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Abstract

We consider the linear span S of the functions tak (with some ak > 0)
in weighted L2 spaces, with rather general weights. We give one necessary
and one sufficient condition for S to be dense. Some comparisons are also
made between the new results and those that can be deduced from older
ones in the literature.

1 Introduction

The first ”if and only if” solution of the problem of S. N. Bernstein [5] was given
by Ch. H. Müntz [22]:

Theorem A
Let 0 = λ0 < λ1 <, . . . be an increasing sequence of real numbers. The linear
subspace span{tλk : k = 0, 1, . . .} is dense in C([0, 1]), if and only if

∑∞
k=1

1
λk

=
∞.

This classical result was first proved in L2[0, 1] and then extended to C[0, 1],
as stated above. Also, it was stated only for increasing sequences λk. Subse-
quently, this theorem has had several different proofs and generalizations, and
there are several surveys in this topic (see for instance the papers of J. Almira
and A. Pinkus [1], [24]).

On C[0, 1] and Lp(0, 1), ”full Müntz theorems”, i.e. theorems with rather
general exponents, were later proved by eg. P. Borwein, T. Erdélyi, W. B.
Johnson and V. Operstein ([8], [14], [13], [23]). Versions of Müntz’s theorem on

∗Supported by Hungarian National Foundation for Scientific Research, Grant No. K-
100461.
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compact subsets of positive measure [9], [10], and on countable compact sets [2]
were also proved. Further results can be found for instance in the monographs
of P. Borwein, T. Erdélyi [11], and B. N. Khabibullin [17].

In this paper we are interested in Müntz-type theorems on (0,∞). Several
papers were written in the ’40s on the completeness of the set {tλke−t} in
L2(0,∞) (see eg. [15], [6], [7]). In particular, we will use some ideas of W.
Fuchs. His theorem is the following:

Theorem B
Let ak be positive numbers, such that ak+1 − ak ≥ d > 0 (k = 1, 2, . . .),

and let log Ψ(r) = 2
∑

ak<r
1

ak
, if r > a1, and log Ψ(r) = 2

a1
if r ≤ a1. Then

{e−ttak} is complete in L2(0,∞), if and only if
∫ ∞

1

Ψ(r)
r2

dr = ∞.

This weighted Müntz problem (with weight function w(t) = e−t) has several
generalizations with different weights. The basic paper in this respect was writ-
ten by P. Malliavin [21]. His results were completed by closure theorems of J.
M. Anderson and K. G. Binmore [3]. A. F. Leont’ev [19] and G. V. Badalyan
[4] proved similar theorems with more general weights. In 1980, by the Hahn-
Banach theorem technique, R. A. Zalik [29] proved a Müntz type theorem on
the half-line with weights |w| ≤ c exp(−| log t|a) (a > 0). In 1996 Kroó and
Szabados [18] also had a related result on (0,∞).

Closely related to our topic (by a log t substitution) are the results on the
whole real line for exponential systems. Some nice generalizations of the above
mentioned results were given by for instance by B. V. Vinnitskii, A. V. Shapo-
valovskii [26], by G. T. Deng [12], and by E. Zikkos [30].

In Theorem 1 and Theorem 2 below we will prove Müntz-type theorems
on the half-line with more general weights, namely the previously investigated
weights fulfil some log-convexity property, which is not necessary in our aspect
(see the examples below).

2 Definitions, Results

We will work in weighted Banach spaces on (0,∞), so let us begin with the
definitions of them. Let w be a weight function. (The rather general definition
of w is given below.) Now let us introduce the following notations:

Lp
w := Lp

w(0,∞) = {f : ‖fw‖p,(0,∞) < ∞} 1 ≤ p < ∞,

where ‖fw‖p,(0,∞) =
(∫∞

0
|f(x)w(x)|pdx

) 1
p , is the usual p-norm on the half-line,

and let us denote the norm on this space by

‖f‖p,w = ‖fw‖p,(0,∞).
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Let
Cw := Cw,(0,∞) = {f ∈ C(0,∞) : lim

t→0+
t→∞

f(t)w(t) = 0}

with the norm
‖f‖∞,w = ‖fw‖∞,(0,∞).

Principally the L2
w case will be examined in this note.

At first the weight function will be defined. Some specific examples are given
subsequently. Stating Theorem 1 we need the following type of weights:

Definition 1 We say that a weight function w(t) = ν(t)µ(t) is admissible on
[0,∞), if ν(t) and µ(t) are nonnegative and continuous on [0,∞), positive on
(0,∞), w2 has finite moments, and the followings are valid:

lim
t→0+

µ(t) ∈ (0,∞), (1)

and there is an a ≥ 1 such that
∫ 1

0

(
ta−1

ν(t)

)2

dt < ∞. (2)

Furthermore let us assume that there is a function γ on [0,∞), such that

γ(t) =
∞∑

k=0

cktγk ,

where ck > 0 for all k, and 0 = γ0 < γ1 < γ2 < . . ., limk→∞ γk = ∞. Let us
assume that ∀ t > 1

1
w2(t)

≤ γ(t) (3)

and there is a C > 1, such that
∫ ∞

0

γ

(
t

C

)
w2(t)dt < ∞. (4)

Here and in the followings C, Ci and c, ci are absolute constants, and the
value of them will not be the same at each occurrence.

