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CHARACTERIZATION OF FOURIER SERIES WITH (C, 1)
MEANS!

Agota Horvath?

Introduction

Let (@b} C R is a fnite or an infinite interval on the real line, and let wir] be
2 non-negative function whose suppart is iu (2,4}, and is measurable in Lebesgue’s
sense, and for which fJw{z)dz > 0, morcover w® has finite moments, that is for
every k € N [ z*w?(z)de < oo. In the followings the set of these kind of funetions
will be denoted by W, and our weight functions will be 1w € W. Let p.a.fz) be the
n'" orthonormal polynamial with respect to the weight w?(z), that is

_Lwa’,n [E]pwzlmtrjwzix]dl‘ = ‘Sﬂ.m (1)

After these preliminaries we can construet the Fourier series of a measurable function
flx}if the corresponding ¢ -5 exist:

fa)~ S cxpanlz), where o =aulf,u) = [ HaposlehAadz, ()
k=D e
With the above notations we have
k
Self,z) = 3 eupuslz), (3}
=y

is the &** partial sum of the Fourier serics of f with respect to the orthogonal
polynomiais for w,
1 I
= —_— 4
ol f, 7} n+1§u3”{f‘x]‘ (4]
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is the first Cesaro mean of f.
Ve > U s the highest coefficient of the &* orthonormal polynomial,

Definition 1 {a)The Christaffel function s

b g g
. , el E3 LT byt . o
-‘111;{?.{-'2! I = J-_I]r.:'l}[f,,.l ; _"(E[I)IZT" , I [Iﬂ., lE'J. {U_,l

(b) The weighted norm of the reciprocal of the Christoffel function is denoted by
Ao = A, 2 () o, (6)

where the infinity norm s on (a,b).

As it is wellknown (e.g. [4]),

Anlz) = u:%z.r] zpﬁﬂ.k (z), (7
#=i)
and
Ay = [|An(z)]| - (8)

Now we can formulate our problem: if we have a formal sum in some weighted
space, how can we recognize that it is the Fourier series of a certain function of that
space. For the investigation of this question we need a lemma on CEsaro sums in
the weighted cases, which was proven at first by . Freud in L8973, for the weights

1 2%

wi(x) = 727", His result is the following;

Theorem 1 (3, L. 6, Th. 3) We have

] LN | . ‘
(o) X 152, £,2)] <€ Clun
I=n

and so we have for every 1 < p < oo
lon(ewk, iy = Clp)| o,

This lemma sppears in several papers for different weights. For generalized Jacobi
weights the proof was given by Nguyen Xuan Ky and F. Schipp in 1986 [18, L. 3l
and for Erdds weights it was given by D. S, Lubinsky and T. Z. Mthembu in 1992 [13
Th. 2.1). The most recent result of D. Mache and D. S. Lubinsky [13] gives a general
proof of Freud's lemma for exponential weights, and they gave an improvement of it
in exponential cases which works better than the oroginal form close to the endpoints
of the main interval of approximation. But it is not clear how does it work in Jacobi
case. Introducing some new notations and a function (different from [13]), we are
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able to give a comman proof for the results iy question, furthermore for any weights
fulfilling the natural assumptions in the introduction,

HResulis

Let
Tz (8, b) — (a,b)

an increasing bijection wich is plecewise differentiable. Let us dencie
folz) = flz)(7'(z))3 (9)

for an arbitrary function f. Furthermore let us suppose that, applying the above
- v ] i~ - ¢ — ] N
rotation, w. € W is a weight funetion too, and {7 )7 is bounded on (a, ). Let

A = |I|Ar;1[wzar]w3(m:'i|m' (10}

We define the weighted L, space as follows:

F € Lug, 3 fu € Ly, fllup = | fwllp 12p<os, (11)
and let us denote by .
T =sup e, . (12)
kam T

Then we have

Lemma 1 Let (0,8) ¢ R, and w e W, If with a 7 given above, there is o constant
K such that

Lata K, (13}
then we have
lontfr e oo < Cll fllus oor for f € L, oo, (14}
and
lon(fe s = Clfluss for £ € Ly, (15}
e
lowlfedllons < ClOIFllup for f € Ly 1< p < oo, (16)

Remark. The last inequality holds for p = 1 and p = oo too, but it is weaker
than the statement.

