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Abstract

This paper is a certain generalization of the GRÜNWALD - MARCINKIEWICZ
theorem revealing its connection to a process defined by S. N. Bernstein.

1 Introduction

1.1. We begin with some definitions and notations. C̃ stands for the space of
2π-periodic continuous functions, Tm denotes the space of trigonometric poly-
nomials of degree at most m of form a0

2 +
∑m

k=1(ak cos kϑ + bk sin kϑ), ak, bk

reals. If Θ = {ϑkm, k = 0, . . . , 2m,m = 1, 2, . . . } ⊂ [0, 2π) is an interpolatory
matrix with

0 ≤ ϑ0m < ϑ1m < · · · < ϑ2m,m < 2π, (1)

the uniquely defined mth trigonometric interpolatory polynomial for f ∈ C̃ is

Tm(f, Θ, ϑ) =
2m∑

k=0

f(ϑkm)tkm(Θ, ϑ), (2)

where the uniquely defined fundamental trigonometric polynomials of degree
exactly m satisfies the conditions

tkm(Θ, ϑjm) = δkj , 0 ≤ k, j,≤ 2m (3)

In 1914 G. Faber [?] proved that for arbitrary fixed interpolatory matrix Θ

Λm(Θ) = ‖λm(Θ, ϑ)‖ = ‖
2m∑

k=0

|tkm(Θ, ϑ)|‖ ≥ c log m. (4)

(Above ‖·‖ is the usual sup-norm on [0, 2π); here and later c, c1, . . . are positive
constants which may denote different values even in subsequent formulae.)

Key words: interpolation, operator norm, divergence, Grünwald-Marcinkiewicz theorem,
Bernstein operator.
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1.2. The relation (4) yields that for any fixed interpolatory matrix Θ one can
find a function f ∈ C̃ for which

lim sup
m→∞

‖Tm(f, Θ, ϑ)‖ = ∞ (5)

(cf. [?, Vol. III; Chapter II, § 3]).
Considering pointwise convergence, the situation is not better. Let us take

the ”best” interpolatory matrix

E = {ϑkm =
2kπ

2m + 1
, k = 0, . . . , 2m,m = 1, 2, . . . } (6)

for which
Λm(E) =

2
π

log m + O(1)

is the smallest possible among all interpolatory matrices. One can prove

GRÜNWALD–MARCINKIEWICZ THEOREM.

There exists a function f ∈ C̃ for which

lim sup
m→∞

|Tm(f, E, ϑ)| = ∞ (7)

for every ϑ ∈ [0, 2π).

(See G. Grünwald [?] and J. Marcinkiewicz [?].)

1.3. However, if we raise the degree, we can define a convergent interpolatory
process. Namely, as L. Fejér did, if we take the trigonometric interpolatory
polynomial of degree 2m

Hm(f, ϑ) :=
1

(2m + 1)2

2m∑

k=0

f(ϑkm)

(
sin 2m+1

2 (ϑ− ϑkm)

sin ϑ−ϑkm

2

)2

, (8)

where from now on ϑkm are defined by (6), we have
{

Hm(f, ϑkm) = f(ϑkm), 0 ≤ k ≤ 2m

H
′
m(f, ϑkm) = 0, 0 ≤ k ≤ 2m

, (9)

and
lim

n→∞
‖Hm(f, ϑ)− f(ϑ)‖ = 0

for any f ∈ C̃ ([?], Part 17). Notice that
(

sin 2m+1
2 (ϑ−ϑkm)

sin
ϑ−ϑkm

2

)2

is the square of

the fundamental functions tkm(E, ϑ).

Remark:
The interpolatory property of (8) was noticed by D. Jackson; however, H

′
m(f, ϑkm) =

0 was noticed first by L. Fejér. (cf [?], Part 17)
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1.4. The bridge between Tm and Hm was given by S. N. Bernstein [?] defining
the trigonometric polynomial Bmh of degree m + h, 0 ≤ h ≤ m, as follows.
Using again the equidistant nodes E of (6),

Bmh(f, ϑ) =
1

(2m + 1)(2h + 1)

2m∑

k=0

sin 2m+1
2 (ϑ− ϑkm) sin 2h+1

2 (ϑ− ϑkm)

sin2 ϑ−ϑkm

2

f(ϑkm).

