The Dirichlet problem in weighted norm

A. P. Horvéth and K. S. Kazarian

ABSTRACT. Let w be a weight functions satisfying conditions (1) and (2) and
let C'(w) be the linear space of all complex valued functions f defined on T
such that fw is continuous on T and (3) holds. We study the following classical
Dirichlet problem.

For any f € C(w) find a harmonic function us on the unit disk
D = {z € C: |z| < 1} such that

dim ug (r,0) = £(O)llcw) =0,

where z = re??.

1. Introduction and definitions

Set T =R/27Z and let
. X — Stl‘j
sm( 5 )

where v(x) is a positive continuous function on T such that for some Cy > 0

S

(1) w(z) = v(z) [

Jj=1

Aj

@) mae{o(x), 1/v(z)} < Co
X = {z1,29,...,25} C T is a set of points, and A = {);};_, is a collection of

positive real numbers.

The linear space of all complex valued functions f defined on T such that fw
is continuous on T and
(3) lim f(z)w(z) =0, j=1,...,s

will be denoted by C'(w). If we put
() 7l = max | £(x)ho(z).

for any f € C(w) then it is easy to check that C'(w) will be a Banach space. The
space of continuous complex valued functions defined on T with the standard norm
will be denoted by Cf.

We study the following classical
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Dirichlet problem. For any f € C(w) find a harmonic function u; on the
unit disk D = {z € C: |z| < 1} such that

(5) Tl_igl_ [up(r,0) — f(O)llow) =0,

where z = re'.

The Dirichlet problem in the LP(¢),1 < p < oo metric, where the weight
function ¢ > 0 has singularities was studied in [2].

The solution of the classical Dirichlet problem when the weight function has

no singularities is represented by the convolution of f with the Poisson kernel
_ 1—7?
=T Srema
In our case, when the weight function has essential singularities, the solution can
not be represented as a convolution. In this case modified Poisson kernels (see [3],
[4]) replace the Poisson kernel.

We set k; := [\;], where [A] is the integer part of the number A\, A—1 < [A] < A
Set

(6) wwzwmw:ﬁmﬁfgw)

if [Al:=325_1k; > 1and

(7) wz) =wxalz) =1 if |Al=0.

If [A| > 0 and |A| = 2n — 1, where n =1, ... we denote by T} ;(z) the trigono-
metric polynomials of degree n such that

P.(z): 0<r<l

(8) T (2) = Ombiy 1<i,j<s50<m <k —1,0<1<k;—1.

If in the above formula k; = 0 then no polynomials 7} ; are defined.

For the uniqueness of the solution when |A] = 2n for n = 1,2,... we put
an additional condition on the trigonometric polynomials T} ;(x). That condition
is formulated in terms of the leading coefficients of the trigonometric polynomial
wx A (z) defined by (6)

9) wx A(x) = ap cosnx + by sinnr + - - - .
We set that
D, _
(10) # = fi and oY =0 if b, =0,
where
T;i(x) = ag’l) cosnx + bglj’l) sinnz+--- (1<j<s0<0I<k;—1).
The modified Poisson kernels ([2], (1.9)) are defined as follows:
s ki—1
(11) Pxap(m,t) =Pt —az) = > > P(a; — 2)Tj(t)
j=1 1=0
if [A] > 0 and

(12) Pxan(z,t) =Pt —z) if [A]=0,
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where P\"(z) := <4, P,(z). Note that if k; = 0 then the term with the index j is

dal

absent in the formula (11). Set
Oj(p)={teT:|t—z;| <p}, where 1<j<s and p>0.

Further in the text constants will be denoted by C, C}, C’; and they may be different
in different inequalities.
We prove the following main theorem.

THEOREM 1.1. Let A(Z = 0 and let w be a weight function, where w satisfies
the conditions (1) and (2). Then there exists a unique harmonic function uy on
the unit disk D such that (5) holds. Moreover,

1

(13) us(r0) = 5 [ FOPeaO)at
™ Jr

where the kernel Px A , is defined by (11).

The proof of the above theorem is based on the following result.

