Near-Best Approximation by a de la Vallée
Poussin-type Interpolatory Operator

Agota P. Horvath *

Department of Analysis, Budapest University of Technology and Economics
H-1521 Budapest, Hungary
e-mail: ahorvath@renyi.hu

Abstract

We give a very simply computable interpolatory process, wich approx-
imates in near-best order on [-1,1] in some Jacobi-weighted space.

1 Introduction, Definitions

Practically, it is always an interesting problem to construct a discrete linear
operator, which approximates for instance continuous functions in near-best
order. It is a natural idea to use some kind of de la Vallée Poussin-type means
for proving best, or near-best order of approximation. After the investigations
of eg. R. Bojanic, O. Shisha [1], and G. Freud [2], in 1974 J. Szabados gave
the discrete version of de la Vallée Poussin means in the trigonometric case
[11]. The considerable generalization of this result, which was simultaneously
an answere of a question of G. Freud and A. Sharma [3], was given by O. Kis
and J. Szabados [4].

In 1999 H. N. Mhaskar and J. Prestin established a result on bounded quasi-
interpolatory operators [9], which also based on de la Vallée Poussin-type means.
Their discretizing method based on the quadrature formula, and not on some
integral approximating sum, as in the previous papers. However it deals with
rather general weighted spaces, (applying the results to generalized Jacobi and
Freud weights) the interpolatory property had been lost. In this direction some
more investigations appeared eg: [5], [7], [8]. Generalized de la Vallée Poussin
means in Jacobi-weighted LP-spaces was first treated by Nguyen Xuan Ky [10],
and in 2008 further results were given by G. Mastroianni and W. Themistoclakis
[6]. (for further preliminaries see [12])
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In this paper we should like to give a de la Vallée Poussin-type interpolatory
process in some Jacobi weighted spaces, and deal with the question of approxi-
mation of continuous functions. The utility of this method is in the simplicity of
the nodes, that is instead of for instance, the roots of orthogonal polynomials, or
Fekete or Leja points, we shall interpolate on the nodes %r, ]=—Vv,...,v—1,
and so the computations are very simple. Our starting point was a trigono-
metric expression of the Christoffel-Darboux kernel of Jacobi-Fourier series (see
Szegd 9.3.5 [13]). Summarizing the main-part of this formula from [ + 1 to 2n
(the tail-part does not tends to zero with n!), we can construct our interpolatory

operator: Mff}’ﬂ)(f, ). By the notations:

Definition 1 Let wq g(z) = (1 — 2)*(1 + )P be the Jacobi weight function

n (=1,1) (a,8 > —1), and the corresponding weight function on (—m,m):
Wa,5(p) = 2P sin®*H1 £ cos?P+1 £ and for simplicity let us denote by vy 4(p) =
sin” £ cos? £.

Furthermore let us define the following classes of continous functions:

Definition 2

Cuw. s[—1L, 1] ={f : fwap is continuous on [—1,1], lim1 fwaplx) =0, if >0,
and 1i1n1 fwaplz) =0, if « >0} (1)

and

Co,  [=m 7] ={f: fupq is continuous on [—m, x|, lim (fv,4)(¢) =0, if ¢>0,

p—T
and L (Fu)(¢) =0, if p > 0) (2)
Let us define the interpolatory operators as:

Definition 3 Foran f € C,,, (with some §, 1 > —1) let us define the following
discrete operators on [0,7) forn € N, 0 <1< 2n andv <n+ # + g:

(a,8) 2 - ~ 1
n,l (f’ 19) m + l +a+ ﬂ + 3 ; f((p.])wa’ﬁ(@j) n(@ﬂ’ﬁ)’ (3)
where o 5
L JT — &y .
I mtlta+pBt3 §=0.m (4)
1\ 7
== (04 + 2) 5 (5)
and
K (p.9) = — FOKD) sin[(2n + 1+ a + B+ 3) &5 + 29]sin(2n — 1) &2
AT 20+842(2n — 1) sin? L;'ﬁ



