ∥f∥p,α ≤ K σ(2α+2)(1/q−1/p) ∥f∥q,α, f ∈E (σ, q, α),

1This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013,
between the Ministry of Education and Science of the Russian Federation and Ural Federal University).

2V.Arestov, A.Babenko, and M.Deikalova were supported by the Russian Foundation for Basic Research (project no. 15-
01-02705) and by the Program for State Support of Leading Scientific Schools of the Russian Federation (project no. NSh-
9356.2016.1).
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holds with some constant K = K(q, p, α) (see [29, Theorem 3.5]; this result was announced earlier in [28,
Theorem 2]).

In the present paper, we will discuss inequality (1.1) for p = ∞, i.e., the inequality

(1.2) ∥f∥C ≤M ∥f∥q,α, f ∈E (σ, q, α),

with the best (i.e., the smallest possible) constant M = M(σ, α, q). The aim of the present paper is to
study extremal functions in inequality (1.2), i.e., functions ρσ ∈E (σ, q, α), ρσ ̸≡ 0, for which this inequality
becomes an equality. In particular, we will study the uniqueness of an extremal function. It is clear that, if
a function ρσ is extremal, then the function cρσ for any constant c ̸= 0 is also extremal. If ρσ is an extremal
function in inequality (1.2) and any other extremal function has the form c ρσ, c ∈ C, then we will say that
ρσ is the unique extremal function in inequality (1.2).

If α = n
2 −1, where n is a nonnegative integer, then the space Lq

α is isometric to the subspace of spherically
symmetrical functions from the space Lq(Rn). Similarly, the spaceE (σ, q, α) is related to the space of entire
functions of n (complex) variables of exponential spherical type σ. Thus, for α = n

2 − 1, n ∈ N, inequality
(1.1) and, in particular, (1.2), is contained in Theorem 3.3.5 of Nikol’skii’s monograph [27].

Extremal (and especially approximative) properties of entire functions of exponential type of one
and several complex variables is a large part of function theory. Such problems were studied
by S.N.Bernstein, S.M.Nikol’skii, B.M.Levitan, B.Ya. Levin, N.I. Akhiezer, R.P.Jr. Boas, S.S. Platonov,
Q.I. Rahman, G. Schmeisser, V.I. Ivanov, D.V.Gorbachev, O.L.Vinogradov, A.V.Gladkaya, M.I.Ganzburg,
S.Yu.Tikhonov, and others; see [2,13,18–20,23,26,27,29,31,35] and the references therein. The related topic
of extremal properties of algebraic polynomials on an interval, domains of the complex plane, Euclidean
sphere, and other manifolds and trigonometric polynomials in one and several variables is even greater; see
monographs [9, 13, 15, 17, 25, 30, 32, 34, 38], papers [5–7, 14], and the references therein. In what follows, we
will refer only to results directly relevant to the subject of the present paper.

All functional spaces considered in this paper are complex. In addition, let us agree to say exponential
type σ instead of exponential type at most σ.

1.2 Nikol’skii inequality for the end point of the half-line

The related to (1.2) inequality

(1.3) |f(0)| ≤ D∥f∥q,α, f ∈E (σ, q, α),

with the best constant D = D(σ, q, α) plays an important role in what follows. Obviously, D ≤M . We will
show that, in fact, D =M at least for α > −1/2.

Consider the set

(1.4) E [1](σ, q, α) = {f ∈E (σ, q, α) : f(0) = 1}

of entire functions fromE (σ, q, α) equal to 1 at the point 0. Define

(1.5) ∆ = inf{∥f∥q,α : f ∈E [1](σ, q, α)}.

It is clear that D = 1/∆. Thus, the problem on the exact inequality (1.3) coincides with problem (1.5) about
the smallest deviation from zero of class (1.4) of entire functions.

Problems on entire functions that deviate least from zero were studied by Bernstein [11,12], Akhiezer [1],
Vinogradov, Gladkaya [35], and others. However, in comparison with similar problems for algebraic and
trigonometric polynomials, problems for entire functions are much less studied.

Value (1.5) can be interpreted as the best approximation in the space Lq
α of an arbitrary function from

set (1.4) by the subspace

(1.6) E [0](σ, q, α) = {f ∈E (σ, q, α) : f(0) = 0}

of functions fromE (σ, q, α) vanishing at the point 0. Therefore, it is reasonable to expect that the following
statement is valid.
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Theorem 1 For 1 ≤ q <∞, α > −1, and σ > 0, an extremal function ϱσ = ϱσ,q,α ∈E (σ, q, α), ϱσ ̸≡ 0, in
inequality (1.3) exists and is characterized by the property of “orthogonality” to set (1.6):

(1.7)

∫ ∞

0

f(x)x2α+1|ϱσ(x)|q−1sign ϱσ(x)dx = 0, f ∈E [0](σ, q, α).

For 1 < q <∞, an extremal function in inequality (1.3) is unique.

1.3 Main result

The following statement is the main result of the present paper.

Theorem 2 For α > −1/2, 1 ≤ q <∞, and σ > 0, the following statements are valid.
(1) The best constants in inequalities (1.2) and (1.3) coincide:

(1.8) M(σ, q, α) = D(σ, q, α).

(2) Inequalities (1.2) and (1.3) have the same set of extremal functions. An extremal function ϱσ,q,α of
inequalities (1.2) and (1.3) is characterized by property (1.7). For 1 < q <∞, this function is unique.

(3) For 1 ≤ q <∞, the uniform norm on the half-line [0,∞) of any function extremal in inequality (1.2)
is attained only at the point x = 0.

