
RECURRENCE RELATION AND MULTI-INDEXED

POLYNOMIALS OF THE SECOND KIND

Á. P. HORVÁTH

Abstract. Exceptional orthogonal polynomials fulfil recurrence relations with
constant, and with variable dependent coefficients. Considering the second

type relations we can define multi-indexed polynomials of the second kind. In
some cases they are also exceptional orthogonal polynomials. The other types
of multi-indexed polynomials of the second kind are investigated in case of

2-step Darboux transform.

1. Introduction

Exceptional orthogonal polynomials are complete systems of polynomials with
respect to a positive measure. They are different from the generalized orthogo-
nal polynomials, for instance Freud or generalized Jacobi polynomials, since they
are the polynomial eigenfunctions of a Sturm-Liouville problem as the classical
(Hermite, Laguerre, Jacobi) families are cf. [13], [5]. They are also differ from the
classical orthogonal polynomials since there are a finite number of degrees for which
the second order differential operator in question has no polynomial eigenfunction.
That is an exceptional orthogonal polynomial family has finite codimension in the
space of polynomials.

Exceptional orthogonal polynomials were introduced recently by D. Gomez-
Ullate, N. Kamran and R. Milson, cf. e.g. [7], [10] and the references therein.
These families of polynomials play a fundamental role for instance in the construc-
tion of bound-state solutions to exactly solvable potentials in quantum mechanics.
In the last few years have seen a great deal of activity in this area both by math-
ematicians and physicists, cf. e.g. [23], [22], [12], [20], [21] [6], [7], [8], [10]. The
relationship between exceptional orthogonal polynomials and the Darboux trans-
form is observed by C. Quesne [22]. After constructing higher codimension spaces
of exceptional orthogonal polynomials cf. e.g. [20], [14], multi-indexed orthogonal
polynomials are constructed by s-step Darboux transform [9], [21].

Classical and generalized orthogonal polynomials satisfy three-term recurrence
relations. In monic form the recurrence formula is

(1) P [0]
n (x) = (x− dn)P

[0]
n−1(x)− cnP

[0]
n−2(x) = unP

[0]
n−1 − cnP

[0]
n−2,

where P
[0]
n is the nth monic orthogonal polynomial. Moreover according to Favard’s

theorem [1, Theorem 4.4], arbitrary sequences of complex numbers {dn} and {cn}
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2 Á. P. HORVÁTH

define a family of orthogonal polynomials by the corresponding three-term recur-
rence formula. Exceptional orthogonal polynomials also fulfil some recurrence re-
lations, but higher-term ones. Since formula (1) can be rearranged to

xP [0]
n (x) = cn+1P

[0]
n−1(x) + dn+1P

[0]
n (x) + P

[0]
n+1(x),

two types of recurrence formulae are examined with respect to exceptional poly-
nomials; formulae with constant coefficients and formulae with variable dependent
coefficients. The constant coefficient cases are investigated for instance in [17], [18],
[11], [19], [3], [15]. In this case the coefficients can be polynomials or rational func-
tions of n (see e.g. [17, Example 3] or [11, (40)] for the rational function cases).
Note that by some convenient rescalling of exceptional polynomials (cf. [2, Propo-
sition 3.6]) can turn these coefficients into polynomials of n, but the genral closed
form expression for them is still not known. Formulas with variable dependent
coefficients are investigated for instance in [23], [16], [6].

Below we make some observations with respect to the symmetry properties of

recurrence relations of the second type. Denoting by P
[s]
n the polynomial which is

derived from the classical monic orthogonal polynomial P
[0]
n by applying an s-step

Darboux transformation to the original differential operator, we have the recurrence
relation (cf. [16])

s+1∑
k=−(s+1)

a
[s]
n,k(x)P

[s]
n+k = 0.

Our main observation is that the left-hand side of this equality can be divided into
groups (in s way) such that the polynomials which are the sums of the elements of

the groups, fulfil the recurrence relations of P
[k]
n , 1 ≤ k ≤ s. Some properties of

these new families of polynomials - multi-indexed polynomials of the second kind -
are investigated.