+sin(2n+l+a+ﬁ+3)ﬂ sin(2n — z)*’;ﬁ}

2 p—19
sin® 25
where ]
k() = (7)
VT sin®t 3 £ cosfts £
At first we have to note that as it can be easily seen that Vi,j =0,...,v,

0; if i # j
K! i i) = 20,
e { S0+ ka5 3); i 0=

therefore if Mfloz’ﬁ)(f, ) exists, we get that

MY (fopr) = Fl@i), G=0,....v (9)
On the other hand

2n sin[<k+1+“7+ﬁ) (<p+z9)+27} sin(k-l—l—i—%w) (p— )

X
i etY
n-=

k=i11 St

(10)
Denoted by %ﬁﬂ = M + 6, where M € Z,§ € [0,1), we can expound the
expression in the bracket as

sin[(k—l—l—i—w)(go—i—ﬂ)—l—?y} sin(k—!—l—&—aTw)((p—ﬂ)

+
sin <p+19 sin WT_ﬁ
kM :
sin [(§ — 2 +39)+2
=2 Z cos[(m +0)(p + ) + 2v] + [6-2) (:irﬁ ALl
o Sln =
b+ M
sin (6 — 1 U
42y cos(m+8)(p— )+ 20— (= 9)
— sin £
kM
=4 Z cos[(m + 6) () + 7] cos[(m + §)(V) + 7]
m=0
+sin [(5 — 7) (p+9) + 2’?] n sin (5 - *) (p—1)
sin ‘P+19 sin ‘pTﬁ ’
That is
2m 1 sin®tz 2 cogfts &1
G 2 .
n,l (f’ ) 2n+l+a+ﬁ+3zfs0j 27‘[’ SinOHFEgCOS[.3 %g



4 2n  k+M
X{<2n—l Z ZCOS[(er(S)((Pj)+’Y]COS[(m+5)(19)+7]>
k=Il4+1 m=0
sin [(6 — & i+ 9 sin 6—% o
+< (EHTCEUEE 3 TSI ))}

In the followings, we want to construct an operator extended on [—m,7),
which is bounded, and for which a reproducing property is valid. Because of
this extension, some values of f may appear more than once, so we have to
introduce some €; constants, to neutralize this occurence, that is we have to use
€ f(y;) instead of f(g;).

To guarantee some reproducing property of M T(ﬁﬁ ) (f,1), we have to handle
somehow the last two summands. For the purpose of this, we will choose a+% =
p and § + % = ¢, where p and ¢ are integers. In this case, since § = {p—;q},
thence d =0 or 6 = % Furthermore

sin [(5 — %) (p; +9)+ 27] N sin (5 - %) (p; — V)

sin%Tw sin‘aj;l9
0,if6=2orp=20+1
= = ’ 2
¢ {—2, if 6 =0 and p=2p (11)

In the followings we will deal with only these types of parameters. (Here we
have to mention that we have another possibility to define an interpolatory-
type system of nodes: ¢; = %, but it is well-defined on [—m, ) if and only if
o+ % € Z, and if a 4+ § € Z, that is we have to choose p and ¢ to be integers

again.)

2 Notations, Result
With the above notations, in the followings, let o + % =p, B+ % = ¢ with
p,q € Z. Now, we can choose
29 Jm
T = — = — ceey - ]. ]-2
0= T~ o F= ey (12)

and [ = n or [ = n+1, according to the pairity of p+gq, that isv = % eN.

(In the followings K (¢, ) = K, (p,9), and the same for K1 M,%’T’Lq), M,(Lf);ﬂr
Furthermore let N = 2n — [, and 3N = 2n +[.) Since 2y = —pm, we have that

Kn(p,0) =

k(p)k(9) [ (1) sin(8N + p + ¢ + 2) 2L sin N 257
- 2ptatlN

sin? “OTM

L SInBN +pta+ 2) 277 sin N 57 }
sin ’