By now, the authors do not known whether an extremal function in inequalities (1.2) and (1.3) is unique
for q = 1.

2 Entire functions that deviate least from zero

The main aim of this section is to prove Theorem 1.

2.1 Auxiliary statement

Lemmas 1 and 2 are either known or can be proved by using known arguments. Nevertheless, to make
the presentation complete and convenient, we give their proofs. The statement of Lemma 1 is a kind of
the compactness property on the set of entire functions. This statement is well known and was used by a
number of authors; see, for example, [11], [2, Ch. IV, Sect. 83], [29, the proof of Theorem 3.6], and [27, Ch. 3,
Sects. 3.3, 3.5]. We prove Lemma 1 mostly following [2, Ch. IV, Sect. 83].

Lemma 1 Any sequence of entire functions of exponential type σ collectively bounded on the real line con-
tains a subsequence uniformly convergent to an entire function of exponential type σ on every compact subset
of the complex plane.

Proof. Assume that {fn}∞n=1 is a sequence of entire functions of exponential type σ collectively bounded
on the real line, more exactly, such that

M = sup
n≥1

∥fn∥C(R) <∞.

In the setE (σ) of entire functions of exponential type σ bounded on the real line, the following inequalities
hold for points z = x+ iy ∈ C (see, for example, [2, Ch. IV, Sect. 83, (3), (4)]):

(2.1) |f(z)| ≤Meσ|y|, |f ′(z)| ≤Mσeσ|y|, f ∈E (σ);

here,M = ∥f∥C(R). Note that the latter inequality follows from the former and known Bernstein’s inequality
for entire functions of exponential type (see, for example, [2, Ch. IV, Sect. 83]).
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Inequalities (2.1) imply that, on any compact set Q ⊂ C, the sequence {fn}∞n=1 is a uniformly bounded
and equicontinuous family of functions. By the Arzelá–Ascoli theorem (see, for example, [16, Ch. IV, Sect. 6]),
the sequence {fn}∞n=1 contains a subsequence {fnν}∞ν=1 uniformly convergent on Q. Besides, this fact can
be deduced from Montel’s theorem about the compactness of a family of analytic functions with respect to
the uniform convergence in the interior of a domain (see, for example, [24, Ch. 4, Sect. 1]).

Restricting ourselves by considering only closed circles QN = {|z| ≤ N, z ∈ C} centered at the point 0
with radii that are nonnegative integers, and applying Cantor’s diagonal process, we conclude that the
subsequence {fnν}∞ν=1 can be chosen independent from the compact set Q. Denote by f the limiting function;
this is an entire function. Using the first inequality from (2.1), we conclude that the function f has exponential
type σ. The lemma is proved.

Lemma 2 For α > −1 and 1 ≤ q <∞, the following statements are valid with respect to extremal functions
of inequality (1.3) and of the equivalent problem (1.5).

(1) An extremal function ϱσ in inequality (1.3) and in the equivalent problem (1.5) exists.
(2) An extremal function ϱσ is characterized by the “orthogonality” property (1.7).
(3) An extremal function ϱσ can have only real zeros and at least one zero exists.
(4) An extremal function ϱσ is real-valued on the real line.

Proof. (1) Let {fk}∞k=1 be a sequence of functions fromE [1](σ, q, α) minimizing value (1.5), more exactly,
possessing the property ∥fk∥q,α → ∆, k → ∞. According to inequality (1.2), this sequence is bounded on
the half-line [0,∞). By Lemma 1, the sequence {fk} contains a subsequence uniformly convergent on any
compact set of the complex plane to an entire function ϱ = ϱσ of exponential type σ; it is convenient to
assume that the sequence {fk} itself has this property. Obviously, the function ϱ is even and ϱ(0) = 1.

For any R > 0, we have(∫ R

0

|ϱ(x)|qx2α+1dx

)1/q

= lim
k→∞

(∫ R

0

|fk(x)|qx2α+1dx

)1/q

≤ ∆.

Hence, ϱ ∈ Lq
α and ∥ϱ∥q,α ≤ ∆. Consequently, ϱ ∈E [1](σ, q, α) and, for the function ϱ, the minimum is

attained in (1.5); i.e., the function ϱ is extremal in (1.5) and (1.3).
(2) The second statement of the lemma is validated by known duality arguments (see, for example, [22,

Ch. 2], [4]). The finiteness of the constant in inequality (1.3) means that f(0) is a bounded linear functional
on the subspaceE (σ, q, α) (with the norm of the space Lq

α) and its norm isD. According to the Hahn–Banach
theorem, the functional f(0) can be extended to the whole space Lq

α as a bounded linear functional Ξf with
the same norm: ∥Ξ∥(Lq

α)∗ = D. For 1 ≤ q <∞, the conjugate space for the space Lq
α is Lq′

α , 1/q
′ + 1/q = 1;

in particular,

(2.2) Ξf =

∫ ∞

0

f(x)ξ(x)dx, f ∈ Lq
α,

where ξ ∈ Lq′

α ; moreover, ∥ξ∥
Lq′

α
= ∥Ξ∥(Lq

α)∗ = D.

Since the functional Ξ is a norm-preserving extension of the functional f(0) fromE (σ, q, α) to Lq
α, the

norm of the functional Ξ in the space Lq
α is attained at a function ϱ = ϱσ extremal in inequality (1.3).

Applying Hölder’s inequality in (2.2) and taking into account the conditions under which this inequality
becomes an equality, we conclude that the formula ξ(x) = c |ϱσ(x)|q−1sign ϱσ(x), where c is a constant, hods
almost everywhere on the half-line (0,∞). For q = 1, this holds because ϱ, being an entire function, cannot
vanish on a set of positive measure from the half-line (0,∞).

