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Abstract. In a Freud-type weighted (w) space, introducing another weight (v)

with infinitely many roots, we give a complete and minimal system with respect to vw,

by deleting infinitely many elements from the original orthonormal system with respect

to w. The construction of the conjugate system implies an interpolation problem at

infinitely many nodes. Besides the existence, we give some convergence properties of

the solution.

1. Introduction

The construction of biorthonormal systems arises in several problems in
both physics and mathematics. Recently physicists are interested in e.g. non-
Hermitian operators ([24], [15]) and quantum Brownian motion [25], etc.; and
biorthogonality is also useful for investigation of ”delta estimators” in Lp(Rd, µ)
[27], for wavelet expansions [28], or for numerical integration on infinite intervals
[11].

There are some further related problems where the main tool is giving
biorthonormal systems in Banach spaces. The initial investigations of e.g. R.
P. Boas and H. Pollard, A. A. Talalyan, M. Rosenblum, and B. Muckenhoupt
resulted the development of e.g. Ap-weights, the theory of multiplicative com-
pletion of sets of functions, and estimations of certain norms of Poisson integrals
([2], [23], [19], [16]). Further results were given e.g. on completion ([18], [8],
[7]), solving Dirichlet’s problem with respect to boundary functions with singu-
larities ([6], [5]), and constructing A-bases (basis for Abel-summability) in some
Banach spaces [4].
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We are interested in constructing complete and minimal systems, that is a
system {ϕn} which is complete in a Banach space B, and it has a conjugate
system in the dual space {ϕ∗n} ⊂ B∗ such that ϕ∗n(ϕm) = δn,m. The reason of
this interest is the following theorem of S. Banach [1]:

THEOREM X. A system {ϕn}∞n=n0
is an A-basis in the space Lp

vw (1 < p <
∞) (with some weight function vw) if and only if it is a complete and minimal
system in Lp

vw, and there is a constant c = c(p) such that

sup
0≤r<1

∥∥∥∥∥
∞∑

n=n0

rnan(f)ϕn

∥∥∥∥∥
vw,p

≤ c‖f‖vw,p

where an(f) = ϕ∗nf =
∫
R

fϕ∗nv2w2.

So according to Banach’s theorem, if a complete and minimal system is given
in a Banach space, then for proving that this system is an A-basis, it is enough
to show that the norm of the Poisson integral is bounded by the norm of the
function.

In the language of weighted spaces on the real line, the common idea of the
abovementioned investigations is the following: there is a complete orthonormal
system {en} with respect to a weight w > 0 (sometimes w ≡ 1) on a finite or
infinite interval I, and v is another weight on I with some zeros. Removing
some elements of {en} (which omission depends on the roots of v), a complete
and minimal system can be constructed in a weighted space with respect to vw
which means, in other terminology, that the residual system can be multiplica-
tively transformed into a basis. If the number of roots M of v is finite (with
multiplicity), then the biorthonormal system {ϕn, ϕ∗m} will be the following:

{ϕn} = {en} \ {ek1 , . . . , ekM
},

and the elements of the conjugate system will be

ϕ∗m =
ϕm −∑M

i=1 aimeki

v2
.

Here the denominator has some zeros, so roughly speaking, the numerator
has to be zero at the same points with the same multiplicity, which leads to
an interpolation problem. E.g., if {en} = {pn} is the orthogonal polynomial
system on an interval with respect to a weight then the linear combination of
the first M elements, which is a polynomial of degree M − 1, interpolates the
residual elements at the zeros of v ([4], [5], [6]). Generally, in the finite case
we get a finite linear system of equations, and if it has a unique solution, the
biorthonormal system is complete and minimal.

The question is the following: what can we do, if v has infinitely many zeros?
Following the same chain of ideas, we have to remove infinitely many elements
of the original basis such that at the roots of v the elements of the residual
system can be interpolated by an infinite combination of the removed elements.
(Naturally, we can not omit the first infinitely many elements of the original
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system.) We have to solve an infinite interpolation problem, which implies an
infinite linear system of equations. That is besides the solvability of the system
of equations and the unicity of the solution, the convergence of the solution (in
some sense) is also a problem.

We will carry out this type of investigations on the real line, when the ”outer”
weight will be a Freud weight. The ideal situation would be that for an almost
arbitrary system of roots (e.g. when it has no finite accumulation point) of an
”inner” weight v, which does not grow too quickly at infinity, one could give a
good omission system, but at present we are unable to state any result in this
respect.

Supposing some polynomially uniform growth property of the choosing func-
tion, we will be able to construct a system of points which will be the zeros of
v, and an omission system step by step, with which the residual system will be
complete and minimal. Furthermore we can apply a finite section method ([3])
to get the numerical solution of the infinite system of equations.

2. Definitions, notations, result

At first we define Freud weights as generally as used in this paper.
DEFINITION 1 [10]. w(x) = e−Q(x) is a Freud weight, if Q : R −→ R is

even, continuous in R, Q(0) = 0, Q
′′

is continuous in [0,∞), and Q
′

> 0 in
(0,∞). Furthermore, assume that for some A,B > 1,

A ≤ (d/dx)(xQ
′
(x))

Q′(x)
≤ B, x ∈ (0,∞)(1)

NOTATIONS. (1) For a Freud weight w we will denote by pn(w) = pn the
nth orthonormal polynomial on the real line, with respect to w2.

(2) If w is a weight function, then

f ∈ Lp
w iff fw ∈ Lp.(2)

If f ∈ Lp
w and g ∈ Lq

w, where 1
p + 1

q = 1 then let

〈f, g〉 =
∫

R
fgw2(3)

After the definition of the external weight we give the form of that part
of the weight function which is responsible for the inner roots. The definition
below is based on the Lemma 1.1 of J. Szabados [20]

DEFINITION 2. Let X := {x1, x2, . . .} ⊂ R, 0 < |x1| ≤ |x2| ≤ . . . be
a system of points on the real line, and let M := {m1,m2, . . .} ⊂ R+ be a
collection of positive numbers. If there exists a nonnegative number % ≥ 0 such
that ∞∑

j=1

mj

|xj |%+ε
< ∞, but

∞∑

j=1

mj

|xj |%−ε
= ∞ for all ε > 0,(4)
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then with µ, d > 0 arbitrary, let

v(x) = vX,M,µ,d(x) := ed|x|%+µ
∞∏

j=1

∣∣∣∣1−
x

xj

∣∣∣∣
mj

.(5)

After the definitions of the weights we begin to deal with the description of
the functions we need for giving a good choice of points and an omission system.

REMARK. In [10], Lemma 5.1 (b) states that

tA ≤ tQ
′
(tx)

Q′(x)
≤ tB , x ∈ (0,∞), t ∈ (1,∞),(6)

and

A ≤ xQ
′
(x)

Q(x)
≤ B, x ∈ (0,∞).(7)

Together with the definition this means that on (0,∞), Q
′

> 0; Q(cx) ∼
Q(x)(c > 0); Q

′
(x) ∼ Q(x)

x , where f(x) ∼ g(x) means that there are posi-
tive constants C and D such that f(x) ≤ Cg(x) and g(x) ≤ Df(x). So this is
the inspiration of the following definition:

DEFINITION 3. f grows ”polynomially uniformly” if it is three times dif-
ferentiable, f

′
is positive and convex on (0,∞), and there exists x0 > 0 such

that on (x0,∞) the following are valid:

f(cx) ∼ f(x) (c > 0),(8)

f
′
(x) ∼ f(x)

x
.(9)

With this property we can define an admissible function and a system of
points. In the following definition we want to summarize the properties required
to ensure the solvability the abovementioned interpolation problem. The second
inequality will be necessary for proving the existence of the solution, and the
first one will be necessary for proving some convergence property of it. Further
discussions can be found at the end of this note in the final remarks.

DEFINITION 4. w is a Freud weight, Q = log 1
w , and let us suppose for

simplicity that Q(x)
x3 is quasimonotone, that is there exists a monotone function:

m(x); for which m(x) ∼ Q(x)
x3 on (x0,∞) with some x0. Furthermore let 3

2 <
A ≤ B, γ > 0 a positive number. g is an admissible function with respect to Q
and γ, if it grows polynomially uniformly on (0,∞),

g[−1](x)
Q[−1](x)

= O

(
1

x2γ

)
,(10)

there is an x0 > 0 and ε > 0 such that g[−1](x)
(Q[−1](x))1−ε is decreasing on (x0,∞);

and

xδ max

{
(Q[−1](g(x)))

1
4

(g(x))
1
6

;
1

(Q[−1](g(x)))
1
2

}
−→ 0 with a δ >

5
4

(11)
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when x −→∞. (Here g[−1] denotes the inverse of the function g.)
REMARK. (1) With the same assumptions on Q and g as in the previous

definition, we can formulate the inequalities (10) and (11) in a stronger form:
(*) There exists ε > 0 and c, γ > 0 such that

g[−1](Q(x))
x1−ε

≤ cxε

Q2γ(x)
, x ≥ x0 > 0,

and here the leftside is decreasing.
(**)There is a δ > 5

4 such that

lim
x→∞

xδ+ 1
4

Q2γδ(x)
max

{
x−

3
4 , Q− 1

6 (x)
}

= 0

(2) Let A ≥ 9
2 . Then instead of (∗), (∗∗) we can write that there exist ε > 0,

γ > 3
45 and x0 ≥ 0 such that for all x ≥ x0

g[−1](Q(x))
x1−ε

≤ cxε

Q2γ(x)
,

and the leftside is decreasing.
(3) Let B ≤ 9

2 . Then instead of (∗∗) we can write that there exists δ > 5
4

such that

lim
x→∞

xδ+ 1
4

Q2γδ+ 1
6 (x)

(4) Let Q(x) = |x|β , g(x) = xα. Then we can formulate Definition 4 as
follows:

If 3
2 < β ≤ 9

2 , then let 15β
2β−3 < α and γ ≤ α−β

2αβ , if 9
2 < β, then let 5

2β < α

and γ ≤ α−β
2αβ .