2 p—9
2



and so

0; if i £ 45
1+ (=1)P; ifi=j=0
SN+a+p83+3 T
24 () (1) K, 05) = P2 T (2) iy = gy =
T .
L if g, =p; #0,—m
1, ifi=—-5#£0
(13)
therefore if M"? (f,4) exists, then
(p,q) L+ (=1) (p,q) 1+ (=1
Mn ’ (f7 0) = f‘f(o)a Mn ’ (fv —7'(') = ) f(_ﬂ-)v
i)+ J(—p; .
Mr(Lp’q)(f»SOj):Mv j={-v+1,...,v—-1}\0 (14)

2

Notation:
(1)With the above notations, we define a trigonometric polynomial (u(9)) such
that

w(d) = up,q(V)

sin? g cosdt! g = fig“ ct(p,q)costd, if p=20, g=20+1
_ ) sin?Tt Zcos? § = f;rgﬂ ce(p,q)costd, if p=20+1, ¢g=20 (15)
sin? g cos? g = f;rg ci(p,q) costdd, if p=2p, q =20
sin? 2 cos? & = f:f“ ci(p,q)sintd, if p=20+1, g=20+1
(2)Therefore
P " Up.q(©5)
Mép,q)(f, Dup,q(9) = “p,qw)f Z f(@j)“p,q(@j)MKn(Sﬁj»ﬁ)
Vj:,l, Up,q(5)
v—1
1 Up,q(0) Up,q(V)
- f(‘P)u 7 (QO)M J
4N j;,, PP g (95) vp g (9)
e sin(2v) £ gin N €0 . sin(2v) £ sin N £-7 16)
sin? Lj; Y sin® £~ v
(3) Let &,n € 3Z,x € [-1,1], and x; = cos p; = cos LT,
MEM _ 1 1 L
ey MED(F,2)) = < (£ 100 @0) Lo 0)
v—1 1
+ Z f(@j)wey iy (25) Ln (2, 35) + §f(x1/)w£17771 (zv)Ln(z,20) |, (17)
j=1



where
Ln(x,xj) _ wfl*éa"l*n(xl)
wﬁl—ﬁﬂh—’ﬂ(xj)

. arccos rj-rarccosT . arccos r;+arccosx
{(—1)25 sin 2v it sin N it

2 2

.2 arccos x;+arccos x
sin® ———L————

X

2

sin 2v 5 5

.2 arccos T; —arccos T
st

(18)

arccos CEJ —arccos o . arccos ./1?_7 —arccos ™
sin N

2

(4) Let us denote by ||(-)|| the infinity norm on the interval in question, either
on [—m, x| or on [—1,1].

Definition 4
EY(H)= min [|(f~p)ul (19)

OT peTy,

is the error of the unifomly best approzimating polynomial/trigonometric poly-
nomial (p)with degree n, with respect to a weight: w.

Theorem 1 Let &,n € %Z, and £,1m > 0.

fely [-1,1], (20)

£1,m1

where (€,m1) = (6,m+ 4, if 2€ s even, 2 is odd; (€1.m) = (€ + L.m), if 2€ is
odd, 21 is even, (€1,m) = (€,1), if €+ € Z. Then

Wey,m (xi)M7(1£7n)(fv :EZ) = Wey,m (xl)f(xZ)v 1=0,...,v (21)

and
I(f (@) = MED (f,2))we, || = O (En ™™ (f)) (22)

Remark:
By the same arguments one can prove that ||(f(z) — Mﬁfl’n)(f, x))we, || <

B EE pra s (f) with 0 <1< 2n — 1.

3 Proof

For the proof of the theorem, by the substitution £ = cos®? we can work on
[0,7), and then we can extend the funtion, and the operator as well to [—m, 7).
So our first lemma is

Lemma 1 Let p and q be nonnegative integers, and let f € Cy, [, 7| such
that f is even on (—m,0) U (0,7), then

I/ (0) = MPD(f,0))up g (9] = O (Ey(f)) (23)



Remark:
In the followings we will use [ =n or [ = n + 1 again, if it is necessary.

v—1
1 c 2
MPD (£ 9Nu(Y) = E . A
cos & cos(er%)((pj) cos(er%)(ﬂ)

7j
COs -5

, ifp=2p, q=20+1
2n  k+M L9 ( 1) A 1
sin £ sin(m+3 ) (¢ )sm(m-l—f)(ﬂ) . . N
xS . . e ifp=20+1, ¢=20 (24)

sin -
k=l+1m=0 1" cogmep; cosmd, if p=2p, ¢=20

sinme;sinmd, if p=20+1, g=20+1

Let us call the above cases as case (a),(b),(c) and (d) respectively. The
previous computations show that

Lemma 2 M7§LIJ"1)(J”7 Nu(V) in case (a) and (b) is a cosine-polynomial with de-
gree 2n+ M +1; in case (c) is also a cosine polynomial, but with degree 2n—+ M ;
and in case (d) is a sine-polynomial with degree 2n + M.