Remark:
(1) The factor µ(t) is responsible for the behavior of the weight at infinity, and
the factor ν(t) at zero, furthermore (2) ensures that the weight tends to zero at
zero at most polynomially.
(2) If (2) is valid with an a0, then one can choose any a ≥ a0 instead of a0.
(3) If ν(t) ≡ 1 (as in Theorem B) then one can choose a = 1.

Examples :
w(t) = tβe−Dtα

, where ν(t) = tβ , β ≥ 0 and α > 0 is admissible, that is
it has finite moments, and choosing γ(t) = e3Dtα

(3) and (4) are valid. The
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original case of Fuchs (Theorem B) is β = 0 and D = α = 1. When β ≥ 0,
D = 1

2 and α = 1, then w2 is a Laguerre weight. When β = 0, D > 0 and
α > 1, then w is a Freud weight.

Let w(t) = (4 + sin t)tβ
∏n

k=1 e−Dktαk , where ν(t) = tβ again, and let us
assume, that β ≥ 0, and 0 ≤ α1 < α2 . . . < αn, and Dn > 0. Then w is
admissible, and eDtαn is a suitable choice for γ(t), if D is large enough. In
particular, it is easy to check that if w(t) = t(4 + sin t)e−t then the second
derivative of − log(w(et)) takes some negative values on (A,∞) for any A > 0.
This property ensures that the results of [30] are not applicable to admissible
weights.

Furthermore let us define another property of a weight function. The clas-
sical weight functions, and also our examples above, fulfil this ”normality” con-
dition, as we can see later.

Definition 2 Let us call a weight function w2 with finite moments ”normal”,
if the largest zero of the nth orthogonal polynomial (x1,n) with respect to w2,
can be estimated as:

x1,n ≤ ecn,

where c = c(w) is a positive constant independent of n.

Examples :
In the cases of Laguerre and Freud weights x1,n ≤ cnλ, where λ = λ(w)

is a positive constant depending on the weight function, moreover the same
estimation is valid for a more general classes of weights on the real axis ([20]
p. 313. Th. 11.1). As an application of the result of A. Markov ([25] p. 115.
Th. 6.12.2), we can get a similar estimation on the examples above; for instance
w(x) = xγe−xα

with α ≥ 1, there is a β > 0 integer, such that with W (x) =
xβe−x, the quotient W

w is increasing on (0,∞); if w(x) = x(4 + sin x)e−x, then

the corresponding W can be W (x) = x2e−
x
2 , that is W

w = xe
x
2

4+sin x is increasing
on (0,∞). So by Markov’s theorem x1,n(w) ≤ x1,n(W ) ≤ cn (see [25], p. 127.
Th. 6.31.2).

Remark:

Müntz-type theorems will be proved in L2
w-spaces. As it was mentioned in

the introduction, there are several results with respect to this. Examples above
show that all the classical, and previously used weights are included in the classes
of weights given above. Our main example is w(t) = (4+sin t)tβ

∏n
k=1 e−Dktαk ,

which is admissible and normal, and for which the convexity properties required
before, are false.

In connection with the weight function, let us introduce another notation,
which will be very useful in formulating our results.

Definition 3 Let w be a positive continuous weight function with w2 having
finite moments. Then define K(x) corresponding to w(x) as
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K(x) =
∫ ∞

0

t2xw2(t)dt, x > −1
2
, (5)

and

ϕ(x) =
(∫ ∞

0

t2xw2(t)dt

) 1
2x

= (K(x))
1
2x , x > 0. (6)

Remark:
If w(0) 6= 0, K(x) tends to infinity as x tends to − 1

2 . So in this case 1
K(x) will

be defined at − 1
2 as 0.

Our aim is formulating a theorem similar to Theorem B, thus we need some
further definitions with respect to the exponent system.

Definition 4 Let us suppose that the real numbers {ak} fulfil

ak+1 − ak ≥ d > 0 k = 0, 1, . . . , with a0 = 0. (7)

Now let
S = span{tak : k = 1, 2, . . .}. (8)

Definition 5 With the notations of the previous definition, let us define (as in
[15] and Theorem B above)

m(r) =
{ 1

a1
, if 0 ≤ r ≤ a1∑
ak<r

1
ak

, if r > a1
(9)

and let
Ψ(r) = e2m(r). (10)

We are now in a position to state the main results of this note. Proofs will
follow in the next Section.

