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Abstract

This paper is a certain generalization of the GRUNWALD - MARCINKIEWICZ
theorem revealing its connection to a process defined by S. N. Bernstein.

1 Introduction

1.1. We begin with some definitions and notations. C' stands for the space of
2m-periodic continuous functions, T, denotes the space of trigonometric poly-
nomials of degree at most m of form % + Sore (ag cos kY + by sinkd), ag, by
reals. If © = {94,k =0,...,2m,m = 1,2,...} C [0,27) is an interpolatory
matrix with

0 S ﬂOm < ?91771 << 792m,m < 2777 (1)
the uniquely defined m!” trigonometric interpolatory polynomial for f € C is

2m

Ton(f,0.9) =Y f(Okm)tim (O, 9), (2)

k=0

where the uniquely defined fundamental trigonometric polynomials of degree
exactly m satisfies the conditions

tk’m(@719jm) = 6kj, O S k,j, S 2m (3)
In 1914 G. Faber [?] proved that for arbitrary fixed interpolatory matrix ©

2m

An(©) = [An(©,9)] = 1| D ltrm (0, 9)]]| = clogm. (4)
k=0
(Above ||| is the usual sup-norm on [0, 27); here and later ¢, ¢y, . .. are positive

constants which may denote different values even in subsequent formulae.)
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1.2. The relation (4) yields that for any fixed interpolatory matrix © one can
find a function f € C for which

limsup || T (f,0,9)|| = (5)

m—00

(cf. [?, Vol. IIT; Chapter II, § 3]).
Considering pointwise convergence, the situation is not better. Let us take
the ”best” interpolatory matrix

2km
2m +1

E={9xm = k=0,....2m,;m=1,2,...} (6)

for which 5
A (E) = - logm 4+ O(1)
is the smallest possible among all interpolatory matrices. One can prove
GR["JNWALD—MARCINK{EWICZ THEOREM.
There exists a function f € C for which

limsup |To,(f, E,9)| = oo (7)

m—00
for every ¥ € [0,2m).
(See G. Griunwald [?] and J. Marcinkiewicz [?].)

1.3. However, if we raise the degree, we can define a convergent interpolatory
process. Namely, as L. Fejér did, if we take the trigonometric interpolatory
polynomial of degree 2m

2m . 2mA41 9 — . 2
H,(f,9):= m Zf(ﬁkm) (Sln an ﬁ(gkm k )) ’ 8)
=0

where from now on Vg, are defined by (6), we have

Ho(f,0km) = f(Orm), 0<k<2m .
H;n(fvﬂkm):(), 0§k§2m ’ ( )

and

i [|Ho(f,9) — F(0)]] =0

s 2m41

sin == (=0 pm)
. 9—0p,
smif’"

2
for any f € C ([?], Part 17). Notice that > is the square of
the fundamental functions tg,, (E, ).

Remark:

The interpolatory property of (8) was noticed by D. Jackson; however, H,, (f, Ojm) =

0 was noticed first by L. Fejér. (cf [?], Part 17)



1.4. The bridge between T,, and H,, was given by S. N. Bernstein [?] defining
the trigonometric polynomial B,,; of degree m + h, 0 < h < m, as follows.
Using again the equidistant nodes E of (6),

1 2m sin %(19 — Ugm) sin 2h2+1 (0 — Fkm)
B (f,9) = G T D@ kZ:O i =T F(Okm)-
(10)
Obviously
BmO(fa 19) = Tm(f; E7 19)7
and
Bm7n(f7 19) = Hm(fv 19);
moreover
Bmh(f, 19km) = f(ﬁkm), 0<k<2m. (11)

If the norm of the operator of By, (f,9) on the normed space C' is denoted
by Apn(E) (i.e. Apn(E) = supjysi<t || Bmn(f,9)]]), then we can write with
fec

__m
N7h+1

Apn(E) = %logN +O(1). (12)

Moreover if the sequence N is bounded as m — oo, Bernstein proved that
|1Brmn(f,0) — f(¥)]| — 0 (m — oo) for every f € C.
1.5. Later we use the reconstructing property of By, which says (cf. [?, p.

147]) that
Bn(t,9) = t(9) whenever t € Tp,_p.

2 The result

As we have seen if the sequence {N = m(h+ 1)~'} is bounded, the B,,; process
uniformly tends to the function f € C' considered. But if it is not the case one
can prove the next GRUNWALD-MARCINKIEWICZ-type statement.

Theorem 1 Let us given the monotone increasing sequence of positive integers
{hr} with limg_,oc hi = oco. Then one can define th~e monotone increasing
sequence of positive integers {my} and a function F € C such that

lim sup By, p, (F,9)| = 00
k—o0
for every 9 € [0,27).