DEFINITION 5. M is an admissible system of positive numbers with respect
to γ, if 0 < mj < 1 + γ, and lim infj→∞mj > 0.

After these definitions and notations we can formulate the main theorem:

THEOREM 1. Let w be a Freud weight on the real line with the properties
given in Definition 4, and let 0 < γ < 1

2B . Furthermore let g be an admissi-
ble function with respect to Q and γ, and M an admissible system of positive
numbers with respect to γ. Then there exists a system of points X ⊂ R and an
”omission system” Ψk = plk(w)w with

lk = g(k) + O(k),(12)

and
d, µ > 0,(13)

such that the system

{ϕl}∞l=1 := {pk(w)w}∞k=0 \ {Ψn}∞n=1(14)
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is complete and minimal in Lp
vX,M,µ,d

, where infmj<1
1

1−mj
> p > max j

γ−mj<0

1
γ−mj+1 ,

if there are finite many mj-s for which γ −mj < 0, and for infj
1

1−mj
> p > 1,

if γ −mj ≥ 0 for all j.

REMARK. With the assumptions of the theorem we will be able to give a
numerical method to compute the conjugate system.

EXAMPLE. Let Q(x) = |x|4 log2(1 + x2); g(x) = x16 log(1 + x2). With
γ = 1

12 , the assumptions of Theorem 1 are valid.

3. Proof

As we have seen in the introduction, at first we have to solve the following
infinite systems of linear equations:




Ψ1(x1) Ψ2(x1) . . . Ψn(x1) . . .
Ψ1(x2) Ψ2(x2) . . . Ψn(x2) . . .

...
...

...
Ψ1(xk) Ψ2(xk) . . . Ψn(xk) . . .

...
...

...







a1m

a2m

...
akm

...




=




ϕm(x1)
ϕm(x2)

...
ϕm(xk)

...




(15)

denoted by Aam = cm.
In connection with this infinite linear system of equations, we have to deal

with two questions: to get some solution, and to guarantee the convergence
of the solution in some sense. Together with the convergence, the existence of
the solution yields a biorthonormal system with respect to {ϕl}∞l=1, and the
uniqueness of the solution ensures the completeness of {ϕl}∞l=1.

3.1. Solvability. 3.1.1. Existence. For the first problem we have to cite a
theorem O. Toeplitz [26], [1].

THEOREM A. The necessary and sufficient condition of the existence of a
solution of an infinite linear system of equations

∞∑

k=1

akixk = yi, i = 1, 2, . . . ,

is the following: for all r natural, and h1, h2, . . . , hr real numbers for which∑r
i=1 hiaki = 0, k = 1, 2, . . . , the equality

∑r
i=1 hiyi = 0 holds. In particular

if the condition
∑r

i=1 hiaki = 0, k = 1, 2, . . . , implies that h1 = h2 = . . . hr = 0
the above system of equations has a solution for all {yi}.

Now we can define our point- and our omission system. For this construction
and subsequently we need the following notion of the Mhaskar Rahmanov Saff
number with respect to w, which shows where the sup-norm of a weighted
polynomial lives [14].
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DEFINITION 6. Let w be a Freud weight on the real line. au = au(w), the
MRS number associated with w is defined as the positive root of the equation

u =
2
π

∫ 1

0

autQ
′
(aut)(1− t2)−

1
2 dt, u > 0.

REMARKS. (1) According to the Mhaskar-Saff identity, for all polynomials
qn of degree n the following are valid:

‖qn‖w,∞ = max
|x|≤an

|qn(x)w(x)|,(16)

and
‖qn‖w,∞ > |qn(x)w(x)| for all |x| > an.(17)

(2) Let pn(w) be the nth orthonormal polynomial with respect to w2 again,
and x0 = x0(n,w) is that point, where pn(w)w attains its maximum modulus,
that is

|pn(w, x0)w(x0)| = ‖pn(w)w‖∞.

Then, according to a lemma of J. Szabados ([21],Lemma 2)

an

(
1− c

n
2
3

)
≤ x0 ≤ an, n ∈ N,

with some c > 1 independent of n. This means that in our case, when A > 3
2 ,

x0 is around an.
LEMMA 1. Let Q and γ be as in Theorem 1, and let g be an admissible

function with respect to Q and γ. Now there is a system of points X ⊂ R, and
an omission system Ψk = plk(w)w with lk = g(k) + O(k), such that

|Ψi−1(xi)| > c‖Ψi−1‖∞ i = 1, 2, . . .(18)

with an absolute constant c, and the determinants

Dn =

∣∣∣∣∣∣∣∣∣

Ψ1(x1) Ψ2(x1) . . . Ψn(x1)
Ψ1(x2) Ψ2(x2) . . . Ψn(x2)

...
...

...
Ψ1(xn) Ψ2(xn) . . . Ψn(xn)

∣∣∣∣∣∣∣∣∣
6= 0, n ∈ N.(19)

PROOF. Let Ψ0 = p0w, and let x1 ∈ R+ be an arbitrary point, say x1 = 1.
Further let n0 ∈ N be a fixed number (to be given later), and g∗ be a function
with the properties of g, and let us denote by

g(k) = g∗(n0 + k).

We can choose Ψ1 = pk1w such that k1 = g(1) + O(1) and Ψ1(x1) 6= 0, and
Ψ1(x1) 6= ‖Ψ1‖∞. Now let us suppose that x1, . . . , xn and Ψ1, . . . , Ψn were
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already chosen, such that lk = g(k) + O(k), |Ψk−1(xk)| = ‖Ψk−1‖∞ for k =
2, . . . , n and Dk 6= 0 for k = 1, . . . , n.

At first we will give xn+1 such that |Ψn(xn+1)| = ‖Ψn‖∞. So with this
choice we get a not too small element in every row. It follows from [10] Lemma
5.1 that

an ∼ Q[−1](n),(20)

and so by the assumptions on g and by the second remark before the lemma,
we get that

|xk| ∼ Q[−1](g(k)),(21)

In the following we will show that for every m > ln among the indices
m,m+1, . . . , m+2n+1 we can find a ”good” one, that is there is a k ∈ {m,m+
1, . . . , m+2n+1} such that if we choose Ψn+1 = pkw, then Dn+1 6= 0. By (8) this
means that we can choose Ψn+1 = pln+1w such that ln+1 = g(n+1)+O(n+1).

So let us suppose indirectly that there is an m > ln for which

Dn+1 =

∣∣∣∣∣∣∣∣∣∣∣

Ψ1(x1) Ψ2(x1) . . . Ψn(x1) pkw(x1)
Ψ1(x2) Ψ2(x2) . . . Ψn(x2) pkw(x2)

...
...

...
...

Ψ1(xn) Ψ2(xn) . . . Ψn(xn) pkw(xn)
Ψ1(xn+1) Ψ2(xn+1) . . . Ψn(xn+1) pkw(xn+1)

∣∣∣∣∣∣∣∣∣∣∣

= 0(22)

for all k ∈ {m,m + 1, . . . , m + 2n + 1}. Let us expand this determinant by the
elements of the last column:

Dn+1 = (−1)n+1
n+1∑

j=1

(pkw)(xj)(−1)jBj = 0,(23)

where Bj is that subdeterminant which comes when the last column and the
jth row are omitted (Bn+1 = Dn). Denoting Aj := (−1)jB̂j , where B̂j are the
determinants Bj divided by the product of w(xi)-s we get that

n+1∑

j=1

pk(xj)Aj = 0, k ∈ {m,m + 1, . . . , m + 2n + 1}.(24)

Let us recall the recurrence formula of the orthonormal polynomials with respect
to the even weight w:

xpn+1 = %n+2pn+2 + %n+1pn,(25)

where %n ∼ an are constants. By this formula we get from (24) that for any
0 ≤ l ≤ 2n− 1,

n+1∑

j=1

xjpm+l+1(xj)Aj = %m+l+2

n+1∑

j=1

pm+l+2(xj)Aj + %m+l+1

n+1∑

j=1

pm+l(xj)Aj = 0.

(26)
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By the same argument we have that

cp

n+1∑

j=1

xp
jpm+l+p(xj)Aj = 0, 0 ≤ p ≤ n, 0 ≤ l ≤ 2n + 1− 2p(27)

that is

0 =
n∑

p=0

cp

n+1∑

j=1

xp
jpk(xj)Aj =

n+1∑

j=1

pk(xj)Aj

n∑
p=0

cpx
p
j =

n+1∑

j=1

qn(xj)pk(xj)Aj ,(28)

where k = m+n,m+n+1, and qn is a polynomial of degree n. So let us choose
qn = qn,k like

sign qn,k(xj) = sign pk(xj)Aj(29)

(If at a point xj the expression pk(xj)Aj is zero, then we have no assumption on
the sign of qn,k at xj .) With this choice we get that all the terms of the above
sum are zero. But we know that An+1 = (−1)n+1D̂n 6= 0 and we can suppose
that qn,k(xn+1) 6= 0, that is pk(xn+1) must be zero for k = m + n, m + n + 1.
This is impossible, because two consecutive orthogonal polynomials cannot have
zero at the same point. So the first lemma is proved.