THEOREM 1.2. For any weight function w, where w satisfies the conditions (1),
(2) and AZ = 0 there exists C > 0 such that

1
(14) sup sup w(x)/ ——|Px A r(z,t)|dt <C.
0<r<1 z€T T w(t)

Further we will use the following terminology. A system of elements & =
{¢n}22, in a Banach space B will be called closed system if any element of B can
be arbitrarily approximated by a finite linear combination of elements of ®. We will
say that ® is complete with respect to the dual space B* if the condition

¢*(on) =0, forall neN,

where ¢* € B* yields that ¢* is the trivial element of the space B*. The system
O = {p,}>2, C B is called a minimal system if there exists ®* = {¢;}°°, C B*
such that

(15) ¢:,(S0k) = 5nk n, ke N,

where §,) is the Kronecker symbol. We will say that a system of elements & =
{on}32, C B is an A—basis of the Banach space B if ® is closed and minimal in
B and for any x € B

R Z_jlr%:(a:)wnufs =0,

where ®* = {¢3}52, C B* is the uniquely defined system in the dual space for
which the condition (15) holds. We will say that the system ®* is the conjugate
system of ®. For the convenience of the reader we will formulate the analogue of
Banach’s theorem for the A —bases. We will not bring the proof because it is similar
with some technical modifications to the proof of Banach’s original proof [1]. Some
references about summation bases can be found in [6] and [2].

LEMMA 1.1. Let ® = {¢,}22, is a closed and minimal system in a separable
Banach space B. Then ® is an A—basis of B if and only if there exists a constant
C > 0 such that for any x € B

)
(16) sup || Y 7" 65 (x)enlln < Cllz] 5.
0<r<1 ne1
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2. Auxiliary results

In the proof of Theorem 2 we are going to decompose the kernel Px  ,(x,t)
into a sum of kernels B, ;(x,t) (1 < j < s). For that purpose we use the identity

(17) ZTj,O(t) =1,

where it is supposed that T =0, if £; = 0.
By (11) and (17) we have

(18) Pxar(z,t) =Y Brj(x,1),
j=1
where B, ;(x,t) =0if k; =0, and
(19) By j(w,t) = Po(t = 2)Tjo(t) = Y PP (a; — 2)Tja(t)
1=0
if k; > 0. We set
(20) &(t) =1—2rcost +r2.

Recall some lemmas from [3] which would be applied for the proof of our main
result.

LEMMA 2.1. Let A=2N + 1(N =0,1,...). Then for every j(1 < j < s)

t*llij

By j(z,t) = Pt — z)w(t) [G: (z) sin + G (x) cos ¢ ;xj}

and there is a C > 0 independent of r and x such that

kj+1

|G (@) < Clér(z —x5)] 72

and
G2 (2)] < Cle (@ — ;)] 7
LEMMA 2.2. Let A=2N(N =1,2...). Then for every j(1 < j <s)
B, j(z,t) = Pr(t — z)w(t) [Gy(z) sin(t — x;) + Gi*(z) cos(t — x;) + G (w)]

and there is a C > 0 independent of r and x such that

kj+1

|G (2)] < Clér(x —aj)] "2,

vl

|G ()] < Clér (@ — ;)]

and
k

|Gy ()] < Clép(w —ay)] 7

Let §, be the Dirac measure concentrated at a given point x € T. We consider

the finite dimensional subspace of the dual space C} generated by the Dirac mea-
sures d,,,1 < j < s which will be denoted by M x. From the Hahn-Banach theorem

we obtain the following description of the dual space C*(w) of C(w).
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LEMMA 2.3. Let w be a weight function, where w satisfies the conditions (1),
(2). Then T € C*(w) if and only if there exists a unique class of equivalences
E. € C;/Mx of complex Borel measures such that

T(f) = /Ef(t)w(t)du(t) VfeC(w) and Yu€ E;,

and

I7llex(w) = 1 E-llcs jmx -

We take a system of functions 75 which in the space C(w) will replace the
trigonometric system. Let Z5 ={k € Z: k= —n,n,—n—1,n+1,...}if [A] =
n—1l,and Z, ={k€Z: k=-n—-1,n+1,...}if |A] = 2n.