2. Preliminaries

(2) T0[y] := py′′ + qy′ + ry, T0[P
[0]
n ] = λnP

[0]
n

the Sturm-Liouville differential operator and equation of the classical orthogonal
polynomials (cf. e.g. [24]). The eigenfunctions of this operator are orthogonal on

the interval in question ((a, b)) with respect to the weight W0 = 1
p exp

(∫ x q
p

)
, that

is ∫ b

a

P [0]
n P [0]

m W0 = c(n)δm,n.

A second order linear differential operator, T [y] = py′′ + qy′ + ry with rational

coefficients has a rational factorization and a partner operator T̂ as it follows (cf.

[5, Propositions 3.5 and 3.6]). Let Φ be a quasi-rational (i.e. Φ′

Φ is rational) eigen-
function of T with eigenvalue λ and let b be an arbitrary non-zero rational function.

Let w = Φ′

Φ , b̂ = p
b , ŵ = −w − q

p + b′

b .

T = BA+ λ̃, with A[y] = b(y′ − wy), B[y] = b̂(y′ − ŵy),

and

T̂ [y] = (AB + λ̃)[y] = py′′ + q̂y′ + r̂y,
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where

q̂ = q + p′ − 2
b′

b
p, r̂ = r + q′ + wp′ − b′

b
(q + p′) +

(
2

(
b′

b

)2

− b′′

b
+ 2w′

)
p.

So let

T0 = B1A1 + λ̃1.

T1 = T̂0 = A1B1 + λ̃1, T1A1 = A1T0, T1A1P
[0]
n = λnA1P

[0]
n .

Continuing this procedure s times we obtain

TsAsAs−1 . . . A1 = AsAs−1 . . . A1T0, TsAsAs−1 . . . A1P
[0]
n = λnAsAs−1 . . . A1P

[0]
n .

Ak[y] = bk(y
′ − wky).

Let us denote by

(3) A1P
[0]
n =: P [1]

n , . . . AsP
[s−1]
n =: P [s]

n .

P
[k]
n -s are the exceptional orthogonal polynomials. The degree of P

[k]
n is nk > n if

k > 0. P
[k]
n -s are orthogonal on (a, b) with respect to the weight Wk := pkW0

(b1...bk)2
and

the set has finite codimension in the set of polynomials. Furtheremore {P [k]
n }∞n=0

is a complete system in the weighted Hilbert space in question, cf. [5] and the
references therein.

A simple computation shows that

(4) P [1]
n = A1P

[0]
n = A1(unP

[0]
n−1)−A1cnP

[0]
n−2 = unP

[1]
n−1 − cnP

[1]
n−2 − b1P

[0]
n−1.

Denoting by (e : n) the equation above and by (e : n+1) and (e : n−1) the similar

equations with respect to P
[1]
n+1 and P

[1]
n−1 respectively, we have

(e : n+ 1)− un(e : n) + cn(e : n− 1)

= P
[1]
n+1−(un+un+1)P

[1]
n +(cn+cn+1+u2

n)P
[1]
n−1−cn(un+un−1)P

[1]
n−2+cncn−1P

[1]
n−3

=
(
P

[1]
n+1 − un+1P

[1]
n + cn+1P

[1]
n−1

)
− un

(
P [1]
n − unP

[1]
n−1 + cnP

[1]
n−2

)
+cn

(
P

[1]
n−1 − un−1P

[1]
n−2 + cn−1P

[1]
n−3

)
= Q

[1]
n+1 − unQ

[1]
n + cnQ

[1]
n−1 = 0,

which is exactly the five term recurrence formula for one-step exceptional orthogonal
polynomials, cf. [16, (3.13)]. This formula can be expressed as a three term relation

with respect to the new polynomials Q
[1]
n . These new polynomials can be derived

immediately from the classical orthogonal polynomials as it follows. Taking into

consideration that (P
[0]
n )′ = P

[0]
n−1 + un(P

[0]
n−1)

′ − cn(P
[0]
n−2)

′, for n ≥ 1 we have

Q[1]
n = A1P

[0]
n − unA1P

[0]
n−1 + cnA1P

[0]
n−2

= b1

(
(P [0]

n )′ − un(P
[0]
n−1)

′ + cn(P
[0]
n−2)

′
)
− b1w1

(
P [0]
n − unP

[0]
n−1 + cnP

[0]
n−2

)
= b1P

[0]
n−1.

