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Abstract

On the real line besides the Hermite weight (w) there is another weight
function (s) with polynomial-type zeros. We will show, that if the total
degree of the zeros of s is M , then {hk}∞k=M is a basis for Abel summation
in the weighted space Lp

ws, that is limr→1− ‖f−
∑∞

n=M
rnan(f)hn‖ws,p =

0.

1 Introduction

In the classical case, on the unite disk the Poisson integral solves two problems
together: the Dirichlet problem, and the problem of Abel-summability. Until we
are on the unite disk, we can handle these two questions together. On the real
line the solution of the Dirichlet problem may separates to Abel-summability.
At first some words on the unite disk-problem are needed.

Investigating the connection of the weighted norm of the Hardy-Littlewood
maximal function with the weighted norm of the original function the following
question arised by Benjamin Muckenhoupt in 1972 [10]: There is an orthonormal
system ({ϕn}) in a space/ with respect to a weight w on [0, 2π), and there is
another weight u on the same interval. The Poisson integral of a function f is
defined by Pr(f, x) =

∑
n rnan(f)ϕn, where an(f)-s are the Fourier coefficients

of f with respect to w. The question is the following: Under what conditions
will this Poisson integral converge to the function (with r → 1−) according to
the weighted norm with u? B. Muckenhoupt gave the answere in two cases: in
the trigonometric case (that is w ≡ 1), and in ultraspheric, or Gegenbauer case
(w(θ) = sin2λ(θ)). In these cases the necessary and sufficient condition was that
u had to fulfil the Ap- or the weighted Ap-condition.
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If u is an Ap-weight, then u may has only ”week” zeros. The whole situation
changes, when u has ”strong” zeros, like sink x−x0

2 . On the trigonometric system
the question was generalized (in this direction) by Kazaros S. Kazarian in 1987
[7]. Developing the multiplicative completion method of R. P. Boas and H.
Pollard [3], he gave a method for giving the fundamental system in the weighted
space with respect to u with ”strong” zeros, and for giving the modified Poisson
kernel here [8] [9]. Roughly speaking the new system (with respect to u) can
be get from the old one by deleting some consecutive ϕn−s, and the number of
the members has to be deleted depends on the zeros of u. The characterization
of the existence of the solution of Dirichlet’s problem in a weighted Lp-space on
the unite disk was given also by K. S. Kazarian [7].

A sufficient condition for the similar problem in the continuous case was
given by K. S. Kazarian and the author in 2007 [6].

Turning to the real line we have to mention that Abel-summability for Her-
mite weights (w(x) = e−x2

) was proved by B. Muckenhoupt in 1969 [12]. He
showed in this paper, that to get and to solve a Dirichlet-problem here, a mod-
ified Poisson integral has to be introduced. With the original Poisson integral,
the differential equation is lost, but we can discuss the Abel-summability.

In d-dimension the Poisson-, and heat-diffusion semigroups were investigated
by Krzysztof Stempak and José L. Torrea (eg [13],[14]). Laguerre case is very
closed to the Hermite one. In Laguerre-weighted spaces the question of mul-
tipliers, which is inconnection with the Abel-summability was investigated by
George Gasper and Walter Trebels [4], and by Cristian E. Gutiérrez, Andrew
Incognito and José L. Torrea [5].

The aim of the present paper is to give a sufficient condition for Abel-
summability by the combination of the real line- and the unite disk-methods,
when besides the Hermite weight (w(x) = e−

x2
2 ) we have another weight (s(x))

with zeros. We want to get a wider class of functions to be Abel-summable than
in the original Hermite case, so we will suppose that s(x) has no singularities,
and s(x) is bounded on the whole real line.

By these investigations arised some open questions: the case of infinitely
many ”strong” zeros of s(x), the Dirichlet problem with the modified kernel,
the adequate multiplier results for the semigroups with weights like this, etc.

2 Definitions, Notations, Results

Definition 1 We say that a locally integrable function v satisfies the Ap-property
on an interval J if there exists a constant c = c(v, p) < ∞ such that for all in-
tervals I ⊂ J

1
|I|

∫

I

v(x)dx

(
1
|I|

∫

I

v(x)−
q
p dx

) p
q

≤ c(1)

where 1
p + 1

q = 1, 1 < p, q < ∞.

Definition 2 Let X := {x1, x2, . . . , xs} be a finite collection of points on the
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real axis, and let s(x) be a nonnegative bounded function on R, and which has
no zeros on R \X. Let us assume further that there is a δ > 0 such that

1. There are kj nonnegative natural numbers for j = 1, . . . , s such that
(

s(x)

|x−xj |kj

)p

fulfils the Ap-property on the ball centered at xj with radius δ: B(xj , δ).

2. If 1
K <

|x−xj |
|y−xj | < K for a positive constant K in B(xj , δ), then

∣∣∣ s(x)
s(y)

∣∣∣ < C

here. (C = C(K)).
3. There is a constant C such that in B(xj , δ), (j = 1, . . . , s).

sup0<a<δ

(∫
0<|x−xj |<a

(
s(x)

|x−xj |kj

)p

dx
) 1

p
(∫

a<|x−xj |<δ

(
|x−xj |kj−1

s(x)

)q

dx
) 1

q

< C

with some C = C(p).
4. There is a y0 such that if |x| > y0 then e−c|x|α

s(x) < C with α < 2 and with
some C = C(y0, α).
5. There is a y0 such that for every |x|, |y| > y0 ; c1x < y < c2x for some

ci > 0, there is a C = C(y0, ci) such that e−
(x−y)2

2
s(x)
s(y) < C

Example

s(x) =
s∏

j=1

|x− xj |kj+δj v(x),

where −1
p < δj < 1

q , if kj > 0 and 0 ≤ δj < 1
q if kj = 0 (j = 1, . . . , s), and

v(x) = e−c|x|α (α < 2) or v(x) = (1 + x2)−N , with αj = kj + δj : N =
∑s

j=1 αj .
or simply

s(x) =





∏s
j=1 |x− xj |kj+δj if x ∈ (x1 − 1, xs + 1)

1 if x ∈ (−∞, x1 − 2) ∪ (xs + 2,∞)
continuous elsewhere

Remark:
1)The assumptions 2) and 5) exclude the oscillation near zero that is the func-

tions with behavior locally as
(∣∣∣sin 1

x−xj

∣∣∣ + 1
n

) 1
2q

if 1
x−xj

∈ (nπ, (n + 1)π) and

around the infinity as | sin x|+ 1
n , when x ∈ (nπ, (n + 1)π).

2)A function up(x) ≥ 0 has the Ap-property on B(0, δ) means that there is a
constant c such that for all a < δ

(∫ a

0

up

) 1
p

(∫ a

0

(
1
u

)q) 1
q

≤ ca(2)

which means that 1
u ∈ Lq

B(0,δ), and applying the the Hölder inequality with 1
q

we get that
∫ a

0

(
1

xu(x)

)q

dx ≥
(∫ a

0

1
x

dx

)q (∫ a

0

up

)1−q

,

that is 1
xu(x) /∈ Lq

B(0,δ)

According to this observation we give the following definition:
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Definition 3 ([9]) A function f has a singularity of order q with degree k at
a point x0, if x0 has a neighbourhood I = I(x0, δ) such that

(x− x0)kf(x) ∈ Lq(I),

but
(x− x0)k−1f(x) /∈ Lq(I).

