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Abstract

We study the Nikol’skii type inequality for algebraic polynomials on the
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fixed leading coefficient that deviates least from zero in the space Lq
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1. Nikol’skii inequality

1.1. Notation. Statement and discussion of the problems

For 1 ≤ q < ∞ and α > −1, denote by Lq
α = Lq

xα(R+) the space
of complex-valued Lebesgue measurable functions f on the half-line R+ =
[0,∞) and such that the function

∣∣f(x)e−x/2
∣∣q xα is integrable over R+. The

space Lq
α is equipped with the norm

∥f∥∗q,α = ∥f∥Lq
α
=

(∫ ∞

0

∣∣f(x)e−x/2
∣∣q xαdx) 1

q

.

For f ∈ Lq
α, define

f̃(x) := f(x)e−x/2. (1.1)

With this notation, we have

∥f∥∗q,α =

(∫ ∞

0

∣∣∣f̃(x)∣∣∣q xαdx) 1
q

<∞.

The space L2
α is a Hilbert space with the inner product

⟨f, g⟩∗ :=
∫ ∞

0

f(x)g(x)e−xxαdx =

∫ ∞

0

f̃(x)g̃(x)xαdx, f, g ∈ L2
α. (1.2)

In the case q = ∞ (α > −1), we assume that L∞ = L∞(R+) is the space of
measurable functions f such that product (1.1) is essentially bounded on R+.
This space is equipped with the norm

∥f∥∗∞ = ess sup {|e−x/2f(x)| : x ∈ (0,∞)}.

Let Pn = Pn(C), n ≥ 0, be the set of univariate algebraic polynomials
of degree (at most) n with complex coefficients. Denote by Mn =M(n, q, α)
the best (i.e. the smallest possible) constant in the inequality

∥pn∥∗∞ ≤Mn ∥pn∥∗q,α, pn ∈ Pn. (1.3)

The aim of the present paper is to study the extremal polynomials in
inequality (1.3), i.e., polynomials ρn ∈ Pn, ρn ̸≡ 0, for which this inequality
becomes an equality. In particular, we will study the uniqueness of extremal
polynomials. It is clear that if a polynomial ρn is extremal, then the poly-
nomial cρn for any constant c ̸= 0 is also extremal. If ρn is an extremal
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polynomial in inequality (1.3) and any other extremal polynomial has the
form cρn, c ̸= 0, then we will say that ρn is the unique extremal polynomial
in inequality (1.3).

Inequality (1.3) is a specific case of inequalities between different met-
rics or Nikol’skii inequalities. Such inequalities appeared for the first time
in Nikol’skii’s paper [13] and, a short time later, in a paper of Szegő and
Zygmund [17]. Similar inequalities and, more generally, inequalities between
the uniform norm and integral norms with weights of derivatives of algebraic
polynomials and the polynomials themselves were studied over a period of
more than 150 years. Much information and further references on this subject
can be found in monographs [9, 11] and paper [12].

Along with inequality (1.3), we consider an auxiliary inequality

|pn(0)| ≤ Dn ∥pn∥∗q,α, pn ∈ Pn, (1.4)

with the best constantDn = D(n, q, α). This inequality is also of independent
interest. It is clear thatDn ≤Mn.We will show below that, in fact, Dn =Mn

at least for α ≥ 0.

1.2. Polynomials that deviate least from zero

Denote by ϱn = ϱn,q,α+1 the polynomial of degree n with “unit” leading
coefficient that deviates least from zero in the space Lq

α+1. More exactly, the
polynomial ϱn is a solution of the problem

min{∥pn∥Lq
α+1

: pn ∈ P1
n} = ∥ϱn∥Lq

α+1
, (1.5)

where P1
n is the set of polynomials pn(x) = (−1)nxn +

∑n−1
k=0 akx

k of degree
n with leading coefficient (−1)n.

Polynomials that deviate least from zero appeared for the first time in
studies of Chebyshev. He found [4] the polynomial with fixed leading coef-
ficient that deviates least from zero in the space C[−1, 1]. At present, this
polynomial is called the Chebyshev polynomial of the first kind. Korkin
and Zolotarev [7] solved a similar problem in L(−1, 1), where the extremal
polynomial is the Chebyshev polynomial of the second kind. By now, there
are many studies devoted to this subject area, see monographs [9, 11] and
the references therein and in [1, 2]. Problem (1.5) (in itself) was studied by
Mhaskar and Saff [10]; under some conditions on the parameters of the prob-
lem, they found the asymptotic behavior of quantity (1.5) and the limiting
distribution of zeros of the extremal polynomials.
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1.3. Main result

The following statement is the main result of the present paper.