That is Q
[1]
1 = b1, the degree of Q

[1]
n is n − 1 + the degree of b1 and Q

[1]
n -s are

orthogonal with respect to W0

b21
and {Q[1]

n }∞n=1 is a complete system in L2
W0
b21

.
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To prove the same for multi-indexed exceptional polynomials we rewrite the
recurrence formula of S. Odake into monic form. Expressing (1) as

(5)
1∑

k=−1

v
[0]
n,kP

[0]
n+k = 0,

we have

Proposition 1. [16, (3.10), (3.11), (3.13)]

(6)

1∑
k=−2s−1

v
[s]
n,kP

[s]
n+k = 0,

where

(7) v
[s]
n,k = v

[s−1]
n,k − un+1−sv

[s−1]
n−1,k+1 + cn+1−sv

[s−1]
n−2,k+2

and

(8) (v
[s]
n,k)

′ = −(s+ 1)v
[s−1]
n−1,k+1.

To make the presentation complete, we give this proof here. The first step of
the induction (with respect to s) is given above, that is with s = 0 (6), with s = 1

(6), (7), (8) are satisfied for all n ≥ 0 with the remark that if l < 0 P
[s]
l = 0

∀s ≥ 0, and if k > 1 or k < −2s − 1 then v
[s]
n,k = 0 ∀s, n ≥ 0. Supposing that (6),

(7), (8) are satisfied for s − 1 and repeating the previous arguments we apply As

to the recurrence formula (6) (with s − 1). Taking into consideration again that
Ak(vP ) = vAkP + bkv

′P and (8)

0 = As

 1∑
k=−2(s−1)−1

v
[s−1]
n,k P

[s−1]
n+k



(9) =
1∑

k=−2(s−1)−1

v
[s−1]
n,k P

[s]
n+k − sbs

1∑
l=−2(s−2)−1

v
[s−2]
n−1,lP

[s−1]
n−1+l.

Denoting by (e1 : n + 1) the equation above and by (e1 : n) and (e1 : n − 1) the

similar equations with respect to P
[s−1]
n and P

[s−1]
n−1 , we have

(10) 0 = (e1 : n+ 1)− un+1−s(e1 : n) + cn+1−s(e1 : n− 1)

=
1∑

k=−2(s−1)−1

(
v
[s−1]
n,k P

[s]
n+k − un+1−sv

[s−1]
n−1,kP

[s]
n−1+k + cn+1−sv

[s−1]
n−2,kP

[s]
n−2+k

)

−sbs

1∑
l=−2(s−2)−1

(
v
[s−2]
n−1,lP

[s−1]
n−1+l − un+1−sv

[s−2]
n−2,lP

[s−1]
n−2+l + cn+1−sv

[s−2]
n−3,lP

[s−1]
n−3+l

)

=
1∑

k=−2(s−1)−1

(v
[s−1]
n,k − un+1−sv

[s−1]
n−1,k+1 + cn+1−sv

[s−1]
n−2,k+2)P

[s]
n+k

−sbs

1∑
k=−2(s−2)−1

(
v
[s−2]
n−1,k − un+1−sv

[s−2]
n−2,k+1 + cn+1−sv

[s−2]
n−3,k+2

)
P

[s−1]
n−1+k
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=
1∑

k=−2s−1

v
[s]
n,kP

[s]
n+k.

We used that by the assumption the second term is zero, so (6) and (7) are proved
and it ensures (8).