(10)
Obviously

Bm0(f, ϑ) = Tm(f,E, ϑ),
and

Bmm(f, ϑ) = Hm(f, ϑ);
moreover

Bmh(f, ϑkm) = f(ϑkm), 0 ≤ k ≤ 2m. (11)
If the norm of the operator of Bmh(f, ϑ) on the normed space C̃ is denoted
by Λmh(E) (i.e. Λmh(E) = sup ‖f‖≤1

f∈C̃

‖Bmh(f, ϑ)‖), then we can write with

N = m
h+1

Λmh(E) =
2
π

log N + O(1). (12)

Moreover if the sequence N is bounded as m → ∞, Bernstein proved that
‖Bmh(f, ϑ)− f(ϑ)‖ → 0 (m →∞) for every f ∈ C̃.

1.5. Later we use the reconstructing property of Bmh which says (cf. [?, p.
147]) that

Bmh(t, ϑ) = t(ϑ) whenever t ∈ Tm−h.

2 The result

As we have seen if the sequence {N = m(h+1)−1} is bounded, the Bmh process
uniformly tends to the function f ∈ C̃ considered. But if it is not the case one
can prove the next GRÜNWALD-MARCINKIEWICZ-type statement.

Theorem 1 Let us given the monotone increasing sequence of positive integers
{hk} with limk→∞ hk = ∞. Then one can define the monotone increasing
sequence of positive integers {mk} and a function F ∈ C̃ such that

lim sup
k→∞

|Bmkhk
(F, ϑ)| = ∞

for every ϑ ∈ [0, 2π).

Remarks.
1. Although the same function F ∈ C̃ which is ”bad” for every ϑ but the
elements of the subsequences (defined by the ”lim sup”) generally do depend on
ϑ.

2. If 0 ≤ hk ≤ c, one can use essentially the original proof of the Grünwald–
Marcinkiewicz theorem.
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3 Proof

For the proof of the theorem we need some lemmas.
As A. F. Timan ([?], Part 8.2.41, p. 506) did, we write the Bernstein operator

as follows.

3.1.

Lemma 1 Let f be a bounded function on [0, 2π) with ‖f‖ ≤ 1. Then for any
f and ϑ

Bmh(f, ϑ) =
1

2m + 1

∑

|ϑ−ϑkm|≤ 2π
2h+1

sin 2m+1
2 (ϑ− ϑkm)

sin ϑ−ϑkm

2

f(ϑkm) + O(1) (13)

:= Lmh(f, ϑ) + O(1),

where the symbol ”O” doesn’t depend on f, ϑ, m and h.

Proof of Lemma 1. We write

Bmh(f, ϑ) =
1

(2m + 1)(2h + 1)

∑

|ϑ−ϑkm|≤ 2π
2h+1

sin 2m+1
2 (ϑ− ϑkm) sin 2h+1

2 (ϑ− ϑkm)

sin2 ϑ−ϑkm

2

f(ϑkm)

+
1

(2m + 1)(2h + 1)

∑

|ϑ−ϑkm|> 2π
2h+1

· · · = Σ1 + Σ2.

Here using in the denominator that on
[−π

2 , π
2

]
, we have | sin x| ≥ 2

π |x|,

|Σ2| ≤ c

(2m + 1)(2h + 1)

∞∑

k=0

1(
2π

2h+1 + 2kπ
2m+1

)2 ≤ c
2h + 1
2m + 1

∞∑

k=0

1

1 +
(

2h+1
2m+1k

)2

< c

∫ ∞

0

1
1 + x2

dx = O(1). (14)

The first sum can be estimated as follows.