Remarks. ~
1. Although the same function F' € C which is "bad” for every ¥ but the
elements of the subsequences (defined by the ”lim sup”) generally do depend on

.

2. If 0 < hg < ¢, one can use essentially the original proof of the Griinwald—
Marcinkiewicz theorem.



3 Proof

For the proof of the theorem we need some lemmas.
As A F. Timan ([?], Part 8.2.41, p. 506) did, we write the Bernstein operator
as follows.

3.1.

Lemma 1 Let f be a bounded function on [0,2m) with || f|| < 1. Then for any
f and ¥

1 sin
"’9 "9km|<2h+1

= Lmh(f; 19) + 0(1),
where the symbol ”O” doesn’t depend on f,¥, m and h.

2m—+1 _
=W V) g+ 001) (1)
2

sin

Proof of Lemma 1. We write

1 sin 2L (9 — 99y, ) sin 25EL (9 — 9y,,,)
Bmh(fvﬁ) = (2m+ 1)(2h+ 1) Z sin 2 V—Fkm
[9— ﬁkm|<2h+1 2
1
+ > I Y

@m+1)(2h + 1)

Here using in the denominator that on [—%, Z], we have [sinz| > 2|z|,

1

= 1 2h+1
|22| S Z 3 S C 3
(2m +1 (2h+1) &~ (2h+1 N 23511) am+ 1 (22:1“ k)

© 1
——dz = O(1). 14
<e | e =00 (14
The first sum can be estimated as follows.
sin %(19 — Vkm) sin M(19 ke )

1
= > 2 i) <1+ U
2m+1 T2 sin gk (2h + 1) sin “—Fkm

2h+1

sin 2L (49 — 9p)
2 O— Ok f('ﬂkm)
2

1
Toam+1 2

9= O | < 5257

Loy Wm0t ( 2 0 V) _ 1)

+ ; .
2m + 1 sin 2=Ykm (2h + 1) sin ¥=Yrm
‘19 'Lgkm|<2h+1 2 2

sin

= Lpn(f,9) + Xs.

f(ﬁk:m>

)



Let oy = 4= 19’”” . Using (two times) that S%t — 1 is bounded, we have
1 sin(2h + 1)y 1
sinag \ (2h + 1) sin oy,

2 . .
a; sin(2h + 1)ay 1 >) (sm ap 1 ) }
= 2h+1 — — _
 sin® oy, { <( +1) < (2h+1)%202  (2h+1)ay ai ay,

2

< e— O;k (2h 4+ 1%y, < e(2h + 1)y,
sin” o
whence .
2h +1)2
S T > . (2h+1)%a
ko (9)<k<kg(9)+2 2’;;jrr11
‘“k‘<2h+1
S
2h+1 .
15
- 2m+1 kZ: (15)

By (14) and (15) the lemma is proved.

3.2. Now we introduce some definitions and notations. Let us denote by

n

As in [?, Vol. III. Ch. IL § 3], it can be easily seen that A(n) N A(n +1)=0.

Indeed let us suppose that there are [ and j such that 5— +1 = 50 +3 We can
assume that [ =2v 4+ 1, j = 2m + 1 are odd. So 0 < 2451 — y — 1y < 1, which

. . . 2 +1
is a contradiction.

Lemma 2 Let S = {% s (pi,qi) =1, g; are odd ;i = 1,...,5}, a set in [0, 1].
Then there is an n > (q1q2 - - - qs)?, such that the sets A(n) and A(n+1) and S

are independent, that is, A(n)NS=An+1)NS=An)NAn+1) =0

Proof of Lemma 2. Let 2n+1 = (T[;_, ¢ +2) I}, ¢ +1). It 2 = T
pi(2115, q1'+1)(H§:1 7;+2)

then p” = [ is an integer, which is a contradiction, because
q; is not a divisor of 2p;.
(118 2) (2115, qi+1)+2 : .
If p’ = 2n+3, then 2 (T s )( My ai+)+2) I, and ¢; is not a divisor

of 4p2, ie. we get a contradiction agam

3.3. Let p > 3 be an integer and define J, by

Jy = (ﬂ,w_”)u(ﬂf,%_ﬂ).
p p p p



Further let u be a positive integer such that u > er”. Using Lemma 2, for a fixed

(1) h (see (10)), we can define an independent system of nodes and a set of the
corresponding pair of indices as follows (cf. M (u(p), h) and K (u(p), h),respectively).
Let mq be an arbitrary fixed positive integer, and let m, = my+1. Furthermore,

let

ey Vi . -
Sy = R T 1 2mayy=1,..., 20 .
2m 27

Let us denote by S, the set of rational numbers in S1 in reduced form.
By Lemma 2 one can define ny such that S, A(ny), A(n; 4+ 1) are indepen-
dent, and so S7, A(n1), A(ny 4+ 1) are also independent.