NOTATION. We can define a modified linear systems of equations, which
are equivalent with the original ones:

Âam = ĉm :(30)




Ψ1(x1)
Ψ0(x1)

Ψ2(x1)
Ψ0(x1)

. . . Ψn(x1)
Ψ0(x1)

. . .
Ψ1(x2)
Ψ1(x2)

Ψ2(x2)
Ψ1(x2)

. . . Ψn(x2)
Ψ1(x2)

. . .
...

...
...

Ψ1(xk)
Ψk−1(xk)

Ψ2(xk)
Ψk−1(xk) . . . Ψn(xk)

Ψk−1(xk) . . .
...

...
...







a1m

a2m

...
akm

...




=




ϕm(x1)
Ψ0(x1)
ϕm(x2)
Ψ1(x2)

...
ϕm(xk)

Ψk−1(xk)

...




,(31)

Denote the elements of ÂÂT by

αij =< iÂ, jÂ >=
∞∑

k=1

Ψk(xi)
Ψi−1(xi)

Ψk(xj)
Ψj−1(xj)

,(32)

where < ·, · > denotes the usual inner product, and iÂ is the ith row of Â, and
B(n) is the principal minor of ÂÂT :

B(n) =




α11 . . . α1n

...
...

α11 . . . α1n


 ,(33)
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and let

ĉ(n)
m =




ϕm(x1)
Ψ0(x1)
ϕm(x2)
Ψ1(x2)

...
ϕm(xn)

Ψn−1(xn)




.(34)

With these notations we are in a position to formulate the theorem of F.
Riesz [22], which will be our basic tool for proving some convergence property
of the solution.

THEOREM B. With the notation

M∗(
ϕm(x1)
Ψ0(x1)

,
ϕm(x2)
Ψ1(x2)

, . . .) = lim
n→∞



−

∣∣∣∣∣∣
B(n) ĉ

(n)
m(

ĉ
(n)
m

)T

0

∣∣∣∣∣∣
|B(n)|




1
2

,(35)

the equation Âam = ĉm has a solution for which

‖am‖2 =

( ∞∑

k=1

a2
km

) 1
2

≤ M.(36)

iff

M∗(
ϕm(x1)
Ψ0(x1)

,
ϕm(x2)
Ψ1(x2)

, . . .) ≤ M.(37)

To obtain an estimation on M∗ we need some lemmas. At first we have to
introduce a

NOTATION. Let

f(c0, δ) :=
(6c2

0 + 2c0)2

4δ

[
1 +

2
√

2
δ − 5

4

exp
(

(6c2
0 + 2c0)2

15
6

)]
,(38)

where δ > 5
4 is arbitrary, and let c0 = c0(δ) be such that f(c0, δ) ∈ (0, 1).

Furthermore let wi = w
(n)
i be the ith row of the symmetric matrix B(n).

LEMMA 2. With the previous notations, if there is a δ > 5
4 and a c < c0(δ)

such that
|αij | < c max{i, j}−δ, if i 6= j(39)

then there exists a 0 < q < 1 for which

∣∣∣B(n)
∣∣∣ > q

n∏

j=1

‖wj‖2.(40)
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PROOF. Suppose i < j. At first we will prove that assuming |αij | < cj−δ,
the cosine of the angle of the ith and jth rows is of order j−δ, that is

|cosβij | := | < wi, wj > |
‖wi‖2‖wj‖2 < c1j

−δ,(41)

where c1 = 6c2 + 2c. Observe at first that ‖wj‖2 ≥ αjj = ‖jÂ‖22 ≥ 1. Thus we
get that

| < wi, wj > |
‖wi‖2‖wj‖2 ≤

i−1∑

k=1

∣∣∣< iÂ, kÂ >< jÂ, kÂ >
∣∣∣ +

j−1∑

k=i+1

| · |+
n∑

k=j+1

| · |

+
∣∣∣< iÂ, jÂ >

∣∣∣ ‖iÂ‖22 + ‖iÂ‖22
‖wi‖2‖wj‖2

≤ c2i1−δj−δ + c2j−δ i1−δ

δ − 1
+ c2 j1−2δ

2δ − 1
+ cj−δ ‖iÂ‖22 + ‖iÂ‖22

‖iÂ‖22‖jÂ‖22
≤ c1j

−δ.(42)

In the last step we used that δ > 1.
By this inequality we can prove the original one. With the notation

B
(n)
0 =

[
wT

1
‖w1‖2 ,

wT
2

‖w2‖2 , . . . ,
wT

n

‖wn‖2

]
,

we have to show that
∣∣∣B(n)

0

∣∣∣ ≥ q. Let us estimate

∣∣∣∣
(
B

(n)
0

)T

B
(n)
0

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . cosβ1n

...
. . . cos βij

...
. . . . . .
...

. . .
...

cos β1n 1

∣∣∣∣∣∣∣∣∣∣∣∣

=
n−1∑

k=1

(−1)k+n cos βkn det B
(n)
k + det((B(n−1)

0 )T B
(n−1)
0 ),

where

B
(n)
k =




1 cos β12 . . . cos β1n−1

...
. . . cos βij

...
cos βk−11 cosβk−1n−1

cosβk+11 cos βk+1n−1

...
. . .

...
cos βn1 . . . cos βnn−1




.

11



By Hadamard’s inequality we get that

∣∣∣detB
(n)
k

∣∣∣ ≤
n−1∏
i=1
i6=k

√√√√√1 +
n−1∑
l=1
l 6=i

cos2 βil

√√√√
n−1∑

l=1

cos2 βnl

≤
n−1∏
i=1
i6=k

√√√√1 + (i− 1)c2
1i
−2δ +

n−1−i∑

k=1

1
(i + k)2δ

√
c2
1

n− 1
(n)2δ

≤ c1

√
n− 1
(n)δ

n−1∏
i=1
i6=k

√
1 + c2

1i
1−2δ

(
1 +

1
2δ − 1

)
≤ c1n

1
2−δ

n∏
i=1
i 6=k

√
1 +

5
3
c2
1i

1−2δ

≤ c1n
1
2−δ exp

(
5
6
c2
1

(
1 +

1
2(δ − 1)

))
≤ c1 exp

(
c2
1

15
6

)
n

1
2−δ = c2n

1
2−δ(43)

By this calculation we obtain

det((B(n)
0 )T B

(n)
0 ) ≥ det((B(n−1)

0 )T B
(n−1)
0 )− (n− 1)c1c2n

−δn
1
2−δ

≥ det((B(n−2)
0 )T B

(n−2)
0 )− c1c2(n− 1)

3
2−2δ − c1c2n

3
2−2δ

≥ . . . ≥ det((B(2)
0 )T B

(2)
0 )− c1c2

n∑

k=3

k
3
2−2δ

≥ det((B(2)
0 )T B

(2)
0 )− c1c2

1
22δ− 5

2
(
2δ − 5

2

) ≥ 1− c2
1

4δ
− c1c2

1
22δ− 5

2
(
2δ − 5

2

)(44)

By the last inequality, the assumptions on c0 implies that there is a q1 ∈ (0, 1)
such that (detB

(n)
0 )2 > q1, which proves the lemma.

COROLLARY. With the assumptions of Lemma 2 and the notations above,
the following inequality is valid:

−

∣∣∣∣∣∣
B(n) ĉ

(n)
m(

ĉ
(n)
m

)T

0

∣∣∣∣∣∣
|B(n)| ≤ 1

q
‖ĉm‖2e 1

2‖ĉm‖22 .(45)

PROOF. Applying Hadamard’s inequality again, and recalling that ‖wi‖2 ≥
1, we get that

−

∣∣∣∣∣∣
B(n) ĉ

(n)
m(

ĉ
(n)
m

)T

0

∣∣∣∣∣∣
|B(n)| ≤ 1

q

∏n
j=1

√∑n
i=1 α2

ij + ĉ2
m,j

√∑n
i=1 ĉ2

m,i

∏n
j=1

√∑n
i=1 α2

ij

12



≤ 1
q
‖ĉm‖2




n∏

j=1

(
1 +

ĉ2
m,j

‖wj‖22

)


1
2

≤ 1
q
‖ĉm‖2e 1

2

∑n
j=1 ĉ2

m,j ,

and the corollary is proved.
LEMMA 3. With the previous notations, there is a δ > 5

4 and a c0 = c0(δ)
such that f(c0, δ) ∈ (0, 1) (see (38) for f(c0, δ)), with which

|αij | ≤ c max{i, j}−δ, if i 6= j(46)

for a c < c0 .
REMARKS. (1)[10] Corollary 1.4 : If w is a Freud weight, then

sup
x∈R

|pn(w, x)|w(x)
∣∣∣∣1−

|x|
an

∣∣∣∣
1
4

∼ a
− 1

2
n(47)

and
sup
x∈R

|pn(w, x)|w(x) ∼ n
1
6 a
− 1

2
n .(48)

(2) We can easily deduce e.g. from 2.19 of [9] or 2.6 of [13], that if x =
(1 + c)an, then there is a c1 = c1(δ) such that

|pn(w, x)w(x)| ≤ ‖pn(w)w‖∞
{

e−c1nc
3
2 , if 0 < c ≤ δ,

e−c1n log(1+c), if δ < c < ∞,

that is

|pn(w, x)w(x)| ≤ c
n

1
6

a
1
2
n

{
e−c1n( x−an

an
)

3
2
, if 0 < c ≤ δ,(

an

x

)c1n
, if δ < c < ∞.