Theorem 1 Let w be an admissible and normal weight function on [0,∞). If
there exists a monotone increasing, nonnegative function f on [0,∞), such that
for all 0 < x ≤ r

x log
Ψ(r)
ϕ(x)

≤ f(r), (11)

and ∫ ∞

1

f(r)
r2

dr < ∞, (12)

then S is not dense in L2
w(0,∞).

This result is then complemented by the following positive result.
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Theorem 2 Let w be positive, continuous, normal weight function on (0,∞)
with finite moments.

If there exists a monotone increasing, nonnegative function h on [0,∞), for
which there is a constant D > 0 such that

h(2r) < Dh(r) (13)

on [0,∞), and there are α,C, c > 0, such that for all 0 < x ≤ r

0 < h(r) ≤ C
1
x

cx

ϕα(x)
Ψα(r), (14)

and ∫ ∞

1

h(r)
r2

dr = ∞, (15)

then S is dense in L2
w(0,∞).

Remark:

Let
Bα(r) = inf

x∈(0,r)
C

1
x

x

ϕα(x)
.

By this function, depending only on r, one can formulate Theorem 2 as
”If there exists an increasing function on [0,∞) with 0 ≤ h(r) ≤ cBα(r)Ψα(r),

for which (13) and (15) are valid, then S is dense in L2
w(0,∞).”

Theorem 2 can be stated also in Lp
w(0,∞), with 1 ≤ p < ∞, and in Cw,(0,∞)

with the same proof. That is, let us define

Definition 6

ϕp(x) =
(∫ ∞

0

tpxwp(t)dt

) 1
px

, x > 0, 1 ≤ p < ∞

and

ϕc(x) =
(

sup
t>0

txw(t)
) 1

x

, x > 0.

Now we formulate the following theorem:

Theorem 3 Let w be positive, continuous and normal on (0,∞), and let us as-
sume that txw(t) ∈ Lp

(0,∞) in the Lp
w-case, and that for all a > 0 lim t→0+

t→∞
taw(t) =

0 in the Cw-case. If there is a monotone increasing function h on (0,∞) with
the properties (13) and (15), and for which there are α, C, c > 0, such that for
all 0 < x ≤ r

0 < h(r) ≤ C
1
x

cx

ϕα
p/c(x)

Ψα(r),

then S is dense in Lp
w(0,∞)/in Cw,(0,∞).
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Comparing the conditions of Theorem 1 and Theorem 2, we conclude the fol-
lowing:

Corollary:

If w is admissible and normal on [0,∞), and if there is a nonnegative increasing
function h on [0,∞) for which (11), (13) and (14) are valid with some positive
constants α, C, c, then S is dense in L2

w(0,∞) if and only if
∫ ∞

1

h(r)
r2

dr = ∞.

Remark:

Let us investigate now the connection of our result with the result of Fuchs.
By the substitution t = Duα (without any further restrictions on the exponents
ak for α ≥ 1, and with the restriction ak 6= 1

2 ( 1
α − 1) for 0 < α < 1), after some

obvious estimations one can deduce from the result of Fuchs (Theorem B), that
{take−Dtα} is dense if and only if

∫∞
1

Ψα(r)
r2 dr = ∞. We will show that we get

the same from Theorems 1 and 2, when w(t) =
√

me−Dtα

. (Without loss of
generality we can deal with cw instead of w so we can assume that K(0) < 1.)
At first let us observe, that according to the remark after Theorem 2, if Bα(r) >
B > 0 (∀r ≥ 1), then h(r) = BΨα(r) can be a good choice. Therefore we will
compute, that when w(t) =

√
me−Dtα

, then infx∈(0,r)
x

ϕα(x) > B > 0. Indeed
with this weight

K(x) = m

∫ ∞

0

t2xe−2Dtα

dt =
m

α(2D)
2x+1

α

Γ
(

2x + 1
α

)
.

By Stirling’s formula (see eg. [16], Vol. 2. p. 42.)

x

ϕα(x)
=

x(
m
√

2π( 2x+1
α )

2x+1
α

− 1
2 e−

2x+1
α e

J( 2x+1
α )

α(2D)
2x+1

α

) α
2x

= (∗),

where J is the Binet function (see the literature cited above). For t > 0 we have
0 < J(t) < 1

12t . At first we estimate the (∗) expression from below.

(∗) ≥ 2Deαx

2x + 1

(
2Deα

2x + 1

(
α(2x + 1)

2π

)α
2 1

mαe
α2

12(2x+1)

) 1
2x

= b(D, α, x)

It can be seen, that b(D,α, x) tends to Deα when x tends to infinity. Since
K(0) < 1, limx→0+

x
ϕα(x) = ∞. The behavior at the endpoints establishes the

boundedness of x
ϕα(x) from below on (0,∞).

(In the case of Fuchs, when α = 1, D = 1
2 , let m < 1, and so K(0) ≤ 1.)