Theorem 1. For α ≥ 0, 1 ≤ q < ∞, and n ≥ 1, the following statements
are valid.

(1) The best constants in inequalities (1.3) and (1.4) coincide:

M(n, q, α) = D(n, q, α). (1.6)

(2) The polynomial ϱn,q,α+1 that deviates least from zero with respect to
the norm of the space Lq

α+1 is the unique (up to a constant factor) extremal
polynomial in both inequalities (1.3) and (1.4).

(3) The polynomial ϱn,q,α+1 and hence any polynomial pn that is extremal
in inequality (1.3) have the property that the uniform norm of the function
p̃n(x) = pn(x)e

−x/2 on the half-line [0,∞) is attained only at the point x = 0.

An essential step in the proof of Theorem 1 is to prove the fact that, for
a polynomial pn extremal in inequality (1.3), the product p̃n(x) = pn(x)e

−x/2

attains its uniform norm only at the endpoint x = 0 of the half-line [0,∞).
To prove this fact, we use the generalized translation operator associated
with the so-called Laguerre weight. It is important to know the properties
of the norm of this operator in the space Lq

α; the second section of the paper
is devoted to these issues.

Inequalities similar to (1.3) with ultraspherical weight and Jacobi weight
were studied in [1, 2], respectively. Analogs of theorem 1 were obtained there.
To prove them, we applied the generalized translation associated with a Ja-
cobi weight. The study of inequality(1.3) in the present paper has essential
peculiarities. The reason is, in particular, in the fact that, in contrast to the
Jacobi translation, the Laguerre translation is not a positive operator.

Theorem 1 reduces the problem of studying inequality (1.3) to studying
problem (1.5), which, in our opinion, is considerably simpler. For example, a
solution of problem (1.5) and hence of problems (1.3) and (1.4) can be found
explicitly; this will be discussed in Subsection 1.4.
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1.4. Laguerre polynomials

Let {L(α)
ν }∞ν=0 for α > −1 be a system of Laguerre polynomials [15, Ch.V,

Sect. 5.1, (5.1.5), (5.1.7)]
L
(α)
ν (x) =

1

ν!
exx−α d

ν

dxν
(e−xxα+ν), x > 0;

L
(α)
ν (0) = Aα

ν =

(
ν + α

ν

)
=

Γ(ν + α+ 1)

ν! Γ(α+ 1)
, x = 0,

orthogonal on R+ with respect to inner product (1.2). In addition [15, Ch.V,
Sect. 5.1, (5.1.1)],

⟨L(α)
ν , L(α)

ν ⟩∗ = ∥L(α)
ν ∥2L2

α
= Γ(α+ 1)

(
ν + α

ν

)
=

Γ(ν + α+ 1)

ν!
.

The system of Laguerre polynomials {L(α)
ν }∞ν=0 forms an orthogonal basis

in the space L2
α. Thus, an arbitrary function f ∈ L2

α is expanded into Fourier–
Laguerre series

f(x) =
∞∑
ν=0

fνL
(α)
ν (x), fν =

⟨f, L(α)
ν ⟩∗

⟨L(α)
ν , L

(α)
ν ⟩∗

. (1.7)

For two functions f, g ∈ L2
α, the generalized version of Parseval’s identity

holds:

⟨f, g⟩∗ =
∞∑
ν=0

δνfνgν , δν = ⟨L(α)
ν , L(α)

ν ⟩∗ = ∥L(α)
ν ∥2L2

α
.

In particular, the norm of a function f ∈ L2
α can be expressed in terms of its

Fourier–Laguerre coefficients {fν} by Parseval’s identity:

∥f∥2L2
α
=

∞∑
ν=0

δν |fν |2. (1.8)

Using Parseval’s identity, it is not hard to solve problems (1.4) and (1.5)
for q = 2 explicitly. Consider the pointwise inequality

|pn(z)| ≤ Dn(z) ∥pn∥L2
α
, pn ∈ Pn,

for a fixed z ∈ C with the best constant Dn(z) = D(n, q, α; z), which is
more general than inequality (1.4). There are many studies devoted to such
inequalities, see monographs [9, Ch. 4], [11, Sect. 6.1], [15, Sect. 7.71].
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A polynomial pn ∈ Pn can be represented in the form of linear combina-
tion of Laguerre polynomials:

pn(x) =
n∑

ν=0

cνL
(α)
ν (x).

Using the Cauchy–Bunyakovskii inequality, we obtain

|pn(z)| =
n∑

ν=0

|cν ||L(α)
ν (z)| =

n∑
ν=0

(√
δν |cν |

)( 1√
δν
|L(α)

ν (z)|
)

≤

(
n∑

ν=0

δν |cν |2
)1/2( n∑

ν=0

δ−1
ν |L(α)

ν (z)|2
)1/2

.