Remark:
1) With the above definition we can say that 1

s(x) has a singularity of order q

with degree kj at the points xj , j = 1, . . . , s.
2) Let us denote by hk(x) the k-th orthonormed Hermite polynomial (k =
0, 1, . . . , ), that is

∫
R

hk(x)hl(x)e−x2
dx = δk,l.

3) For the Hermite-Poisson kernel we have a nice closed form [12]:

Pr(x, y) :=
∞∑

n=0

rnhn(x)hn(y) =
1√

π
√

1− r2
e
−r2x2+2rxy−r2y2

1−r2(3)

where 0 ≤ r < 1.
With this we can define the modified Poisson kernel:

Definition 4 Let {x1, . . . , xs} is a finite system of points, and s(x) is a function
(as in Definition 2.) such that 1

s(x) has a singularity of order q with degree kj at
the points xj, j = 1, . . . , s. For this weight function the modified Poisson kernel
is

Ps(r, x, y) := Pr(x, y)−
s∑

j=1

kj−1∑

l=0

∂lPr(x, y)
∂yl

∣∣∣∣
y=xj

Hl,j(y),(4)

where Hl,j(y)-s are the fundamental polynomials of Hermite interpolation on
xj-s with degree kj, that is

(Hl,j)
(m) (xi) = δi,jδl,m 1 ≤ i, j ≤ s; 0 ≤ l ≤ kj − 1; 0 ≤ m ≤ ki − 1(5)

If for some j ∈ {1, . . . , s} kj = 0 we have no any conditions at the point xj, and
it results a zero member in the sum.

Let us introduce the notation: f ∈ Lp
w if fw ∈ Lp(R) , and for 1 ≤ p ≤ ∞

‖f‖w,p = ‖fw‖p(6)

Now everything are together to formulate the first theorem

Theorem 1 If s(x) is a weight function as in Definition 2, and w(x) = e−
x2
2

then

sup
0≤r<1

∥∥∥∥
(∫

R

f(y)Ps(r, x, y)e−y2
dy

)
s(x)

∥∥∥∥
w,p

≤ c‖fs‖w,p(7)

To give a consequence of this theorem we need the notion of A-basis.
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Definition 5 A system {ϕn}∞n=n0
is A-basis (that is a basis for Abel-summation)

in the space Lp
ws (1 ≤ p ≤ ∞) if for every f ∈ Lp

ws there is a uniqe series∑∞
n=n0

an(f)ϕn for which

lim
r→1−

‖f −
∞∑

n=n0

rnan(f)ϕn‖ws,p = 0(8)

With the previous notations (see eg. the remark after Definition 3) we can
formulate the main result of this paper.

Theorem 2 Let s(x) be a weight function as in Definition 2, and w(x) = e−
x2
2

and

M :=
s∑

j=1

kj(9)

Then {hk}∞k=M is an A-basis in Lp
ws, that is the series

∑∞
k=M ak(f)hk is Abel

summable to f , where f ∈ Lp
ws, and ak(f) are the Fourier coefficients of f in

Lp
ws.

3 Proof of Theorem 2

At first we want to prove Theorem 2, provided that Theorem 1 is valid. For this
we will use a theorem of S. Banach ([2]). As it is usual a system {ϕn}∞n=n0

in Lp
ws

is called complete with respect to the dual space Lq
ws ( 1

p + 1
q = 1, 1 < p, q < ∞)

if for a g ∈ Lq
ws for which

∫
R

gϕns2w2 = 0 for every n ≥ n0 we have that g is
the zero element of the space; and we call a system {ϕn}∞n=n0

minimal in Lp
ws

if there is a conjugate system {ϕ∗n}∞n=n0
in Lq

ws which is biorthonormal to the
original system, that is

∫
R

ϕnϕ∗ks2w2 = δn,k.

Theorem 3 (S. Banach) A system {ϕn}∞n=n0
is A-basis in the space Lp

ws (1 <
p < ∞) if and only if it is a comlete and minimal system in Lp

ws, and there is
a constant c = c(p) such that

sup
0≤r<1

∥∥∥∥∥
∞∑

n=n0

rnan(f)ϕn

∥∥∥∥∥
sw,p

≤ c‖f‖sw,p

where an(f) = ϕ∗nf =
∫
R

fϕ∗ns2w2.

According to the theorem of S. Banach we have to prove the following lemmas:

Lemma 1 If s, w and M are the same as in Theorem 2, then the system H =
{hk}∞k=M is complete and minimal in Lp

ws.

Proof: At first we give explicitely the conjugate system of H. Let k ≥ M , and
let us constuct the Hermite interpolatory polynomial of hk with the less degree
(pk(x)) which interpolates hk at xj in order of kj (j = 1, . . . , s). Because the

5



degree of pk is at most M − 1, we can express it as the sum of some hl-s with
l ≤ M − 1: pk =

∑M−1
l=0 al,khl We will show that

h∗k =
1
s2

(
hk −

M−1∑

l=0

al,khl

)
=:

tk
s2

.(10)

h∗k is in Lq
ws, because

(∫

R

(
tk
s2

ws

)q) 1
q

≤
s∑

j=1

(∫

B(xj ,δ)

(
hk(x)−∑M−1

l=0 al,khl(x)
s(x)

w(x)

)q

dx

) 1
q

+

(∫

R\∪s
j=1B(xj ,δ)

(
hk(x)−∑M−1

l=0 al,khl(x)
s(x)

w(x)

)q

dx

) 1
q

=
s∑

j=1

Ij + I

I ≤ c(δ)
∥∥∥pkw

s

∥∥∥
q,R\∪s

j=1B(xj ,δ)
≤ c(δ, k),

where pk is a polynomial with degree k, and we used the growing property of 1
s

at infinity. Around the singularities we get that

Ij ≤
∥∥∥∥∥

(
h

(kj)
k (x)−

M−1∑

l=0

al,kh
(kj)
l (x)

)
w(x)

∥∥∥∥∥
∞,B(xj ,δ)

×
(∫

B(xj ,δ)

( |x− xj |kj

s(x)

)q

dx

) 1
q

≤ c(k, xj)

Now it is shown that h∗k ∈ Lq
ws. The orthonormality follows from the orthonor-

mality of {hk} in L2
w: for k, m ≥ M

∫

R

h∗khmw2s2 =
∫

R

(
hk −

M−1∑

l=0

al,khl

)
hmw2 = δk,m + 0

In the proof of completeness we also use the completeness of the original
Hermite system. Let g ∈ Lq

ws such that
∫

R

ghkw2s2 = 0 k = M, M + 1, . . .

In this case

g =
1
s2

M−1∑

l=0

blhl, and
∫

R

(
1
s2

M−1∑

l=0

blhlsw

)q

< ∞

It means that
∑M−1

l=0
blhl

|x−xj |kj
is in Lq around xj (j = 1, . . . , s), that is the polynomial

in the nominator has M roots so it must be identically zero.
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Lemma 2 The Abel sum with respect to s(x) is a Poisson integral with respect
to the modified Poisson kernel, that is with the previous notations:

∞∑

k=M

rkak(f)hk(x) =
∫

R

f(y)Ps(r, x, y)e−y2
dy(11)

where the right hand side is absolute and locally uniformly convergent for every
r < 1.