It follows that

f(0) = c

∫ ∞

0

f(x)x2α+1|ϱσ(x)|q−1sign ϱσ(x)dx, f ∈E (σ, q, α),

where c ∈ C is a constant. This representation implies property (1.7) of the function ϱσ extremal in
inequality (1.3).
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It remains to prove that condition (1.7) is sufficient for a function ϱσ ∈E [1](σ, q, α) to be extremal in
problem (1.5). Using the function ϱσ, we define the functional

(2.3) Ξ0f = c

∫ ∞

0

f(x)x2α+1|ϱσ(x)|q−1sign ϱσ(x)dx, f ∈ Lq
α,

where the constant c is chosen from the condition ∥Ξ0∥(Lq
α)∗ = 1. Obviously, the norm of functional (2.3) is

attained at the function ϱσ and, hence,
∣∣Ξ0ϱσ

∣∣ = ∥ϱσ∥Lq
α
. In view of property (1.7), for an arbitrary function

f ∈E [1](σ, q, α), we have

∥f∥Lq
α
≥
∣∣Ξ0f

∣∣ = ∣∣Ξ0(ϱσ + (f − ϱσ))
∣∣ = ∣∣Ξ0ϱσ

∣∣ = ∥ϱσ∥Lq
α
.

Thus, the function ϱσ is extremal in problem (1.5).
(3) Let us prove the third statement of the lemma. Assume that a function f ∈E [1](σ, q, α) has a zero ζ

that is not real. Since the function f is even, the point −ζ is also its zero. Consider the function

g(z) = ϵ2
f(z)

z2 − ζ2
(z2 − |ζ|2), ϵ = sign ζ =

ζ

|ζ|
.

This is an entire function of exponential type σ and g(0) = 1. For real x ̸= 0, we have |x2 − |ζ|2| < |x2 − ζ2|.
Consequently, g ∈ Lq

α and ∥g∥Lq
α
< ∥f∥Lq

α
. Thus, the function g ∈E [1](σ, q, α) has a smaller norm in Lq

α in
comparison with the function f . Thus, a function fromE [1](σ, q, α) having zeros outside the real line cannot
be extremal.

For integer k > (α+ 1)/q, the function

f0(z) =

(
sin2 λz

z

)2k

, λ =
σ

4k
,

is an entire function of exponential type σ, even, belongs to the space Lq
α on the half-line (0,∞), and

f0(0) = 0. Thus, f0 ∈E [0](σ, q, α). Consequently, property (1.7) must hold for this function. Since the
function f0 is nonnegative on the half-line (0,∞), we conclude that a function ϱσ extremal in inequality (1.3)
and problem (1.5) cannot be of constant sign on the half-line (0,∞).

(4) Let us prove that an extremal function ϱ = ϱσ is real-valued on the half-line [0,∞). Together with
the function ϱ, the function ϱ defined by the relation

ϱ(z) = ϱ(z), z ∈ C,

is entire, has type σ, and ϱ(0) = 1. The absolute values of the functions ϱ and ϱ coincide on the real line:
|ϱ(x)| = |ϱ(x)|, x ∈ R. Consequently, the function ϱ belongs to the space Lq

α and the norms of the functions
ϱ and ϱ in Lq

α coincide. Thus, ϱ ∈E [1](σ, q, α) and, along with the function ϱ, the function ϱ is also extremal
in problem (1.5). By the inequality

(2.4) ∥ϱ+ ϱ∥q,α ≤ ∥ϱ∥q,α + ∥ϱ∥q,α,

the function g = (ϱ+ ϱ)/2 is also extremal, and inequality (2.4) turns into an equality. For 1 ≤ q <∞, this
fact implies that the functions ϱ and ϱ have the same sign on the half-line [0,∞), which, in this case, means
that they are real-valued on [0,∞). Lemma 2 is proved completely.

2.2 The proof of Theorem 1

All statements of Theorem 1 except for the property of uniqueness of an extremal function are contained in
Lemma 2. The space Lq

α for 1 < q <∞ is strictly normed; hence, a function extremal in problem (1.5) (and,
hence, in inequality (1.3)) is unique. Thus, Theorem 1 is proved.
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3 Fourier–Bessel transform and its application

In this section, we present some information about Bessel functions and the Fourier–Bessel transform, some-
times called the Fourier–Hankel transform, which will be need in what follows. Using the Fourier–Bessel
transform, we will give a solution of the above problems for q = 2.

3.1 Bessel functions and some of their properties

Bessel function Jα (of the first kind) of order α plays an important role in mathematics and its applications;
a widespread bibliography is devoted to the properties of this function (see monographs [10, 37] and text-
book [21]). This function is considered for complex values of the parameter α and the independent variable.
In the present paper, we assume that α is real and, moreover, α > −1. The Bessel function is defined by the
formula (see, for example, [37, Ch. III, Sect. 3.1 (8)], [10, Ch. 7, Sect. 7.2, (2)], [21, Ch. 2])

(3.1) Jα(z) =
(z
2

)α ∞∑
k=0

(−1)k

Γ(k + 1)Γ(k + α+ 1)

(z
2

)2k
.

By the D’Alembert test, the series on the right-hand side of (3.1) (absolutely) converges everywhere in the
complex plane C; hence, its sum is an entire function with nonzero value at the point 0. Consequently,
if α is a (nonnegative) integer, then Jα is a single-valued analytic function. For noninteger values of α, the
function Jα is multivalued; this function is defined everywhere in the complex plane in the case α ≥ 0, and
everywhere except the point 0 in the case α < 0. Let us list some specific cases (see [37, Ch. III, Sect. 3.4,
(3)+(6)]):

J− 1
2
(z) =

√
2

πz
cos z, J 1

2
(z) =

√
2

πz
sin z, J 3

2
(z) =

√
2

πz

(
sin z

z
− cos z

)
.