Set ‘

Th = {e™: ke Zy} if Al =2n—1,
where n = 1,...; and if |A| = 2n we put
Th = {a, cosnz + b, sinnz, ™ : ke 73},

where the numbers ay,, b, are the senior coefficients of the polynomial (9).

LEMMA 2.4. Let w be a weight function, where w satisfies the conditions (1)
and (2). Then the system Ty is closed and minimal in C(w) with the conjugate
system {Ex}rezy if [A] = 2n — 1 and with the conjugate system {E,, Ex}rez; if
|A| = 2n, where Ey, € C*/Mx. Moreover, absolutely continuous complex Borel
measures dg,, € Ey, for k € Z}, are defined by the equations

sk]1

2rw(x Z Z ar e

j=1 1=0

dgr(z) =

Tj.(x) | de,

=z,

when |A] = 2n — 1 and if |A| = 2n
-
(a2 + b2)w(zx)

l

,Z z dtl (an cosnt + by, smnt)

Jj=1 1=0

(21) dgn(z) = (an cos nz + by, sinnx

TjJ(I)) dz,

=z
and for k € 7

1 ; > d
29 — ik ikt
(22) dgi () w(z)2m (e ai

j=1 1=0

Tj,l@«”)) dx.

t=x;

ProoF. We will bring the proof for the case |A| = 2n. When |A| = 2n — 1 the
proof is similar. Suppose that for some ¢* € C*(w)

¢*(an cosnz + by sinnz) =0

and
o* (™) =0 forall k€ Zj.

Then by Lemma 2.3 there exists a unique class of equivalences of Borel measures
E4« € C*/Mx such that for all p € Ey-

" (an cosnx + b, sinnzx) = /(an cosnt + by, sinnt)w(t)du(t) =0
T
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and
P* (') = / e"Mw(t)du(t) =0  Yu € By~ and Vk € Zj.
T
We put
an () = m /T(bn cosnt — a, sinnt)w(t)du(t)
and )
am(p) = — / e (t)du(t) for |m| <n—1.
21 T

Hence, by the closedness of the trigonometrical system in Ct we obtain that for
any p € Eg

w(t)dp(t) = [an(p)(by cosnt — a, sinnt) + Z ()™ dt.
|m|<n—1
Hence, if po(t) € Ey is such that po({z;}) = 0,1 < j < s then by (1), (2) and (6)
we obtain that
o (110) (bn cos nt — a,, sinnt) + Z o (p0)e™™ = C - wx A (1),
Im|<n—1

where C € C. From the last equality and (9) immediately follows that o, (1) = 0.
Which yields C = 0 and consequently «,,(10) = 0 for all |m| < n — 1. Thus
E4- = Mx which proves that the system 7 is closed in C(w). One can easily
check that the absolutely continuous Borel measures (21), (22) are finite Borel
measures which satisfy the conditions

/(an cosnt + by, sin nt)w(t)dgy(t) = dnk, fork = nand allk € Zj;
T

/e*ijtw(t)dgk(t) =0, for k = nand for all j, k € Zj.
T
Hence, the system is also minimal in C'(w). O

For any 0 < a < 1 we define A, € Cr as follows

1 if xze€ [7%7 %]a
2(4 4 q) if z€[-a,—2);
Ag(z) = ,%’(xfa) if x€(%al;
0 elsewhere.

3. Proof of Theorem 1.2

PROOF. We set § = min,«;{3, 1|z; — z;[}.
For the convenience of the reader at first let us consider the case |A| = 0. By
(12) the inequality (14) can be written in the following form:

(23) Z(r,x) :=w(x) /T mPT(z —t)dt < C forany z eT.