Hence, for any z ∈ C, the formula

|Dn(z)|2 =
1

Γ(α+ 1)

n∑
ν=0

(
ν + α

ν

)−1

|L(α)
ν (z)|2

holds and the unique (up to a constant factor) extremal polynomial is

ρn(x) = ρ(α)n (x; z) =
n∑

ν=0

(
ν + α

ν

)−1

L(α)
ν (z)L(α)

ν (x), (1.9)

which, by the formula ρ
(α)
n (x; z) = Γ(α+1)K(α)

n (x; z), is expressed in terms of

the Christoffel–Darboux kernel K(α)
n for Laguerre polynomials [15, Sect. 5.1,

(5.1.11)].
Let z = 0. In this case, polynomial (1.9) takes the form

ρn(x) = ρ(α)n (x; 0) =
n∑

ν=0

L(α)
ν (x);

for this polynomial, the following formula holds [15, Sect. 5.1, (5.1.13)]:

ρn(x) = ρ(α)n (x; 0) = L(α+1)
n (x). (1.10)

The solution of problem (1.5) for q = 2 is the polynomial ϱn,2,α+1 =

n!L
(α+1)
n , which differs from (1.10) only by the normalizing factor. This fact

is the point of Theorem 1 on the connection between problems (1.4) and (1.5)
for q = 2. This connection for all values of the parameter 1 ≤ q <∞ will be
discussed in Theorem 3.
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2. Laguerre translation

2.1. Product formula for Laguerre polynomials

Watson [18, p. 21] obtained the following formula for Laguerre polynomi-
als with α > −1/2:

n!L
(α)
n (x)L

(α)
n (t)

Γ(n+ α+ 1)
=

1√
π

∫ π

0

L(α)
n (x+ t+ 2

√
xt cos θ)Φ(α)(x, t, θ) dθ, (2.1)

Φ(α)(x, t, θ) =


exp(−

√
xt cos θ)×

Jα−1/2(
√
xt sin θ)(

1
2

√
xt sin θ

)α−1/2
sin2α θ, xt > 0,

1

Γ

(
α+

1

2

) sin2α θ, xt = 0,

where Jα−1/2 is the Bessel function of order α− 1/2. Since (see, for example
[19, Ch. III, Sect. 3.4, (6)])

J−1/2(z) =

(
2

πz

) 1
2

cos z, (2.2)

formula (2.1) for α = 0 takes the form

L(0)
n (x)L(0)

n (t) =
1

π

∫ π

0

L(0)
n (x+ t+ 2

√
xt cos θ)Φ(0)(x, t, θ) dθ, (2.3)

Φ(0)(x, t, θ) = exp(−
√
xt cos θ) cos(

√
xt sin θ).

As mentioned in [18, p. 19] and [3, Sect. 1], formula (2.3) was obtained earlier
by G.Hardy (approximately, in 1934). For α > 0, using the representation of
the Bessel function as the Poisson integral [19, Ch. III, Sect. 3.3, (1)]

Jα− 1
2
(ξ) =

(
ξ
2

)α− 1
2

Γ (α) Γ
(
1
2

) ∫ π

0

cos(ξ cosψ) sin2α−1 ψ dψ, (2.4)

we can write formula (2.1) in the following form [18, p. 21]:

n!L
(α)
n (x)L

(α)
n (t)

Γ(n+ α+ 1)
=

1

πΓ(α)

∫ π

0

∫ π

0

L(α)
n (x+t+2

√
xt cos θ)Ψ(α)(x, t, θ, ψ) dψ dθ,

(2.5)
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Ψ(α)(x, t, θ, ψ) = exp(−
√
xt cos θ) cos(

√
xt sin θ cosψ)× sin2α θ × sin2α−1 ψ.

Each of formulas (2.1), (2.3), and (2.5) may be called a product formula
for Laguerre polynomials. Product formulas have several applications. In
particular, Watson [18, p. 21], using a product formula, obtained the following
estimate for Laguerre polynomials for α ≥ 0:

e−x/2
∣∣L(α)

n (x)
∣∣ ≤ Γ(n+ α+ 1)

n! Γ(α+ 1)
, x ≥ 0. (2.6)

This estimate for α = 0 was obtained earlier by Szegő by another method
[16, Sect. 2, p. 343]; moreover, he proved that this estimate is strict for x > 0.