3. Multi-indexed polynomials of the second kind

Theorem 1. (6) can be expressed in the following equivalent form:

(11) Q
[s]
n+1 − un+1−sQ

[s]
n + cn+1−sQ

[s]
n−1 = 0,

where

(12) Q[s]
n =

1∑
k=−2(s−1)−1

v
[s−1]
n−1,kP

[s]
n−1+k.

Moreover for n ≥ s

(13) Q[s]
n = s!

(
s∏

k=1

bk

)
P

[0]
n−s.

Denoting by S =
∏s

k=1 bk we have the following

Corollary. {Q[s]
n }∞n=s is an exceptional (co-finite, real-valued Sturm-Liouville)

orthogonal polynomial system (cf. [5, Definition 7.1]), that is

(14)

∫ b

a

Q
[s]
k Q[s]

n

W0

S2
= 0 k ̸= n,

Q
[s]
n fulfils the differential equation

(15) py′′ +

(
−2p

S′

S
+ q

)
y′ +

(
−p

S′′

S
+ 2p

(
S′

S

)2

− q
S′

S
+ r

)
y = λn−sy,

and {Q[s]
n }∞n=s is a closed system in L2

W0
S2

.

Proof. With the notation above we can express (9) as

(16) 0 = Q
[s]
n+1 − sbsQ

[s−1]
n .

Then the equation (10) is equivalent with (11). (16) immediately ensures (13)
and then (14). Since b1 . . . bs ̸= 0 on (a, b), the last statement can be derived
immediately from (2).
Remark. Generally if a sequence of polynomials fulfills the recurrence formula
pn(x) = (x − Dn)pn−1(x) − Cnpn−2(x) with deg p0 = n0 > 0 (p−1 ≡ 0), then for
all n > 0 pn is divisible by p0 that is pn = p0qn and deg pn = n + n0 = N . qn-s
are polynomials of degree n and they fulfil the same recurrence formula as pn-s.
So if p0 is ”nice”, to find a measure µ, {pn} to be orthogonal with respect to µ is
equivalent to find a measure µ̃, {qn} to be orthogonal with respect to µ̃.

Indeed by standard arguments (cf. e.g. [1]), we define a ”moment functional” as
it follows. For a sequence of (complex) numbers let us define a (complex valued)
linear functional on the space of polynomials Pp0 := {πp0 : π is a polynomial}
L(xkp0) = µk, L(aπ1p0+bπ2p0) = aL(π1p0)+bL(π2p0). For the sequences {Ck} and
{Dk} there is a unique ”moment functional” L such that L(p20) = C1, L(pmpn) = 0
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if m ̸= n: let L(p20) = C1 = µ0, and we define ”moments” µk recursively such that
L(pnp0) = 0 if n > 0: 0 = L(p1p0) if µ1 = L(xp20) = D1µ0, etc., µk = L(xkp20) is
given by C1, . . . , Ck, D1, . . . , Dk, µ0, . . . , µk−1 such that L(pkp0) = 0. Thus, since
xpn = Dn+1pn + Cn+1pn−1 + pn+1, L(xpnp0) = 0 if L(pn−1p0) = L(qn−1p

2
0) = 0

that is if n > 1, and recursively L(xkpnp0) = 0 if n > k ≥ 0. Thus if m ̸=
n 0 = L(qmpnp0) = L(pmpn). Moreover L(p2n) = L(qnpnp0) = L(xnpnp0) =

Cn+1L(x
n−1pn−1p0) = · · · =

∏n+1
k=1 Ck. Obviously if the sequences {Ck} and {Dk}

define a measure dµ̃(x) = w0(x)dx on (a, b) where w0 > 0 (a, b) for which qn-s are

orthogonal and p0 is not zero on (a, b), then dµ = dµ̃
p2
0
= dµ = w0(x)dx

p2
0(x)

.

Theorem 2. (6) can be expressed in the following equivalent form:

(17)
1∑

k=−2(s−l)−1

v
[s−l]
n−l,kQ

[l,s]
n+k = 0,

where

(18) Q[0,s]
n = P [s]

n , Q[s,s]
n = Q[s]

n , Q[l,s]
n =

1∑
k=−1

v
[0]
n−l,kQ

[l−1,s]
n−1+k, 1 < l < s, n ≥ l.