To prove (23) we write

S

I(r, 2) :Z:lw(x)/Twit)Ag(t—xj)PT(x—t)dt
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+w(a:)/1rw1t)[l—gAg(t—xj)]P,.(x—t)dt =S Ti(r,2) + Tolr, 2).

j=1
Fix any j(1 < j < s) and consider three cases:
1) z € T\ O;(20);
2) z € 0;(20)\ 0;(%);
3) S Oj(g)

In the case 1) the well known estimates for the Poisson kernel yield

1 2 1—7r

24 Zi(r,x) <w(x ——dt min{ ——, ——— .
(24) e [ (s}
Recall that 0 < A; < 1. Hence, by (1) and (2) we obtain that for some C; > 0
(25) Zj(r,x) < Cj

for any 0 <7 < 1.
In the case 2) the estimate (25) is trivial if 1 —r > %. If1-r< g then we
write

1
Zj(r,z) = w(z) {/Oj(i) +/Oj(26)\oj(j)} mAg(t —z;)Pp(x — t)dt.

Afterwards conditions (1), (2) yield that the function Z((f)) is bounded uniformly

on the set
5 0 )
IL;(0) = (z,t) € T :§<|x—1:j|<26 & £§|t—xj|§25 .

Thus the second integral on the right hand of the above equality is bounded. To
finish the proof for the case 2) we write

As(t —z; 11—
w(a:)/ Bst=2) p oy pyat < w(x)/ —dt—— <!
oy wit) 0;(4) w(t)  2sin® g
for some C7 > 0.

In the case 3) the estimate (25) is trivial if 1 —r > %. If 2 € O;(2 — 2r) and
1-r< % then we have

1
Zi(r,z) = w(z) {/oj(l—r) + /c)j(2§)\oj(1_r)} mAg(t — x;)Po(x — t)dt.

By (1) and (2) we have that the function 1@‘;(—‘;) is bounded by a C > 0 independent

of any t from the set 1 —r < |t — x;| < 26. Thus the second integral on the right
hand of the above equality is bounded. Afterwards we write

Ast—5) (0 w(z) 1 /
wie) /oj(1r) w(t) Prle —t)dt < 1—r /o](1r) w(t) r=c

for some C’" > 0.
If x € Oj(g) \ O;(2 — 2r) then we write

Ii(r,z) = w(m){/ +/ +/ }-"dt
O;(1-r) 0; (2lz—=z;)\O; (1-7) 0;(20)\0; (2]z—=;])

- (1) (2) (3)
= I} (r,x) + ;7 (r,z) + ;7 (1, 2).
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As above by (1), (2) we have that w((x)) is bounded by an absolute constant for any

t from the set 0;(26) \ O;(2|z — z;|). Thus Ij( )( r, ) is bounded.
Afterwards we write

D ) = wla As(t — ) v
00 = e [ SR

1
Y S
2sin® £ 0,(1—r) W(t)

w(z)

2 gin? %

IN

IN

b}
C (1—-r)2N <, Yz € 0;(3)\ 0;(2 - 2n),

where C’" > 0.

To evaluate I](-2) (r,z) we set £ = x — x; and
(26) Te(a)={reT:|t—¢& <a}, a>0.
We recall that 1 —r < g and check that

As(7)
100 by im (e ray) [ A
/ ! ! Te(l—r) w(T+xj)

for any £ such that |¢| < 2, where C > 0. Afterwards we set

P.((—7)dr <C

(27) Qg:{TET:l—T§|T|§2§&1—7‘§|5_7’|}
and write for £ > 0

@D ) AT

Z; (r,é+z;) = wl+z )/ (T+$J>PT(£ T)dT

= w(&+z;) {// /”} T—|—.T] Pr(f—T)dT,

where
(28) Q’g = {TET:I—T§|T|§2§&|§—T|225};
(29) Qg = {TET:l—T§|T|SQf&l—TS|£_T|<ig}-