For α > −1/2, the Bessel function can be represented in the form of Poisson’s integral (see, for example,
[37, Ch. III, Sect. 3.3 (1)]):

Jα(z) =
(z/2)α

hα

∫ π

0

cos(z cos θ) sin2α θdθ, hα = Γ

(
α+

1

2

)
Γ

(
1

2

)
;

as a consequence [37, Ch. III, Sect. 3.3 (3)],

(3.2) Jα(z) =
(z/2)α

hα

∫ 1

−1

(1− t2)α−
1
2 cos(zt)dθ.

The normed Bessel function

jα(z) = Γ(α+ 1)

(
2

z

)α

Jα(z)

is of prime importance. According to (3.1), the function jα is the sum of the series

(3.3) jα(z) =
∞∑
k=0

(−1)kΓ(α+ 1)

Γ(k + 1)Γ(k + α+ 1)

(z
2

)2k
.

Series (3.3) converges in the whole complex plane C; hence, function (3.3) is entire. In particular, we have

(3.4) j− 1
2
(z) = cos z, j 1

2
(z) =

sin z

z
, j 3

2
(z) =

3

z2

(
sin z

z
− cos z

)
As a consequence of (3.2),

(3.5) jα(z) =
Γ(α+ 1)

hα

∫ 1

−1

(1− t2)α−
1
2 cos(zt)dt.
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For α ≥ − 1
2 , we have the inequality [37, Ch. III, Sect. 3.31 (1)]

(3.6) |jα(z)| ≤ e|Imz|, z ∈ C.

Inequality (3.6) for α > −1/2 follows from (3.5); for α = −1/2, (3.6) follows from the explicit form of the
function j−1/2 and (3.4). Moreover, estimate (3.6) implies that the (entire) function jα has exponential
type 1.

The function jα has the following properties:

(3.7) |jα(t)| ≤ jα(0) = 1, α ≥ −1

2
, t ∈ R;

(3.8) lim
u→∞

jα(u) = 0, α > −1

2
.

Property (3.7) can be found in [37, Ch. III, Sects. 3.3, 3.31] and [10, Ch. 7, Sect. 7.3, (4)]. Property (3.8)
follows from known asymptotic expansions of Jα(z) as z → ∞ [37, Ch. VII, Sect. 7.21], [10, Ch. 7, Sect. 7.13].
This property can also be easily proved with the use of representation (3.5).

3.2 Fourier–Bessel (Fourier–Hankel) transform

It is the most natural to consider main notions and constructions of this section in the space Lα
2 =

L2(R+, x
2α+1); this is a Hilbert space with the inner product

(f, g) = (f, g)Lα
2
=

∫ ∞

0

f(x)g(x)x2α+1 dx, f, g ∈ Lα
2 .

An important tool for studying problems in the space Lα
2 is the Fourier–Bessel (Fourier–Hankel) transform

(3.9) f(x) = ĝ(x) =
1

2αΓ(α+ 1)

∫ ∞

0

g(y)jα(xy)y
2α+1dy;

the inverse transform is defined by the same formula. The integral in (3.9) for functions f ∈ Lα
2 is understood

as the limit in Lα
2 as R→ ∞ of the family of functions

fR(x) =
1

2αΓ(α+ 1)

∫ R

0

g(y)jα(xy)y
2α+1dy.

For α = −1/2 (by the first formula in (3.4)), the Fourier–Bessel transform (3.9) is the Fourier cosine
transform.

The Fourier–Bessel transform (for all α ≥ −1/2) is a unitary operator in the space Lα
2 :

∥f̂∥Lα
2
= ∥f∥Lα

2
, f ∈ Lα

2 .

Moreover, for the Fourier–Bessel transform, Parceval’s identity holds:

(f̂ , ĝ)Lα
2
= (f, g)Lα

2
, f, g ∈ Lα

2 .

These facts can be found in [23, Sect. 2], see also [29] and the references therein.

3.3 Pointwise Nikol’skii inequality for q = 2

Along with inequality (1.3), the more general inequality

(3.10) |f(z)| ≤ D(z) ∥f∥q,α, f ∈E (σ, q, α),
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for points z ∈ C with the best constant D(z) = D(z;σ, q, α) is of interest. For q = 2, using the Fourier–Bessel
transform and well known arguments, we can find the value D(z) explicitly for all z ∈ C.

Let q = 2 and α ≥ −1/2. The Fourier–Bessel transform of a function f ∈E (σ, 2, α) is supported on the
interval [0, σ]; see, for example, [29]. Consequently,

f(z) = ĝ(z) =
1

2αΓ(α+ 1)

∫ σ

0

g(y)jα(zy)y
2α+1dy, x ∈ C.

Applying the Cauchy–Bunyakovskii inequality, we obtain

|f(z)| = 1

2αΓ(α+ 1)

∣∣∣∣∫ σ

0

g(y)jα(zy)y
2α+1dy

∣∣∣∣ ≤
≤ 1

2αΓ(α+ 1)

(∫ σ

0

|jα(zy)|2y2α+1dy

)1/2

∥g∥L2((0,∞),x2α+1).