Now we can turn to the proof of the reproducing property:

Lemma 3 Let C(9) be a cosine-polynomial with degree L on [—m, 7). If L < n,
then
Cr(9)u(¥) = MPD(Cp, 9)u(?), 9 € [-m, 7).

Remark:

Naturally in the above expression u(1}) is necessary only that points, in which
it is zero.
Proof:

At first we will deal with case (a). Now

1

v—1
MO (£, 0)ul0) = gy o Jeiue)

2n  k+M
X Z Z A, j(cosmd + cos(m + 1)),
k=I+1 m=0
where ( 1)
cos (m+ 5) @;
Qm,5 = cos %ji, Qp,; = ap = 1.
That is
1 v—1

MPO(f, 9)yu(V) Y fles)ule;)

- 3N +p+q+2,

I+M+1
X < ag + Z (am_lﬁj +am7j)cosm19

m=1



Q%M 2n+ M +1—m

+ ~ (@m—1,j + @m, ;) cosmi

m=l+1+M+1
2n+M+1

+ Z % cos mﬁ}

m=l+1+M+1

Let f(¥) = Cr(¥) is a cosine polynomial with degree L now!

Then taking into consideration that

(i) in case (a) Cr(Du(P) = Zﬁiéwﬂ d,, cos v is also a cosine polynomial,
(i) B> —1, Ci(p-)ulp—) =0 =Y, L (=1)1d,,

(ill) @m—1,j + am,; = 2cosMp;,

(iv) amy = (~1)™ (2 S (—1)2 cos op; + 1)

we get that
1 v—1 L+M+1
MPD (O, 9)u(V) = o Z < Z d,, cos pp;
j=—v pn=0
I+M+1 2n+M
2 M+1-
x{ao+2 Z cos my; cos mi + 2 Z nt N+ mcosmgojcosmﬂ
m=1 m=Il+1+M+1
1 2n+M+1 m—1
-1
+N Z (=1)™"" cosmy (2 Z (—1)¢cos op; + 1) })

m=l+1+M+1 o=1

Changing the order of summations, we can write

1 L+M+1
Mr(f”‘I)(CL,zS‘)u(ﬂ)ZQ— Y d,
v
n=0

v—1 I+M+1 v—1
X Z cos pp; + 2 Z cos my Z COS [ COS M
j=—v m=1 j=—v
9 2n+M v—1
+N Z (2n+ M 4+ 1 —m)cosmd Z COS L1 COS MY,
m=Il+1+M+1 Jj=—v
1 2n+M+1 m—1 v—1 v—1
+N Z (=)™ cosmd | 2 Z (-1)° Z COS (1 COS ;5 + Z COS U
m=l+1+M+1 o=1 Jj=—v j=—v
Since
v—1 0, if m#
Z cosmp;cos pp; =4 2v, fm=p=0 , (25)
j=—v v, fm=p#0

and according to (ii), for an L <



1 L+M+1
MPD(Cp 9)u(d) = o {2yd0 +2 Z d,vcosud + 0

m=1

| 2vEM+ L+M+1
ty Z (=1)™" ! cosmv <2y Z (—1)“du> } = Cr(9)u(?) (26)
m=L+1+M+1 n=0
In case (b)
1 v—1 2n  k+M
( K ) —_— — . . . Q 3
MO (f0)u(9) = 5o 3 Flei)ules) 3D bm(eos mi+cos(m+1)9),
j=—v k=Il4+1 m=0
where
sin (m + 1) ©j
by = ———22 L by =by = 1.
J sin 5 07 0
So because
bm,j — bm—1,; = 2cos my;,
I+M+1
M(pyq (f,9) Z flpj)u {bo + 2 Z cos mp; cos mi
j_,l, m=1
2n+M 2n+M+1
2n+M+1—m bm_L'
+2 Z N cos me; cos mi) — Z Tj cos mﬁ}
m=l4+1+M+1 m=l+1+M+1