Proof: At first we have to show the convergency. Let us remark that |hk(x)| ≤
ck−

1
12 e

x2
2 [1].

|ak| ≤
∫

R

|ftk|w2 ≤ ‖fsw‖p

∥∥∥∥
tkw

s

∥∥∥∥
q

,

We have to give a little bit finer estimation on
∥∥ tkw

s

∥∥
q

as in the previous lemma.

Let us choose a y0 such that if |x| > y0 then e−c|x|α

s(x) < K, and xj ∈ (−y0, y0) for

all j = 1, . . . , s! In (−y0, y0), as in earlier we can estimate with c(k)‖h(ki)
k w‖∞ <

c1(k), where the coefficients in h∗k results c(k) and using that h
′
k =

√
2khk−1

[15], we can se that c1(k) grows polynomially with k. When |x| > y0, we use
that w(x)hk(x) ≤ k−

1
12 if |x| <

√
2k + 1, and w(x)hk(x) ≤ e−γx2

with some
γ > 0, when |x| ≥ √

2k + 1 [1]. Thus

|tk|w
s

≤ C

∣∣∣∣∣hk(x)−
M−1∑

l=0

al,khl(x)

∣∣∣∣∣ e−
x2
2 ec|x|α

≤ C

{
k−

1
12 eck

α
2 if |x| < √

2k + 1
e−γx2+c|x| if |x| ≥ √

2k + 1

That is
(∫

|x|>y0

(
tk(x)w(x)

s(x)

)q

dx

) 1
q

≤
(∫

√
2k+1>|x|>y0

(·)q

) 1
q

+

(∫
√

2k+1≤|x|
(·)q

) 1
q

≤ C
(
k−

1
12+ 1

2q eck
α
2 + C

)

Because, as we have seen, Ij ≤ c(k), where c(k) grows polynomially with k, and(∫
(|x|<y0)\∪s

j=1B(xj ,δ

(
tkw

s

)q
) 1

q ≤ c(δ)‖tkw‖∞,|x|<y0 ≤ c(k, δ), where c(k, δ) also

grows polynomially with k, we get that rkakhk(x) ≤ c(x, δ)c(k)
(

reck(
α
2 −1)

)k

,

where c(k) grows polynomially with k, so the sum is absolute and uniformly
convergent on every bounded intervals for every fix r < 1.

The previous calculation results that we can apply the dominated conver-
gence theorem, that is

∞∑

k=M

rkak(f)hk(x) =
∫

R

f(y)w2(y)

( ∞∑

k=M

rkhk(x)tk(y)

)
dy = (∗)
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Observing that if k < M then tk(y) = hk(y)−∑M−1
l=0 al,khl(y) is a polynomial

with degree at most M − 1, and with at least M roots these polynomials are
identically zero, so we can write that

(∗) =
∫

R

f(y)w2(y)

( ∞∑

k=0

rkhk(x)tk(y)

)
dy

Let us rearrange the polynomials tk as

tk(y) = hk(y)−
s∑

j=1

kj−1∑

l=0

h
(l)
k (xj)Hl,j(y),

where Hl,j-s are the fundamental polynomials of Hermite interpolation. Using
that the series below are absolute and locally uniformly convergent together
with their derivatives, we get that

∞∑

k=0

rkhk(x)tk(y) =
∞∑

k=0

rkhk(x)hk(y)−
∞∑

k=0

rkhk(x)
s∑

j=1

kj−1∑

l=0

h
(l)
k (xj)Hl,j(y)

= Pr(x, y)−
s∑

j=1

kj−1∑

l=0

Hl,j(y)
∞∑

k=0

rkhk(x)h(l)
k (xj) = Ps(r, x, y)

The lemma is proved, and according to the theorem of S. Banach Theorem 2
comes true if Theorem 1 is valid.

4 Proof of Theorem 1

Lemma 3 For the norm of the Hermite-Poisson kernel we have the following
estimation:

sup
0≤r<1

(∫

R

(
w(x)

(∫

R

(Pr(x, y)w(y))q
dy

) 1
q

)p

dx

) 1
p

≤ C(12)

where C = C(p) is independent of r, and 1
p + 1

q = 1, 1 < p, q < ∞.

Proof: Let f ∈ Lw,∞ an arbitrary function. With this f

sup
0≤r<1

∥∥∥∥
∫

R

Pr(x, y)f(y)w2(y)dy

∥∥∥∥
w,∞

≤ sup
0≤r<1

sup
x∈R

(
w(x)

∫

R

Pr(x, y)w(y)dy

)
‖f‖w,∞

Thus we give an estimation on the weighted infinite norm of the integral of
the kernel. Because the maximum in y (with fixed x) of w(x)w(y)Pr(x, y) is in
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y = 2rx
1+r2 and this maximum value is equal to c√

1−r
e
− 1−r2

2(1+r2)
x2

we can devide
the integral to two parts and can estimate as it follows:

w(x)
∫

R

Pr(x, y)w(y)dy = w(x)
∫
∣∣ 2rx
1+r2−y

∣∣≤√1−r

Pr(x, y)w(y)dy

+w(x)
∫
∣∣ 2rx
1+r2−y

∣∣>√1−r

Pr(x, y)w(y)dy = I + II

I ≤ c√
1− r

√
1− re

− 1−r2

2(1+r2)
x2

< c,

where c is independent of x and r.

II ≤ c√
1− r

∫
∣∣ 2rx
1+r2−y

∣∣>√1−r

(
e
− (1+r2)(x−y)2+2(1−r)2xy

2(1−r2)

× (1 + r2)(x− y)− (1− r)2x
1− r2

)
1− r2

(1 + r2)
(

2rx
1+r2 − y

)dy

Estimating the two parts of this integral separately and observing that we can
do the same on the two parts we get that

II ≤ c

[
e
− (1+r2)(x−y)2+2(1−r)2xy

2(1−r2)

]∞
2rx

1+r2 +
√

1−r

≤ c

After substitution one can see that c is independent of x and r again. That is
this calculation follows that

sup
0≤r<1

∥∥∥∥
∫

R

Pr(x, y)f(y)w2(y)dy

∥∥∥∥
w,∞

≤ c‖f‖w,∞(13)

(c 6= c(r).) For p = 1 we can use the duality of the spaces, that is let f ∈ Lw,1:
∥∥∥∥
∫

R

Pr(x, y)f(y)w2(y)dy

∥∥∥∥
w,1

= sup
‖g‖w,∞≤1

∫

R

g(x)w2(x)
∫

R

Pr(x, y)f(y)w2(y)dydx

= sup
‖g‖w,∞≤1

∫

R

f(y)w2(y)
∫

R

Pr(x, y)g(x)w2(x)dxdy

≤ ‖f‖w,1

∥∥∥∥
∫

R

Pr(x, y)g(x)w2(x)dx

∥∥∥∥
w,∞

≤ c1‖f‖w,1

That is

sup
0≤r<1

∥∥∥∥
∫

R

Pr(x, y)f(y)w2(y)dy

∥∥∥∥
w,1

≤ c‖f‖w,1(14)

Applying the Riesz-Thorin interpolation theorem on the operator
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f 7→ ∫
R

Pr(x, y)f(y)w2(y)dy in the spaces Lw,p, we get that for every 1 ≤ p ≤ ∞

sup
0≤r<1

∥∥∥∥
∫

R

Pr(x, y)f(y)w2(y)dy

∥∥∥∥
w,p

≤ c‖f‖w,p(15)

It follows that for any 1 < p, q < ∞, for which 1
p + 1

q = 1, and 0 ≤ r < 1

(∫

R

(
w(x)

(∫

R

(Pr(x, y)w(y))q
dy

) 1
q

)p

dx

) 1
p

= sup
‖g‖w,q≤1

∫

R

g(x)w(x)

(
w(x)

(∫

R

(Pr(x, y)w(y))q
dy

) 1
q

)
dx

= sup
‖g‖w,q≤1

sup
‖f‖w,p≤1

∫

R

g(x)w2(x)
∫

R

Pr(x, y)f(y)w2(y)dydx = (∗)

According to (15), and by the Hölder inequality

(∗) ≤ c‖g‖w,q‖f‖w,p ≤ c

and c does not depend on r, which proves the Lemma.