(49)

NOTATION. Let us denote by IMRS(pk) the support of the equilibrium
measure with respect to wk, that is

IMRS(pk) = IMRS(pkw) = [−ak, ak],(50)

PROOF. Let c > 1 be an arbitrary constant. We can divide the sum in (32)
into some parts:

|αij | ≤ 1
|Ψi−1(xi)||Ψj−1(xj)|

×



1
c j∑

k=1

|Ψk(xi)Ψk(xj)|+
j−2∑

k= 1
c j+1

| · |+
cj∑

k=j−1

| · |+
∞∑

k=cj+1

| · |



=
1

|Ψi−1(xi)||Ψj−1(xj)| (S1 + S2 + S3 + S4)(51)

At first, recalling the special assumption on the denominator, considering (47)
we have that

|Ψi−1(xi)| ∼ ‖Ψi−1‖∞ = ‖pli−1(w)‖∞ ∼ (li−1)
1
6 a

− 1
2

li−1

13



∼ g(i)
1
6

(
Q[−1](g(i))

)− 1
2

(52)

By the second remark after Lemma 3, the members in S1 are exponentially
small, because either xi and xj , or only xj , are out of cIMRS(Ψk) for such k-s.
According to the previous calculation we get that

S1

|Ψi−1(xi)||Ψj−1(xj)| ≤ c(g(i))−
1
6 (Q[−1](g(i)))

1
2 (g(j))−

1
6 (Q[−1](g(j)))

1
2

×
1
c j∑

k=1

g(k)
1
3

Q[−1](g(k))

[
Q[−1](g(k))
Q[−1](g(j))

]c1g(k)

= F (i, j)
1[

Q[−1](g(j))
]M+1

1
c j∑

k=1

g(k)
1
3

(
Q[−1](g(k))

)M
[
Q[−1](g(k))
Q[−1](g(j))

]c1g(k)−M−1

≤ cF (i, j)
1[

Q[−1](g(j))
]M+1

= (∗),

because in the sum the first factor grows polynomially, and the second decreases

exponentially (it is less than
(

1
1+c

)c1g(k)−M−1

), so if n0 is large enough, the sum
is convergent. Now we have to distinguish two cases according as the infinite
norm of the weighted orthonormal polynomials tend to infinity with the degree
of the polynomial, or it is bounded (see [10] Corollary 1.4, and the assumption
in Definition 4). That is in the second case

(∗) ≤ c(g(j))−
1
6 (Q[−1](g(j)))

1
2

1[
Q[−1](g(j))

]M+1
,(53)

and in the first case

(∗) ≤ c(g(j))−
1
3 (Q[−1]g(j))

1[
Q[−1](g(j))

]M+1
.(54)

(Here all the c-s are different absolute constants.) So in both cases

S1

|Ψi−1(xi)||Ψj−1(xj)| ≤ cj−δ(55)

for a δ > 5
4 with a c < c0

4 , if we choose M large enough, that is we can choose
an n0 large enough with which (46) will be valid.

In S4 we collected that terms whose maximum points are far away from xi

and xj . Applying [10] (1.20):

S4 ≤ c

∞∑

k=cj+1

1√
alk

1

(alk − |xi|)
1
4 (alk − |xj |)

1
4
≤ c

∞∑

k=cj+1

1
alk

14



≤ c

∫ ∞

cj+1

1
Q[−1](g(x))

dx ≤ c

∫ ∞

cQ[−1](g(j))

(
g[−1](Q(y))

)′

y
dy = (∗)(56)

Using the polynomially growing property of g and Q, and then the monotonicity
of the lefthand side of (10), we get that

(∗) ≤ c

∫ ∞

cQ[−1](g(j))

g[−1](Q(y))
y1−ε+1+ε

dy

≤ c
n0 + j

(Q[−1](g∗(n0 + j))))1−ε

∫ ∞

cQ[−1](g∗(n0+j))

1
y1+ε

dy

≤ c
n0 + j

Q[−1](g∗(n0 + j))
(57)

This means that

S4

|Ψi−1(xi)||Ψj−1(xj)| ≤ c
n0 + j

Q[−1](g∗(n0 + j))

×max{(g∗(n0 + j))−
1
6 (Q[−1](g∗(n0 + j)))

1
2 , (g∗(n0 + j))−

1
3 (Q[−1]g∗(n0 + j))}(58)

So it is clear that by the assumptions on g and Q, and by (11), that if n0 is
large enough, then

S4

|Ψµi(xi)||Ψµj (xj)| ≤
1
4
c0j

−δ.(59)

It is possible that there are some Ψk-s in S2 such that xj /∈ IMRS(Ψk),
and in S3, xi and xj are both in IMRS(Ψk). But we can handle the two sums
similarly: there are O(j) terms both in S2 and S3, and at most one term, the
(i− 1)th or the (j − 1)th, has a factor 1. Furthermore the distance between two
consecutive maxima is more than some constant c :

alk+1 − alk ∼
Q[−1](g(k))

k
,(60)

where the expression above is a consequence of the following:

a
′
u ∼

au

u

(see [10] Lemma 5.2), and Definition 4. This implies that if k 6= j − 1, say, we
can estimate by (48)

|Ψk(xj)| ≤ ca
− 1

4
lk

(
alk+1 − alk

)− 1
4 ≤ cj

1
4 (Q[−1](g(j)))−

1
2 .(61)

Let us assume at first that 1
2cj ≤ i− 1 ≤ j − 2, so

S2

|Ψi−1(xi)||Ψj−1(xj)| ≤ c
|Ψi−1(xj)|
|Ψj−1(xj)| +

j−2∑

k= 1
2c

j

k 6=i−1

|Ψk(xi)Ψk(xj)|
|Ψi−1(xi)||Ψj−1(xj)|

15



≤ c
j

1
4

(g(j))
1
6

+ cj
j

1
2

(g(j))
1
3

= (∗),(62)

and again by the assumptions on g and Q (11), if n0 is large enough, then

(∗) ≤ 1
4
c0j

−δ.(63)

If i < 1
2cj, then the first term is missing, alk − ali−1 > calk , and

S2

|Ψi−1(xi)||Ψj−1(xj)| ≤ c
(Q[−1](g(i)))

1
2

(g(i))
1
6

(Q[−1](g(j)))
1
2

(g(j))
1
6

j
j

1
4

Q[−1](g(j))
.

If the first member is bounded, then

S2

|Ψi−1(xi)||Ψj−1(xj)| ≤ c
j

1
4

(g(j))
1
6

j

(Q[−1](g(j)))
1
2

If it can be estimated by the second, then

S2

|Ψi−1(xi)||Ψj−1(xj)| ≤ c
j

5
4

(g(j))
1
3

so according to (11)

S2

|Ψi−1(xi)||Ψj−1(xj)| ≤
1
4
c0j

−δ,(64)

if n0 is large enough.
We can estimate S3 in the same way. Here the exceptional term is

|Ψj−1(xi)|
|Ψi−1(xi)| .

If ‖Ψi−1‖∞ ≥ c‖Ψj−1‖∞ (e.g. if i > 1
2cj or if the infinite norm of the weighed

orthonormal polynomials tend to zero), then the term above can be estimated

by c j
1
4

(g(j))
1
6

as in S2.

If i < 1
2cj, and the reciprocal of the infinite norm of the weighed orthonormal

polynomials is bounded, then alj−1 − ali−1 > calj−1 , and by (52)

|Ψj−1(xi)|
|Ψi−1(xi)| ≤ c

(Q[−1](g(i)))
1
2

(g(i))
1
6

1
(alj−1(alj−1 − ali−1))

1
4

≤ c
1

(Q[−1](g(j)))
1
2
≤ 1

4
c0j

−δ,(65)

by (11), if n0 is large enough.
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The sum, without the extremal term can be estimated as in S2, and so the
lemma is proved.

In the following lemma we state that the operator Â acts, and is bounded
on l2, and RanÂ = l2.

LEMMA 4. With the previous notations for all ĉm ∈ l2 there exists am ∈ l2
such that Âam = ĉm, and

‖am‖2 ≤ c
√
‖ĉm‖2ec‖ĉm‖22 ,(66)

and if Âam = ĉm with some am ∈ l2, then

‖ĉm‖2 ≤ c‖am‖2,(67)

where the c-s are different absolute constants.
PROOF. Theorem B, Lemma 2, the Corollary after Lemma 2 and Lemma

3 prove (66). For proving (67) let us consider

‖ĉm‖2 =

( ∞∑

i=1

ĉ2
im

) 1
2

=




∞∑

i=1

( ∞∑

k=1

Ψk(xi)
Ψi−1(xi)

akm

)2



1
2

.(68)

Let us decompose the vector ĉm into two parts:

ĉm = ĉ(1)
m + ĉ(2)

m ,

where

ĉ
(1)
im =

∑
1≤k<∞
k 6=i−1

Ψk(xi)
Ψi−1(xi)

akm, and ĉ
(2)
im = ai−1m.