Using Watson’s ideas [18, p. 21], we can rectify inequality (2.6). We will
do this in terms of the polynomials

R(α)
n (x) =

L
(α)
n (x)

L
(α)
n (0)

=
n! Γ(α+ 1)

Γ(n+ α+ 1)
L(α)
n (x). (2.7)

Inequality (2.6) for polynomials (2.7) takes the form

e−x/2
∣∣R(α)

n (x)
∣∣ ≤ 1, x ≥ 0. (2.8)

For α ≥ 0, define a function u(x) = u(α)(x), x ≥ 0, as follows. For α = 0,
we set

u(x) = u(0)(x) =
1

π

∫ π

0

| cos(x sin θ)| dθ; (2.9)

for α > 0, we set

u(x) = u(α)(x) =
α

π

∫ π

0

∫ π

0

| cos(x sin θ cosψ)| sin2α θ sin2α−1 ψ dψ dθ.

(2.10)
The function u(α) has the property

u(α)(0) = 1; 0 < u(α)(x) < 1, x > 0. (2.11)

Indeed, for α > 0 and x > 0, based on definition (2.10), we have

0 < u(α)(x) < u(α)(0) =
α

π

∫ π

0

∫ π

0

sin2α θ sin2α−1 ψ dψ dθ = 1.

In the case α = 0, property (2.11) easily follows from definition (2.9). State-
ment (2.11) is verified.
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Lemma 1. For α ≥ 0 and all n ≥ 0, the following pointwise estimate holds :

e−x/2
∣∣R(α)

n (x)
∣∣ ≤√u(α)(x), x ≥ 0; (2.12)

Proof is implemented by means of arguments used by Watson [18, p. 21]
for the proof of estimate (2.6). Let α > 0. We put t = x in (2.5), multiply

the obtained relation by e−x, and pass from L
(α)
n to R

(α)
n by formula (2.7).

As a result, we obtain (
e−x/2R(α)

n (x)
)2

=
α

π

∫ π

0

∫ π

0

R(α)
n

(
2x(1 + cos θ)) exp(−x(1 + cos θ)

)
V (α)(x, θ, ψ) dψ dθ,

(2.13)
V (α)(x, θ, ψ) = cos(x sin θ cosψ)× sin2α θ × sin2α−1 ψ.

By (2.8), the estimate |R(α)
n (2x(1 + cos θ)) exp(−x(1 + cos θ))| ≤ 1 is valid.

Therefore, (2.13) implies the estimate(
e−x/2R(α)

n (x)
)2 ≤ α

π

∫ π

0

∫ π

0

|V (α)(x, θ, ψ)| dψ dθ = u(α)(x), x ≥ 0,

which yields (2.12).
Property (2.12) for α = 0 can be verified by the same scheme based on

product formula (2.3) and definition (2.9). The lemma is proved. 2

2.2. Laguerre translation in the spaces Lq
α, 1 ≤ q ≤ ∞, α ≥ 0.

Product formula (2.1) serves as a basis for the definition of the general-
ized translation operator associated with the Laguerre weight or shortly the
Laguerre translation for α > −1/2. Let us write it in the following equivalent
form:

L(α)
n (x)R(α)

n (t) =
1√
π

∫ π

0

L(α)
n (x+ t+ 2

√
xt cos θ)W (α)(x, t, θ) dθ, (2.14)

W (α)(x, t, θ) = Γ(α+ 1)Φ(α)(x, t, θ); x, t ≥ 0.

Based on representation (2.14), we call the operator Tα
t , defined for α > −1/2

by the formula

Tα
t (f ; x) =

1√
π

∫ π

0

f(x+ t+ 2
√
xt cos θ)W (α)(x, t, θ) dθ (2.15)
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the Laguerre translation with step t ∈ [0,∞). For the properties of this op-
erator, see [6] and the references therein. The Laguerre translation operator
for t = 0 is the identity operator.

An important tool for studying the operator Tα
t is the following integral

representation obtained in [6, (2.2)] for α > −1/2:

Tα
t (f ;x) =

∫ ∞

0

f(z)K(x, t, z)e−zzαdz (2.16)

with kernel

K(x, t, z) =


Cα

(xtz)α
e(x+t+z)/2Jα− 1

2
(r(x, t, z))rα−

1
2 (x, t, z), z ∈ I(x, t),

0, z ̸∈ I(x, t),
(2.17)

where
I(x, t) =

(
(
√
x−

√
t)2, (

√
x+

√
t)2
)
,

r(x, t, z) =
1

2

√
2(xt+ xz + tz)− x2 − t2 − z2,

Cα =
Γ(α+ 1)2α−1

√
2π

. (2.18)

The kernel K(x, t, z) is symmetric in each of its variables [6, p. 164].
By means of (2.16), it is proved in [6] that, for α ≥ 0, 1 ≤ q ≤ ∞, and

t ≥ 0, the operator Tα
t is a bounded linear operator in the space Lq

α and
the following estimate is valid for the norm ∥Tα

t ∥∗q,α = ∥Tα
t ∥Lq

α→Lq
α
of this

operator [6, Theorem 1]:
∥Tα

t ∥∗q,α ≤ et/2. (2.19)