Let mo := ni. Now let
Sy =51 U A(TL1> @] A(n1 + 1),

and the reduced form of the numbers in S5 is denoted by S5 again. By Lemma
2, as previously, let us define ny such that Sa, A(n2), A(n2+1) are independent.
Because ﬁ € Ss, it is clear, that ny > nq.

Let m3 := ng and S3 := S U A(n2) U A(ng + 1). Continuing this process, we
obtain (by Lemma 2) S¢, n, such that Sy, A(n:), A(nt + 1) are independent.

Let my4q1 :=ng,t =1,2,...,u(2h + 1) — 1. Using the above sets we define a set
of nodes as follows
M(u(p),h) = M
={%m, Vjmk=1,....2m;;j=1,...,2m;;1 =1,2,...,(2h + 1)u}.
M (u(p), h) is called an independent system of nodes. The corresponding set of
pairs of indices

K(u(p),h) = K := {(my,h),i = 1,2,....(2h + D)u}.

Remark. By construction, ms = ny; > (2mg + 1)2(2my + 3)2, mz = ny >
{(2m1 4+ 1)(2m1 + 3)(2ma + 1)(2ma + 3)}? or generally,

t

2
mip1 = Ng > {H(sz + 1)(2’{TLz + 3)} .

=1

(Indeed, we have to use the relation n > (T];_, qi)2 from Lemma 2. We omit
the further details.)

3.4.

Lemma 3 With the notations above, there is a trigonometric polynomial T,
such that | T,|| < 2 on [0,27], and for any fixed ¥ € J, there is a pair of indices
(m,h) € K, such that

| B (T, 9)| > p. (16)



Remark. Notice that we do not say anything on the degree of T,.

Proof of Lemma 3. Let us divide the interval [0, 27] to u(2h + 1) pieces. As
above, let M be an independent system of nodes, and let us define a function ¢
on this system as

(=1)F, i Dppn, > ot

(Pom,) = { ey (17)

0, otherwise

and

L0 i, s W
(=D i Ok, > Gent (18)

)

P = {

for j =1,2,...,(2h + 1)u. By the definition of K the values of ¢ are uniquely
defined. We can assume that ¢ is continuous on [0, 27}, and || < 1. Let T}, be a
trigonometric polynomial which interpolates ¢ at the nodes in M. By Lemma 3
from [?, Vol. IIT; Chapter II, § 3], we can assume that ||T,|| < 2. Let ¢ € I;NJ,,

where I; = I;(h,u) = {3?2(};11))’ u(ﬁfjrl)}. It will be shown that

0, otherwise

i (Tp, )| > por |Limyn(Tp, D) > p. (19)
Indeed, by (17) and Lemma 1

sin %19

Comi (T, )| = 3 (=D Pk m,)

2my + 1 L sin Z0km
|19_19kvmz |§2h,+1 2

’Sin Z 1
T 2mp+1 sin w

2 2
wehr <Ok,m 9S50y

1
2 1 w1
sin ml—i_ﬁ’ / —dx > ¢
2 1 T
w(Zh+1)
The calculation for L, (T}, ) is similar. Now we have to deal with the sine
factor. We write

2 2 1 2 2 1
Sm( ml;?n% e ﬂ)‘g'sinwﬂ‘+‘sinml2+

QméJrl,Lg’

2 1
> ¢ gip 21

ﬁ‘logu

|sind| =

19‘ .
Using the definition of J,, we get that |sind| > %, i.e. one of the two terms on

the right-hand side has to be greater that %. That is, choosing v > er’ (16) is
proved. By Lemma 1, we obtain Lemma 3.

3.5. Now we state

Statement 1 Let us given the monotone increasing sequence of positive inte-
gers {hg} with limg_,o by = 0co. Then one can define a monotone increasing
sequence of positive integers {my} and the function g € C such that
lim sup | By, 1, (9, 9)] = 00
k—oo

for every ¥ € [0,27) \ {0, 7}.



Proof of the statement. The argument is analogous to [?, Vol. III. Ch. II.
§ 3]. We are given the sequence {h;}. Next we fix a sequence of real numbers
{ek} with 0 < ¢1 <o < e < g1 < -+ limg_ o0 ¢ = 00.