So let us choose h(r) = cf(r) = c1Ψα(r), r ≥ 0.
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After the previous chain of ideas we need to check the assumptions of The-
orem 1. Recalling that Ψ(r) ≥ 1, around zero it is obvious that

x log Ψ(r)− log
√

K(x) ≤ cΨα(r)

with some constant c. On the interval
(

1
2 ,∞)

, say we give an estimation on the
expression (∗) from above.

(∗) ≤ 2Deαx

2x + 1

(
2Deα

2x + 1

(
α(2x + 1)

2π

)α
2 1

mα

) 1
2x

,

that is (∗) tends to Deα at infinity again, so it is bounded by a constant from
above on

(
1
2 ,∞)

. That is ϕ(x) ≥ cx
1
α here, and so

log
Ψ(r)
ϕ(x)

≤ 1
α

log
Ψα(r)

cx
≤ c1

Ψα(r)
x

,

therefore (11) is valid with f(r) = cΨα(r) on (0,∞).
Finally the choice h(r) = cf(r) = c1Ψα(r) is exactly the original result of

Fuchs.

After getting back the old results, we show an example to the new one.

Example :
It can be easily seen that if w2(t) = t(4+ sin t)e−t, then w is also admissible

and normal, and − log (w (et)) is not convex. We will show that with this weight
function h(r) = cf(r) = c1Ψ(r) is a good choice again, that is by the Corollary
of Theorems 1. and 2. one can get an ”if and only if” result:

If w(t) =
√

t(4 + sin t)e−t, then S is dense in L2
w(0,∞) if and only if

∫ ∞

1

Ψ(r)
r2

dr = ∞.

As in the classical case, we want to estimate x
ϕ(x) fom above and from below.

(Now α = 1.) Let

K(n) =
∫ ∞

0

t2n+1(4 + sin t)e−tdt, K0(n) =
∫ ∞

0

t2ne−tdt, n ∈ N.

At first we will compare n

K(n)
1
2n

and n

K0(n)
1
2n

. We have

K(n) = 4K0

(
n +

1
2

)
+

∫ ∞

0

t2n+1(sin t)e−tdt.

By recurrence formulas for the integrals I(m) =
∫∞
0

tm(sin t)e−tdt and J(m) =∫∞
0

tm(cos t)e−tdt (which are Im = m
2 (Im−1 + Jm−1); Jm = m

2 (Jm−1 − Im−1)),
one can get that

I(2n + 1) =
{

0, if n is odd
(−1)l (2n)!

2n+1 , if n = 2l
,
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that is

K(n) = 4K0

(
n +

1
2

)
+ ε

1
2n+1

K0(n) =
(

4(2n + 1) + ε
1

2n+1

)
K0(n),

where ε = 0, or ε = ±1. It yields that n

K(n)
1
2n
∼ n

K0(n)
1
2n

(i.e. the quotient of

the two quantities is between two positive constants). We have to show that the
same holds for an arbitrary x > 0. At first we will show that K(x) is increasing.

K
′
(x) = 2

∫ 1

0

t2x+1 log t(4+sin t)e−tdt+2
∫ ∞

1

t2x+1 log t(4+sin t)e−tdt = 2(N+P )

|N | ≤ −5
∫ 1

0

t2x+1 log t =
5

(2x + 2)2
,

P ≥ 3
∫ ∞

1

t2x+1e−tdt ≥ 3Γ(2x + 2)− 3
∫ 1

0

t2x+1dt,

that is
K
′
(x) ≥ 3Γ(2x + 2)− 3

2x + 2
− 5

(2x + 2)2
> 0, x > 0.

Let n ≤ x < n + 1! According to the previous calculation,

K(n + 1) ∼ nK0(n + 1) ∼ n3K0(n) ∼ n2K(n).

Finally, if K(n) > 1,

c(K(n + 1))
1

2(n+1) ≤
(

K(n + 1)
cn2

) 1
2(n+1)

≤ (K(n))
1

2(n+1) ≤ (K(x))
1
2x

≤ (K(n + 1))
1
2n ≤ (cn2)

1
2n (K(n))

1
2n ≤ c(K(n))

1
2n ,

and if K(n) < 1, similarly we get the same. That is these computations
yield that n

K(n)
1
2n

∼ x

K(x)
1
2x

, and similarly n

K0(n)
1
2n

∼ x

K0(x)
1
2x

. Because all

the computations are valid with mK and mK0, choosing an m such that
mK(0), mK0(0) < 1, we can finish our proof as in the classical case.

After these computations we have to note that for the formal generalization of
the results of Fuchs (cf. eg. Lemma 1 in [15]), one can use ϕ(x)x instead of
xx. We have to note here, that this function xx appears in several papers on
momentum problems and density theorems, and in weighted cases ϕ(x)x seems
to be the suitable expression.

3 Proofs

Before starting the proofs, we have to remark, that

K(x) = M(w2, 2x + 1),
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that is K(x) is the Mellin transform of w2, where

M(f, s) = f̃(s) =
∫ ∞

0

ts−1f(t)dt. (16)

We will use the Mellin transform technique in the proofs, so some important
properties of the Mellin transform will be enumerated here.