Moreover, the following relation holds for q = 1 [6, Corollary 3]:

∥Tα
t ∥∗1,α = et/2. (2.20)

Let us rectify statements (2.19) and (2.20) with the aim of their further
application in Lemmas 2 and 3 below. By definition (2.15) and formula
(2.14), we have

Tα
t (L

(α)
n ;x) = L(α)

n (x)R(α)
n (t). (2.21)

Hence, we obtain the following lower estimate for the norm of the operator
Tα
t (for α > −1 and 1 ≤ q ≤ ∞):

∥Tα
t ∥∗q,α ≥ sup{|R(α)

n (t)| : n ≥ 0}. (2.22)
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For q = 2 (α ≥ 0), there is an equality in (2.22):

∥Tα
t ∥∗2,α = sup{|R(α)

n (t)| : n ≥ 0}. (2.23)

Indeed, based on relation (2.21), the linearity and boundedness of the oper-
ator Tα

t , using the Fourier–Laguerre expansion of functions f ∈ L2
α, we can

write the operator Tα
t as the series

Tα
t (f ; x) =

∞∑
ν=0

fνL
(α)
ν (x)R(α)

ν (t). (2.24)

Note that, sometimes, it is this relation taken as a definition of the Laguerre
translation. Now, (twice) applying Parseval’s identity (1.8), we obtain

∥Tα
t f∥2L2

α
=

∞∑
ν=0

δν |fν |2|R(α)
ν (t)|2 ≤ sup{|R(α)

n (t)|2 : n ≥ 0} ×
∞∑
ν=0

δν |fν |2

= sup{|R(α)
n (t)|2 : n ≥ 0} × ∥f∥2L2

α
.

This and (2.22) imply (2.23).

Lemma 2. For 1 < q <∞, α ≥ 0, and t > 0, the following strict inequality
holds :

∥Tα
t ∥∗q,α < et/2. (2.25)

Proof. Inequality (2.25) for q = 2 follows from (2.23), Lemma 1, and
(2.11). Now, to prove the statements of the lemma for 1 < q < 2 and
2 < q <∞, we have to use M. Riesz’ theorem on the convexity of linear
operators (see, for example, [14, Ch.V, Sect. 1, Theorem 1.3] or [5, Ch.VI,
Sect. 10, Theorem 11]) and estimates (2.19) for q = 1 and q = ∞, respec-
tively. 2

For q = 1, in addition to (2.20), the following statement holds.

Lemma 3. For α ≥ 0 and all t > 0, the norm of the operator Tα
t in the

space L1
α is not attained.
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Proof. To prove the lemma, we will partially repeat the proof of the
estimate ∥Tα

t ∥∗1,α ≤ et/2 from [6, p. 165], implementing some steps more in-
formatively. For any function f ∈ L1

α, by (2.16), we have

∥Tα
t f∥∗1,α =

∫ ∞

0

|Tα
t (f ;x)|e−x/2xαdx

≤
∫ ∞

0

(∫ ∞

0

|f(z)||K(x, t, z)|e−zzα dz

)
e−x/2xαdx

=

∫ ∞

0

|f(z)|e−z/2zα
(
e−z/2

∫ ∞

0

|K(x, t, z)| e−x/2xαdx

)
dz.

Thus, the inequality

∥Tα
t f∥∗1,α ≤

∫ ∞

0

|f(z)|e−z/2zα Ω(t, z) dz (2.26)

is valid, where

Ω(t, z) = e−z/2

∫ ∞

0

|K(x, t, z)| e−x/2xαdx. (2.27)

Let us transform and estimate function (2.27). By the invariance property
of kernel (2.17), we have

Ω(t, z) = e−z/2

∫ (
√
z+

√
t
)2

(
√
z−

√
t
)2 |K(z, t, x)| e−x/2xαdx

= Cα

∫ (
√
z+

√
t
)2

(
√
z−

√
t
)2 e−z/2

(xtz)α
e(x+t+z)/2

∣∣∣Jα− 1
2
(r(z, t, x))

∣∣∣ rα− 1
2 (z, t, x) e−x/2xαdx

= Cαe
t/2

∫ (
√
z+

√
t
)2

(
√
z−

√
t
)2 1

(tz)α

∣∣∣Jα− 1
2
(r(z, t, x))

∣∣∣ rα− 1
2
(z,t,x) dx. (2.28)

Following [6, Sect. 2], we pass from the variable x to the variable θ in the
latter integral by the formula

x = x(θ) = z + t+ 2
√
zt cos θ, θ ∈ [0, π]. (2.29)
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We have

√
zt sin θ =

√
zt(1− cos2 θ) =

√
zt−

(
x− z − t

2

)2

= r(z, t, x).