Σ1 =
1

2m + 1

∑

|ϑ−ϑkm|≤ 2π
2h+1

sin 2m+1
2 (ϑ− ϑkm)

sin ϑ−ϑkm

2

f(ϑkm)

(
1 +

sin 2h+1
2 (ϑ− ϑkm)

(2h + 1) sin ϑ−ϑkm

2

− 1

)

=
1

2m + 1

∑

|ϑ−ϑkm|≤ 2π
2h+1

sin 2m+1
2 (ϑ− ϑkm)

sin ϑ−ϑkm

2

f(ϑkm)

+
1

2m + 1

∑

|ϑ−ϑkm|≤ 2π
2h+1

sin 2m+1
2 (ϑ− ϑkm)

sin ϑ−ϑkm

2

f(ϑkm)

(
sin 2h+1

2 (ϑ− ϑkm)

(2h + 1) sin ϑ−ϑkm

2

− 1

)

= Lmh(f, ϑ) + Σ3.
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Let αk = ϑ−ϑkm

2 . Using (two times) that sin t
t2 − 1

t is bounded, we have

1
sin αk

(
sin(2h + 1)αk

(2h + 1) sin αk
− 1

)

=
α2

k

sin2 αk

{(
(2h + 1)

(
sin(2h + 1)αk

(2h + 1)2α2
k

− 1
(2h + 1)αk

))
−

(
sin αk

α2
k

− 1
αk

)}

≤ c
α2

k

sin2 αk

(2h + 1)2αk ≤ c(2h + 1)2αk,

whence
|Σ3| ≤ c

2m + 1

∑

k0(ϑ)≤k≤k0(ϑ)+2 2m+1
2h+1

|αk|≤ 2π
2h+1

(2h + 1)2αk

≤ c
2h + 1
2m + 1

2 2m+1
2h+1∑

k=1

1 = O(1). (15)

By (14) and (15) the lemma is proved.

3.2. Now we introduce some definitions and notations. Let us denote by

A(n) =
{

k

2n + 1
, k = 1, . . . 2n

}
.

As in [?, Vol. III. Ch. II. § 3], it can be easily seen that A(n) ∩ A(n + 1) = ∅.
Indeed let us suppose that there are l and j such that l

2n+1 = j
2n+3 . We can

assume that l = 2ν + 1, j = 2m + 1 are odd. So 0 < 2ν+1
2n+1 = m− ν < 1, which

is a contradiction.

Lemma 2 Let S =
{

pi

qi
: (pi, qi) = 1, qi are odd , i = 1, . . . , s

}
, a set in [0, 1].

Then there is an n > (q1q2 · · · qs)2, such that the sets A(n) and A(n + 1) and S
are independent, that is, A(n) ∩ S = A(n + 1) ∩ S = A(n) ∩A(n + 1) = ∅.

Proof of Lemma 2. Let 2n + 1 = (
∏s

i=1 qi + 2) (2
∏s

i=1 qi + 1). If pi

qi
= l

2n+1 ,

then
pi(2

∏s
i=1 qi+1)(∏s

j=1 qj+2)
qi

= l is an integer, which is a contradiction, because
qi is not a divisor of 2pi.

If pi

qi
= l

2n+3 , then
pi((

∏s
j=1 qj+2)(2 ∏s

i=1 qi+1)+2)
qi

= l, and qi is not a divisor
of 4pi, i.e. we get a contradiction again.

3.3. Let p > 3 be an integer and define Jp by

Jp =
(

π

p
, π − π

p

)
∪

(
π +

π

p
, 2π − π

p

)
.
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Further let u be a positive integer such that u > ep2
. Using Lemma 2, for a fixed

(!) h (see (10)), we can define an independent system of nodes and a set of the
corresponding pair of indices as follows (cf. M(u(p), h) and K(u(p), h),respectively).
Let m1 be an arbitrary fixed positive integer, and let m̃1 = m1+1. Furthermore,
let

S1 :=
{

ϑk,m1

2π
,
ϑj,m̃1

2π
, k = 1, . . . , 2m1; j = 1, . . . , 2m̃1

}
.

Let us denote by Ŝ1 the set of rational numbers in S1 in reduced form.
By Lemma 2 one can define n1 such that Ŝ1, A(n1), A(n1 + 1) are indepen-

dent, and so S1, A(n1), A(n1 + 1) are also independent.