Now we will define the sequences of integers {pr}, {ux}, {ms} and the corre-
sponding sets M (ug(pr), h) = Mr = {91 m@)» Vim)s L = 1, 2m(k)s; j =
1,...,2m(k);;i=1,2,..., (2h + 1)ug }, and similarly
K(uk(pk), hi) = Ky as follows.

hy and ¢ are given. Let p1 > 3, uy > epg, m(1); > crhy, Ky = {(m(1);, h)i =
1,2,...,(2h; + 1)uy }, are given by the construction in Section 3.3, and M; is
the corresponding system of nodes. By Lemma 2, m(1); > m(1);—1, and My is
an independent system of nodes, so by Lemma 3., via ¢1, we can construct T, ,
{3777/(1)1;]11 (T;D1 y 19)|’L = 1, 2, ceey (2h1 + 1)U1}, where

‘Bm(l)ihl (Tpl ) 19) = Bm(l)ihl (Tpl ) 19) or Bm(l)i+1,h1 (Tpl ’ 19)7

according to relation (16) of Lemma 3; the definition of B,,, ), n, (T},, ) will be
analogous.
hy and ¢y are given. Let pa > max{p?, D1}, where

Dy = max {|| Bugyn, (Tp)I* + 1Bimyosm (Tp)IPs 0= 1,20, (201 + Dua };

the definition of Do, D3, ... will be analogous. Further let us > epg, m(2); >
max{cahz, m(1)2n, +1)u, > b2 +deg Ty, }. Now by the construction in Section 3.3
we can define Ky and Mj such that m(2); > m(2);_1, and M, is an independent
system of nodes in itself. So by Lemma 3., we can construct ¢9, and then T,
on Ms. (Let us remark that the independency was needed for the construc-
tion of @9, so the independency of My and M is not necessary.) So T, and
{Bm@2)ihalt = 1,2,...,(2hy + 1)ug} fulfil the properties in Lemma 3.

In the n'" step, h, and ¢, are given. Let p, > max{p%fl,zy;ll D;}. Fur-

ther let u, > e, m(n); > max{cyhn, m(n—1)h, _+1)u,_,» hnt+max{deg Ty, |l =
1,2,...,n — 1}}. Now by Lemma 2, we can define K,, and M, such that
m(n); > m(n);—1, and M, is an independent system of nodes in itself, and
by Lemma 3., we can construct ¢,, and then 7, on M,, as above.

Collecting the numbers {m(l);|i = 1,2,...,(2h; + Du,l = 1,2,...}, we
define our sequence of pairs of indices as

Ji={m()1,h1), .o, (M) 2hy41)urs P1)s (M(2)1, h2)s - (MU2) 2hg+1)ugs P2)s - -}
It is clear that

hy hy

>¢, 1<i<(2h+ 1)y,

that is {%} tends to infinity with [.

Now let us collect again the properties of the sequences {p;} and {m(k);},
which we will use in the next step.



P41 > P, (20)

m(k+1); — hgpyr > 11;133}(k{deg Tpr}} o)
¥ (m(k + 1), hisr) € K (i (prsn)s hien) )
pet1 > max{D;, I =1,... k}. (22)
Let us define -
o(0) =3 2l (23)

i1 VPE

According to (20), g € C. If 9 € [0,27) \ {0, 7}, then if s is large enough, then
¥ € Jp,. Let us decompose g to three parts:

s—1

B U ) B S P INE: 1)
9(19)—; + \/275+k=§-1 9(9) + 2=+ 92(9)

Obviously this decomposition depends on 9; g1(9) € C and ||g1|| < ¢, where
¢ does not depend on s.

Let ¥ € Ij41(hs, us(ps)). Using the reconstructing property of the Bernstein
operator (see Section 1.5), relation (21) yields

Bm(s)jhs (gla 79) =01 (19)

By Lemma 3, with a proper m(s); = m(s,¥),

T
Bm(s)jhs(\/;isvﬂ) > \/1787

and

oo

1 1
< OBy | ——,
D =

where C' is an absolute constant. According to (22), the third term is bounded.
The above estimations prove our Statement 1.

Brn(s);he (92,9) < 2 Bin(s),he

Remark. The construction shows that for every fixed ¥ the index-pairs for
which limg_. By (s),n. (9,9) = 00 ((ms); = m(s, V), see above) do depend on
¥ and they are from J.

3.6. To complete our proof, we state as follows.

Lemma 4 Let a € [0,27) be arbitrary, fized. If the sequence {7,;’—:} tends to
infinity, then there is a function ¥ € Co, such that

|Bmkhk (\Ila 19)| < 6(19)3 Vi € [O, 271—) \ «Q (24)
however
hmsup'-Bmkhk(\Ilva)' = 00. (25)
k—oo



The proof of this lemma is analogous to the one in A. Zygmund [?, p. 46,
"Remark”].

3.7.

Now we complete the proof of the result stated in Part 2. By Lemma 4,

we can add to g € C (cf. Part 3.5.) ¥, € Cand ¥, € C diverging at 0 and ,
respectively. Then F' = g + ¥y 4+ U5 proves our Theorem 1.

Acknowledgement. The authors thank the unknown referee for the careful
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form of our work.
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