In addition, (2.29) implies dx = −2
√
zt sin θ dθ. Substituting these relations

into (2.28), we obtain

Ω(t, z) = 2Cαe
t/2

∫ π

0

1

(tz)α

∣∣∣Jα− 1
2
(
√
zt sin θ)

∣∣∣ (√zt sin θ)α+ 1
2 dθ. (2.30)

For α > 0, using (2.4) and (2.18) in (2.30), we obtain the representation

Ω(t, z) =
α

π
et/2

∫ π

0

∣∣∣∣∫ π

0

cos(
√
zt sin θ cosψ) sin2α−1 ψ dψ

∣∣∣∣ sin2α θ dθ. (2.31)

Representations (2.31) and (2.10) imply the estimate

Ω(t, z) ≤ et/2 u(α)(
√
zt).

Substituting this estimate into (2.26), we obtain

∥Tα
t f∥∗1,α ≤ et/2

∫ ∞

0

|f(z)|e−z/2zα u(α)(
√
zt) dz,

By property (2.11), the following inequality is valid:∫ ∞

0

|f(z)|e−z/2zα u(α)(
√
zt) dz ≤

∫ ∞

0

|f(z)|e−z/2zα dz = ∥f∥∗1,α. (2.32)

Moreover, if t > 0 and the function f is nonzero on a set of positive measure,
the last inequality is strict; hence, the strict inequality ∥Tα

t f∥∗1,α < ∥f∥∗1,α
holds. The lemma for α > 0 is proved.

By (2.2) and (2.18), representation (2.30) for α = 0 takes the form

Ω(t, z) =
et/2

π

∫ π

0

∣∣∣cos(√zt sin θ)∣∣∣ dθ = et/2 u(0)(
√
zt).

Hence, as in the case α > 0, we conclude that, for α = 0 and t > 0, there
is no function at which the norm of the Laguerre translation operator in the
space L1

0 is attained. The lemma is proved completely. 2

13



2.3. A modified Laguerre translation

For 1 ≤ q <∞ and α > −1, denote by Lq
α = Lq

xα(R+) the set of complex-
valued Lebesgue measurable functions f on the half-line R+ such that the
integral in the relation

∥f∥q,α = ∥f∥Lq
α
:=

(∫ ∞

0

|f(x)|q xαdx
) 1

q

, (2.33)

which defines the norm of the space Lq
α, converges. In the case q = ∞,

we assume that L∞
α = L∞(0,∞) is the space of measurable functions f

essentially bounded on R+. This space is equipped with the norm

∥f∥∞ = ess sup {|f(x)| : x ∈ (0,∞)}. (2.34)

The mapping
f ∈ Lq

α → f̃(x) := f(x)e−x/2 (2.35)

is the bijection between the spaces Lq
α and Lq

α; in addition, this mapping
preserves the norm:

∥f∥∗q,α = ∥f̃∥q,α.
An analog of translation operator (2.15) in the spaces Lq

α was introduced
and studied in [6]. In [6], this operator was denoted by ταt . Here, we denote
this operator by Θα

t and also call it the Laguerre translation operator. It is
defined by the formula [6, (2.5)]

Θα
t (f ;x) := Tα

t (f̌ ;x)e
−(t+x)/2, f̌(z) = f(z)ez/2. (2.36)

The operator Θα
t is a bounded linear operator in the spaces Lq

α for all
1 ≤ q ≤ ∞ and α ≥ 0. Moreover, the norm ∥Θα

t ∥q,α = ∥Θα
t ∥Lq

α→Lq
α
of this

operator in the space Lq
α is connected with the norm of the operator Tα

t in
Lq

α by the relation
∥Θα

t ∥q,α = e−t/2∥Tα
t ∥∗q,α. (2.37)

Indeed,

∥Θα
t ∥q,α = sup{∥Θα

t f∥q,α : ∥f∥Lq
α
≤ 1} = e−t/2 sup{∥Tα

t (f̌)∥∗q,α : ∥f∥Lq
α
≤ 1}

= e−t/2 sup{∥Tα
t (f̌)∥∗q,α : ∥f̌∥Lq

α
≤ 1} = e−t/2∥Tα

t ∥∗q,α.

In what follows, we will use version (2.36) of the Laguerre translation.
Statements (2.19) and (2.20) proved in [6] for α ≥ 0 can be written in the
forms

∥Θα
t ∥q,α ≤ 1 for 1 ≤ q ≤ ∞; (2.38)
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∥Θα
t ∥1,α = 1 for q = 1. (2.39)

According to Lemma 2, the following strict inequality is valid for 1 < q <∞
and t > 0:

∥Θα
t ∥q,α < 1.