If f(¥) = CL(¥¥) is a cosine polynomial with degree L, then
i) in case (b) C(u(®) = SSEEMH g, cos pd is also a cosine polynomial,
pn=0 (] I
(i) @ > ~1, Ci(po)u(po) = 0= 3,25 d,

pn=0
(ifi) b,y = 1+ 2300 cos 0,
And
1 L4+M+1
MPD(Cp, 9)u) = o {21/d0 +2 Z d,vcos pd + 0
m=1
| M L+M+1
+ > cosmd (2,, > d,t> } = CL(9)u() (27)
m=L+1+M+1 #=0

In case (c)

2n  k+M
1
M@ (f,9) = Z flej)u { 1+ = Z Z cosmp; cosml?}

j=—v k I+1 m=0



:i‘ZfSDJ

Jj=—v
L+ M+1 2n+M
2n+ M +1-—
{—1+2 Z cos mp; cos my + 2 Z nt ]\?_ mcosmcpj cosmﬁ}
m=0 m=l+1+M+1

That is if f(¢) = Cp(¥) is a cosine polynomial with degree L, then Cr,(9)u(d) =
Eﬁ+ d,, cos pv is also a cosine polynomial, and for L < n M(p’q)(C' , Nu(¥) =
Cr(9)u (19) as in the previous case.

Similarly, in case (d) if f() = CL(9) is a cosine polynomial with degree
L < n, then Cp(9)u(d) = ZLJFM d,, sin pd is a sine polynomial, and using the
orthogonality of sin ¢;-s on [—7, 7]

v—1 L+M
MPD(Cp, ) Z Z d,, sin pp;
J_*V pu=1
9 2n  k+M
X {N Z Z sin meyp; sinmﬂ} = Cr(9)u(v).
k=l+1 m=1

Lemma 4 With the previous notations

A = [lup g (DAL ()]

v—1

— |v
9 Vp,a(#5) 9l =oa 08
D e S |l |[=om e
Proof:
case (a):
1
Up,g(D)ANPD (9) = SN
i cos & 2 sin 2v %;ﬂ sin N””'Tw sin 2v %2_19 sinN“afz_ﬁ
j=—v Sin2 wJTM Sin2 LPJT_ﬂ
I+M+1 2n+M
2 M+1-
1+2 Z ™ cosmd + 2 Z nt Z\;r m(fl)mcosmﬁ
m=Il+1+M+1
2n M+1
2m —1 1
+ Z (=)™t cosmv| +
m=l+1+M+1 2uN

5>

COS
j=—v+1

9 -9
CoS 5 2 sin 2v€ ; sin N“o"H sin 28 5 51nN<’a’
sin

: 2<PJ+19 sin 2 p;—9
2 2

10



v—1

1
—A+B=A+ QVNj:_ZyHB”w)

It is clear, that A = O(1). It is enough to estimate B on [0,7), so let
0 < pp—1 < U < pp!

1
B <
- 2UN

(Bi-1(9) + Bi(9) + Bi41(9) + B—k — 1(0) + B_x(¥) + B_41(7))

1
— B = B, B
+ox > J(9) = B.(9) + B..(9)
—vF1<j<v—1
jE—k—1,—k,—k+1,k—1,k k+1

Since B;(¥) <4vN, (i=k—1,k,k+1,—k—1,—k,—k + 1) thence B.(9) =
0(1).