Let m2 := n1. Now let

S2 := S1 ∪A(n1) ∪A(n1 + 1),

and the reduced form of the numbers in S2 is denoted by Ŝ2 again. By Lemma
2, as previously, let us define n2 such that S2, A(n2), A(n2+1) are independent.
Because 1

2n1+1 ∈ Ŝ2, it is clear, that n2 > n1.

Let m3 := n2 and S3 := S2 ∪ A(n2) ∪ A(n2 + 1). Continuing this process, we
obtain (by Lemma 2) St, nt, such that St, A(nt), A(nt + 1) are independent.

Let mt+1 := nt, t = 1, 2, . . . , u(2h + 1)− 1. Using the above sets we define a set
of nodes as follows

M(u(p), h) = M

:= {ϑk,mi , ϑj,m̃i ; k = 1, . . . , 2mi; j = 1, . . . , 2m̃i; i = 1, 2, . . . , (2h + 1)u}.
M(u(p), h) is called an independent system of nodes. The corresponding set of
pairs of indices

K(u(p), h) = K := {(mi, h), i = 1, 2, . . . , (2h + 1)u}.

Remark. By construction, m2 = n1 > (2m1 + 1)2(2m1 + 3)2, m3 = n2 >
{(2m1 + 1)(2m1 + 3)(2m2 + 1)(2m2 + 3)}2 or generally,

mt+1 = nt >

{
t∏

i=1

(2mi + 1)(2mi + 3)

}2

.

(Indeed, we have to use the relation n > (
∏s

i=1 qi)
2 from Lemma 2. We omit

the further details.)

3.4.

Lemma 3 With the notations above, there is a trigonometric polynomial Tp,
such that ‖Tp‖ < 2 on [0, 2π], and for any fixed ϑ ∈ Jp there is a pair of indices
(m, h) ∈ K, such that

|Bmh(Tp, ϑ)| > p. (16)
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Remark. Notice that we do not say anything on the degree of Tp.

Proof of Lemma 3. Let us divide the interval [0, 2π] to u(2h + 1) pieces. As
above, let M be an independent system of nodes, and let us define a function ϕ
on this system as

ϕ(ϑk,mj
) =

{
(−1)k, if ϑk,mj > 2πj

u(2h+1)

0, otherwise
, (17)

and

ϕ(ϑk,m̃j ) =
{

(−1)k, if ϑk,m̃j
> 2πj

u(2h+1)

0, otherwise
, (18)

for j = 1, 2, . . . , (2h + 1)u. By the definition of K the values of ϕ are uniquely
defined. We can assume that ϕ is continuous on [0, 2π], and |ϕ| ≤ 1. Let Tp be a
trigonometric polynomial which interpolates ϕ at the nodes in M . By Lemma 3
from [?, Vol. III; Chapter II, § 3], we can assume that ‖Tp‖ < 2. Let ϑ ∈ Il∩Jp,

where Il = Il(h, u) =
[

2π(l−1)
u(2h+1) ,

2πl
u(2h+1)

]
. It will be shown that

|Lmlh(Tp, ϑ)| > p or |Lm̃lh(Tp, ϑ)| > p. (19)

Indeed, by (17) and Lemma 1

|Lml,h(Tp, ϑ)| =

∣∣∣∣∣∣∣
sin 2ml+1

2 ϑ

2ml + 1

∑

|ϑ−ϑk,ml |≤ 2π
2h+1

(−1)kϕ(ϑk,ml
)

sin ϑ−ϑk,ml

2

∣∣∣∣∣∣∣

≥
∣∣sin 2ml+1

2 ϑ
∣∣

2ml + 1

∑
2π

u(2h+1) <ϑk,ml
−ϑ≤ 2π

2h+1

1

sin |ϑ−ϑk,ml
|

2

≥ c

∣∣∣∣sin
2ml + 1

2
ϑ

∣∣∣∣
∫ 1

2h+1

1
u(2h+1)

1
x

dx ≥ c

∣∣∣∣sin
2ml + 1

2
ϑ

∣∣∣∣ log u

The calculation for Lm̃lh(Tp, ϑ) is similar. Now we have to deal with the sine
factor. We write

| sin ϑ| =
∣∣∣∣sin

(
2ml + 3

2
ϑ− 2ml + 1

2
ϑ

)∣∣∣∣ ≤
∣∣∣∣sin

2ml + 3
2

ϑ

∣∣∣∣ +
∣∣∣∣sin

2ml + 1
2

ϑ

∣∣∣∣ .