By Lemma 3, in addition to (2.39), we can assert that, for t > 0, the norm
of the operator Θα

t in the space L1
α is not attained.

3. Modified versions of the problems. Proof of the main results

3.1. Reformulation of the problems

For a polynomial pn ∈ Pn, we will call the function p̃n(x) = e−x/2pn(x)

an e-polynomial (of degree n). Denote by P̃n the set of all e-polynomials of
degree n. Let us write the main problems in terms of norms (2.33) and (2.34)
for e-polynomials. Inequalities (1.3) and (1.4) are equivalent to the inequal-
ities

∥gn∥∞ ≤Mn ∥gn∥q,α, gn ∈ P̃n, (3.1)

|gn(0)| ≤ Dn ∥gn∥q,α, gn ∈ P̃n. (3.2)

Consider the set P̃1
n = {gn = p̃n, pn ∈ P1

n} of e-polynomials of degree n
with the “unit” leading coefficient. Problem (1.5) is equivalent to the problem

on the e-polynomial g∗n = g∗n,q,α+1 ∈ P̃1
n that deviates least from zero with

respect to the norm of the space Lq
α+1, i.e., has the property

min
{
∥gn∥Lq

α+1
: gn ∈ P̃1

n

}
= ∥g∗n∥q,α+1. (3.3)

An e-polynomial g∗n = p̃∗n is a solution of (3.3) if and only if the polynomial
p∗n ∈ P1

n is a solution of (1.5).
For us, it is convenient to study inequalities (3.1) and (3.2) and prob-

lem (3.3) instead of inequalities (1.3) and (1.4) and problem (1.5). In these
new terms, Theorem 1 takes the following form.

Theorem 2. For α ≥ 0, 1 ≤ q < ∞, and n ≥ 1, the following statements
are valid.

(1) The best constants in inequalities (3.1) and (3.2) coincide:

M(n, q, α) = D(n, q, α). (3.4)
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(2) The e-polynomial g∗n,q,α+1 that deviates least from zero with respect
to the norm of the space Lq

α+1 is the unique extremal polynomial in both
inequalities (3.1) and (3.2).

(3) The e-polynomial g∗n,q,α+1 and hence any e-polynomial gn extremal in
inequality (3.1) attain their uniform norm on the half-line [0,∞) only at the
point x = 0.

3.2. The connection between inequality (3.2) and problem (3.3)

According to the next theorem, problems (3.2) and (3.3) have the same
solution. Similar statement for an arbitrary weight on a finite interval was
proved in [1]. Theorem 3 is proved by the same scheme; however, in this
situation, the proof has peculiarities; therefore, we present it here.

Theorem 3. For 1 ≤ q < ∞, α > −1, and n ≥ 1, the e-polynomial g∗n =
g∗n,q,α that is the solution of problem (3.3) is the unique extremal polynomial
in inequality (3.2).

Proof. The characteristic property of the e-polynomial g∗n = g∗n,q,α+1

extremal in problem (3.3) is that∫ ∞

0

|g∗n(x)|q−1sgn g∗n(x)gn−1(x)x
α+1dx = 0 for all gn−1 ∈ P̃n−1; (3.5)

see, for example, [8, Ch. 3, Sect. 3.3, Theorems 3.3.1, 3.3.2]. This property,
in particular, implies that all n zeros of the e-polynomial g∗n are simple and
lie on the half-line (0,∞). This, in turn, implies that g∗n(0) > 0.

An arbitrary e-polynomial gn ∈ P̃n has the form gn(x) = e−x/2pn(x),
where pn ∈ Pn. Let us represent a polynomial pn in the form

pn(x) = xrn−1(x) + pn(0), rn−1(x) =
pn(x)− pn(0)

x
∈ Pn−1.

Now, we have ∫ ∞

0

gn(x)|g∗n(x)|q−1 (sgn g∗n(x)) x
α dx

=

∫ ∞

0

rn−1(x)e
−x/2|g∗n(x)|q−1 (sgn g∗n(x))x

α+1 dx

+ pn(0)

∫ ∞

0

e−x/2|g∗n(x)|q−1 (sgn g∗n(x))x
αdx.
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By (3.5), the next-to-last integral is zero. Consequently, for any e-polynomial

gn ∈ P̃n, the following relation holds:∫ ∞

0

gn(x)|g∗n(x)|q−1 (sgn g∗n(x)) x
α dx

= gn(0)

∫ ∞

0

e−x/2|g∗n(x)|q−1 (sgn g∗n(x))x
αdx.