—k—2

1
Bu(9) < CQVN {j Z

=—v+1

Pr—1
Cos —5

Li

0082

1 1
s 2 QitPr—1 + = 2 Pi—Pr—1
sin % sin ’f

9 —k—2

k—2 v—1
DO SOPET R IS

j=—k+2 k+2 j=—vt1

) <max{<j+1k>2’ (2v - |;'+k|>2} *max{u —1k>2’ (20— G —kl>2}>

k—2 v—1
+ Z (')+Z(')}2211+E12+221+222+231+232

v—Ek
v —1jl

j=—k+2 k42
k-2
v V_k 1 1
x N g max . 3 "
: NJZ—ZV+1V_|J| {(J+k)2 (2V—|]+k)2}
v v—1 V——-k
=c— — Y =0(1) (29)
N j;rz v =5 —k)?
k-2
v V_k 1 1
Y = C — - max - , :
N Nj:;HV—M {(J—k)2 (2y—|j_k)2}
v v—Fk vk 1 v—1 v—k 1
N j=k+2yfj(j+k) j:u_kHV*J(QV*]*k)
k—2
v V*k 1 1
Vo1 = oy ————max < — 7 ' — o 41
; Nj:fk+2y_|3| {(]+k)2 (2y—|j+k|)2} (1) (31)

11



v—1
v—k 1
= 1
D e o Tt (3)
j=max{k+2,v—k}+1

and . )
zgzzc%2j=k+2y—1%jmzoa) (34)

Case (b) is very similar to case (a); the only difference is that we have to
separate the v — O-term, so we omit the details.

In cases (c) and (d) up 4 = vp4 so we can follow the above computations
without an extra factor.
Proof: of Lemma 1

For an f in Lemma 1, one can give a best approximating polynomial with
degree | with respect to u, 4, which is a cosine-polynomial, on a standard way.
So by Lebesgue’s inequality, and according to lemmas 2,3:

I(f = MO (F)upgll < (1+ An) Egrs (f)

and together with Lemma 4, it gives Lemma 1.
Proof: of Theorem 1

Let f be as in Theorem 1. Then by the replacement x = cost, denoting
by f(1¥) := f(cos?) again, an f € C,, [0, 7] is defined, where p = 2£,q = 27.
Now let us extend this function to (—m,0) U (07), so (denoting also by f) we
have an even function in C,,  [—7, 7] As in previously, we can define the best
approximating polinomial to f with degree n, with respect to we, ,,, on [—1,1].
That is ||(f(x) — pn(x))we, m (x)]| = En " (f). Substituting 2 = cos¥, and
denoting by Ca(9) = pa(cosd), |(F(9) — Ca(®))p ()] = Bes™ (f(x)) =
En7?(f(9)). Applying Lemma 1, we get that

I/ (0) = MPD(f,0))upg(9)] = O Ey»(f) (35)

M (100 (0) = o | 2 f<w.a->upvq<%>mm

j=-v

: it ;0 ; i =Y =Y
y { (—1)P sin(2v) 25~ sin N 2= N sin(2v) £ sin N £~ }

: s : —
sin? % sin? g

12



+30 | = o T +1D)

LN o su (o Ela(P=s) (D)
= Z flo=3)0upales) Up,q(P—j) Up,q(V)

Jj=—v
y {(—1)1’ sin(2v) =251 gin N =2 t? L sin(2) —e=Y in N }
2 —p_i+9 2 —p_;—0 ’
sin® ——— sin 5
where ¢ = —1, if p is odd and ¢ is even, and € = 1 otherwise; 6 = —1 if p and ¢

are odd, and § = 1 otherwise, that is e = (—1)P. So

I= Z f(@j)“p,q(@j)ivp’q(%) Lp’q(ﬁ)

j=1 ulh']((ﬁj) U%q(ﬂ)

=9

(=17 sin(21/)¢jT+ﬂ sin N“o"TW N sin(2v) “012_19 sinN‘sz_ﬂ
X b
sin? ==

X 0
sin? %

and

M (f, ﬁ)(pﬂ))up’q(ﬁ) = WN

X (;f(wo)up,q(%)Ln(ﬂ,@o)

v—1

+ Z f(@3)up,q(@5) Ln (¥, ;) + %f(@u)up,q(xu)Ln(ﬁv Pv) (36)

Jj=1

Substituting cos¥ = z, cos; = z; in (35), and taking into consideration (36)
the theorem is proved.
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