Hence,

(3.11) D(z;σ, 2, α) =
1

2αΓ(α+ 1)

(∫ σ

0

|jα(zy)|2y2α+1dy

)1/2

and the function f such that

g(y) = f̂(y) =

{
jα(zy), y ∈ [0, σ],
0, y > σ,

is the unique extremal function in (3.10).
By property (3.7), statement (3.11) allows us to find an exact value of the best constant in the corre-

sponding inequality (1.2). Indeed, we have

M(σ, 2, α) = max{D(z;σ, 2, α) : z ∈ [0,∞)} = D(0) =
σα+1

2αΓ(α+ 1)
√
2(α+ 1)

.

4 Generalized Bessel translation: The proof of Theorem 2

In the proof of Theorem 2, we will use the generalized translation generated by the Bessel function and some
of its properties. This section is devoted to the necessary facts about the Bessel translation.

4.1 Bessel generalized translation operator

The Bessel generalized translation operator with step t ∈ [0,∞) for α > −1/2 is said to be the operator

(4.1) Ttf(x) = Tα
t f(x) = γ(α)

∫ π

0

f
(√

t2 + x2 − 2xt cosφ
)
sin2α φdφ;

here,

γ(α) =
Γ(α+ 1)

Γ
(
1
2

)
Γ
(
α+ 1

2

) =
1∫ π

0

sin2α φdφ

.

Making the change η = cosφ, we obtain the representation

(4.2) Ttf(x) = γ(α)

∫ 1

−1

f
(√

t2 + x2 − 2xtη
)(√

1− η2
)2α−1

dη.
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The translation operator (4.1) is generated by the identity

(4.3) Ttηy(x) = ηy(t)ηy(x), t, x ≥ 0,

for functions ηy(x) = jα(yx) depending on the parameter y ≥ 0; identity (4.3) is called a product formula (for
Bessel functions (3.1)). The product formula (4.3) was probably first obtained in 1875 by L.Gegenbuer [37,
Sect. 11.41, (16)].

Note that the generalized translation operator for α = −1/2 is defined by the formula

Ttf(x) =
1

2

{
f(x+ t) + f(|x− t|)

}
.

Properties of the generalized translation operator were studied in details by Levitan [23, Sect. 7]. In
particular, he proved [23, Sect. 7, (7.5)] that the operator Tt is self-adjoint for all α ≥ −1/2; more exactly, if
a function f ∈ L1

α is continuous and g ∈ C[0,∞), then

(4.4)

∫ ∞

0

(Ttf)(x)g(x)x
2α+1dx =

∫ ∞

0

f(x)(Ttan)(x)x
2α+1dx.

The generalized translation operator finds important applications in mathematics, in particular, in ap-
proximation theory where by means of the operator Tt the smoothness of functions is defined; see, for
example, [8, 29] and the references therein.

There are several ways (with equivalent results) of constructing and studying the Fourier–Bessel transform
and the generalized translation operator Tt in the spaces Lq

α. The most natural way is based on considerations
from the theory of generalized functions. Namely this method was used in [29] where further references can
be found. Let S be the space of test functions on the real line, i.e., the space of infinitely differentiable
functions on the line vanishing at infinity together with their derivatives of any order faster than absolute
values of their arguments; let this space be equipped with the standard topology; see, for example, [33, 36].
Let S ′ be the corresponding space of generalized functions, i.e., the set of continuous linear functionals
on S . In the space S , consider the subspace S + of even functions with the topology induced from S .
Denote by S+

′ the corresponding space of generalized functions, i.e., the set of continuous linear functionals
on S +. For a value of a functional f ∈ S+

′ at a test function ϕ ∈ S +, the standard notation ⟨f, ϕ⟩ is used.
The space Lq

α is embedded to the space S+
′ if we define the value of a functional f ∈ Lq

α at a test function
ϕ ∈ S + by the formula

⟨f, ϕ⟩ =
∫ ∞

0

f(x)ϕ(x)x2α+1dx.

Another method is to define the operator and obtain its desired properties on a sufficiently narrow class
of smooth functions dense in the space Lq

α and extend the operator by continuity to the whole space Lq
α.

This was done in [29] for the operator Tt with the use of the space S +. On this way, in [29, see (2.24) and
(2.21)], it is proved that, for all α > −1/2, 1 ≤ q ≤ ∞, and t ≥ 0, the operator Tt is a bounded linear
operator in Lq

α and the following inequality holds for its norm:

∥Tt∥q,α = ∥Tt∥Lq
α→Lq

α
≤ 1.

It follows from (4.3) and (3.7) that, in fact, the equality holds:

(4.5) ∥Tt∥q,α = 1.

The boundedness of the operator Tt in the space Lq
α gives us the possibility, by using a well known

argument, to extend formula (4.4) to pairs of functions f ∈ Lq
α and g ∈ (Lq

α)
∗. More exactly, the following

statement is valid, which we present here without a proof.

Lemma 3 For α > −1/2, t > 0, and 1 ≤ q <∞, formula (4.4) holds for the following pairs of functions:
(1) f ∈ Lq

α and g ∈ Lq′

α in the case 1 < q <∞;
(2) f ∈ L1

α and g ∈ C[0,∞) in the case q = 1.

9



Lemma 4 For α > −1/2, t > 0, and 1 ≤ q < ∞, the Bessel generalized translation operator Tt maps the
setE (σ, q, α) to itself :

TtE (σ, q, α) ⊂E (σ, q, α).