It is clear that
‖ĉ(2)

m ‖2 ≤ ‖am‖2.(69)

According to (68)

‖ĉ(1)
m ‖2 ≤ ‖am‖2




∞∑

i=1

∑
1≤k<∞
k 6=i−1

(
Ψk(xi)

Ψi−1(xi)

)2




1
2

≤ c‖am‖2




∞∑

i=1

(Q[−1](g(i)))
(g(i))

1
3

∑
1≤k<∞
k 6=i−1

Ψ2
k(xi)




1
2

.(70)

We can decompose the inner sum into three parts:
∑

1≤k<∞
k 6=i−1

Ψ2
k(xi) =

∑

1≤k< 1
c i

Ψ2
k(xi) +

∑
1
c

i≤k<ci

k 6=i−1

(·) +
∑

ci≤k<∞
(·) = S1 + S2 + S3
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As we have shown in Lemma 3, S1 is exponentially small. Also as in Lemma 3
(in the estimation of S4)

S3 ≤ c
∑

ci≤k<∞

1
alk

≤ c
n0 + i

Q[−1](g∗(n0 + i))
,(71)

and as in (61)
S2 ≤ ci(Q[−1](g(i)))−

1
2 .(72)

So according to the previous calculation and (11) we obtain that

‖ĉ(1)
m ‖2 ≤ c‖am‖2

( ∞∑

i=1

(Q[−1](g(i)))
(g(i))

1
3

i(Q[−1](g(i)))−
1
2

) 1
2

≤ c‖am‖2,(73)

which proves the lemma.
REMARK. It is well-known (see e.g. [12]), that if T : H1 −→ H2 is a

continuous linear operator between two Hilbert spaces, then TT ∗ has an inverse,
iff RanT = H2, and in this situation T ∗(TT ∗)−1y gives the solution with the
minimal norm of the linear equation Tx = y. Hence we get the following

COROLLARY. Âx = ĉm has a solution am in l2 with the minimal norm
(and it is unique with this property), and

am = ÂT (ÂÂT )−1ĉm.(74)

3.1.2 Unicity. On the same chain of ideas, by changing the role of Â and
ÂT , we will prove that ÂT Â has an inverse on l2, that is KerÂ = {0} (see eg
[12]). For this we need the following notations and lemma:

NOTATION. Let

kÂT Âl = λkl =
∞∑

m=1

Ψk(xm)Ψl(xm)
Ψ2

m−1(xm)
(75)

be the elements of the matrix ÂT Â.
REMARK. As in the previous case,

λll =
∞∑

m=1

Ψ2
l (xm)

Ψ2
m−1(xm)

≥ 1.(76)

LEMMA 5. With the previous notations, there exists δ > 5
4 and c0 = c0(δ)

such that f(c0, δ) ∈ (0, 1) (see (38) for f(c0, δ)), for which

|λkl| ≤ c max{k, l}−δ, if k 6= l(77)

with c < c0 .
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PROOF. Suppose that k < l. We have to distinguish two cases: there exists
c > 1 such that ck > l, that is k ∼ l, or k << l. At first we will deal with the
second case: with a c > 1

|λkl| ≤
ck∑

m=1

|Ψk(xm)Ψl(xm)|
Ψ2

m−1(xm)
+

1
c l∑

m=ck+1

(·) +
cl∑

m= 1
c l+1

(·) +
∞∑

m=cl+1

(·)

= S1 + S2 + S3 + S4.

In S2 the first factor of the numerator is exponentially small (see (21), (49)),
that is by (20), (47), (52),(11)

S2 ≤ c

1
c l∑

m=ck+1

g(k)
1
6

(Q[−1]g(k))
1
2

[
Q[−1]g(k)
Q[−1]g(m)

]c1g(k)

Q[−1](g(m))

g
1
3 (m)

1

a
1
4
Ψl

(aΨl
− |xm|) 1

4

≤ c

(Q[−1](g(l)))
1
2

1
c l∑

m=ck+1

g(k)
1
6

(Q[−1]g(k))
1
2

[
Q[−1]g(k)
Q[−1]g(m)

]c1g(k)

Q[−1](g(m))

g
1
3 (m)

≤ c2
(k + n0)c3

(1 + c)k+n0

(
Q[−1](g(l))

)− 1
2 ≤ cl−δ,(78)

where c < c0
6 , if n0 is large enough, and δ > 5

4 .
|Ψk(xm)| is exponentially small in S3, and here we can use the 0 < c < δ

case, so we can estimate

S3 =
∣∣∣∣
Ψk(xl+1)
Ψl(xl+1)

∣∣∣∣ +
∑

1
c

l+1≤m≤cl

m 6=l+1

|Ψk(xm)Ψl(xm)|
Ψ2

m−1(xm)
= S31 + S32

S31 ≤ g(k)
1
6

(
Q[−1](g(k))

) 1
2

(
Q[−1](g(l))

) 1
2

g(l)
1
6

e
−c1g(k)

(
Q[−1](g(l))

Q[−1](g(k))
−1

) 3
2

≤ cl−δ

where c < c0
6 , if n0 is large enough, and δ > 5

4 obviously, because k < 1
c l. Now

S32
g(k)

1
6

(
Q[−1](g(k))

) 1
2

g(l)
1
6

(
Q[−1](g(l))

) 1
2

×
∑

1
c

l+1≤m≤cl

m 6=l+1

Q[−1](g(m))
g(m)

1
3

e
−c1g(k)

(
Q[−1](g(m))

Q[−1](g(k))
−1

) 3
2

= F (k, l)
∑

1
c

l+1≤m≤cl

m6=l+1

(·)
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When the norms of the orthogonal polynomials are bounded then F (k, l) < c,
when it tends to infinity. Then by Definition 4., F (k, l)Q[−1](g(m))

g(m)
1
3

< c, that is

S32 ≤ c





∑
1
c

l+1≤m≤cl

m6=l+1

Q[−1](g(m))

g(m)
1
3

e
−c1g(k)

(
Q[−1](g(m))

Q[−1](g(k))
−1

) 3
2

(first case),

∑
1
c

l+1≤m≤cl

m6=l+1

e
−c1g(k)

(
Q[−1](g(m))

Q[−1](g(k))
−1

) 3
2

(second case)

≤ cl−δ,(79)

as in the previous case.
In S4, both terms in the numerator are exponentially small, that is

S4 ≤ cg(k)
1
6

[
Q[−1](g(k))
Q[−1](g(cl))

]c1g(k)− 1
2

g(l)
1
6

[
Q[−1](g(l))
Q[−1](g(cl))

]c1g(l)− 1
2 ∞∑

m=cl+1

1
g(m)

1
3
,

where the sum is convergent by (11). So

S4 ≤ cg(l)
1
6

(
1

1 + c

)g(l)
1
6

≤ cl−δ,(80)

where c and δ as in Lemma 3.
In S1 we have to separate the ”maximal” term:

S1 ≤
ck∑

m=1
m 6=k+1

(·) +
∣∣∣∣
Ψl(xk+1)
Ψk(xk+1)

∣∣∣∣ ≤
c

(
Q[−1](g(k))

) 1
4

(
Q[−1](g(l))

) 1
4

×
ck∑

m=1
m 6=k+1

Q[−1](g(m))
g

1
3 (m)(aΨk

− |xm|) 1
4 (aΨl

− |xm|) 1
4

+
c

(
Q[−1](g(l))

) 1
4

1
(aΨl

− |xk+1|) 1
4

(
Q[−1](g(k))

) 1
2

g
1
6 (k)

Because we deal with the case k << l we can estimate

|aΨl
− |xk+1|| > caΨl

,(81)

and so the second term, S12, can be estimated as

S12 ≤ c
1

(
Q[−1](g(l))

) 1
2

(
Q[−1](g(k))

) 1
2

g
1
6 (k)

.
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As in Lemma 3, according to the behavior of the norm of orthogonal polynomi-
als, we have to distinguish two cases: if the second factor is bounded in k, then
by (11)

S12 ≤ c
1

(
Q[−1](g(l))

) 1
2
≤ cl−δ,(82)

where c < c0
8 , if n0 is large enough, and δ > 5

4 .
If the second factor is increasing, then also by (11)

S12 ≤ c
1

g
1
6 (l)

≤ cl−δ,(83)

where c < c0
8 , if n0 is large enough, and δ > 5

4 .
Now we have to deal with the first term of S1.

S11 ≤ c
(
Q[−1](g(k))

) 1
4

(
Q[−1](g(l))

) 1
4

×
ck∑

m=1
m 6=k+1

Q[−1](g(m))
g

1
3 (m)

1
(aΨk

− |xm|) 1
4 (aΨl

− |xm|) 1
4
.

As in (78),

S11 ≤ c
(
Q[−1](g(l))

) 1
2

ck∑
m=1

m6=k+1

(
Q[−1](g(m))

) 1
2

g
1
3 (m)

(aΨm)
1
4

(aΨk
)

1
4

|xm| 14
(|xk+1| − |xm|) 1

4

≤ c
(
Q[−1](g(l))

) 1
2

ck∑
m=1

m 6=k+1

m− 5
2 m

1
4 ≤ c

(
Q[−1](g(l))

) 1
2
≤ cl−δ,(84)

where c < c0
8 , if n0 is large enough, and δ > 5

4 . Here we used (11), and the
polynomially growing property of g and Q.