Proof, At first we will prove the statement for p=co. Let x bein (o, ) arbitrary
but fixed, and {4,} an arbitrary positive sequence, Let

Fot) = B i o —t] > 8ot € (a,8)
"o if |z — ¢ < 6,8 & (a, ).



494 A.HORVATH

Now by the help of this auxiliary function and by the Christoffel-Darboux formula
let us estimate the weighted norm of the bt partial sum [k < n)

. Denoting by

i

Ka(2,5) =3 pung(2)pus (1), (17}
i=f

we have

, - I& o 8 |
ISk 2 oo = ||E f P 2 (2 )P i () fr (¥ (y}dy‘

i =
i=0 e i, e

| K B ‘I

! N . d

|‘ ][‘ b mdiany T E L () y wnm+
= ."
|l,?—‘-f . (Pu k1 (T)en(Frp) — ?Jwﬂ,k{E}Ck+1(F.~.n}]'| = I+ 1T

o+ itz o

Let us suppose that f is zero outside (a, ). Using Schwarz's inequality we get that

I| ( [ y}ff{yﬁw%y:ldy) u-fliz;lll <

] Kilz, y)wly)| dyw. (z) <
e [ o Kby dyn ) <

3 3
IhIJ 12 f KEI.' . W d . -
1o co (.[#-.r,.,zq.ﬁr.lnca.a-] ) ( A B et WMy | wr(z) <

b S
e e 20000 ) ),
By the orthonormality

4 B

[yt )y = 3ot (2,
o« i=0

that is

> Pz slehwl(z)

=0

b ’..Lf fi—1 al'
”f”wm 24y, (j; Ka‘f(rzy]"’#(&'}d@') ty(z) < ||f||wm HE';': ( ) =

1 280 (43107, 2)Z(z) )2
Thus we have that

( L tuessarion OV W)y wrm] < 1 o200 (077 (0% 2)ue(2))
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and so taking supremum we get
Iy = G”.llrli.w_v.m'l‘.' a."1!'5--:-.u- (18)

Bessel's inequality implies that

ka__ I(Sup )gﬂ» (Zc ]_

i+ 1 k<n
% ]
st Ao f ff_ﬂ ol
= (k:tE “frk)"‘! [ w{]y)
< & (sup 1) [Aray oy (19)
=7 L - '5:-:' L)
Mow if we choose

=2
w ]"‘LHI‘

by the definition of o,,, the statement of the lerma is a consequence of (1.18) and
(1.18} in the case p = oo, To prove it for p < oo, we use the well-known device - At
first it has to be proved by duality method for p=1: using Fubini's theorem :

loulirilus= s [ glalonlincut(z)ds =

Flls oo 5

i f: f:‘ Q"er;'fr Ly} L;‘pw?,.' [m:lp"_-zlg{y]wz(m}wg [ryjldyd,r =

sup
il a1 +1

o [ Hlonloulutle)dy < CL ),

a. IIcllwmil

because denoting by g = h, we can apply the previous part of the lemma with the
1 M i 1

remark that [[A: Lo = ||R]s, 0. By the boundedness of (v )7% we can observe that

|,|Jaz{fr.,]""r;.|m = U”f“w;.w = wl.!_'f;.-',m1

and

llow (el < Cllonl folllwy < Cll ful]; = Cllfrwll 7 -
So for the operator
. (fi']
o og— o, Uy
u

T:L,.-'—, —}*Lm
T od

an
T:L‘-,-'":'_’l_> L1

we ean apply the Riesz-Thorin interpolation theorem which proves (1.16).
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Definition 2 {0,0) € R,w € W is a weight funetion on [a,b).