Lemma 4 For the l-th derivative of the Hermite-Poisson kernel the following
formula is valid:

∂lPr(x, y)
∂yl

= (1− r2)−lPr(x, y)
l∑

k=0

ak,l(r, y)(x− y)k(1− r)d l−k
2 e

= (1− r2)−lPr(x, y)
l∑

k=0

bk,l(r, x)(x− y)k(1− r)d l−k
2 e(16)

where ak,l(r, y) depends on r and y polynomially and the same is valid for
bk,l(r, x); dae = min{k ∈ Z|a ≤ k}.
Proof: We will prove this Lemma by induction.

∂Pr(x, y)
∂y

=
1

1− r2
Pr(x, y)2r ((1− r)y + (x− y))

=
1

1− r2
Pr(x, y)2r((r(x− y) + (1− r)x)

From the first derivative we can see that type of symmetry of the right hand
side expression in the dependence of the coefficients of x or y, so we will prove
only one of them, the proof of the other one is the same.

So if the result is known for some l, then

∂l+1Pr(x, y)
∂yl+1

= (1− r2)−l

(
∂Pr(x, y)

∂y

l∑

k=0

ak,l(r, y)(x− y)k(1− r)d l−k
2 e

10



+Pr(x, y)
∂

(∑l
k=0 ak,l(r, y)(x− y)k(1− r)d l−k

2 e
)

∂y




=
Pr(x, y)

(1− r2)(l+1)

(
2r ((1− r)y + (x− y))

l∑

k=0

ak,l(r, y)(x− y)k(1− r)d l−k
2 e

+(1− r2)
l∑

k=0

∂ak,l(r, y)
∂y

(x− y)k(1− r)d l−k
2 e

−(1− r2)
l∑

k=1

ak,l(r, y)k(x− y)k−1(1− r)d l−k
2 e

)

=
l−1∑

k=1

(x− y)k(1− r)d l+1−k
2 e (2ryak,l(r, y)(1− r)εk + 2rak−1,l(r, y)

+
∂ak,l(r, y)

∂y
(1− r)εk(1 + r) + ak+1,l(r, y)(k + 1)(1 + r)

)

+(x− y)l(1− r)
(

2ryal,l(r, y) + 2lal−1,l(r, y) +
∂al,l(r, y)

∂y
(1 + r)

)

+(x− y)l+12ral,l(r, y)

And so the Lemma is proved.
Remark:

Using the definition of the k-th Hermite polynomial Hk(x), we can express
of the l-th derivative of the Hermite-Poisson kernel as

∂l

(
1√

π
√

1−r2 e
− r2

1−r2 (y−x)2 × e
2rx
1+r y

)

∂yl

= Pr(x, y)rl
l∑

k=0

(
l

k

)(
2x

1 + r

)l−k ( −1√
1− r2

)k

Hk

(
r(y − x)√

1− r2

)
,

which gives back our formula with bk,l(r, x).
For the proof of Theorem 1 we need one more lemma [11]:

Lemma 5 (B. Muckenhoupt) If 1 ≤ p ≤ ∞ there is a finite constant c such
that (∫ ∞

0

∣∣∣∣u(x)
∫ ∞

x

f(t)dt

∣∣∣∣
p

dx

) 1
p

≤ c

(∫ ∞

0

|v(x)f(x)|p dx

) 1
p

if and only if

B = sup
r>0

(∫ r

0

|u(x)|pdx

) 1
p

(∫ ∞

r

|v(x)|−qdx

) 1
q

< ∞

11



Remark:
Using Muckenhoupt’s proof one can see that the previous lemma is valid

with some finite d instead of ∞.
Proof of Theorem 1: Let us denote by B(xj , δ) a neighbourhood of xj with
radius δ, such that xi /∈ B(xj , 2δ) if i 6= j, and the assumptions on s(x) are valid

in B(xj , 2δ), where i, j = 1, . . . , s, and by P
(l)
r (x, xi) := ∂lPr(x,y)

∂yl

∣∣∣∣
y=xi

. With

these notations we can decompose the integral in the theorem to parts:

(∫

R

sp(x)wp(x)
∣∣∣∣
∫

R

Ps(r, x, y)f(y)w2(y)dy

∣∣∣∣
p

dx

) 1
p

≤
s∑

j=1

(∫

R

sp(x)wp(x)

∣∣∣∣∣
∫ xj+δ

xj−δ

Ps(r, x, y)f(y)w2(y)dy

∣∣∣∣∣

p

dx

) 1
p

+

(∫

R

sp(x)wp(x)

∣∣∣∣∣
∫

R\∪s
j=1B(xj ,δ)

Ps(r, x, y)f(y)w2(y)dy

∣∣∣∣∣

p

dx

) 1
p

= (∗)

Now we decompose the modified Poisson kernel to a sum. If ki = 0 for an
1 ≤ i ≤ s, then

∑ki−1
l=0 (·) is an empty sum, which is zero, and H0,i ≡ 0, that

is, effectively both in the outer and the inner sums we have so many terms as
many positive ki-s are there.

(∗) ≤ c

s∑

j=1

s∑

i=1

(∫

R

sp(x)wp(x)

∣∣∣∣∣
∫ xj+δ

xj−δ

(
Pr(x, y)H0,i(y)−

ki−1∑

l=0

P (l)
r (x, xi)Hl,i(y)

)
f(y)w2(y)dy

∣∣∣∣∣

p

dx

) 1
p

+

(∫

R

sp(x)wp(x)

∣∣∣∣∣
∫

R\∪̂s
j=1B(xj ,δ)

Ps(r, x, y)f(y)w2(y)dy

∣∣∣∣∣

p

dx

) 1
p

= (∗∗)

Where ∪̂s
j=1 means that the union for that indices for which kj 6= 0.

(∗∗) ≤ c

s∑

i=1

(∫

R

sp(x)wp(x)

∣∣∣∣∣
∫ xi+δ

xi−δ

(
Pr(x, y)H0,i(y)−

ki−1∑

l=0

P (l)
r (x, xi)Hl,i(y)

)
f(y)w2(y)dy

∣∣∣∣∣

p

dx

) 1
p

+c‖fs‖w,p

s∑

j=1

∑
1≤i≤s

i 6=j

(∫

R

sp(x)wp(x)

12



(∫ xj+δ

xj−δ

(∣∣∣∣∣Pr(x, y)H0,i(y)−
ki−1∑

l=0

P (l)
r (x, xi)Hl,i(y)

∣∣∣∣∣
w(y)
s(y)

)q

dy

) p
q

dx




1
p

+c‖fs‖w,p




∫

R

sp(x)wp(x)

(∫

R\∪̂s
j=1B(xj ,δ)

∣∣∣∣Ps(r, x, y)
w(y)
s(y)

∣∣∣∣
q

dy

) p
q

dx




1
p

= c

s∑

i=1

Ai + c‖fs‖w,p (B + C)

It has to be mentioned that in Ai and B can be an identically zero term in the
integral (when ki = 0), and the integral around an xj for which kj = 0 is in the
term C.