Proof. The value of the generalized translation operator Ttf(z) = (Ttf)(z) for z ∈ C at a function
f ∈E (σ, q, α) can be defined at least in two ways: (i) to define Ttf(z) = (Ttf)(z) by formula (4.1) or, which
is the same, (4.2) not only on [0,∞) but in the whole complex plane; (ii) to verify that, for f ∈E (σ, q, α),
function (4.1) can be continued from the half-line [0,∞) to the whole complex plane. By the (interior)
uniqueness theorem for analytic functions (see, for example, [24, Ch. 3, Sect. 6]), these two approaches
coincide. We will use the former.

A function f ∈E (σ, q, α) is entire and even. Consequently, its power series expansion has the form

f(z) =
∞∑
k=0

ckz
2k, z ∈ C.

The function

h(w) =
∞∑
k=0

ckw
k, w ∈ C,

is also entire and f(z) = h(z2), z ∈ C. The function f ∈E (σ, q, α) has exponential type at most σ; this
means that

lim
|z|→∞

ln |f(z)|
|z|

≤ σ.

In terms of the function h, this relation takes the form

(4.6) lim
|w|→∞

ln |h(w)|√
|w|

≤ σ.

Using formula (4.2), we define in the complex plane the function

(4.7) g(z) = Ttf(z) = γ(α)

∫ 1

−1

h(t2 + z2 − 2ztη)
(√

1− η2
)2α−1

dη, z ∈ C,

which is, obviously, entire and even. Property (4.6) means that, for any ε > 0, there exists a number
R = R(ε) > 0 such that the following inequality holds for |w| > R: ln |h(w)| ≤ (σ + ε)

√
|w| or, which is the

same, the inequality

(4.8) |h(w)| < exp
(
(σ + ε)

√
|w|
)
, |w| > R.

For the argument of the function h in (4.7), we have

(4.9) |t2 + z2 − 2ztη| ≤ t2 + |z|2 + 2|z|t = (|z|+ t)2,

(4.10) |t2 + z2 − 2ztη| ≥ |z|2 − (t2 + 2|z|t) = (|z| − t)2 − 2t2.

Assume that
|z| > t+

√
R+ 2t2.

Then, using (4.10), it is easy to verify that |t2 + z2 − 2ztη| > R. Therefore, for w = t2 + z2 − 2ztη,
estimate (4.8) holds. Using inequality (4.9), we obtain

|h(t2 + z2 − 2ztη)| < exp ((σ + ε)(|z|+ t)) , |z| > t+
√
R+ 2t2.
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This implies the following estimate for function (4.2):

|g(z)| < exp (t(σ + ε)) exp ((σ + ε)|z|) , |z| > t+
√
R+ 2t2.

Hence, the function g has the property

lim
|z|→∞

ln |g(z)|
|z|

≤ σ + ε.

In view of the arbitrariness of ε > 0, this inequality also holds for ε = 0. This means that g is an entire
function of exponential type at most σ.

Property (4.5) implies that the restriction of the function g to the real line belongs to the space Lq
α;

moreover, ∥g∥Lq
α
≤ ∥f∥Lq

α
. Lemma 4 is proved completely.

4.2 Bessel generalized translation operator
in Lq((0,∞), x2α+1), 1 ≤ q < ∞, α > −1/2

In addition to statement (4.5), we need to know whether the norm of the operator Tt for t > 0 in Lq
α is

attained (or not). To obtain this information, we first transform the expression for the operator Tt in the

space C[0,∞). The function u =
√
t2 + x2 − 2xtη in representation (4.2) decreases in η ∈ [−1, 1] from x+ t

to |x− t|. In the latter integral, we pass from the variable η to the varivable u =
√
t2 + x2 − 2xtη. We have

u2 = t2 + x2 − 2xtη and, consequently,

η = η(u) =
t2 + x2 − u2

2xt
, u du = −xt dη.

As a result, we obtain the following representation for (Ttf)(x) for xt > 0:

(4.11) Ttf(x) =

∫ x+t

|x−t|
f(u)F (t, x, u) du,

where

F (t, x, u) = γ(α)
(√

1− η2
)2α−1 ∣∣∣

η=η(u)

u

xt
=

= γ(α)
(√

(u2 − (x− t)2) ((x+ t)2 − u2)
)2α−1 2u

(2xt)2α
.

For fixed xt > 0, the function F (t, x, u) is positive in the variable u ∈ (|x− t|, x+ t) and∫ x+t

|x−t|
F (t, x, u) du = 1.

In certain situations, it will be convenient to consider the function F (t, x, u) for u ∈ (0,∞), setting
F (t, x, u) = 0 for u ∈ (0,∞) \ (|x− t|, x+ t).

4.2.1 Bessel translation in L1((0,∞), x2α+1), α > −1/2

In what follows, we sometimes assume that the point x in (4.11) belongs to the set

(4.12) X(t) = {x ∈ (0,∞) : x ̸= t} = (0,∞) \ {t}.

This assumption provides the fact that the integral in (4.11) is taken over the (finite) interval [|x− t|, x+ t]
from the half-line (0,∞).
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Lemma 5 For α > −1/2, t > 0, and q = 1, the following statements hold for any function f ∈ L1
α:

(1) for x ∈ X(t), the integral

(4.13)

∫ ∞

0

f(u)F (t, x, u)du =

∫ x+t

|x−t|
f(u)F (t, x, u)du

exists and is a continuous function on the set X(t);
(2) function (4.13) is integrable with the weight x2α+1 over (0,∞) and

(4.14) (Ttf)(x) =

∫ ∞

0

f(u)F (t, x, u)du.

Proof. A function f ∈ L1
α is integrable over any half-line [a,∞), a > 0. Therefore, for any function

f ∈ L1
α, integral (4.13) over the set (4.12) exists and is a continuous function.