Proof. For l = 0 (17) coincides with (6). To prove (17) for l, by (18) we have to
show that

0 =

1∑
k=−2(s−l)−1

1∑
j=−1

v
[s−l]
n−l,kv

[0]
n+k−l,jQ

[l−1,s]
n+k−1+j

=

1∑
p=−2(s−l+1)−1

 ∑
−1≤j≤1
k+j−1=p

v
[s−l]
n−l,kv

[0]
n+k−l,j

Q
[l−1,s]
n+p .

Supposing that (17) is valid for l − 1 it is enough to show that

(19) v
[s+1]
n+1,p = v[s]n,p − un+p+2v

[s]
n,p+1 + cn+p+3v

[s]
n,p+2.

Comparing (19) with (7) one can check that for s = 0 (19) is valid, that is v
[1]
n+1,−3 =

cncn+1, v
[1]
n+1,−2 = −cn+1(un + un+1), v

[1]
n+1,−1 = cn+1 + cn+2 + u2

n+1, v
[1]
n+1,0 =

−(un+1 + un+2), v
[1]
n+1,1 = 1. Now by induction again, we can show that

(20) v[s]n,p−un+p+2v
[s]
n,p+1+cn+p+3v

[s]
n,p+2 = v

[s]
n+1,p−un+1−sv

[s]
n,p+1+cn+1−sv

[s]
n−1,p+2.

Applying (7) to the left-hand side of (20), and by the induction assumption (19)
(with s− 1) to the right-hand side of (20) one can verify the equality.

Remark. Comparing (17) and (6) we can observe that Q
[l,s]
n and P

[s−l]
n−l fulfil the

same recurrence formula. As a second solution of the recurrence relation, Q
[l,s]
n -s

can be called multi-indexed polynomials of the second kind. Considering the case

of Q
[s,s]
n the question is immediately arisen whether Q

[l,s]
n is different from P

[s−l]
n−l

only in a factor which is independent of n, as in the case l = s. The situation is
different as we see below.
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4. Example: s = 2.

Recalling the Crum-Darboux decomposition above and (13) Q
[2,2]
n = Q

[2]
n =

2b1b2P
[0]
n−2, n ≥ 2 and it fulfils the three term recurrence relation (1). According to

(18) Q
[0,2]
n = P

[2]
n , n ≥ 0 and it fulfils the seven term recurrence relation (6). Q

[2,2]
n

and Q
[0,2]
n are both exceptional orthogonal polynomials. By (17) Q

[1,2]
n+1 fulfils the

same five term recurrence relation as P
[1]
n , n ≥ 0. The difference is in the initial

values. Since

P [1]
n = A1P

[0]
n , A1[y] = b1(y

′ − w1y),

(P
[1]
−1 = 0), P

[1]
0 = −b1w1, P

[1]
1 = b1(1−w1u1), P

[1]
2 = b1(u1 + u2 −w1(u1u2 − c2)),

and by (18) and (17):

(Q
[1,2]
0 = 0), Q

[1,2]
1 = b1b2

(
b′1
b1

− w1 − w2

)
, Q

[1,2]
2 = b1b2

(
2 + u1

(
b′1
b1

− w1 − w2

))
,

Q
[1,2]
3 = b1b2

(
2(u1 + u2) + (u1u2 − c2)

(
b′1
b1

− w1 − w2

))
. That is we have

Proposition 2.

(21) Q
[1,2]
n+1 = RP [0]

n , R[y] = 2b1b2(y
′ −My), M =

1

2

(
w1 + w2 −

b′1
b1

)
.