If the integral in the definition of M(f, s) converges absolutely on the line
<s = c, and f(t) is of bounded variation in a neighborhood of a t0 > 0, then

1
2πi

∫ c+i∞

c−i∞
f̃(s)t−s

0 ds =
f(t0+) + f(t0−)

2
(17)

in principal value sense (see [27], p. 246. Th. 9.a).
A Parseval’s formula also can be derived by the inversion formula. Comput-

ing on the domain of absolute convergence
∫ ∞

0

t2z+1h(t)ḡ(t)dt =
∫ ∞

0

tzh(t)
1
2π

∫

R
¯̃g(s̄ + z̄ + 1)t−sdτdt,

where s = σ + iτ . If the suitable conditions are fulfiled, changing the order
of integration, and substituting z − s = w = u + iv, the computations can be
continued as follows. Let z = <w, that is z = x = u. With g = h, if the
inversion formula on ḡ is valid on <s = 0, one can get

∫ ∞

0

t2x+1|h(t)|2dt =
1
2π

∫

R
|h̃(w + 1)|2dv (18)

(see [15] Lemma 1 (6)).

For the proof of the first theorem, at first we need a lemma:

Lemma 1 Let a = m be a positive integer. If w2 is a continuous, positive,
normal weight function on [0,∞) with finite moments, then there is a function
b(z) such that b(z), 1

b(z) are regular on <z > −a− 1, and it fulfils the inequality
on <z ≥ − 1

2 : √
K(x + a)

K(x)
≤ |b(z)|, (19)

where z = x + iy.

Proof:
At first let x also be a positive integer, x = n. Then, using the Gaussian

quadrature formula on the zeros of the N th orthogonal polynomials (x1,N >
. . . > xk,N > . . . > xN,N ) with respect to w2, where N = n + m + 1, we get,
that

K(n + m)
K(n)

=

∫∞
0

t2(n+m)w2(t)dt∫∞
0

t2nw2(t)dt
=

∑N
k=1 λk,Nx

2(n+m)
k,N∑N

k=1 λk,Nx2n
k,N

≤ x2m
1,N ,

10



that is, by the condition of ”normality”
√

K(n + m)
K(n)

≤ ecNm.

Now we can show, that K(x+a)
K(x) is increasing on x > − 1

2 , that is

(
K(x + a)

K(x)

)′

=
K(x + a)

K(x)

(
K
′

K
(x + a)− K

′

K
(x)

)
, (20)

which is nonnegative, because K
′

K is increasing. The last statement can be

seen by the Cauchy-Schwarz inequality. It yields that the derivative of K
′

K is
nonnegative: (

K
′
(x)

)2

≤
(

2
∫ ∞

0

t2x| log t|w2(t)dt

)2

≤
∫ ∞

0

t2xw2(t)dt

∫ ∞

0

t2x4 log2 t w2(t)dt = K(x)K
′′
(x). (21)

So with a = m and x ≥ − 1
2 ,

√
K(x + a)

K(x)
≤ eca(a+1+dxe) ≤ eca(a+2+x) = C(a) |ecaz| . (22)

Remark:

(1) |b(z)| > e2ca, on <z ≥ −a.

(2) If
(

ϕ(2x)
ϕ(x)

)x

does not grow too quickly, then one can choose b(z) = c(a)b1(z),
where b1(z) is independent of a, because√

K(x+a)
K(x) ≤ K

1
4 (2a)K

1
4 (2x)

K
1
2 (x)

= c(a)
(

ϕ(2x)
ϕ(x)

)x

.

(3) Usually we can give b(z) in polynomial form, for instance if w(t) = e−Dtα

then
√

K(x+a)
K(x) = 1

(2D)
a
α

√
Γ( 2x+1

α + 2a
α )

Γ( 2x+1
α ) ≤ c(2x + 1 + 2a)

a
α , and so b(z) = c(z +

2a)n, where n > a
α is an integer. (By this choice of b(z), on the interval [−a,− 1

2 ],
|b(z)| > c.)

Proof: of Theorem 1.

Let us extend f(r) to R as f(−r) = f(r). Let a ≥ 1 be as in (2). Furthermore
let a be an integer. Because

∫∞
1

f(r)
r2 dr < ∞, the function

p(z) = p(x + iy) = p(reiϑ) =
2
π

(x + a + 1)
∫ ∞

−∞

f(t)
(x + a + 1)2 + (t− y)2

dt (23)

11



is harmonic on <z > −a− 1. Since f(t) is increasing, and x2 + y2 = r2

p(z) ≥ 2
π

f(r)
∫

|t|>r

x + a + 1
(x + a + 1)2 + (t− y)2

dt

= f(r)
2
π

(
π −

(
arctan

r − y

x + a + 1
+ arctan

r + y

x + a + 1

))
> f(r).