If k ∼ l, then

S1 + S2 + S3 ≤
ck∑

m=1
m 6=k+1,l+1

(·) +
(∣∣∣∣

Ψl(xk+1)
Ψk(xk+1)

∣∣∣∣ +
∣∣∣∣
Ψk(xl+1)
Ψl(xl+1)

∣∣∣∣
)

= S11 + S12,

and as in (60), we can estimate by

|aΨl
− |xk+1|| > Q[−1](g(l))

l
,(85)

and so by (11)

S12 ≤ c
l
1
4

g
1
6 (l)

≤ cl−δ,(86)
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where c < c0
6 , δ > 5

4 if n0 is large enough.
As in the previous calculation

S11 ≤ c
(
Q[−1](g(l))

) 1
2

ck∑
m=1

m 6=k+1,l+1

(
Q[−1](g(m))

) 1
2

g
1
3 (m)

|xm| 14
(|xk+1| − |xm|) 1

4

|xm| 14
(|xl+1| − |xm|) 1

4

≤ c
(
Q[−1](g(l))

) 1
2

ck∑
m=1

m 6=k+1,l+1

m− 5
2 m

1
4 m

1
4 ≤ cl−δ,(87)

where c < c0
6 , if n0 is large enough, and δ > 5

4 .
When k ∼ l, the estimations on S4 are the same as in the previous case, and

so the lemma is proved.
Finally applying Lemma 2 with its Corollary to the operator ÂT Â, and

Lemma 4 to ÂT , we get that RanÂT = l2, and so KerÂ={0}, which proves the
unicity of the solution.

3.2. Finite section method.
As a consequence of invertibility we can apply the so-called ”finite section

method”, which is a very natural (numerical) way to get the solution of the
infinite equation Âx = ĉ. The process is the following: considering the system
Ax = b, where A is invertible, but not necessarily Hermitian, we set

Arn = PrAPn, and brn = A∗rnb,(88)

where Pr and Pn are projections. That is we can take Arn as it consists of the
intersection of the first r rows and the first n columns of A, and brn as the image
of the cut vector br. Now we have to try to solve the equation

A∗rnArnxrn = brn.(89)

The convergence of this method is proved by K. Gröchenig, Z. Rzesztonik and
T. Strohmer [3]. To state the abovementioned convergence theorem we need
some notations. At first we have to note that the original paper works with the
index class Zd, but without any modification we can apply the definitions and
results to the index set N.

DEFINITION 7. We say that a matrix A belongs to the Jaffard class As, if
its elements akl, k, l ∈ N fulfil the following inequality:

|ak,l| ≤ C(1 + |k − l|)−s ∀k, l ∈ N,(90)

where C is an absolute constant. The norm in the Jaffard class is ‖A‖As =
supk,l∈N |ak,l|(1 + |k − l|)s.

NOTATION. Let us denote by σ(A∗A) the spectrum of A∗A, and by λ− =
min σ(A∗A).

So the (simplified version of the) theorem is the following ([3], Theorem 16):
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THEOREM C. Let A ∈ As with an s > 1, and let Ax = b be given, where
b ∈ l2, and A is invertible on l2. Consider the finite sections

A∗rnArnxrn = brn.

Then, for every n there exists an R(n) (depending on λ− and s) such that xr(n)n

converges to x in the norm of l2, for every choice of r(n) ≥ R(n).
Because ĉ is in l2, and Â is invertible on l2, for the convergence of the finite

section method we have to prove that Â ∈ As with an s > 1.
LEMMA 6. Let Â be as in (30), and let us suppose the assumption of

Definition 4. Then there exists an s > 1 such that Â ∈ As.
PROOF. Because in our matrix Â the dominant elements are under the

principal diagonal, (|ak,k−1| = 1), we have to shift the indices, that is we have
to prove that there is an absolute constant C, and there is an s > 1 such that

|ak,l−1| =
∣∣∣∣
Ψl−1(xk)
Ψk−1(xk)

∣∣∣∣ ≤ C(1 + |k − l|)−s.(91)

Using (49) and (52), we get that

|ak,l−1| ≤ c

(
Q[−1](g(k))

) 1
2

(g(k))
1
6

1
(
Q[−1](g(l))

) 1
4

1

|al − |xk||
1
4
,

where c is an absolute constant.
Considering that xk ∼ aΨk

, we have to distinguish some cases:
a) If l ∼ k but |aΨl

−|xk|| is not too small, or if k << l, then with some c1 6= c2

Dlk = |al − |xk||
1
4 ≥ c

∣∣∣c1Q
[−1](g(l)− c2Q

[−1](g(k)
∣∣∣
1
4 ≥ c

(
Q[−1](g(l)

) 1
4

.(92)

b) If l << k then

Dlk ≥ c
(
Q[−1](g(k)

) 1
4

.(93)

c) If l ∼ k and xk is close to al, recalling the estimation on the distance of two
consecutive maximum points of Ψk-s (see (61)),

Dlk ≥ c

(
Q[−1](g(l))

l

) 1
4

,(94)

where we used the polynomially growing property of Q and g.
So in case a), when l ∼ k we get that

|ak,l−1| ≤ c
1

(g(l))
1
6
≤ C(1 + |k − l|)−s,(95)

for all s > 1. Also in case a), when k << l

|ak,l−1| ≤ c

(
Q[−1](g(k))
Q[−1](g(l))

) 1
2 1

(g(k))
1
6
.(96)
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Here, as in Lemma 3 ((53),(54)), we have to distinguish two cases: in the first
case, according to (11)

|ak,l−1| ≤ c
1

(
Q[−1](g(l)

) 1
2
≤ cl−

5
4 ≤ C(1 + |k − l|)−s,(97)

with s = 5
4 . In the second case, according to (11) again

|ak,l−1| ≤ c
1

(g(l))
1
6
≤ C(1 + |k − l|)−s,(98)

and s > 5
4 .

In case b), also by (11)

|ak,l−1| ≤ c

(
Q[−1](g(k))
Q[−1](g(l))

) 1
4 1

(g(k))
1
6
≤ c

(
Q[−1](g(k))

) 1
4

(g(k))
1
6

≤ C(1 + |k − l|)−s(99)

with s = 5
4 .

In case c), by (10),(11)

|ak,l−1| ≤ c
l
1
4

(g(l))
1
6
≤ c

(
Q[−1](g(l)

) 1
4

(g(l))
1
6

≤ C(1 + |k − l|)−s,(100)

for all s > 1, which proves the lemma.
3.3. Convergence
As it turned out in the introduction, the required form of the elements of

the dual space is the following:

ϕ∗m =
ϕm −∑∞

k=1 akmΨk

v2
,

which implies that we have to deal with the convergence of the series in the
numerator, and we have to give some estimations on the order of the zeros of
the numerator.

LEMMA 7. Let {akm}∞k=1 be an l2-solution of (30), then
∣∣∣∣∣

n∑

k=1

akmΨk(x)

∣∣∣∣∣ ≤ cK(x) n ∈ N,(101)

where

K(x) =





1, if |x| ≤ 1,
Q

1
6 (x)√
|x| , if |x| > 1,

and the sum
∑∞

k=1 akmΨk(x) is convergent in every x ∈ R.
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PROOF. At first we will show that the partial sum
∑n

k=1 akmΨk(x) can be
estimated by a function which grows at most polynomially on R. Let us suppose
now that |x| > 1. Using Cauchy Schwarz’s inequality, we have to estimate

sn(x) =
n∑

k=1

Ψ2
k(x) = Ψ2

j(x)(x) +

1
c j(x)∑

k=1

Ψ2
k(x) +

∑
1
c

j(x)<k<cj(x)
k 6=j(x)

(·) +
n∑

k=cj(x)

(·)

= Ψ2
j(x)(x) + S1 + S2 + S3,(102)

where c > 1, and j(x) means that index for which the maximum point of
|Ψj(x)(x)| is the closest to x. (Because the Ψ2

k-s are even, we can work on the
positive part of the real line.) Hence, because in our case the nth orthonormal
polynomial pn attains its maximum around an, according to (20, 21) and (48)
we obtain that

j(x) ∼ g[−1](Q(x)),

and so

Ψ2
j(x)(x) ≤ ‖pg(j(x))‖2∞ ∼ (g(j(x)))

1
3 a−1

g(j(x)) ∼
Q

1
3 (x)
x

(103)

By (48)

S2 ≤ c
∑

1
c

j(x)<k<cj(x)
k 6=j(x)

1
√

aΨk

√
|aΨk

− |x|| .(104)

Taking into consideration the properties of g and Q, we can estimate the differ-
ence under the square root as

|aΨk
− |x|| ≥ c|aΨk

− aΨj(x) | ≥ c
(
Q[−1](g(·))

)′
(j(x))|k − j(x)|

≥ c
Q[−1](g(j(x)))

j(x)
|k − j(x)|,(105)

so

S2 ≤ c

√
j(x)

Q[−1](g(j(x))

∑
1
c

j(x)<k<cj(x)
k 6=j(x)

1√
|k − j(x)|

≤ c
j(x)

Q[−1](g(j(x))
≤ c

g[−1](Q(x))
x

.(106)

As in Lemma 3 we collected the exponentially small terms in S1, according to
(49),

S1 ≤ c
1√
x

1
c j(x)∑

k=1

g(k)
1
6

[
Q[−1](g(k))

x

]c1g(k)− 1
2

25



Estimating the sum by an integral, and changing variables, by the properties of
g, we obtain that