Proof. By (17)

Q
[1,2]
n+1 = −

0∑
k=−3

v
[1]
n−1,kQ

[1,2]
n+k = −

0∑
k=−3

v
[1]
n−1,kRP

[0]
n+k−1

= −2b1b2

0∑
k=−3

v
[1]
n−1,k

((
P

[0]
n+k−1

)′
−MP

[0]
n+k−1

)

= −2b1b2

( 0∑
k=−3

v
[1]
n−1,kP

[0]
n+k−1

)′

−
0∑

k=−3

(
v
[1]
n−1,k

)′
P

[0]
n+k−1


+2b1b2M

0∑
k=−3

v
[1]
n−1,kP

[0]
n+k−1.

By (8) and (1) the second term in the last bracket is zero:∑0
k=−3

(
v
[1]
n−1,k

)′
P

[0]
n+k−1 = −2

∑1
l=−1 v

[0]
n−2,lP

[0]
n−2+l = 0. By (7)

−
0∑

k=−3

v
[1]
n−1,kP

[0]
n+k−1 = −

0∑
k=−1

v
[0]
n−1,kP

[0]
n+k−1 + un−1

1∑
l=−1

v
[0]
n−2,lP

[0]
n−2+l

+cn−1

1∑
l=−1

v
[0]
n−3,lP

[0]
n−3+l = P [0]

n + 0 + 0,

that is

Q
[1,2]
n+1 = 2b1b2

((
P [0]
n

)′
−MP [0]

n

)
,

which is (21).
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To find an operator B with which T0 = BR + λ, M has to fulfil the Riccati
equation p(M ′ + M2) + qM + r = λ (cf. e.g. [5, Proposition 3.5]). Taking into
consideration that

p(w′
1 + w2

1) + qw1 + r = λ̃1,

and

p(w′
2 + w2

2) + q̂w2 + r̂ = p(w′
2 + w2

2) +

(
q + p′ − 2p

b′1
b1

)
w2

+r + q′ + w1p
′ − b′1

b1
(q + p′) + p

(
2

(
b′1
b1

)2

− b′′1
b1

+ 2w′
1

)
= λ̃2,

we have

(22) p(M ′ +M2) + qM + r =
1

2
(λ̃1 + λ̃2 − q′) +

1

2
f,

where

(23) f = −p

2

(
w1 − w2 +

b′1
b1

)2

− (pw1)
′ + p′

b′1
b1

− pw′
1.

That is if B[y] = p
2b1b2

(
y′ +

(
M + q

p − (b1b2)1
b1b2

)
y
)
,

T0[y] = BR[y] +
1

2
(λ̃1 + λ̃2 − q′)y +

1

2
fy = λny,

and Q
[1,2]
n+1 = RP

[0]
n satisfies the inhomogeneous differential equation

(24) (RB +
1

2
(λ̃1 + λ̃2 − q′) +

1

2
f − λn)y = −b1b2f

′P [0]
n .

Since

RB[y] = py′′ +

(
p′ + q − 2p

(b1b2)
′

b1b2

)
y′

+

(
(pM)′ − pM2 + q′ − qM − (q + p)

(b1b2)
′

b1b2
+ p

(b1b2)
′′

b1b2

)
y = py′′ +Hy′ +Ky,

multiplying (24) by hn we have

(RB+
1

2
f+

1

2
(λ̃1+λ̃2−q′))(hny)−(ph′′

ny−2ph′
ny

′−Hh′
ny) = λn(hny)−b1b2f

′hnP
[0]
n .

That is we have the following

Proposition 3. Let hn be the solution of the following linear differential equation
of the second order

(25) pQ
[1,2]
n+1y

′′ +

(
2p
(
Q

[1,2]
n+1

)′
+HQ

[1,2]
n+1

)
y′ − b1b2f

′P [0]
n y = 0.

Then
Rn := hnQ

[1,2]
n+1

is the eigenfunction of the differential operator T [1,2] with eigenvalue λn, where

(26) T [1,2] = RB +
1

2
f +

1

2
(λ̃1 + λ̃2 − q′).