Using the definition of Jp, we get that | sin ϑ| > 2
p , i.e. one of the two terms on

the right-hand side has to be greater that 1
p . That is, choosing u > ep2

(16) is
proved. By Lemma 1, we obtain Lemma 3.

3.5. Now we state

Statement 1 Let us given the monotone increasing sequence of positive inte-
gers {hk} with limk→∞ hk = ∞. Then one can define a monotone increasing
sequence of positive integers {mk} and the function g ∈ C̃ such that

lim sup
k→∞

|Bmkhk
(g, ϑ)| = ∞

for every ϑ ∈ [0, 2π) \ {0, π}.
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Proof of the statement. The argument is analogous to [?, Vol. III. Ch. II.
§ 3]. We are given the sequence {hk}. Next we fix a sequence of real numbers
{ck} with 0 < c1 < c2 < · · · ck < ck+1 < · · · ; limk→∞ ck = ∞.

Now we will define the sequences of integers {pk}, {uk}, {mk} and the corre-
sponding sets M(uk(pk), hk) = Mk = {ϑl,m(k)i

, ϑj,m̃(k)i
; l = 1, . . . , 2m(k)i; j =

1, . . . , 2m̃(k)i; i = 1, 2, . . . , (2hk + 1)uk}, and similarly
K(uk(pk), hk) = Kk as follows.

h1 and c1 are given. Let p1 > 3, u1 > ep2
1 , m(1)1 > c1h1, K1 = {(m(1)i, h1)|i =

1, 2, . . . , (2h1 + 1)u1}, are given by the construction in Section 3.3, and M1 is
the corresponding system of nodes. By Lemma 2, m(1)i > m(1)i−1, and M1 is
an independent system of nodes, so by Lemma 3., via ϕ1, we can construct Tp1 ,
{Bm(1)ih1(Tp1 , ϑ)|i = 1, 2, . . . , (2h1 + 1)u1}, where

Bm(1)ih1(Tp1 , ϑ) = Bm(1)ih1(Tp1 , ϑ) or Bm(1)i+1,h1(Tp1 , ϑ),

according to relation (16) of Lemma 3; the definition of Bm(l)ihl
(Tpl

, ϑ) will be
analogous.

h2 and c2 are given. Let p2 > max{p2
1, D1}, where

D1 = max
{‖Bm(1)ih1(Tp1)‖2 + ‖Bm(1)i+1,h1(Tp1)‖2, i = 1, 2, . . . , (2h1 + 1)u1

}
;

the definition of D2, D3, . . . will be analogous. Further let u2 > ep2
2 , m(2)1 >

max{c2h2,m(1)(2h1+1)u1 , h2 + deg Tp1}. Now by the construction in Section 3.3
we can define K2 and M2 such that m(2)i > m(2)i−1, and M2 is an independent
system of nodes in itself. So by Lemma 3., we can construct ϕ2, and then Tp2

on M2. (Let us remark that the independency was needed for the construc-
tion of ϕ2, so the independency of M1 and M2 is not necessary.) So Tp2 and
{Bm(2)ih2 |i = 1, 2, . . . , (2h2 + 1)u2} fulfil the properties in Lemma 3.

In the nth step, hn and cn are given. Let pn > max{p2
n−1,

∑n−1
j=1 Dj}. Fur-

ther let un > ep2
n , m(n)1 > max{cnhn, m(n−1)(2hn−1+1)un−1 , hn+max{deg Tpl

|l =
1, 2, . . . , n − 1}}. Now by Lemma 2, we can define Kn and Mn such that
m(n)i > m(n)i−1, and Mn is an independent system of nodes in itself, and
by Lemma 3., we can construct ϕn, and then Tpn on Mn, as above.