Cul@b) = {f & Cla,b)| lim (fu)(s) = lim (fu)(z) = 0)

Definition 3 1 < p < oo -

EY(flpi= inf |£(2) = pala) .

LRemark.
(1) If w = 1 and (a,b) is Bnite then Weierstrass theorem ensures that

lim E¥(f), =0

T —m

for all f continuous in (a, ).

(2} If {2, b} is finite then it is also clear that if f € Cula,b) then lim,_,, EX(fl,=
[}, namely it is encugh to show for P = oo Let us choose to an arbitrary e > 0 a §
such that if = € (e, a + 8} U (b — 4, 8], then [[fw}(z]] < £ Let now

flz) Hrela+dh-4g,
Selz) =4 Liz) ifzxe (@, a+4)
iz} ifxe(b—4 5

where ;(z} are lincar functions such that [+ s continuous. Because of this continuity
there is a polynomial Puiyl ) such that

||Pnf£}':x} - fel:xﬂ TE TE [ﬂ1 '5:'
That is

filz) - Pﬂ[ﬂ[“]llw,ﬂu < |f - fela)lweo + |If£(~r} = Prie) (T} < (24 K)e,

where K = [Jw(z)|. on (o, bl
(3) If (a,b) is infinite, we have the following

Theorem 2 (10,Th. 1.1) Letw = e % where R — [0,00) is cven, and Qe
w conver ont (0, 00). Then the polynonials are dense in the corresponding weighted
space (Cu(—o0,00)), if and enly if

j:n er] dir = oo,

L+ 2

(4) As a corollary of the previous theorem we get the following
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Lemma 2 Suppose besides the assumptions of Lemma 1 that w(z) is continuous
and positive on R. In this case the density of the polynomials i O, eniails the
density in L.

Proof. Let f & L., arbitrary. Because compactly supported continuous fune-
tions are dense in Ly, for every £ > 0 there is a g € Cy(R) such that

[ fwlfe) — glz)ll < e

Furthermore £ € Cy(R) C C 4, thus there exists a polynomial p such that

i .
”a —j-'i'|| 1) X0 =l £,

These imply that
If = plus = 1fw— gl + o —pwj <

+ f 'wL:E :r‘h,r."':-.ul;r] ’IWLI di < (1 + || vwlh).

After these preliminaries we can formulate the main result of the paper. After
the general statement we will investigate the fields of application, namely how does
it work on special weights. For example in the trigonometric case the following
theorem has a much simpler form; every statement has the form "if and enly iF°. The
summary of the trigonometric case can be found in K. Hoffman's book, published
in 1952 [5]. Some details for the Hermite case are proved by 1. Jod in 1988 [7], and
the complete theorem in the Hermite case iz given in [6] in 1990, We will see in
the section of applications that not enly in Hermite case, but for any Freud weight
Theoremn 4 has as "nice” form as in the trigonometric case.

Let 7 be an increasing, piecewise differentiable function, (717! is bounded again,
w i5 condinuous and pesitive, and let us list now some properties of a weight function:

(A) the assumptions of Lemma 1 are valid ,

(B) polynomials are dense in Oy {a, b),

(C) polynomials are dense in wa,,f.«_“,l (o, b,

(D) ||fwe s oo = F, where K £ R 15 independent of n,
(E) |lpwa e, = &, where K £ R is independent of n.
Using the notation

[ fadetz) = [ hladiuta),

Wi have



4095 A HOBVATH

Theorem 3 Let (a,b) C R be a finile or infinite interval, w € W a bounded weight
function on at. With the above notations:

(1)

(a) If (A) holds and [ € Lyulab) 1 < p < oo, then the Cesdro means of fr -
ool foy ) are uniformly bounded in Ly, {0, 0).