Now we have to show that Ai, B and C are bounded independently of r. We
have to note, that if r is less than, say 1

2 , then everything is trivial, so we can
assume that r > max

{
1
2 , 1− δ4

}
.

At first we deal with the main part:
Ai :

We can suppose that ki > 0! In this situation we have to distinguish some
cases.
Case a: If xi separates x and y, say x ≤ xi ≤ y. It means, that we are on
(−∞, xi]× [xi, xi + δ), and the computation is the same on [xi,∞)× (xi− δ, xi].

In Case a we have some subcases:

I: |x−xi| > 2
(
(1− r)β log 1

1−r

) 1
2

:= 2nβ(r), where β is a suitable constant.
(will be given later)

I/1: If |y − xi| < nβ(r), denoting by

gi(r, x, y) := Pr(x, y)H0,i(y)−
ki−1∑

l=0

P (l)(x, xi)Hl,i(y)(17)

we have that

Ai ≤ c‖fs‖w,p




∫

R

(∫

|y−xi|<nβ(r)

∣∣∣∣s(x)w(x)
gi(r, x, y)

s(y)
w(y)

∣∣∣∣
q

dy

) p
q

dx




1
p

≤ C(xi, δ)

(∫

R

∣∣∣∣∣s(x)w(x)
∂kigi(r, x, y)w(y)

∂yki

∣∣∣∣
y=ξi

(∫

|y−xi|<nβ(r)

( |y − xi|ki

s(y)

)q
) 1

q

∣∣∣∣∣∣

p


1
p

(18)
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Here ξi ∈ (xi, y) so |x− ξi| > 2nβ(r). According to Lemma 4, we get that
∣∣∣∣∣
∂ki(gi(r, x, y)w(y))

∂yki

∣∣∣∣
y=ξi

∣∣∣∣∣

=

∣∣∣∣∣
ki∑

m=0

(
ki

m

)
w(ki−m)(ξi)

w(ξi)
w(ξi)

(
Pr(x, ξi)

m∑
n=0

(
m

n

)
H

(m−n)
0,i (ξi)

×
n∑

k=0

ak,n(r, ξi)(x− ξi)k(1− r)d
n−k

2 e−n − Pr(x, xi)
ki−1∑

l=0

H
(m)
l,i (ξi)

×
l∑

k=0

ak,l(r, xi)(x− xi)k(1− r)d
l−k
2 e−l

)∣∣∣∣∣(19)

Because the function q(z) := zke
− r2

1−r2 (z)2 attains it’s maximum at z =
√

k(1−r2)
2r2

( where z ≥ 0 and k ≥ 0), and is monotone before and after this maximum place:
∣∣∣∣∣(x− xi)ki

∂ki(gi(r, x, y)w(y))
∂yki

∣∣∣∣
y=ξi

∣∣∣∣∣ ≤ c(xi, ki)e−
r2
1+r 4β log 1

1−r

(
log

1
1− r

)ki

× 1√
1− r

p(x)e
2r

1+r xxi−
x2

i
2 ,(20)

where p(x) is a polynomial, and it’s coefficients depend on xi.
So if β > 1+r

8r2 , then using that s is bounded and has a singularity of ordedr
q with degree ki at xi, we have that

Ai ≤ ‖fs‖w,pC(xi, ki, δ)‖p(x)e−
x2
2 + 2r

1+r xxi‖p < C(21)

I/2: If |y − xi| ≥ nβ(r), then observing that if |x − xi| > 2nβ(r), then
|x− y| > 2nβ(r) we can esimate |x− xi|ki |gi(r, x, y)| term by term:

∣∣∣∣
s(x)
s(y)

w(x)w(y)gi(r, x, y)
∣∣∣∣ ≤ c(δ)

s(x)|y − xi|ki

|x− xi|kis(y)
w(x)w(y)

×
(

nβ(r)−ki
1√

1− r
e

2r
1+r xy|x− y|kie

− r2

1−r2 (y−x)2 |H0,i(y)|

+
1√

1− r
e

2r
1+r xxi |x− xi|kie

− r2

1−r2 (x−xi)
2 |p3,l,i(y)||y − xi|l−ki

(
ki−1∑

l=0

l∑

k=0

|ak,l(r, xi)|x− xi|k(1− r)
−l−k

2

))
,

where |p3,l,i(y)|||y− xi|l = |Hl,i(y)|. So by the previous remark on the function
q(z), we can estimate the last term by

(nβ(r))−ki
1√

1− r
e

2r
1+r xy(nβ(r))kie−

r2
1+r 4β log 1

1−r |H0,i(y)|(22)
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+
1√

1− r
e

2r
1+r xxie−

r2
1+r 4β log 1

1−r |pi(r, x, y)| sup
0≤k≤l

0≤l≤ki−1

(
(nβ(r))k+l(1− r)

−l−k
2

)

≤ (1− r)
4βr2

1+r − 1
2

(
e

2r
1+r xy|pi(y)|+ e

2r
1+r xxi |pi(r, xi, y)|

(
log

1
1− r

)ki−1
)

(23)

Here pi-s are polynomials in r, and y. That is if we assume that β > 1+r
8r2 :




∫

R

(∫

nβ(r)<|y−xi|<δ

(
s(x)
s(y)

w(x)w(y)gi(r, x, y)
)q

dy

) p
q




1
p

≤ c(xi, δ)‖w(x)e
2r

1+r xxi
s(x)

|x− xi|ki
p(x)‖p‖ |y − xi|ki

s(y)
‖q < C.(24)

Where p is a polynomial, and in the estimation of the p-norm of the first term
we had to decomposite the integral to an integral around xi and away from xi.
With it we get again that

Ai ≤ C‖fs‖w,p.