S1 ≤ c
1√
x

∫ 1
c j(x)

1

g(y)
1
6

[
Q[−1](g(y))

x

]g(y)
1
6

dy

≤ c
1√
x

∫ cg(j(x))
1
6

g(1)
1
6

z

(1 + c)z

(
g[−1](z6)

)′
dz ≤ K(n0)√

x

∫ cg(j(x))
1
6

g(1)
1
6

(
g[−1](z6)

)′
dz

≤ K(n0)√
x

g[−1](Q(x)) ≤ K(n0)√
x

Q(x)(107)

In S3, x ∼ aΨj(x) is far away from aΨk
, so |aΨk

− aΨj(x) | ≥ caΨk
, that is

S3 ≤ c

n∑

k=cj(x)

1
aΨk

≤ c

n∑

k=cj(x)

1
Q[−1](g(k))

.(108)

We can estimate this sum by
∫ ∞

cj(x)

1
Q[−1](g(y))

dy ≤
∫ ∞

cQ[−1](g(j(x))

1
z

g[−1](Q(z))
z

dz,(109)

where we used the properties of Q and g again. By (10) we have that

S3 ≤ sup
z≥cQ[−1](g(j(x))

g[−1](Q(z))
z1−ε

∫ ∞

cQ[−1](g(j(x))

1
z1+ε

dz ≤ c
j(x)

Q[−1](g(j(x))

≤ c
g[−1](Q(x))

x
.(110)

If |x| ≤ 1, then there is a k0 > 1 such that

Ψ2
j(x)(x) + S1 + S2 + S3 ≤ c

∞∑
1

1
aΨk

,

which can be handled as earlier, that is

S3 ≤ c

∫ ∞

1

1
Q[−1](g(y))

≤ g∗[−1](Q(n0))
n0

< K,

where K is a constant.
Collecting our estimations, if g[−1](Q(x)) is less than Q

1
3 (x) (see (11)), we

obtain that
n∑

k=1

|akmΨk(x)| ≤ c‖{akm}‖2K(x),(111)

which gives uniform convergence if B < 3, and the second statement of the
lemma otherwise.
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REMARK. Because the estimation was independent of n, the series in the
numerator tends to a function f(x) locally uniformly on R.

Let ϕl be an element of the system (16). Considering that ϕl is a weighted
polynomial with an exponential weight, we can immediately get the following

COROLLARY. it There exists a function g ∈ L1(R) such that
∣∣∣∣∣

n∑

k=1

akmΨk(x)ϕl(x)

∣∣∣∣∣ ≤ g(x) n ∈ N.(112)

To state the following lemma we need some notations. Let Sj := (xj −
δ(xj), xj + δ(xj) be a ball around xj such that xi /∈ Sj if i 6= j. And let

σn(x) = σn,m(x) =
n∑

k=0

(
1− lk

n + 1

)
akmΨk(x)

be the nth Cesàro mean of the Fourier series with respect to {pn(w)}∞n=0 of
S =

∑∞
k=1 akmΨk(x), where {akm} ∈ l2 is the solution of (30). With these

notations we have
LEMMA 8. Supposing (10)

|σn(x)− σν(x)| = O

(
1
nγ

)
if x ∈ Sj , n(j) < n < ν, j = 1, 2 . . .(113)

PROOF. Let x be in Sj . Then

|σn(x)− σν(x)| ≤
∣∣∣∣∣∣

∑

0≤lk≤n

(
1

n + 1
− 1

ν + 1

)
lkakmΨk(x)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

n<lk≤ν

(
1− lk

ν + 1

)
akmΨk(x)

∣∣∣∣∣∣
=: (∗).(114)

Let k(x) be that index for which the maximum point of Ψk(x) is the nearest
to x. If x is around alk(x) , then x ∼ Q[−1](lk(x)), that is Q(x) ∼ lk(x). So if
n > N = N(j) (e.g. cQ(xj) < n), then clk(x) < n. Assume now that n is large
enough. Then

(∗) ≤

∣∣∣∣∣∣∣∣

∑
0≤lk≤n
lk 6=lk(x)

(
1

n + 1
− 1

ν + 1

)
lkakmΨk(x)

∣∣∣∣∣∣∣∣

+
∣∣∣∣
(

1
n + 1

− 1
ν + 1

)
lk(x)ak(x)mΨk(x)(x)

∣∣∣∣
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+

∣∣∣∣∣∣
∑

n<lk≤ν

(
1− lk

ν + 1

)
akmΨk(x)

∣∣∣∣∣∣
= S1 + M + S2(115)

Let us recall (52). At first we will deal with M :

M ≤ |ak(x)m|
n

lk(x)

(
lk(x)

) 1
6

(
alk(x)

)− 1
2 ≤ c

Q
7
6 (xj)√
xj

1
n

= O

(
1
n

)
.(116)

We can handle S2 as S3 in Lemma 3, that is

S2 ≤ ‖{akm}∞k=n‖2


 ∑

n<lk≤ν

(
1− lk

ν + 1

)2

Ψ2
k(x)




1
2

≤ c‖{akm}∞k=n‖2


 ∑

n<lk≤ν

1
aΨk




1
2

≤ c‖{akm}∞k=n‖2
(∫ ∞

cg[−1](n)

1
Q[−1](g(y))

dy

) 1
2

= o

(√
g[−1](n)
Q[−1](n)

)
(117)

We have to decompose S1 into three parts. Using the Cauchy-Schwarz inequality
again we obtain that

S1 ≤ c

n


 ∑

0<lk≤ 1
c lk(x)

l2kΨ2
k




1
2

+
c

n


 ∑

1
c lk(x)<lk≤clk(x)

l2kΨ2
k




1
2

+
c

n


 ∑

clk(x)<lk≤n

l2kΨ2
k




1
2

= S11 + S12 + S13.(118)

Henceforward S11 is the collection of the exponentially small terms, that is

S11 ≤ c

n


 ∑

0<lk≤ 1
c lk(x)

g(k)2+
1
3

Q[−1](g(k))

[
Q[−1](g(k))

x

]c1g(k)



1
2

≤ c

n

( ∞∑

k=1

g(k)2+
1
3

Q[−1](g(k))

[
1

1 + c

]c1g(k)
) 1

2

= O

(
1
n

)
(119)

Applying also the same chain of ideas as in Lemma 3, we obtain that

S12 ≤ c

n
lk(x)


 ∑

1
c k(x)<k≤ck(x)

Ψ2
k




1
2
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≤ clk(x)

n

√
g[−1](Q(x))

x
≤ cQ(xj)

√
g[−1](Q(xj))

xj

1
n

= O

(
1
n

)
(120)

Similarly

S13 ≤ c

n




n∑

k=ck(x)

l2kΨ2
k




1
2

≤ c

n




n∑

k=ck(x)

l2k
aΨk




1
2

n∑

k=ck(x)

l2k
aΨk

≤ c

∫ g[−1](n)

cg[−1](Q(x))

g2(y)
Q[−1](g(y))

dy

≤ c

∫ Q[−1](n)

cx

g[−1](Q(z))
z2

Q2(z)dz ≤ cg[−1](n)
∫ Q[−1](n)

cx

Q2(z)
z2

dz

Applying [10], 5.4, we can estimate Q(z)
z by 1

AQ
′
(z), where A > 1 is in the

definition of Freud weights. So
∫ Q[−1](n)

cx

Q2(z)
z2

dz ≤ 1
2A

∫ Q[−1](n)

cx

2Q
′
(z)Q(z)

1
z
dz

With an integration by parts we get that
∫ Q[−1](n)

cx

Q2(z)
z2

dz ≤ 1
2A− 1

(
n2

Q[−1](n)
− c

Q2(x)
x

)
≤ c

n2

Q[−1](n)
,

if n is large enough. Summarizing the calculations of the previous lines we
obtain that

S13 ≤ c

√
g[−1](n)
Q[−1](n)

.(121)

Hence these estimations yield that if (10) fulfils, then |σn(x)−σν(x)| = O
(

1
nγ

)
.

This lemma shows the order of the roots of ϕm − ∑∞
j=1 ajmΨj at the xj-

s, that is applying the classical theorem of S. N. Bernstein (see e.g. [17]), and
taking into consideration Lemma 7 and its corollary as well, we get the following

COROLLARY. Let x ∈ Sj, then
∣∣∣∣∣∣
ϕm(x)−

∞∑

j=1

ajmΨj(x)

∣∣∣∣∣∣
≤ |x− xj |γh(x),(122)

where h(x) is independent of j, is continuous and it grows polynomially with x.
For the final computations let us prove our last lemma, which follows the

same chain of ideas as Lemma 1.1 of J. Szabados [20]:
LEMMA 9. Let mj , % ≥ 0, ε > 0, xj be as in Definition 2, with properties

(2),and let

v̂(x) =
∞∏

j=1

∣∣∣∣1−
x

xj

∣∣∣∣
mj

and v̂k(x) =
∏

1≤j<∞
j 6=k

∣∣∣∣1−
x

xj

∣∣∣∣
mj

.
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Then
v̂(x) ≤ ec|x|%+ε

, x ∈ R, ε > 0(123)

and

v̂(x) ≥ e−c|x|%+ε

for x ∈ R \ ∪∞j=1

(
xj − mj

|xj |%+ε
, xj +

mj

|xj |%+ε

)
.(124)

Furthermore

v̂k(x) ≥ e−c|x|%+ε

for x ∈
(

xk − mk

|xk|%+ε
, xk +

mk

|xk|%+ε

)
,(125)

where c > 0 depends on v̂ and ε, and if a > b, then [a, b] = ∅.
REMARK. If e.g. xj = jν , ν > 0, then % = 1

ν , and if xj = 2j , then % = 0.
PROOF. The proof follows the steps of the proof of Lemma 1.1 in [20]. Let

N(x) =
∑

|xk|<|x|
mk.