{b) If the Cesdro means of a formal sum 300, cepyrs are uniformly bounded in
Lupla,b),1 < p < oo, then this formal sum is the Fourier series of a funclion
fE Lypla, bl

(2)
(a) If (A), (C) hold, and f € Ly (u,b), then on(f} — f with respect o the norm
af Lt

(b) If (D} halds and the Cesire means o.(-,x) of the formal sum FiZ, ckpuzy are

convergent in L T l{a, by, then this formal sum is the Fourter series of o function
Wy T

feL, s (ot
(3)
(a) If (A), (B) hold, and f € Cufa,b), then

”Jr - "Tnli.ﬂ

hoeca — 0, n— 00,

(b) If (E) holds and the Cesive means o,(, %) of the formal sum T eapys i are
conwergent in L ﬁm(u, ), then this formal sum is the Fourier series of a function
fe vaf;m[a,b}.

(4)

(a) If (A) holds and p is o signed measure with [* w(z)|dp(z)| < oo, then the Cestro
means o, (du,, x) are uniformly bounded in Ly, (a, b).

(b) If the Cesiro means onl-, @) of @ formal sum Y50 cipue i are uniformily bounded

in Lyl b), then this sum is the Fourier series of o signed measure p, with j'f w(z)|dp(z)| <
o0

(5)
(a) If [A) holds and p is a signed measure with 0 < [Fw(z)dyu(x) < oo, then the
Cesiro means o, (du., x) are uniformly bounded in Ly la,b), and there exsts a
subsequence g for which

b
f oy (A, 2jw(z)dr = 0.

ib) If the Cesivo means o,(-, ©) of a formal sum 307, kP g are uniformly bounded
in Ly 1{a,b), and there exists a subsequence ny, for which

b
] Ty (o ) )de = 0,
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then this sum is the Fourier series of a signed measure j, with 0 < [ wiz)du(z) <
0o

Froof.

(1)
The implication (4} is contained in Lemma 1.

For proving the converse direction we have to consider Liopla,b) as a reflexive
Banach space. A bounded sequence in it has a weakly convergent subsequence oy,

that is there is an [ € Ly (a,b) such that o, — [ in weak sense, and so specially
for pya(7) € Lugla,b), where L+ =1and [ € N we have

b , b
f O N o L e f F2)pee ) (z)de (K — 0)
[ ]

n the other hand

b
f T, | Ty () (3)de = (1 g 1) o —r o [k — o)

This means that the ¢ in oy, are the Fourier coefficients of f.
(2)

For the proof of convergence we have to estimate |f(z) — ow{f, %)|u, where
f € Lya(a,b). Let £ be arbitrary and p = plz, ) be a polynomial such that

If(z) = ple, o)l 5, S

The existence of such a p is guarantesd by assumption {C). With this polynomial

1£(2) =~ onl f 2y < (773

(o) — e wifl — - _

- | fiz) — ple. -rJllw,v.-'T: 3 lpte, &) — anlpa)llwat
i 1 I

llowlf = P, 2)lhea < Ce + —=[Solp,2) -+ Silp, #}llua+

n'_ﬂ |: TE‘
(1 -2 1) I8i(p. )} + C,

where for the estimation of the third term we used Lemma 1, and in the calculation
of the second term | = {(g) is the degree of p(e, 2], and so if n > N = Nig], then

| flz) = oalfixllun £ Ce.

Proof of direction (b): Supposing that for some f € L VT
T,

'7111:': E:' — f{‘z}
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in the norm of L w71 we can estimate the distance of the I* Fourier cocfficients
of f{z} and o[-, z), namely if n > |, then

h
alf) = alod] = | [ () - oal, oot <

|paz ifx)

wr:'—"ﬂ"ll!f{?::] - r-d-"1’||:'|:*'_:||| ".-"'I_" !

which tends to 0 by the assumptions, that is as in part (1) we can see that f{z) has
the expansion 3252, cppy: ¢z,

(3)
Using Lu, oo instead of Ly, the proof of this case is similar to case {2): Let
p = plg, ) be a polynomial such that

1£(2) = ple, @)oo < &
With this polynomial guarantesd by (B):
[Flz) = onlf, 2} lur oo < I F(2) = ple, €)oot
lple, =) = oulps 2} lurco + ol f = 2 ) e o <

-1
e o0 T (1 - S""_J ||S|!':}5'> x};lu.'r,m + Ce.

l 1
e+ n—_l_“f”fﬁu{p,z_} o +5,!|:p,$}|!