(In the last inequality we applied the height theorem of a triangle, which height
is x+a+1, and it divides the corresponding side to two pieces, r− y and r + y.
That is, because x + a + 1 >

√
(r − y)(r + y), the angle lying opposite to the

side must be less than π
2 .)

Let us choose a function q(z) so that −p(z)+iq(z), and hence g(z) = ga(z) =
e−p(z)+iq(z), be regular on <z > −a − 1. According to the assumptions of
Theorem 1, for this g(z) 6≡ 0 on <z > −a− 1 we have that

|g(z)| ≤ e−f(r) ≤
(

ϕ(x)
Ψ(r)

)x

<z ≥ 0. (24)

We will show that in this case S is not dense. For this let us define a regular
function on the half plane <z ≥ 0 by

H(z) =
∞∏

k=1

ak − z

ak + z
e

2z
ak . (25)

According to a Lemma of Fuchs ([15] Lemma 3)

|H(z)| ≤ (CΨ(r))x on <z ≥ 0. (26)

Let us replace the ak-s in the definition of H(z) by ak + a, and let us denote
the new function by H∗(z). Now, with the help of g and H∗ we can define a
function G(z) = Ga(z) which is regular on <z > −a− 1 (recalling that a ≥ 1),
with G(ak) = 0, k = 1, 2, . . .:

G(z) =
g(z + a)H∗(z + a)

b(z)Cz+a
1

, (27)

where C1 is a suitable constant, and according to Lemma 1, 1
b(z) is regular on

<z > −a− 1, and on <z ≥ − 1
2 we have (19).

Because for an a > 0 K(x+a)
K(x) is positive, and it is bounded, when x tends

to − 1
2+, according to Lemma 1, we can suppose that |b(z)| > δ > 0 on <z ∈[−a,− 1

2

]
.

We have to estimate |H∗(z + a)|. Because the sequence {ak + a} has the
same properties as the sequence {ak}, as [15] p. 95. after Lemma 5, on <z ≥ 0

|H∗(z)| ≤ (CΨ(r))x,

and
H∗(z + a)| ≤ (CΨ(|z + a|))x+a (28)

12



(x ≥ −a). This inequality implies that if C1 is large enough, then according to
(19) and (24)

|G(z)| ≤
√

K(x) on <z > −1
2
, (29)

and because a > 1
2 , on <z ∈ [−a,− 1

2

]
:

|G(z)| ≤ (ϕ(x + a))x+a

|b(z)| ≤ 1
δ

max
x∈[−a,− 1

2 ]

√
K(x + a) = M. (30)

In the followings we will show that if there exists a function G which is
not identically zero, and is regular on <z > −a − 1, and fulfils the equations
G(ak) = 0 (k = 1, 2, . . .), and the inequalities (29) and (30) are valid, then S is
not dense.

For the purpose of showing this, we need to construct a function 0 6≡ k(t) ∈
L2

w(0,∞) such that
∫∞
0

takk(t)w2(t) = 0 for k = 1, 2, . . .. We give k(t) by the
inversion formula for the Mellin transform (see (17) and [27] p. 247. Th. 9.c;
p. 238. Th.2) of the regular function: G(z)

(1+a+z)2 , on <z > −a− 1. Let us define
the function u(t) by an (absolute convergent) integral along a line parallel with
the imaginary axis

tν(t)u(t) =
1
2π

∫ ∞

−∞

G(z)
(1 + a + z)2

t−zdy. (31)

It can be easily seen (by taking the integral round a rectangle xk ± iL k = 1, 2,
where L →∞) that the integral is independent of x. Let us choose

k(t) =
ν(Ct)u(Ct)

w2(t)
, (32)

where C is the same as in (4). Using that

G(z)
(1 + a + z)2

=
∫ ∞

0

ν(t)u(t)tzdt,

we have ∫ ∞

0

takk(t)w2(t)dt =
1

Cak+1
1

∫ ∞

0

vak−1vu(v)ν(v)dv

=
1

Cak+1
1

G(ak)
(1 + a + ak)2

= 0. (33)

We have to show, that k(t) ∈ L2
w(0,∞).

‖k‖22,w =
∫ ∞

0

u2(Ct)ν2(Ct)
w2(t)

dt =
∫ A

C

0

(·) +
∫ ∞

A
C

(·) = I + II, (34)

where A = max{1, C}.
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According to (3), and by the positivity of the coefficients in γ,

II ≤
∫ ∞

A
C

ν2(Ct)u2(Ct)
∞∑

k=0

cktγkdt ≤
∞∑

k=0

ck

Cγk+1

∫ ∞

A

tγkν2(t)u2(t)dt

=
∑

k
γk< 1

3

(·) +
∑

k
γk≥ 1

3

(·) = S1 + S2. (35)

By the notation h(t) = ν(t)u(t), and h̃(z + 1) = G(z)
(1+a+z)2 , using Parseval’s

formula for the Mellin transform (see (18))
∫ ∞

0

t2x+1ν2(t)u2(t)dt =
1
2π

∫ ∞

−∞

∣∣∣∣
G(z)

(1 + a + z)2

∣∣∣∣
2

dy

≤ cK(x) ≤ cK

(
x +

1
2

)
, (36)

where the equality is valid on <z ≥ −a, the first inequality is on <z > − 1
2 ,

and the last inequality is on <z ≥ − 1
3 say, where we used again that K(x+a)

K(x) is
increasing, that is

0 < c ≤ K(1
6 )

K(− 1
3 )
≤ K(x + 1

2 )
K(x)

.