According to [5, Proposition 2.2] the eigenfunctions Rn are orthogonal with

respect to the weight w = pW0

(b1b2)2
, provided that pwR′

nRm tends to zero at the

endpoint of the interval. Unfortunately hn-s are not necessarily polynomials.
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4.1. An example with Laguerre weight. In this subsection we give a numer-
ical example of the procedure above, and verify that eigenfunctions Rn form an
orthogonal system.

Based on the results of [9] we investigate Rn with respect to exceptional Laguerre
polynomials are given by a special two-step Darboux transform. To this end we have
to examine the order of hn at infinity. First we rewrite the differential equation

(25). Recalling (21) Q
[1,2]
n+1 = 2b1b2

((
P

[0]
n

)′
−MP

[0]
n

)
and bi ̸= 0, dividing the

equation by 2b1b2 and taking into consideration the differential equation of P
[0]
n , we

have

p

((
P [0]
n

)′
−MP [0]

n

)
y′′

+

(
(−3q − 2pM + p′)

(
P [0]
n

)′
+ (r − (pM)′ +Mq − λn)P

[0]
n

)
y′ − 1

2
f ′P [0]

n y = 0.

Now introducing the notation

Θn := hn
√
ϱn,

where

ϱn = exp

∫ x (−3q − 2pM + p′)
(
P

[0]
n

)′
+ (r − (pM)′ +Mq − λn)P

[0]
n

p

((
P

[0]
n

)′
−MP

[0]
n

)
 ,

(25) is transformed to

(27) u′′ =

 1
2f

′P
[0]
n

p

((
P

[0]
n

)′
−MP

[0]
n

) +

√
ϱn

′′

√
ϱn

u,

which is satisfied by Θn.
Let T0[y] = xy′′ + (α + 1 − x)y′ the Laguerre differential operator on (0,∞).

Recall that T0 = B1A1 + λ̃1, T1 = T̂0 = A1B1 + λ̃1 = B2A2 + λ̃2. By the notations
of [9] with m1 = 1,m2 = 2 here Ai[y] = bi(y

′ − wiy), where

b1(x) = xL
(−α)
1 (x); w1(x) = − 1

L
(−α)
1 (x)

− α

x
;

b2(x) =
xη(x)

L
(−α)
1 (x)

; w2 =
L
(−α)
1 (x)

η(x)
− α− 1

x
,

where

L
(−α)
1 (x) = −x− α+ 1, η(x) = −1

2
x2 − (α− 1)x− 1

2
(α2 − 3α+ 2).

Thus

M(x) =
1

2

L
(−α)
1 (x)

η(x)
− α

x
= −α− 1

2x
+O

(
1

x2

)
.

With P
[0]
n = (−1)nn!L

(α)
n (cf. [24])

p

((
P [0]
n

)′
−MP [0]

n

)
=

(
n+

α− 1

2

)
xn +O

(
xn−1

)
,
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(−3q − 2pM + p′)
(
P [0]
n

)′
+ (r − (pM)′ +Mq − λn)P

[0]
n

= 3nxn+O
(
xn−1

)
+

(
n+

α− 1

2

)
xn+O

(
xn−1

)
=

(
4n+

α− 1

2

)
xn+O

(
xn−1

)
,

That is at infinity
√
ϱn(x) ∼ xe2x.

Now we estimate the coefficient of u in (27). Since

w1−w2+
b′1
b1

= − 1

x
−L

(−α)
1 (x)

η(x)
− 2x+ α

L
(−α)
1 (x)

= 2+O

(
1

x

)
;

(
w1 − w2 +

b′1
b1

)′

= O

(
1

x2

)
,

−2w′
1 − p(w′′

1 + w′
1) +

b′1
b1

= O

(
1

x

)
,

f ′ = −1 +O

(
1

x

)
.

Thus by the previous computations the coefficient of u in (27) is 4− 1
2n+α1 +O

(
1
x

)
,

that is according to [4, Theorem 2] the order of the solutions of (27) at infinity
is at most p(x)e2x, where p is a polynomial. This ensures that hn grows at most
polynomially at infinity, that is Rn-s satisfy the conditions at the endpoints of the
interval, so we have an orthogonal system.
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