According to (4), N(x) ≤ c(ε)|x|%+ε, for all ε > 0.

v̂(x) ≤
∏

|xk|<|x|

∣∣∣∣1−
x

xk

∣∣∣∣
mk ∏

|xk|≥|x|
xkx<0

(
1 +

∣∣∣∣
x

xk

∣∣∣∣
)mk

= v̂1(x)v̂2(x).

As in [20],

v̂1(x) ≤
∏

|xk|<|x|

(
2

∣∣∣∣
x

xk

∣∣∣∣
)mk

≤ (2|x|)N(x)

(∑
|xk|<|x|

mk

|xk|%+ε

N(x)

)N(x)
%+ε

≤
(

c|x|%+ε

N(x)

)N(x)
%+ε

≤ ec|x|%+ε

,

and

v̂2(x) ≤ e

∑
|xk|≥|x|
xkx<0

mk log
(
1+

∣∣∣ x
xk

∣∣∣
)

≤ e
|x|%+ε ∑∞

k=1
mk

|xk|%+ε ≤ ec|x|%+ε

.

For the lower estimation, as in [20], we divide our product into three parts: if
x 6= xj , j = 1, 2, . . ., then

v̂(x) =
∏

|xj |<|x|

∣∣∣∣1−
x

xj

∣∣∣∣
mj ∏

|x|<|xj |≤2|x|
(·)

∏

|xj |>2|x|
(·) = P1P2P3.

As P1 ≥
∏

x
xj

>1(·), P2 ≥
∏

1< x
xj

<2(·), P3

∏
0< x

xj
< 1

2
(·) the computations are the

same as in [20], so we omit the details.
Also the same computation implies (126).
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Now we are in position to prove the theorem.
3.4. Proof of Theorem 1. The properties of g imply that % < 1 in

the definition of v, so it is obvious from (122) and the definition of Freud
weight that there exists µ such that with arbitrary d > 0 there is a v :=
vX,M,µ,d for which ϕkv ∈ Lp. According to (124) and (125) to c = c(µ)
we can choose a d > 0 such that vX,M,µ,d > cek|x|%+µ

with some k > 0 on

R \ ∪∞j=1

(
xj − mj

|xj |%+ε , xj + mj

|xj |%+ε

)
, and the same fulfils on vk = v̂k(x)ed|x|%+µ

on the interval
(
xk − mk

|xk|%+ε , xk + mk

|xk|%+ε

)
.

Let

ϕ∗m =
1
v2


ϕm −

∞∑

j=1

ajmΨj


 m = 1, 2, . . . ,(126)

where {ajm} is a solution of (30). We will show that {ϕ∗m}∞m=1 is a system in
Lq

v which is biorthonormal with respect to {ϕm}∞m=1 ⊂ Lp
v.

According to Lemma 7, the series in (101) is convergent in some sense, that
is the definition of ϕ∗m is clear, and applying the Corollary after Lemma 7, by
Lebesgue’s theorem we can integrate term by term as follows:

∫

R
ϕ∗mϕkv2 =

∫

R

1
v2


ϕm −

∞∑

j=1

ajmΨj


 ϕkv2

=
∫

R
ϕmϕk −

∞∑

j=1

ajm

∫

R
Ψjϕk = δm,k + 0,

where we used the orthonormality of the original system, which was the weighted
orthonormal polynomials.

So the only thing we have to prove that ϕ∗m is in Lq
v. Let S∗j = Sj ∩ (xj −

mj

x%+ε
j

, xj + mj

x%+ε
j

), and let δ > 0 (see 5)) be fixed. Thus

∫

R

∣∣∣∣∣
ϕm −∑∞

j=1 ajmΨj

v

∣∣∣∣∣

q

=
∞∑

j=1

∫

x∈S∗j

(·) +
∫

x∈(R\ ∪∞j=1S∗j )

(·)

≤ c

∞∑

j=1

∫

x∈S∗j

∣∣∣h(x)xmj e−k|x|%+µ
∣∣∣
q ∣∣|x− xj |γ−mj

∣∣q +

∫

x∈(R\∪∞j=1S∗j )

∣∣∣k(x)e−k|x|%+µ
∣∣∣
q

= (∗),

where h(x) is as in (122), and according to Lemma 7, k(x) grows polynomially.
Hence by Lemma 9, we can estimate (∗) on the whole real line with an integral
of a function which grows polynomially, times an exponentially small factor,
that is

‖ϕ∗m‖q ≤
(∫

R

∣∣∣k1(x)e−c|x|%+µ
∣∣∣
q
) 1

q

,
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where k1(x) depends only on m and Q(x). So the qnorm of ϕ∗m is bounded if
mj − γ < 1

q , so the dual system is in Lq
v, when p fulfils the inequalities in the

theorem.
For completeness we have to prove that if for a g ∈ Lq

vX ,M (where 1
p + 1

q = 1)
g(ϕk) =

∫
R gϕkv2 = 0, k ∈ N, then g = 0. The completeness of the original

system implies that g has to be of the form

g =
1
v2

∞∑

j=1

bjΨj ,

and as g ∈ Lq
vX,M,d,µ

,
∫
R |gv|q must be finite. By the properties of v, and recalling

that Ψj = plj w, the integral on R \ ∪jS
∗
j is finite, so we have to deal with the

integral around the roots of v, that is
∑∞

j=1

∫
S∗j

∣∣∣ 1
v

∑∞
j=1 bjΨj

∣∣∣
q

has to be finite.

Together with the assumption p < infmj<1
1

1−mj
, this means that




∞∑

j=1

bjΨj


 (xk) = 0, k = 1, 2, . . . .(127)

So as in (15), we got a homogeneous linear system of equations

Ab = 0,(128)

where A is the same infinite matrix as in (15). Introducing Â, etc., according to
3.1.2, the homogeneous equation has the only solution in l2 is bj = 0, j = 1, 2 . . .,
that is g = 0.

FINAL REMARKS. (1) If somebody does not take care of the range of the
operator A, then, because in our case on the right hand side of the equation
there is a fast convergent vector, to get some solution of the equation Aam = cm,
it is enough to apply Toeplitz’s theorem. So it is not necessary to guarantee a
not too small element in every row. That is the proof of Lemma 1 ensures a
good omission system for arbitrary system of pointss.

(2) The aim of this paper was to show the existence of a ”good” point-
and a ”good” omission system with some assumptions on the functions Q and
g. We chose a rather comfortable one. More precisely, our calculations show
that besides (10), which is needed for convergence, it is enough to assume for
solvability

g(x) > xµ, µ >
15
2

,

g[−1](x)
(Q[−1](x))1−ε is strictly decreasing for a ε > 0, and

xδ max

{
x

1
4

g
1
6 (x)

;
1

(Q[−1](x))
1
2

}
→ 0, where δ >

5
4
;

for unicity:
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xδ max
{

1
g

1
6 (x)

;
1

(Q[−1](x))
1
2

}
→ 0, where δ >

5
4
;

and

xν (Q[−1](g(x)))
1
4

g
1
6 (x)

→ 0, where ν >
3
4
;

for the convergence of finite section method:

xκ max

{
(Q[−1](g(x)))

1
4

g
1
6 (x)

;
1

(Q[−1](x))
1
2

}
→ 0, where κ > 1
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[2] R. P. Boas and H. Pollard, The multiplicative completion of set of functions,
Bull. Amer. Math. Soc., 54 (1948), 518-522.
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[5] Á. P. Horváth and K. S. Kazarian, The Dirichlet problem in weighted norm
(manuscript)

[6] K. S. Kazarian, Summability of generalized Fourier series and Dirichlet’s
problem in Lp(dµ) and weighted Hp-spaces (p > 1), Analysis Math., 13
(1987), 173-197.

[7] K. S. Kazarian, On the multiplicative completion of some incomplete or-
thonormal systems to bases in Lp, 1 ≤ p < ∞, (Russian), Analysis Math.,
4 (1978), 37-52.

[8] K. S. Kazarian and R. E. Zink, Some ramifications of a theorem of Boas
and Pollard concerning the completition of a set of functions in L2, Trans.
of the Amer. Math. Soc. ,349 (1997), 4367-4383.

[9] A. L. Levin and D. S. Lubinsky, L∞ Markov and Bernstein inequalities for
Freud weights, SIAM J. Math. Anal. 21 (4) (1990), 1065-1082.

33



[10] A. L. Levin and D. S. Lubinsky, Christoffel Functions, Orthogonal Poly-
nomials, and Nevai’s Conjecture for Freud Weights, Constr. Approx., 3
(1992), 463-535.

[11] D. S. Lubinsky and A. Sidi, Biorthogonal polynomials and numerical inte-
gration formulas for infinite ntervals, J. of Num. Analysis, Industrial and
Appl. Math., 2 (2007) 1-18.
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