(3.6)

Let us determine the sign of the integral

I(n, q, α) =

∫ ∞

0

e−x/2|g∗n(x)|q−1 (sgn g∗n(x))x
αdx.

Substituting the e-polynomial gn = g∗n into (3.6), we obtain the equality∫ ∞

0

xα|g∗n(x)|qdx = g∗n(0)I(n, q, α). (3.7)

Since g∗n(0) > 0, it follows from (3.7) that I(n, q, α) > 0.
Relation (3.6) can be now written in the form

gn(0) =
1

I(n, q, α)

∫ ∞

0

gn(x)|g∗n(x)|q−1 (sgn g∗n(x))x
α dx, gn ∈ P̃n. (3.8)

From (3.8), using Hölder’s inequality, we obtain for gn ∈ P̃n the estimate

|gn(0)| ≤
1

I(n, q, α)

(∫ ∞

0

xα|gn(x)|qdx

) 1
q
(∫ ∞

0

xα|g∗n(x)|qdx

) q−1
q

. (3.9)

At the e-polynomial g∗n, inequality (3.9) turns into an equality; this can be
easily verified, for example, with the use of identity (3.8). Consequently,
inequality (3.9) is inequality (3.2); moreover,

D(n, q, α) =
(∥g∗n∥q,α)

q−1

I(n, q, α)
.

Based on the conditions under which Hölder’s inequality turns into an equal-
ity, it is easy to conclude that, for 1 ≤ q <∞, inequality (3.9) turns into an
equality only for the e-polynomials cg∗n, where c ∈ R. Thus, the e-polynomial
g∗n is the unique extremal polynomial in inequality (3.2). Theorem 3 is
proved. 2
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3.3. Proof of Theorems 2 and 1

For the constantsMn andDn in inequalities (3.1) and (3.2), the inequality
Dn ≤Mn holds. Let us show that, in fact, the constants coincide, i.e., (3.4)

holds. Let f ∈ P̃n, and let the uniform norm of f be attained at some point
t ∈ [0,∞). Consider the function g(x) = Θα

t (f ;x). The function f̌(z) =
f(z)ez/2 is a polynomial of degree n:

f̌(z) =
n∑

ν=0

cνL
(α)
ν (z).

By (2.24), the function

Tα
t (f̌ ; x) =

n∑
ν=0

cνL
(α)
ν (x)R(α)

ν (t) (3.10)

is also a polynomial of degree n. Finally, by (2.36), we have

g(x) = Θα
t (f ;x) = Tα

t (f̌ ;x)e
−(t+x)/2 = e−t/2e−x/2

n∑
ν=0

cνL
(α)
ν (x)R(α)

ν (t)

and, consequently, g ∈ P̃n. By (3.10) and (2.7), the relation Tα
t (f̌ ; 0) = f̌(t)

holds. Therefore, g(0) = f̌(t)e−t/2 = f(t). Applying inequality (3.2), we
obtain

∥f∥∞ = |f(t)| = |g(0)| ≤ Dn∥g∥Lq
α
≤ Dn ∥Θα

t ∥q,α ∥f∥Lq
α
. (3.11)

By (3.11) and (2.38), it follows that ∥f∥∞ ≤ Dn ∥f∥Lq
α
, f ∈ P̃n. Therefore,

the inequality Mn ≤ Dn and hence equality (3.4) hold.
Recall that g∗n = g∗n,q,α+1 stands for the e-polynomial that solves problem

(3.3). By Theorem 3, this is the unique extremal polynomial in inequal-
ity (3.2). We have

Dn ∥g∗n∥Lq
α
= |g∗n(0)| ≤ ∥g∗n∥∞ ≤Mn ∥g∗n∥Lq

α
.

Hence, in view of the equality Dn =Mn, we have

∥g∗n∥∞ = |g∗n(0)|

and the polynomial g∗n is extremal in inequality (3.1).
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It remains to verify that g∗n is the unique extremal e-polynomial in in-

equality (3.1). Let f ∈ P̃n be an extremal e-polynomial in inequality (3.1).
Its uniform norm is necessarily attained at some point t ∈ [0,∞). For the
e-polynomial f with this value of the parameter t, both inequalities (3.11)
must turn into equalities; in particular, the latter inequality. By (2.37) and
Lemmas 2 and 3, this is impossible for t > 0. Consequently, t = 0 and,
hence, f is extremal in inequality (3.2). According to Theorem 3, this means
that f = cg∗n, c ∈ C. Thus, indeed, g∗n is the unique extremal e-polynomial
in inequality (3.1). This completes the proof of Theorem 2, and hence the
proof of its equivalent–Theorem 1. 2
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