II: |x− xi| ≤ 2nβ(r), where β is given above.
II/1:At first we will deal with that case: δ ≥ |y − xi| > |x− xi|.
As in a previous case

∣∣∣∣
|x− xi|ki

|y − xi|ki−1
w(x)w(y)gi(r, x, y)

∣∣∣∣ ≤ w(x)

∣∣∣∣∣
∂ki−1(gi(r, x, y)w(y))

∂yki−1

∣∣∣∣
y=ξi

∣∣∣∣∣

=
ki−1∑
m=0

(
ki − 1

m

) |w(ki−1−m)|(ξi)
w(ξi)

w(ξi)

(
Pr(x, ξi)

m∑
n=0

(
m

n

)
|H(m−n)

0,i |(ξi)

×
n∑

k=0

|ak,n(r, ξi)||x− ξi|k+ki(1− r)d
n−k

2 e−n + Pr(x, xi)
ki−1∑

l=0

|H(m)
l,i |(ξi)

×
l∑

k=0

|ak,l(r, xi)||x− xi|k+ki(1− r)d
l−k
2 e−l

)
≤ c(25)

Here we used again the remark on the maximum of q(z). So

(∫

|x−xi|≤2nβ(r)

sp(x)wp(x)

∣∣∣∣∣
∫

|x−xi|<|y−xi|<δ

f(y)gi(r, x, y)w2(y)dy

∣∣∣∣∣

p

dx

) 1
p

≤

(∫

|x−xi|≤nβ(r)

(
s(x)

|x− xi|ki

)p

×
(∫

|x−xi|<|y−xi|<δ

|f(y)|s(y)w(y)
|y − xi|ki−1

s(y)
dy

)p

dx

) 1
p

(26)
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According to Lemma 5 and replacing |x− xi| or |y − xi| by z,

(26) ≤ c‖fsw‖p ⇐⇒ sup
0<a<δ

(∫ a

0

(
s̃(z)
zki

)p) 1
p

(∫ δ

a

(
zki−1

s̃(z)

)q
) 1

q

≤ c,

and the right hand side is valid by the assuption on s(x).
II/2: If |y − xi| ≤ |x − xi|, then we have to divide the interval to infinitely

many parts:
(∫

|x−xi|≤2nβ(r)

sp(x)wp(x)

∣∣∣∣∣
∫

|y−xi|<|x−xi|
f(y)gi(r, x, y)w2(y)dy

∣∣∣∣∣

p

dx

) 1
p

≤ ‖fsw‖p

( ∞∑
m=0

∫
2nβ(r)

2m+1 <|x−xi|≤
2nβ(r)

2m

(
s(x)

|x− xi|ki

)p

(∫
|y−xi|
≤|x−xi|

(
w(x)w(y)|x− xi|ki |gi(r, x, y)|

|y − xi|ki

)q ( |y − xi|ki

s(y)

)q

dy

) p
q

dx




1
p

= (∗)

As in Case I, (19) when nβ(r)
2m+1 < |x− xi| ≤ nβ(r)

2m and |y − xi| < |x− xi|, we can
estimate

w(x)w(y)|x− xi|ki |gi(r, x, y)|
|y − xi|ki

≤ |x− xi|kiw(x)

∣∣∣∣∣
∂ki(gi(r, x, y)w(y))

∂yki

∣∣∣∣
y=ξi

∣∣∣∣∣

Because of the assumption |y−xi| < |x−xi| ≤ 2nβ(r), one term in the expression

of this ki-th derivative on the interval
(

nβ(r)
2m+1 ,

nβ(r)
2m

)
can be estimated by

cw(x)w(ξi)|x−xi|ki(1−r)−
k+ki

2 max
{
Pr(x, ξi)|x− ξi|k, Pr(x, xi)|x− xi|k(1− r)

}

≤ c
1

2(m−1)(k+ki)

(
log

1
1− r

) k+ki
2

(1− r)−
1
2+ r2β

(1+r)4m .

Using that this expression is increasing in k we have that

(∗) ≤ ‖fsw‖p

( ∞∑
m=0

1
22(m−1)kip

(
log

1
1− r

)kip

(1− r)−
p
2 + pr2β

(1+r)4m

∫
nβ(r)

2m+1 <|x−xi|≤
nβ(r)
2m

(
s(x)

|x− xi|ki

)p
(∫

|y−xi|≤|x−xi|

( |y − xi|ki

s(y)

)q

dy

) p
q

dx




1
p

Because the Ap property is valid for
(

s(x)

|x−xi|ki

)p

, we have that

(∫

|x−xi|≤
nβ(r)
2m

(
s(x)

|x− xi|ki

)p

dx

) 1
p

(∫

|y−xi|≤
nβ(r)
2m

( |y − xi|ki

s(y)

)q

dy

) 1
q

≤ c
nβ(r)
2m

,
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and so

(∗) ≤ c‖fsw‖p

( ∞∑
m=0

bm

) 1
p

,(27)

where

bm =
1

4(m−1)p(ki+
1
2 )

(
log

1
1− r

)p(ki+
1
2 )

(1− r)
r2βp

(1+r)4m

Let us denote by

c(r) :=

(
ki + 1

2

)
(1 + r)

r2β
and α := p

(
ki +

1
2

)
,

and by M = M(r) that index for which

4M−1 ≤ 1
c(r)

log
1

1− r
< 4M .

Because the maximum of the function
(
log 1

1−r

)γ

(1− r)δ is at γ
δ = log 1

1−r , we
have that

bM ≤ 4−Mα

(
α(1 + r)4M+1

er2βp

)α

≤ c

(
c(r)
e

)α

≤ c

(If r > 1
2 .)

If m < M , then bm is increasing with r, and so

bm ≤ 1
4mα

(
c(r)4M+1

)α
e
− c(r)4M+1r2βp

(1+r)4m+1 = (4c(r))α (4α)M−m

eα4M−m .

If m > M , then bm is decreasing with r, and so

bm ≤ 1
4mα

(c(r))α4Mα ≤ c (4α)M−m
.

It means that
∞∑

m=0

bm =
M−1∑
m=0

bm + bM +
∞∑

m=M+1

bm < c(28)

That is Ai is bounded by c‖fs‖w,p.
Case b: If xi does not separate x and y, (which means that we are on

(−∞, xi]× (xi − δ, xi] ∪ [xi,∞)× [xi, xi + δ)), say xi ≤ x, y.
III: xi ≤ x ≤ y.
III/1: |x− xi| > 2nβ(r). (In this case |y − xi| > 2nβ(r) as well.)
III/1.1: If |x− y| > nβ(r), we are almost in the same situation as in Case a I/2;
the only difference is that, when we estimate Pr(x, y) (as in (22)) we have to
use nβ(r) instead of 2nβ(r), and it yields that Ai is bounded if β > 1+r

2r2 .
III/1.2: If |x− y| ≤ nβ(r): We will deal with this case later.
III/2: |x− xi| ≤ 2nβ(r). This case is coincides with II/1.
IV: xi ≤ y ≤ x.
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IV/1: |x− xi| > 2nβ(r).
IV/1.1: Either |y − xi| ≤ nβ(r), or |y − xi| > nβ(r), if |y − x| > nβ(r), we
get back case I/1, with the same remark as in III/1.1, that is Ai is bounded if
β > 1+r

2r2 .
IV/1.2: If |y − x| ≤ nβ(r), the situation is the same as in III/1.2; we will deal
with these cases together.
IV/2: |x− xi| ≤ 2nβ(r). This is the same as II/2.

Now we give an estimation on Ai when |x−xi| > 2nβ(r) and |y−x| ≤ nβ(r).
In this case we have that δ > |y − xi| > nβ(r) and |x− xi| ≤ 3

2δ.




∫
|x−xi|

∈(2nβ(r), 3
2 δ)

wp(x)

∣∣∣∣∣∣

∫
|x−y|

<nβ(r)

f(y)w(y)s(y)Pr(x, y)w(y)
s(x)
s(y)

hi(r, x, y)dy

∣∣∣∣∣∣

p

dx




1
p

where hi(r, x, y) = gi(r,x,y)
Pr(x,y) . Applying the Hölder inequality in y with fixed x

we can estimate the previous integral by

‖fs‖w,p

(∫

R

wp(x)
(∫

R

(Pr(x, y)w(y))qdy

) p
q

dx

) 1
p

× sup
|x−xi|∈(2nβ(r), 3

2 δ)

|x−y|<nβ(r)

s(x)
s(y)

|hi(r, x, y)|

In the second assumptions on s(x) let us choose K = 2. In this domain in case
III.1.2 1

2 ≤ |x−xi|
|y−xi| ≤ 1, and in case IV.1.2 1 ≤ |x−xi|

|y−xi| ≤ 2, that is the function
s(x)
s(y) is bounded. We will estimate |hi(r, x, y)| term by term. Because y is around
xi, |H0,i(y)| < c(xi).