Let {φn}∞n=1 be a sequence of functions from S + convergent to a function f in L1
α. Consider the

corresponding sequence of values (4.1) or, which is the same, (4.11) of the translation operator:

(4.15) ψn(x) = (Ttφn)(x) =

∫ ∞

0

φn(u)F (t, x, u)du.

The sequence {ψn} converges in L1
α to Ttf . Consequently, we can extract from {ψn} a subsequence convergent

to Ttf almost everywhere on (0,∞). We assume that the sequence {ψn} itself has this property. On the
other hand, as it is easy to understand, the sequence of functions (4.15) converges at any point x ∈ X(t) to
function (4.13). Consequently, equality (4.14) holds (almost everywhere on (0,∞)). The lemma is proved.

Lemma 6 For α > −1/2, t > 0, and q = 1, the norm of the operator Tα
t in the space L1

α is attained at
a function f ∈ L1

α almost everywhere nonzero on (0,∞) if and only if the function f is of constant sign
(almost everywhere) on (0,∞).

Proof. Taking the specific function g ≡ 1 in the second statement of Lemma 3, we obtain the relation

(4.16)

∫ ∞

0

(Ttf)(x)x
2α+1dx =

∫ ∞

0

f(x)x2α+1dx, f ∈ L1
α.

The operator Tt is positive. Therefore, if the function f is of constant sign (almost everywhere) on (0,∞),
then Ttf has the same sign. Formula (4.16) makes it possible to conclude that the norm of the operator Tt
in L1

α is attained at functions from L1
α that are of constant sign on (0,∞).

By (4.14), for any function f ∈ L1
α, the following inequality holds for almost all x ∈ (0,∞):

(4.17) |(Ttf)(x)| =

∣∣∣∣∣
∫ x+t

|x−t|
f(u)F (t, x, u)du

∣∣∣∣∣ ≤
∫ x+t

|x−t|
|f(u)|F (t, x, u)du = (Tt|f |)(x).

This and equality (4.16) imply the relations

(4.18) ∥Ttf∥L1
α
≤ ∥Tt|f | ∥L1

α
= ∥f∥L1

α
, f ∈ L1

α.

In order to inequality (4.18) become an equality at a function f ∈ L1
α, it is necessary and sufficient

that inequality (4.17) become an equality at this function for almost all x ∈ (0,∞). Inequality (4.17)
turns into an equality if and only if the function f is of constant sign almost everywhere on the interval
I(t, x) = (|x− t|, x+ t). The functions |x− t| and x+ t are continuous in x ∈ (0,∞). Therefore, inequality
(4.18) turns into an equality at a function f ∈ L1

α if and only if the function f is of constant sign (almost
everywhere) on I(t, x) for any x ∈ (0,∞).

The family of intervals {I(x, t) = (|x − t|, x + t), x ∈ (t,∞)} covers the half-line (0,∞). Therefore, for
any closed interval [a, b] ⊂ (0,∞), there exists a finite number of intervals I(t, x), x ∈ (0,∞) covering this
closed interval. If the norm of the operator Tt is attained at a function f and two interval I ′ = I(t, x′) and
I ′′ = I(t, x′′) have a nonempty intersection, then the function f is of constant sign on the union I ′

∪
I ′′ of

the intervals. Hence, it is easy conclude that f is of constant sign on the interval [a, b] and, consequently, on
the half-line (0,∞). Lemma 6 is proved.
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4.2.2 Bessel Translation in Lq((0,∞), x2α+1), 1 < q < ∞, α > −1/2

Lemma 7 For α > −1/2, t > 0, and 1 < q <∞, the following statements hold.
(1) For any function f ∈ Lq

α, the integral∫ ∞

0

f(u)F (t, x, u)du =

∫ x+t

|x−t|
f(u)F (t, x, u)du

for all x ∈ (0,∞), x ̸= t, exists and belongs to the space Lq
α and

(Ttf)(x) =

∫ ∞

0

f(u)F (t, x, u)du.

(2) The norm of the operator Tt in the space Lq
α is 1 and not attained.

Proof. For 1 < q <∞ and any 0 < A <∞, we have the inclusion

Lq((0, A), x2α+1) ⊂ L1((0, A), x2α+1).

By Lemma 5, the right-hand side of formula (4.14) is defined and, obviously, is a linear operator

(T̃tf)(x) =

∫ x+t

|x−t|
f(u)F (t, x, u)du

on the space Lq
α. Let us check that T̃tf ∈ Lq

α. Indeed, let f ∈ Lq
α. For x ∈ (0,∞) and t > 0, by Hölder’s

inequality, we have

(4.19)
∣∣∣(T̃tf)(x)∣∣∣ =

∣∣∣∣∣
∫ x+t

|x−t|
f(u)F (t, x, u)du

∣∣∣∣∣ ≤
(∫ x+t

|x−t|
|f(u)|q F (t, x, u)du

)1/q

.

Applying this estimate and equality (4.16) to the function |f |q, we obtain

(4.20) ∥T̃tf∥qLq
α
≤ ∥T̃t(|f |q)∥L1

α
= ∥|f |q∥L1

α
= ∥f∥q

Lq
α
.

Thus, T̃t is a bounded linear operator in the space Lq
α and its norm in Lq

α is at most 1.
Let f ∈ Lq

α and {fn} be a sequence of functions from S + convergent to f in Lq
α. The sequence of

functions ψn = Ttfn = T̃tfn converges in Lq
α both to Ttf and to T̃tf . Thus, the first statement of Lemma 7

is proved.
The fact that the norm of the operator Tt in the space Lq

α is attained at a function f ̸≡ 0 means that the
first inequality in (4.20) turns into an equality at this function. For this, it is necessary and sufficient that
inequality (4.19) become an equality for almost all x ∈ (0,∞). Inequality (4.19) turns into an equality if
and only if the function f is constant almost everywhere on the interval I(t, x) = (|x− t|, x+ t). Similar to
the proof of Lemma 6, we conclude that this holds if and only if f is constant almost everywhere on (0,∞).
However, such a function does not belong to the space Lq

α, 1 < q <∞. Lemma 7 is proved.