Here { is the degree of p{e, x), and we applied Lemma | to & = (f— v“(_ Part
(b} i= the same as case (2), thus we omit the details.

(4)

At first we will prove the boundedness of the Cesiiro means as in Lemma 1-

lonldr,2llna = 50| [ ouldpr, ooz =

2ullg e na 1
[ pb oph n _
sup f f w?(t)w? E(l——.“) Pun e (E)pus g2 jdzdjer (t)| =
F:"E‘.iw‘mf.:1| &oa k=1

sup U ) Wn'ig,f"wzﬂw’#*}‘
il ma=l

P 10a(5, e | w(e)ldule)] < C.
ollg e £1
We used here Fubini's theorem and assumption (A) with g = f..

For the proof of the opposite direction let us introduce the following messures:

dim () = wiz)o, (-, 2)dz.
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The total variation of these measures is uniformly bounded, that is

& b .
[lipaie)] = [ w@loal,2)ldz = fouls Dl < K

Let now {|Ag, Bi]} be a sequence of intervals in [a,b) such that
U [.."ji.kl Ek] = (G',., b)
k=1

Let us denote the dual space of continuous functions on [4g, By] [which are the
Borel measures on [Ag, Bi]) by

By = (C[Ax, By])

f=
ve By [vl=["la.

Ak
According to the Banzch-Alaoglu theorem the closed balls in By are w*-compact.
Consequently for a given & one can choose a w'-convergent subsequence (g, )
wich also has a subsequence which is w'-comvergent on [Agq, Biy), ete. Using the
dizgonal methad of Canter, we can extract a subsequence (denoted again by )
such that

fin, 0 i on [Ag, By for every k € N.

Lict
wlzldu(z) = dilz).

First of all ,
f wiz)|di(z)] < oo,
il

because for every k

B‘ Hk B*
[ wle)du@) = [ 148 < sup [ g, ()] < sup lou(, @)l € K < oo
Ag A i A n

Secondly it has to be shown that the Fourler coefficients of the ahove mentioned
measure i are equal to the cp-s.

b
ck—fa puz il Tt (z)dulz)| < +

2 (w2 dulz
f{exh]x,u,,v.ymp"'i' () (w)dulz)

I!_h.' i
&= f Dol 2w (2)dp(z), = T+ IT
hy I

" s e, o)

I =g, — lim
[ i—ron f g
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| Hw .
lep — lim f Pt k[o:"lwzl'x]u',, (z)dz
| i—oe S A ! ! N !

ny

: b
o~ lim 5 {1 ~ ﬁ) g5 ( f Pust (&) ol 2y () de—

P
— i

<

. 9.
w2l s ) el
f:e[a,mgaﬂ.ﬂ,\-]ﬁ el plmpeie) )

kle \
A | o ales s Il
n; +1 2E (a5 [An By

When ¢ and NV tend to infinity, then the right-hand side tends to zero. On the
other hand,

b
I 1D |pu;nlk|:£}w[m]|f wiw)|dulz)].
FE(aE [Ar D) 4

Because of Anite moments and boundedness of the sccond factor this expression also
tends Lo zero when N tends to infinity, which completes the proaf,

(5)

The proof of this part is the same as that of the previous part and from the
construction we can easily see that wis positive in the sense stated in the theorem
if and only if the . -s are also positive in that sense.