Then we derive

Ag(T)
w(§ + ;) /ﬂ’g mﬂ(ﬁ —7)dr

—(1-r) §—(1-7) 2¢ 1—7r
—2¢ (1—7) E+(1-7) € — 72 |7|%

= T3PV (€ +ay) + TP (r, € 4 ay) + I8P (1,6 4 )
for some C > 0. Afterwards we obtain
IP2D(r, 6 +25) < O(1— )b+ < ¢
13
I;Q’z’g)(r,f—l—xj) <C(1- 7‘)/1 w2du < C',

uniformly for some C’ > 0.
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If k¢ > 3 is the natural number for which (1 —r)(ke — 1) < & < (1 — r)ke then

we derive
(1-r) £—(1-r) 1
) I —
kel (1o J 1€ = T2 |7

C-ney  [A=n)ke =D o 3 [ 2 <
= [(1—r><k5—1>12{ 2 } +oa )/M di s,

where C’ > 0. Thus w(§ + z; fQ// AT5+;)J)P (& — 7)dr is uniformly bounded.
On the other hand

As(7)
wle+a) [ SRS RE T

ke—1

2
I§2’2’2><r,§+xj>scu—r)a*?{ -
1—7r

_ N NI 3
= w(ﬁ—i—x])/_% w(T—|—zj)Pr(§ T)dr

} A7) _
+ ol [ AT (€ i

V[ D) e
+ w4+ )/76 (T+xJ)PT(§ T)d
1-7)

e ([ ) e

uniformly for some C’ > 0. Thus I( )( x) = Ij(.2 1 (r, &+ x;) +I(2 2)(7",5 +x;) is
uniformly bounded for any & > 0 such that |¢| < 2. The case £ < O is checked in a
similar way. Thus we finish the proof of the inequality Z;(r,z) < C uniformly for
anyz € Tand 0 <7 < 1.

The function ﬁ(l — 25:1 As(t — z;)) is continuous on T thus Zo(r, z) is
uniformly bounded.

Now let |A] > 1. Without loss in generality we can suppose that r > 2. We
have to give a similar proof applying Lemmas 2.1 and 2.2. By (18) we have

()/ ()IPXAT(xtldt<w Z/ | By (,t)|dt.

It is sufficient to prove that for any j(1 < j < s) such that A\; > 1 there exists
C; > 0 independent of x and r such that

J(r,z) = w(x)/jrﬁwm(x,t)\dt <c,.

N

We write .
J(r,x) = w(x) /T ﬁAg(t — )| Bry(x, t)|dt
+w(x) /T ﬁ 1= As(t—a,)|Pr(z—t)dt == Z Jy(ryx) + Jo(r, x).

v=1 v=1
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We have to prove that for any v(1 < v < s) J,(r,z) < C,, where C, > 0 are
independent of z and r. According Lemmas 2.1 and 2.2 the case v = j is technically
more complicated. Hence, our objective will be to prove the inequality

w(t)]
w(t)

t—iEj

Ji(r,z) < C

A5 t — ;)| sin(

)| P(t — 2)dt

(& (= —xj

+ C /W 5(t — )Pt — x)dt < C.

[Erx—x

As in the first part of the proof we will consider the cases 1) — 3).
In the case 1) we derive

’LU(:C) t—x; kj=Aj+1 ) 11—
Jj(T,:ZZ) < C—k]“/ Sin( j) dt min{17.25}
[Er(x —25)] 72 J0,(9) — 7 2rsin
kj—=2; -
+ CL)]C/ sin(ﬂ) dt min{Q,l.;’}
(& (x — 2;)] % J0;09) 1—7r"2rsin®é

kj+3

2 1 :
< " — 24k —Xj i
< O r)w(x)d min { (1—-7)2 " 9 sin? 5}

1 1 2
+ 1rww51+kiAJ’min{ , } <y,
( Ju(z) (1—7)%" 2rsin®6 !
where C; > 0 is independent of (0 < r < 1) and = € T \ O;(26).
We skip the proof in the case 2) because it is similar to the analogous case
provided above.
In the case 3) if 1 —7 > ¢ 7 then we have