P
(l)
r (x, xi)
Pr(x, y)

|Hl,i(y)| ≤ ce
− r2

1−r2 ((x−xi)
2−(x−y)2)

e
2r

1+r xi(x−y)

×
l∑

k=0

ak,l|x− xi|k(1− r)−
l+k
2 |y − xi|l|p̃l(y)|

If |x−xi| > (1−r)
1−γ

2 for arbitrary γ > 0, then e
− r2

1−r2 ((x−xi)
2−(x−y)2)(1−r)−α

is bounded for every α > 0, and so |hi(r, x, y)| < c(ki, xi, δ).
If |x− xi| ≤ (1− r)

1−γ
2 , then

e
− r2

1−r2 ((x−xi)
2−(x−y)2)

e
2r

1+r xi(x−y)|x− xi|k(1− r)−
l+k
2 |y − xi|l|p̃l(y)|

≤ c(xi, l)e
− r2

1−r2 β log 1
1−r (1− r)−

l+k
2 ≤ c(xi, l)(1− r)

l−γ
2 − l+k

2 ,

which is bounded by c(xi, ki) if γ < r2β
(1+r)2ki

. With Lemma 3 it proves the
boundedness for ki > 0, and so Ai is bounded for i = 1, ..., s.
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B: We can estimate thye following expression term by term:
(∫

R

sp(x)wp(x)

(∫ xj+δ

xj−δ

(∣∣∣∣∣Pr(x, y)H0,i(y)−
ki−1∑

l=0

P (l)
r (x, xi)Hl,i(y)

∣∣∣∣∣
w(y)
s(y)

)q

dy

) p
q

dx




1
p

≤



∫

R

sp(x)wp(x)

(∫ xj+δ

xj−δ

∣∣∣∣Pr(x, y)w(y)H̃0,i(y)
|y − xj |kj

s(y)

∣∣∣∣
q

dy

) p
q

dx




1
p

+
ki−1∑

l=0

(∫

R

sp(x)
|x− xi|kip

wp(x)

(∫ xj+δ

xj−δ

∣∣∣∣w(y)P (l)
r (x, xi)|x− xi|kiH̃l,i(y)

|y − xj |kj

s(y)

∣∣∣∣
q

dy

) p
q

dx




1
p

= I +
ki−1∑

l=0

Il

Here we denote by H̃l,i(y) = Hl,i(y)

|y−xj |kj
which is a polynomial by the definition

of the interpolatory polynomials. If ki = 0 then the above sum is empty, so we
have to estimate Il when ki > 0. In the integrals after the sum the expression
|P (l)

r (x, xi)|x−xi|ki | (0 ≤ l ≤ ki− 1) is bounded according to Lemma 4 and the
remark on the function q(z). So

(∫

R

sp(x)
|x− xi|kip

wp(x)

(∫ xj+δ

xj−δ

∣∣∣∣w(y)P (l)
r (x, xi)|x− xi|kiH̃l,i(y)

|y − xj |kj

s(y)

∣∣∣∣
q

dy

) p
q

dx




1
p

≤ c(δ, xj)
(∫

R

s(x)p

|x− xi|kip
wp(x)dx

) 1
p

(∫ xj+δ

xj−δ

( |y − xj |kj

s(y)

)q

dy

) 1
q

≤ c(δ, xj),

where we used the assumption on s(y).
Now we have to deal with the first integral. The situation is almost the same

as in case V. in the estimation on Ai, the only change is to replacing i by j,
and 1

s(y) by |x−xj |kj

s(y) . So if |x − y| > nβ(r), or |x − y| ≤ nβ(r), and there are

Ki-s for which K1 <
|x−xj |
|y−xj | < K2, then s(x)

s(y) is bounded around xj , and the
computations are the same
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If |x− y| ≤ nβ(r), and |x−xj |
|y−xj | ≥ 2, or |x−xj |

|y−xj | ≤ 1
2 , then we have to deal with

the kj > 0 case. As in V. y − xj |, |x− xj | ≤ 2nβ(r).

I ≤ c(δ, xj , i)

(∫

|x−xj |<2nβ(r)

sp(x)
|x− xj |kjp

wp(x)

(∫

|y−xj |<2nβ(r)

(
w(y)Pr(x, y)|x− xj |kj

|y − xj |kj

s(y)

)q

dy

) p
q

dx




1
p

≤ c(δ, xj , i)
1√

1− r
nβ(r)kj nβ(r),

where we used the Ap-property on sp(x)

|x−xj |kjp . It means, that I is bounded, when
kj > 0.

Now we finished the estimation on B.
C:




∫

R

sp(x)wp(x)

(∫

R\∪̂s
j=1B(xj ,δ)

∣∣∣∣Ps(r, x, y)
w(y)
s(y)

∣∣∣∣
q

dy

) p
q

dx




1
p

≤



∫

R

sp(x)wp(x)

(∫

R\∪s
j=1B(xj ,δ)

(
Pr(x, y)

w(y)
s(y)

)q

dy

) p
q

dx




1
p

+




∫

R

sp(x)wp(x)

(∫

R\∪s
j=1B(xj ,δ)

(∣∣∣∣∣
s∑

i=1

ki−1∑

l=0

P (l)
r (x, xi)Hl,i(y)

∣∣∣∣∣
w(y)
s(y)

)q

dy

) p
q

dx




1
p

+
∑

j
kj=0




∫

R

sp(x)wp(x)

(∫

B(xj ,δ)

(
Pr(x, y)

w(y)
s(y)

)q

dy

) p
q

dx




1
p

+
∑

j
kj=0




∫

R

sp(x)wp(x)

(∫

B(xj ,δ)

(∣∣∣∣∣
s∑

i=1

ki−1∑

l=0

P (l)
r (x, xi)Hl,i(y)

∣∣∣∣∣
w(y)
s(y)

)q

dy

) p
q

dx




1
p

= I + II + III + IV

If ki = 0, then there is no i-th term in the sum in II. If ki > 0 then from
Lemma 4 we have that for all 0 ≤ l ≤ ki − 1

s(x)|P (l)
r (x, xi)|w(x) ≤ c(xi)

s(x)
|x− xi|ki

e
2r

1+r xxi− x2
2(29)
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and by the assumption on s(x) there is a y0 > max{|x1|+ 1, |xs|+ 1} such that
if |y| > y0 for every polynomial p(y) we have that

∥∥∥∥
p(y)w(y)

s(y)

∥∥∥∥
q,|y|>y0

≤ c(p, s)(30)

Applying (29) and (30) we get that

II ≤ c(x1, . . . , xs))
∥∥∥∥

s(x)
|x− xi|ki

e
2r

1+r xxi− x2
2

∥∥∥∥
p

×



s∑

i=1

ki−1∑

l=0

(∫

|y|≤y0\∪s
j=1B(xj ,δ)