Remark. Introducing a new notation for p=oc and p = 1,

£l

we get (2) and (3) parts of Theorem 4 in a more symmetric form:
(2.b) If

IR G (7)) | SRR

L
"p:u“.n“w,.p i K:-
and @y, is convergent in L), ,, then the formal sum 332, evpus o(2) is the Fourier
series of a function f € L .

(3.b) is similar. These symmetric forms follow from the change of variables v(z) =
y which works by the assumptions on .

Applications

Let {a,b) = (—e,a) be symmetric. Before we detail the applications of second
theorsm, we need a new notion again, namely let us denote by o, = a.(w) the
so-called Mhaskar-Rahmanov-5all number associated with w. This number shows
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"Where does the sup norm of a weighted polynomial live?” [16]. Applying it to
symmetric intervals it means that

{ [Plluso = meXiajza, [plahu() for all pe I,

5] e = |plz)|wz) for all |z| = a, 120)

More precisely if wiz) = e™%* 3 € (~a,a) and Q is even and convex on (—a, o)
then a, is the positive root of the equation

2 ' t
= ; j;l &uQ {a“t}ﬁ—_?fdt’ w0, EEI]
In the applications for a symmetric weight function wiz) = e 9 we can define
o Q" () :
I[:J:]:l+;cql:ﬂ, x {0, ). (22)

If T is positive and unbounded then let

V= [ JTiod
wiz) ﬁ y Tt

e
wlx) fl<z<a
Tlr)i=ruz)=1¢ 0 ifz=10 (23)
—gl—z) f-a<z<0

This 7 is an increasing function on {a,b), and W,{z) = w{m}{T{z)]‘% is a weight
function too if % is bounded.

Freud Weights

Definition 4 Let (a,b) = R,w(z) = ¢ %) where @ : R — R s cven and
continuens in R, " i continuous in (0,00), and ' > 0 in (0,00). Furthermore
Jor some A, B = 1, let

Il

<3

< (L:EI]} <n
Q' (x)
Fulfilling the hove assumptions, w is called o Freud weight.

A

r e (0, 00). (24)

We have to note that {1.21) means 1 < A < T(z) < B, and so
T(z) =1

is a good choice. Beecause 7'{x) = 1, we get for Freud weizhts the most beautiful
form of Lemma 1 and Theorem 4, namely it means that

"":"n{f}”w.p < G[pjllf”m.p l<p=no,

and every part of Theorem 2 becomes *if and only if ¥ statements. The validity of
properties (A]-(E) implies the following theorem:
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Theorem 4 (8) Let w be o Freud weight,
{a) [Th 1.1, b] Then for allz € R, andn > 1,

-3
Mgl 1) > Ca—:w"*(:r] (max {n" f1- El}) : {285)
T

iy

{b) [Th. 12.3.] Moreover,

Tuoi ey T 1 (26)
Tn
(c) [Cor 14)] and

Pl ~ i Fred (27)

With the help of the previous theorem we can see that the assuptions of Lemma
1 hold for Freud weights, namely

Theorem & implies that

T
JI‘!L:H E (::'_1_?
L
and so we can chooge a
b = —.
i)

in the proof of Lemma 1.
To verify property (B} we have Theorem 3. As it is well-known, the typical
examples for Freud weights are

_|_-|_-|'.-

u(z) = e

In this case the assumption in Definition 4 is the following: A = = B > 1, which
guarantees that the integral in question is divergent. Lemma 2 shows that property
(C} is valid in this case if so s (B).
From (Def. 4) and from (Th 5. ¢) it follows that -
.Ilpwﬂ,r;“w.m = Cﬂi IFEE:-
which shows that (D) is valid only if B < 3. Assumption (E) is not valid even in the
Hermite case. This was used for the proof of the direction (b) of (3) in the fourth

theorem. It follows that a Jackson theorem gives us an estimation on the speed of
convergence. For this we need the definition of the weighted modulus of smoat hness:

Definition 5

*r"-"f'.p':fr w t} = sup ||I£E|:Jr:- ay H:I "ur.r-l:l---:-'.n_.d.»,] + inf ||f_p||wp.|2|2a:| {23:'
Okt PEln—;
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where

2| &

ait) = inf {cz,, P— = t}, to=0,

STERESS @ (-1f (:n + ?:,;5 m) .

i=0

In the last equation we assumed that all arguments of f lie in I, and the correspond-
ing term is 0 otherwise.