4.3 Proof of the main theorem (Theorem 2)

Obviously, the best constants in inequalities (1.2) and (1.3) are related by the inequalityD ≤M . Let us show
that, in fact, they coincide: D =M , i.e., (1.8) holds. Let us use the generalized translation operator (4.1).

A function f ∈E (σ, q, α) has the property

(4.21) f(x) → 0, x→ ∞

on the half-line (0,∞). Indeed, by inequality (1.2), a function f ∈E (σ, q, α) is bounded on the half-line
[0,∞); moreover, this function is even. According to Bernstein’s inequality, its derivative is also bounded;
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more exactly, ∥f ′∥C[0,∞) ≤ σ∥f∥C[0,∞). In addition, as noted above, a function f ∈ Lq((0,∞), x2α+1)
belongs to the space Lq(a,∞) (with the unit weight) for any a > 0. In this situation, on any half-line
[a,∞), a > 0, we have the inequality

(4.22) ∥f∥C[a,∞) ≤ K∥f∥αLq(a,∞)∥f
′∥βC[a,∞), α =

q

1 + q
, β =

1

1 + q
,

with some finite constant K = L(q) independent of the function f and the parameter a > 0; see the review
paper [3, Sect. 4] and the references therein. By the assumption 1 ≤ q < ∞, the right-hand side of (4.22)
tends to zero as a→ ∞. Thus, property (4.21) is proved.

Let f ∈E (σ, q, α). By property (4.21), there exists a point t = t(f) ∈ [0,∞) at which the uniform norm
of the function f on the half-line [0,∞) is attained. According to Lemma 4, the function

g(x) = (Ttf)(x), x ∈ [0,∞),

also belongs to the classE (σ, q, α) and, in accordance with definition (4.1) of the translation operator, has
the property g(0) = f(t).

Using inequality (1.3) and the property ∥Tt∥q,α = 1, we obtain

(4.23) ∥f∥C[0,∞) = |f(t)| = |g(0)| ≤ D∥g∥Lq
α
≤ D∥f∥Lq

α
.

So that ∥f∥C ≤ D∥f∥Lq
α
. In view of the arbitrariness of f ∈E (σ, q, α), this implies the inequality M ≤ D.

Equality (1.8) is proved.
Recall that we denote by ϱσ the function extremal in inequality (1.3). We have

D ∥ϱσ∥Lq
α
= |ϱσ(0)| ≤ ∥ϱσ∥C ≤M ∥ϱσ∥Lq

α
.

Hence, in view of (1.8), it follows that
∥ϱσ∥C = |ϱσ(0)|

and the function ϱσ is extremal in inequality (1.2).
It remains to verify that ϱσ is the unique extremal function in inequality (1.2). If the uniform norm of a

function fσ extremal in inequality (1.2) is attained at the end point x = 0 of the half-line, then this function
is also extremal in inequality (1.3). By Theorem 1, for 1 < q < ∞ such function, up to a constant factor,
coincides with ϱσ. For q = 1, we can only assert that fσ is an extremal function in inequality (1.3).

Let us check that the uniform norm of any extremal function in the inequality (1.2) cannot be attained at
points of the half-line (0,∞). We will argue by contradiction. Assume that the uniform norm of an extremal
function fσ ∈E (σ, q, α) in inequality (1.2) is attained at a point t ∈ (0,∞). Both inequalities in (4.23) and,
in particular, the second inequality must turn into equalities at this function fσ. This means that the norm
of the operator Tt is attained at the function fσ.

For 1 < q <∞, this is impossible in view of Lemma 7.
Let us discuss the case q = 1. The norm of the operator Tt in L

1
α is attained at a function fσ ̸≡ 0. Being

an entire function, fσ ̸≡ 0 cannot vanish on a set of positive measure from the half-line. By Lemma 1, the
function fσ is of constant sign on (0,∞). By formulas (4.1), the function gσ = Ttfσ is also of constant sign
on (0,∞).

The first inequality in (4.23) must turn into an equality at the function fσ. Consequently, the function
gσ = Ttfσ is extremal in inequality (1.3). According to Lemma 2, the function gσ cannot be of constant
sign. Theorem 2 is proved completely.
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[10] H. Bateman and A. Erdélyi, Higher Transcendental Functions, McGraw-Hill Book Company (New York,
1953), Vol. 2.

[11] S. N. Bernstein, On the best approximation of continuous functions on the whole real axis by entire
functions of given degree, III, Dokl. Akad. Nauk SSSR, 52:7 (1946), 565–568 (in Russian).

[12] S. N. Bernstein, Functions of finite degree and functions of finite semidegree, Izv. Akad. Nauk SSSR,
Ser. Mat., 13 (1949), 111–124 (in Russian).

[13] S. N. Bernstein, Collected Works (Izd. Akad. Nauk SSSR, Moscow, 1952), Vol. 1 (in Russian).

[14] B. Bojanov, Polynomial inequalities, Proc. Int. Conf. “Open Problems in Approximation Theory”
(Voneshta voda, Bulgaria, June 18–24, 1993), Science Culture Technology Publishing (Singapore, 1994),
25–42.
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