Ji(r,z) < C(lfr)%éﬂkf,\j min{(l_Qr) 1 }

(e — )] *2rsin®o
o w(z) 14k —Nj { 2 1 }
et [gr(m_xj)]%(s LT =12 2rsin® 6
S Cl lU(JC) o 51+k_7»7)\j + C/ w(x) - (5k —Aj < OJ,
[&r(z — ;)] 72 [Er(z —2j)] =

where C; > 0 is independent of (0 < r < 1— %) and z € O;(%).
If z € 0j(2—2r) and 1 —r < 2 then we have

dt

o (o) WOl .
Tilra) < C(l —r)kit2 {/oj(1—r) +/oj(25)\oj(1—r)} w(t) Aalt — ;)
w(t)

w(z) / / w(?)]
+ o + BN As(t — z;)dt.
(1 —r)kitt { 0;(1—r) oj(25)\oj(1—r)} w(t) ( i)
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By (1) and (2) we will have that

w(z) / |w(®)] Lt
—_— —=As(t —x;)|sin dt
(L=7)%%2 Jo, 2sn0,0-r) w(t) olf = a3 sin(=5=)

w(x) /
+ t)|As(t — z;)dt
(L —r)kitt (26)\O, (1— r)‘ w(B)lAs( i)
C’w(x) / - Itk =X
< As(t — z)|sin dt
—1)%%2 Jo 2600, (1-r) ( )| sind 2 )
Cw(x) / . t—ux RN
+ — As(t — x;)|sin dt
(L —mr)hatt (26)\O; (1-r) ( ) ( )
Cw(x) k=2 Cw(x) s —
= (1 7")’%+252+ ot (1 —r)kstt o < O
for any z € 0;(2—2r) and 1 —r < $.
Afterwards we write
w(z) I NN P ey
A=)k /oj(l—r) w(l) —=As(t — ;)| sin( 5 )|dt
w(x) jw(®)]
e P As(t — g
T Ly
w(x s w(z s
+ (1_7(0),3]+2(1 —r)PthA (1_7(1),21+1(1 — )t <

where C’ > 0 is independent of z € O;(2—2r) and 1 —r < %. Thus we have proved
that

(30) Jj(r,x) < Cj forany x € 0;(2—2r),

where C > 0 is independent of 7(0 <7 < 1).
Ifze Oj(g) \ O;(2 — 2r) then we write

‘]j(rv CC) < C[é(f(x))]’“]“ /o»(1 ) mAé(t - l‘j) sin( Ij) P, (t — x)dt
w(x) jw(®)]
C A P.(t — x)dt
’ mw—%nzAMrﬂﬂ>5( R
" C[& —~ 0, (2fa—a; N0, (1— >|Z)J(tt;A5(t = )| sin(—5 ) | Pr(t — )t
w(x) lw(®)]
C—"— As(t — x;)P.(t — x)dt
" [ (@ — aj)] % /J(zw 2;)\0; (1-r) W(t) ol VBt =)
w(z) w(®)] —
C " —=As(t —x;)|sin P.(t —x)dt
" (6 (x — 2;)] 72 J0,200\0;2la—ay1) W(P) ol )| sin(—=)| Pt - )
w(z) |w(?)] : 0
C————— — At — ;)P (t — z)dt == Ji (@
" & (x —24)] % / (260\0; (2lz—a;) W(E) ot i ) ; (%)
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Afterwards we write

(5) (6)
J; (r,:v)—i—Jj (r,x)

< C1—rw(zx sk =N+ min{ 2 1 }
> o1 ) .

(2 — )] it (1 —7)2" 2rsin®s
+ 70(1 —rw(@) Ski=AitL gt mln{ 2 ! }

k bl .