Theorem 5 (1, Th. 1.2.) Let w be @ Freud weight, r = 1 and 0 < p < oo, Let

feluR) fp < oo and f € Cu(R), if p = oo Then there exist ) and Oy
depending only on w, v, such that

EY (e = Cluy Lf,'w,if: %) , T — 1. {29)
Also in [1] Corollary 1.6, vields that
. g0
weplfwt) = O0%) = EF(fl,=0 (? ) b= (30}
Comparing the above relation and the estimation of the difference of & function f and

it’s Ceshro mean we get that if the (r — 1} derivative of f is in Lipy (8 = a—r+1)
and fisin Ly, or in O, then

; 1 # (5% a
lou-s(f,2) = F@)lluo < OIS eNlup (22)", 120 <00

Generalized Jacobi Weights

This section deals with the application of the (second) theorem to the generaliza-
tion of wiz) = (1-z)*(1+2)?, ¢ € {-1,1), @, F > —1. A kind of generalization can
be found in |2, Def.8.1.1.]. Further generalization allows some zeros or singularities
inside the interval. We will follow this later variation [15].

Definition 6 w & GJ is o generalized Jacobi weight if it has the form
-1 o )
w(z) = Hz) (VI=27) " wo (VI =) thmer (VIT2) [[wr (f2 - #), (31
r=1

where . € (=1,1),r =1...m,

w (8] = T (wre(8))™ (32)
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m b € Nyop, € Row,(6) ere concave moduli of continuity (s = 1,... 1.7 =
0,...,m+1), and the function H satisfies

. 1
Alrxl=0, H am‘fﬂ € Lo,

Furthermore
Ew,(f.—mr = Ol (8)), §—++0 (r=0,....m+1)
i
w{H(c0s8),8)d™" € Ly oy or w{H{cost), ) = O(VE), § —s +0.

Here w(f, 8}y = supy, ez | /(- +7) = F()|, s the usual modulus of cantinuity,

After this rather complicated definition we need a perturbed version of it, because
in the case of not even weight function with inner singularities caleulating with the
perturbed weight function plays the role of the M-B-8 rumber,

Dehnition 7 Let

wlg, ) = (v’l——:r"? + g'!)_l W (wﬁ——aH- .;_’?_l)
g T {vi-i-:.r‘+g‘1:l ﬁwr (|x—tr|+§‘1}. (33)
=1

Remark.
One can casily see that on finite intervals

= o). (34)
“Tr
Namely, let us write
"

Purilz) = %zpw=,k-1(w] +ge-1(z), where gs_; € T,

Because of the arthogonality we have
b \
1= f Expwz.k—l[x] + G-t (2) | pua pla)w’ (z)de

and using Cauchy-Schwarz's inequality, we get that

I:‘tr’;_l =_/; EPu2 1 ()P g (2 ) () d < macc{af, [B]}.
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(We have to note here that on infinite intervals the same chain of ideas gives that
L.
=1~ Ofay))

In the case of peneralized Jacobi weights we will use as 7(x) the 7, of ultra-
spherical weights without constants, which means that if ({z) = In [:T-];E]_ﬂ then

Tolt)=—2 Il( ATCCOS T — %} , i we will use
T(x) = —arccos T.