Therefore, by (35) and (4)

S2 ≤ c
∑

k
γk≥ 1

3

ck

Cγk+1

∫ ∞

0

tγkν2(t)u2(t)dt ≤ c

∞∑

k=0

ck

Cγk+1

(
ϕ

(γk

2

))γk

≤ c

∞∑

k=0

ck

Cγk+1

∫ ∞

0

tγkw2(t)dt ≤ c

∞∑

k=0

ck

∫ ∞

0

(
t

C

)γk

w2(t)dt

= c

∫ ∞

0

γ

(
t

C

)
w2(t)dt < ∞. (37)

To estimate S1 and I, we will use that by (29) and (31), with x = − 1
3

ν2(t)u2(t) ≤ ct−
4
3

(
ϕ

(
−1

3

))− 2
3




∫ ∞

−∞

1∣∣∣
(

2
3 + a + iy

)2
∣∣∣
dy




2

= ct−
4
3 . (38)

That is
tγkν2(t)u2(t) ≤ ctβk , where βk < −1,

and therefore the finite sum: S1 is bounded. Similarly, if instead of x = − 1
3 we

use x = −a in (31), we obtain by (30) that

tν(t)u(t) ≤ Mta
∫

R

1
|(1 + iy)2|dy

14



that is
ν2(t)u2(t) ≤ cM2t2a−2,

and so by (2)

I =
∫ A

C

0

u2(Ct)ν2(Ct)
ν2(t)µ2(t)

dt ≤ c

∫ A
C

0

t2(a−1)

ν2(t)
dt < ∞. (39)

This proves Theorem 1.

We now turn to the proof of Theorem 2. We will need a technical lemma.
Following carefully the proof of Lemma 7 – Lemma 11 in [15], actually W. Fuchs
proved the following:

Lemma 2 [15] If there is a nonnegative, monotone increasing function h on
(0,∞), which fulfils (13), and

∫ ∞

1

h(r)
r2

dr = ∞, (40)

and if there is a function g regular on <z ≥ 0 such that there are C, c > 0,
α > 0

|g(z)| ≤ C

(
cx

h(r)

) x
α

, (41)

then
g ≡ 0 on <z ≥ 0. (42)

Remark:

In Lemma 2 C and c means that instead of a regular function g another
regular function: bAzg(z) can be considered (A, b are positive constants). It
means that Ψ(r) can be replaced by a function Ψ1(r) such that Ψ

Ψ1
lies between

finite positive bounds, and Ψ1(r) has a continuous derivative. Therefore in the
followings we will assume that Ψ(r), that is m(r), is continuously differentiable,
if it is necessary. Furthermore since m(r) is increasing, we will assume that the
derivative of m is nonnegative. If it is necessary, we can assume the same on h.

Proof: of Theorem 2.
From (14), and the previous lemma it follows that if a function g(z) is regular

on <z ≥ 0, and it satisfies the inequality

|g(z)| ≤
(

c

Ψ(r)

)x √
K(x), (43)

then g ≡ 0. Namely, if r ≥ x > 0, then (14) and (45) together gives (43), and
by the definition of ϕ and Ψ,

lim
x→0+

(
c
ϕ(x)
Ψ(r)

)x

= ‖w‖2,(0,∞), (44)
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so we can choose a constant C, such that
(

ϕ(x)
Ψ(r)

)x

≤ C

(
cx

h(r)

) x
α

on <z ≥ 0. (45)

Now let us assume, by contradiction, that S is not dense in L2
w. In this case

there is a function f 6≡ 0 in L2
w, such that the function

G(z) =
∫ ∞

0

tzf(t)w2(t)dt (46)

defined on <z ≥ 0, satisfies the equalities

G(ak) = 0 k = 1, 2, . . . (47)

and we can estimate its modulus by the Cauchy-Schwarz inequality

|G(z)| ≤ ‖f‖2,w

√
K(x). (48)

Let us define now on <z ≥ 0

g(z) =
G(z)

H(z)Cz+1
1

, (49)

where H is as in (25). By Lemma 4 [15]

|H(z)| ≥ (C2Ψ(r))x (50)

on C\∪∞k=1B
(
ak, d̂

)
, where B

(
ak, d̂

)
are open balls around ak with fixed radius

d̂ < min{ 1
5 , d

4}, and on the imaginary axis without exception. This implies that

|g(z)| ≤ C

(
c
ϕ(x)
Ψ(r)

)x

(51)

on <z ≥ 0 \ ∪∞k=1B
(
ak, d̂

)
(and on the imaginary axis (see (44)). We will

show that because g is regular on <z ≥ 0, (51) holds on the whole half-plane.
According to (47) it will imply by Lemma 2 that g ≡ 0, and hence G ≡ 0, which
is a contradiction.