(e — )] (=) 2rsin®5

< C'(1—r)|sin( ) oki=Ai
- MR

+ C'(1—r)|sin( ) gt < ¢,

where C > 0 is independent of = € 0;(3)\ 0;(2—2r) and r(0 < r < 1).
Then we evaluate

(1) (2)
Jj (Tvx)+Jj (r,z)

M — kX2 i 2 1

(6 (x — )] 2 e {(l—r)2’2rsm25}

M — V5 =2+1 gt min 2 1 )
i [fT(x—xJ)]%?( ) “ {(1—7“)2,27“si1126}<077

where '} > 0 is independent of = € Oj(%) \O,;(2—2r)and r(0 <7 < 1).
To evaluate J;?’) (ryx) + J;4)(T, z) we set ( = x — x; and derive that

e =g B L L R
C|¢|M ks ,
= (1—|T£k-7‘+2/<—1+r |r| iRt <
and
@ R (S 7)) jw(r +25)] | P(r— O
3 ne ) 6,(0)] % /rgu_r) w(T + ;) ADBAT = Qar
Cl¢r T ke
S A=nETT _|r)kj+1 /41+r [r|~Nth < C

for all ¢ such that |¢| < 4, where Y¢(1—7) is defined by (26) and C’ > 0. Afterwards
we suppose that ¢ > 0 and set

g ) = 2 | e ) s sn )|t — Gy
_ CHJ {/ /} o :iii ‘AE(T) sin(%) P.(r — ¢)dr,
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JD gy = UEED) [ el 4 )
()7 / w(r + ;)

_ <+xj {/ /”}lw:ig As(r)Po(r — C)dr,

where Qg¢, (¢, Qf are defined by (27), (28).
Afterwards, we obtain that

w(C + ;) / |w(T + ;)|

e () Joy w(r+ )

p ulhn) [ et
(6. (07 Jay w(T+))

—(1-r7) ¢—(1—7r) 2¢ ij—kj—l(l _ ,,,) C)\j—kj (1 _ 7“)
< C + + |<_T‘2T/\j—kj—1 + |C_T|27.>\j—kj dr
—2¢ (1-r) ¢+(1—r)
= J](4’2’1)(r, C+xj)+ J;4’2’2) (r,¢+ ;) + JJ(»4’2’3)(7”, ¢+xj)

As(T)Pr(T — )dr

As(T)

sm(%) Po(r — ()dr

As(T)Pr (T — Q)dr

Afterwards we derive
T30 (r, () < C(1=r) IR IR O (1) T R AR <

¢
J](4’2’3)(7“,C+ z;) < C(1— r)/ udu < O
(1-7)
uniformly for some C’ > 0.

Again denoting by k¢ > 3 the natural number for which (1 —r)(k; — 1) < ¢ <
(1 —r)kc we obtain

4,2,2
T2 (¢ 4 )
ké—l
2

(1-r) §—(1-r) C)\j—kj—l CAj_kj
C(l—r +/ }[ — + — | dT
( ){ (1—7) k5271 _ |C—’7'|27'>‘-7_k-7_1 ‘C—’r|2 TAi—k;

C(—r)ghht {(1 — ) (ke — 1)} ki =i +2

IN

(1= r)(ke = D 2
C(l B r){)\jikj (1 B T)(kg _ 1) kj—X;+1 . +oo u72 u /
+ [(1 — T)(k'g — 1)]2 [ 9 ] +C(1 )/(1r) du < ',

where C’ > 0. Thus
w(¢ + ;) |w(T + ;)|
€ (O / ¢ w(r+a;)
w(C + 7)) |w(T + 25)]
+ r
& (O /ﬂ w(r+ ;)

is uniformly bounded.

As(T) sin(%) P.(t—{)dr

As(T)Po (1 — {)dr
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We skip the proof of the inequality

wCtay) [ olwlrta)l N rl

[6-(Q)] e /Qf{ w(T + ;) As(T) (2) P (r—()d

w(C + ;) |lw(T + ;)] o
G / w(r + 2y BB —Qdr<C

for some C' > 0 and any 0 < ¢ < g and 0 < r < 1 because it is provided in a similar
way.
The proof for the case ( < 0 is analogous. Hence we proved that

1)
Ji(r) < G forany @€ 0;(3)\ 0;(2 = 2r),
where C} > 0 is independent of (0 < 7 < 1). Thus the inequality
Ji(r,x) <C forany z €T,

where C' > 0 is independent of (0 < r < 1) is proved.
Observing that the function ﬁ (1—=225_, As(t —x;)) is continuous on T we
derive that Jy(r, z) is uniformly bounded.
O
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