∣∣∣∣
Hl,i(y)w(y)

s(y)

∣∣∣∣
q

dy

) 1
q

+

(∫

|y|>y0

∣∣∣∣
Hl,i(y)w(y)

s(y)

∣∣∣∣
q

dy

) 1
q


 ≤ c(x1, . . . , xs)(c(δ, y0) + c(s))(31)

The estimation on IV is almost the same as the estimation on II, the only
difference is that we have to replace the sum in (31) by

(∫

B(xj ,δ)

∣∣∣∣
Hl,i(y)w(y)

s(y)

∣∣∣∣
q

dy

) 1
q

≤ ‖Hl,iw‖∞
(∫

B(xj ,δ)

∣∣∣∣
1

s(y)

∣∣∣∣
q

dy

) 1
q

< c(s)

To estimate I, let us observe that s(x)
s(y) < K(δ, y0) on the set M = {|x| <

cy0} × {(|y| ≤ cy0) \ ∪s
j=1B(xj , δ)}. Using Lemma 3 :

I ≤



∫

|x|<4y0

sp(x)wp(x)

(∫

(|y|<4y0)\∪s
j=1B(xj ,δ)

(
Pr(x, y)

w(y)
s(y)

)q

dy

) p
q

dx




1
p

+




∫

|x|≥4y0

(·)
(∫

|y|≥4y0

(·)
) p

q

dx




1
p

+




∫

|x|≥4y0

(·)
(∫

(|y|<4y0)\∪s
j=1B(xj ,δ)

(·)
) p

q

dx




1
p

+




∫

|x|<4y0

(·)
(∫

|y|≥4y0

(·)
) p

q

dx




1
p

≤ c(y0) + V

On that part of the remainder domain, where s(x)
s(y) < K(δ, y0), we can also apply

Lemma 3. According to the 5th assumption on s(x), when s(x)
s(y) > B for some
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B, we can suppose that |x − y| > 1 (say). Observing that when xy < 0 and
|x − y| > 1 then Pr(x, y) is bounded independently of r, and according to the
assumptions on s(x) ws ∈ Lp and w

s ∈ Lq that is That part of the integral in
V is bounded. We have to investigate the situation, when s(x)

s(y) > K(δ, y0), and
xy > 0, say x, y > 0.

If y < x
4 , then (the only interesting case is x > 4y0) and Pr(x, y)w(x) <

ce
2rxy
1+r − x2

2 < ce−
x2
4 , and so the integral in this part can be estimated by

c




∫ ∞

4y0

spw
p
2

(∫ x
4

y0

wq(y)
sq(y)

dy

) p
q




1
p

< c

If y > 2x then Pr(x, y)w(x)w(y) < ce
2rxy
1+r − x2

2 − y2

2 < ce−cy2
(c > 0), and

Pr(x,y)w(y)w(x)
s(y) < ce−y2

s(y) . Thus we can estimate this part on x > 4y0 by

c

(∫ ∞

4y0

(∫ ∞

2x

e−cqydy

) p
q

dx

) 1
p

< c

and on 0 < x < 4y0 we get the same.

If x
4 ≤ y ≤ 2x, then by the assumption on s(y), e−

(x−y)2

2
s(x)
s(y) is bounded in

this domain, and we can estimate the integral by

c




∫ ∞

0




∫
y∈( x

4 ,2x)
|y−x|>1

(
1√

1− r
e
− r2

2(1−r2) e
− r2

2(1−r2)
(x−y)2

e−
1−r
1+r xy

)q

dy




p
q




1
p

≤ ce
− r2

2(1−r2)




∫ ∞

0

(∫ 2x

x
4

e−
1−r
1+r qxydy

) p
q

dx




1
p

≤ c(1− r)−1e
− r2

2(1−r2)

(∫ ∞

0

e−
1−r

4(1+r) px2

dx

) 1
p

≤ c

(1− r)2
e
− r2

2(1−r2) < c

Finally we have to give an estimation on III, that is we have to estimate



∫

R

sp(x)wp(x)

(∫ xi+δ

xi−δ

(
Pr(x, y)

w(y)
s(y)

)q

dy

) p
q

dx




1
p

= Ji

If s(x)
s(y) is bounded around xi, then by Lemma 3 the result is proved. If |x−y| >

nβ(r) with β = 1+r
2r2 , then Pr(x, y)w(x)w(y) ≤ c1(δ, xi)ec2(δ,xi)x− 1

2 x2
, and the

integral can be estimated by

c1(δ, xi)
(∫

R

(
s(x)ec2(δ,xi)x− 1

2 x2
)p

dx

) 1
p




∫
y∈(xi−δ,xi+δ)
|x−y|>nβ(r)

(
1

s(y)

)q

dy




1
q
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wich is bounded by the assumption on s(y).
If |x − y| ≤ nβ(r), and |x−xi|

|y−xi| ≥ 2, or |x−xi|
|y−xi| ≤ 1

2 , then |y − xi|, |x − xi| ≤
c|x− y|.

Ji ≤ c(δ, xi)

×




∫

|x−xi|<2nβ(r)

sp(x)wp(x)




∫
|y−xi|<2nβ(r)

|x−y|<nβ(r)

(
w(y)Pr(x, y)

1
s(y)

)q

dy




p
q

dx




1
p

≤ c(δ, xi)
∞∑

m=0

(∫

|x−xi|<2nβ(r)

sp(x)wp(x)




∫
|y−xi|<2nβ(r)

2−m−1nβ(r)≤|x−y|<2−mnβ(r)

(
w(y)Pr(x, y)

1
s(y)

)q

dy




p
q

dx




1
p

= c(δ, xi)
∞∑

m=0

bm

As in earlier let M = M(r) be that index, for which 1−e−4M ≤ r < 1−e−4M+1
,

and we will cut the sum to three parts:
∑M−1

m=0 bm + bM +
∑∞

m=M+1 bm.
When 2−m−1nβ(r) ≤ |x− y| < 2−mnβ(r)

Pr(x, y) ≤ c(xi)(1− r)
4−m−1−1

2 ,

and so by the Ap-property

bm ≤ c(xi, β)(1− r)
4−m−1−1

2

×



∫

|x−xi|<
nβ(r)
2m

sp(x)

(∫

|y−xi|<
nβ(r)
2m

(
1

s(y)

)q

dy

) p
q

dx




1
p

≤ c(xi, β)(1− r)
4−m−1−1

2 2−mnβ(r) ≤ c(xi, β)
1

2m

√
log

1
1− r

(1− r)4−m−1

That is in bM we can estimate this function of r by its maximum, that is if
r = 1− e−4M

, we have that

bM ≤ c(xi, β)
1

2M
2M+1(32)

If m < M , then we get an upper estimation on bm, when we replace r by
1− e−4M

again:

bm ≤ c(xi, β)
1

2m
2M

(
e−

1
8

)4M−m

(33)
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And if m > M , then we get an upper estimation on bm again, when we replace
r by 1− e−4M

, and so we get formally the same as when m < M . Now

M−1∑
m=0

bm + bM +
∞∑

m=M+1

bm

≤ c(xi, β)

(
M∑

l=1

2l
(
e−

1
8

)−4l

+ 1 +
∞∑

l=1

1
2l

(
e−

1
8

)−4−l
)
≤ c(xi, β)(34)

With the above estimations the boundedness of C is proved, and also the
theorem is.
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