Theorem 6 (15) Ifw e GJ, fhen
(a) [14, Th.3.1]
w(n, z)e(n, o)

A, 2]~ -

(L) [14) Th. 3.2 and 3.3]
|T"w9.n [I] |l.u.,$:rf ~ 1, {SE}
where wiz) = 1 — 12

Applying part {a) of the above theorem we get that

This yields that it is enough to investigate a factor

( wrallz = ) )
wio (Jo =] + 1)

If e, , = 0, the above expression is less than 1, because a modulus of continuity is
nondecreasing. This is the case of wy and w1y too. I o, < 0, then we have to
use a consequence of concavity : T;E] is nondecreasing, and hence

—ir s B
W g (lm - t:‘-l + i] |$ - trl - |$ = tfl -+ ;,_11 e, .
wrallz = b))z — & “\ -t =&

Summarizing

M
;‘ﬂ < K =K(m,r),
wich makes sure that assumption (A) (before Theorem 4) holds. We have to note

S

that this case shows the importance of 7, i.e, however =2 is bounded,

222 pta)

which is not bounded. Properties {B) and (C] are obviously valid on finite interval
and Theorem 7 (b} means that (D) and (E) are valid too.
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Erdis Weights

Definition 8 Let w := ™, where @ : R — R is even and continuous in R,
assurne that " erists on (0, c0), and (' s positive on (0'co). Let

QR
Tiz})=1 +$Q'(3}‘ r e (0,00)
be increasing on (0, 00} with
lim T(x) > 1, (37)
r—sli+
Jim Tiz) = oo, (38)
and for cach £ = 0,
T(z) = 0[Q (2)), z — ox. (39)
Assume further that
) Q) .
o' o) {x large). (40]
end for some C = 0,
E oL@
Tl ;G(Q(ﬂ}) (x large) . (41)

In the definition given in (13, Def. 1.1] there are some technical assumptions, but
we Will use this form for simplicity. Typical examples for Erdds weights are

Wealx) = exp(—expe(lz*), o> 0,k> 1,

where exp, = explexplexp(--+))) ( k times). If 7(z) is given as in {1.20), we have

Theorem T (13, 3.13;9, 10.33)

T
ey i G_ 42‘
r ﬂ-n. |: .-I
Ta—1
~ 43
T ’ )

where ap, is the M-H-5 number. This shows that choosing 4, = s we get Lemma
1 for Erdds weights, which is the same for p = 1 and for p = 0o as Theorem 2.1 in
[14]. Theorem 3 and Lemma 2 contain the information on property (B) and (C).
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Exponential Weights on (-1,1).

Definition 9 (9) w £ Woifw = e™9 where Q- (—1,1) — R is even and is twice
continuously differentinble in (=1,1). Assume moreover that

Q =0, @ =0m(0.1) (44)
. !@nil_ Gt} = oo, {45)
The function
Q')
Tityi=14+0t=—=, t[0,1 46
=1+t te(o) 6)
is increasing in [, 1) wilh
To+) > 1 (47)
ind Q'I :
0t
T(E) o === ¢ close enough to 1. 18
(t) a0 g {48)

Examples for w & W -

walz) = exp(—(1 — 257, a >0,

Wi oz} = exp(— expe(l = 27, a=0,k2 L

We have to note that for Jacobi weights (1.46) doesn’t hold, so they aren’t in W,
Simnilarly to the GIW section the quotients of the leading coefficients are bounded

thus to verify property (4] it is encugh to show that i‘inu is bounded.

Theorem 8 (9) [Cor 1.3.] There erists ny such that for n = ny,

sup A7 w?, phw(z) ~ nT(a,)?. (49)
me(-1,1} -

[Th 1.2] Uniformly for n > m
|2 r
At (el - =~ z] < ay (l—r._') (50

[L 3.2] Given fixed r > 1,u € 1,00} :

ey i
TE ] e _ 51
@y Tla,) (51)

On the same chain of ideas given in [10, Th 3.3] we get the following
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Theorem 9 We kave

Ary < n (52)

This shows that Lemma 1 is valid for exponential weights on (-1, 1) too.
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