Collecting the numbers {m(l)i|i = 1, 2, . . . , (2hl + 1)ul, l = 1, 2, . . . }, we
define our sequence of pairs of indices as

I := {(m(1)1, h1), . . . , (m(1)(2h1+1)u1 , h1), (m(2)1, h2), . . . , (m(2)(2h2+1)u2 , h2), . . . }.

It is clear that

m(l)i

hl
≥ m(l)1

hl
≥ cl, 1 ≤ i ≤ (2hl + 1)ul,

that is
{

m(l)i

hl

}
tends to infinity with l.

Now let us collect again the properties of the sequences {pk} and {m(k)i},
which we will use in the next step.
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pk+1 > p2
k, (20)

m(k + 1)i − hk+1 > max
1≤r≤k

{deg Tpr
}

∀ (m(k + 1)i, hk+1) ∈ K(uk+1(pk+1), hk+1)

}
, (21)

pk+1 > max{Dl, l = 1, . . . , k}. (22)

Let us define

g(ϑ) =
∞∑

k=1

Tpk
(ϑ)√
pk

. (23)

According to (20), g ∈ C̃. If ϑ ∈ [0, 2π) \ {0, π}, then if s is large enough, then
ϑ ∈ Jps

. Let us decompose g to three parts:

g(ϑ) =
s−1∑

k=1

· · ·+ Tps
(ϑ)√
ps

+
∞∑

k=s+1

· · · = g1(ϑ) +
Tps

(ϑ)√
ps

+ g2(ϑ).

Obviously this decomposition depends on ϑ; g1(ϑ) ∈ C̃ and ‖g1‖ ≤ c, where
c does not depend on s.

Let ϑ ∈ Ij+1(hs, us(ps)). Using the reconstructing property of the Bernstein
operator (see Section 1.5), relation (21) yields

Bm(s)jhs
(g1, ϑ) = g1(ϑ).

By Lemma 3, with a proper m(s)j = m(s, ϑ),

Bm(s)jhs
(

Tps√
ps

, ϑ) >
√

ps,

and

Bm(s)jhs
(g2, ϑ) ≤ 2‖Bm(s)jhs

‖
∞∑

k=s+1

1√
pk
≤ C‖Bm(s)jhs

‖ 1√
ps+1

,

where C is an absolute constant. According to (22), the third term is bounded.
The above estimations prove our Statement 1.

Remark. The construction shows that for every fixed ϑ the index-pairs for
which lims→∞Bm(s)jhs

(g, ϑ) = ∞ ((ms)j = m(s, ϑ), see above) do depend on
ϑ and they are from I.

3.6. To complete our proof, we state as follows.

Lemma 4 Let α ∈ [0, 2π) be arbitrary, fixed. If the sequence
{

mk

hk

}
tends to

infinity, then there is a function Ψ ∈ C2π such that

|Bmkhk
(Ψ, ϑ)| ≤ c(ϑ), ∀ϑ ∈ [0, 2π) \ α (24)

however
lim sup

k→∞
|Bmkhk

(Ψ, α)| = ∞. (25)
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The proof of this lemma is analogous to the one in A. Zygmund [?, p. 46,
”Remark”].

3.7. Now we complete the proof of the result stated in Part 2. By Lemma 4,
we can add to g ∈ C̃ (cf. Part 3.5.) Ψ1 ∈ C̃ and Ψ2 ∈ C̃ diverging at 0 and π,
respectively. Then F = g + Ψ1 + Ψ2 proves our Theorem 1.

Acknowledgement. The authors thank the unknown referee for the careful
reading of the paper and the advices, remarks which we included in the present
form of our work.
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[6] T. M. Mills, P. Vértesi, An extension of the Grünwald-Marcinkiewicz the-
orem to the higher order Hermite-Fejér interpolation, J. Austral Math.
Bulletin 63 (2001), 299-320.

[7] I. P. Natanson, Constructive Function Theory, Vol. I-III, Frederick Ungar,
New York (1965).

[8] A. F. Timan, Theory of Approximation of Function with Real Variables,
Fizmatlit, Moscow (1960) (Russian)

[9] A. Zygmund, Trigonometric Series, Vol. II., Cambridge University Press
(1959)

Department of Analysis,
Budapest University of Technology and Economics
ahorvath@renyi.hu
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