At first we deal with Ψ(r). Around ak Ψ(r) = Ψ(ak) or Ψ(r) = Ψ(ak+1).
Since m(ak) < m(ak+1) < m(ak) + 1

a1
≤ m(ak) + 1

d (see (7)), that is

Ψ(ak) < Ψ(ak+1) < c(d)Ψ(ak). (52)

Then, by the same chain of ideas, we will deal with K(x), when x > 0. According
to Lemma 1, (see (22))

K(x + 1) ≤ c1e
cxK(x), (53)

where c1 and c are absolute constants. Let 0 ≤ δ ≤ 2
5 ! By the Lagrange’s

theorem
0 < K(x + δ)
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= K(x) + 2δ

∫ ∞

0

t2xt2δ1 log t w2(t)dt ≤ K(x) + 2δ

∫ ∞

1

t2xt2δ1 log t w2(t)dt

≤ K(x) + 2δ

∫ ∞

0

t2(x+1)w2(t)dt ≤ K(x) + 2δc1e
cxK(x) ≤ cx

2K(x), (54)

where 0 ≤ δ1 ≤ δ, and we used (53). Similarly, with the notations above,
because x > 0, 0 < δ < 1

2 , K(x− δ) exists, and

K(x− δ) = K(x)− 2δ

∫ ∞

0

t2xt−2δ1 log t w2(t)dt

= K(x) + 2δ

∫ 1

0

t2x−2δ1 | log t|w2(t)dt− 2δ

∫ ∞

1

t2x−2δ1 log t w2(t)dt

= K(x) + 2δ(A−B).

Now if A ≤ B,
0 < K(x− δ) ≤ K(x). (55)

If A > B, then, because 2δ1 < 1 and x > 0

0 < A−B < A ≤ max
t∈[0,1]

w2(t)
∫ 1

0

t2(x−δ1)(− log t)dt

=
maxt∈[0,1] w

2(t)
2x− 2δ1 + 1

∫ 1

0

t2(x−δ1)dt ≤ maxt∈[0,1] w
2(t)

(2x− 2δ1 + 1)2
<

c

(x + ε)2
,

where ε > 1
10 . Because

K(x) >

∫ 2

1

t2xw2(t)dt ≥ min
t∈[1,2]

w2(t)
∫ 2

1

t2xdt ≥ c
22x+1

2x + 1
,

there is an absolute constant c3 such that

K(x− δ) ≤ K(x) + 2δA ≤ c3K(x). (56)

Returning to the estimation of |g(z)| on <z ≥ 0, it is enough to show that

|g2(z)| ≤ C

(
c

Ψ(r)

)2x

K(x) on <z ≥ 0. (57)

The inequality above holds on the circle C(ak, d̂). So if ζ is in the ball B(ak, d̂),
then

|g2(ζ)| ≤ sup
z∈C(ak,d̂)

C

(
c

Ψ(r)

)2x

K(x)

≤ C max



 max

z∈C(ak,d̂)
|z|≤ak

(
c

Ψ(ak)

)2x

K(x), max
z∈C(ak,d̂)
|z|≥ak

(
c

Ψ(ak+1)

)2x

K(x)



 .
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So there is an x0 ∈ [ak − d̂, ak + d̂], such that

|g2(ζ)| ≤ C

(
c

Ψ(a)

)2x0

K(x0), (58)

where a = ak or a = ak+1. Let |ζ| = % and <ζ = σ! Now δ := |σ−x0| < 2d̂ ≤ 2
5 .

By the previous calculations

(
c

Ψ(a)

)2x0

K(x0) =
(

c

Ψ(a)

)±2δ (
c

Ψ(a)

)2σ

K(σ ± δ)

≤
(

c

Ψ(a)

)±2δ (
c(d)c
Ψ(%)

)2σ

cσ
4K(σ) ≤ C

(
c

Ψ(%)

)2σ

K(σ), (59)

where in the last inequality, in the case of +2δ, we used that Ψ(r) > 1. When
the exponent is −2δ, we used that by the well-separated property of the sequence

{ak}, (recalling that a = ak or a = ak+1)
(

Ψ(a)
c

)2δ

≤ c5(d)kc6(d), that is there is

a c7(d) such that c5(d)kc6(d) ≤ (c7(d))kd ≤ C(c7(d))σ. Finally in the last term
of (59), C is an absolute constant, and c is a constant which depends only on
d. That is (59) (and so (51)) is valid on <z ≥ 0 with constants depending only
on d, which proves the theorem.
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