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EXCEPTIONAL JACOBI POLYNOMIALS

Á. P. HORVÁTH

Abstract. Some inherited properties of exceptional Jacobi polynomials are

derived and as an application it is shown that similarly to the standard case,
the equilibrium measure of Julia sets of exceptional Jacobi polynomials tends

to the equilibrium measure of the interval of orthogonality in weak-star sense.

1. Introduction

Notion of exceptional orthogonal polynomials is motivated by problems in quan-
tum mechanics, see e.g. [7]. It has a rather extended literature, see eg. [8], [1],
[4] and the references therein. Exceptional orthogonal polynomials are complete
systems of polynomials with respect to a positive measure, but the exceptional
families have finite codimension in the space of polynomials, cf. [8, Definition 7.4]
or [4, Definition 6.1]. Similarly to the classical ones exceptional polynomials are
eigenfunctions of Sturm-Liouville-type differential operators but unlike the classical
cases, the coefficients of these operators are rational functions. An elegant way of
constructing exceptional and general Jacobi polynomials the Wronskian method via
(two) partitions, cf. e.g. [4], [1]. Some properties, for instance the behavior of zeros
are derived in rather general circumstances, see [1, Theorems 6.5 and 6.6]. Excep-
tional orthogonal polynomials also possess a Bochner-type characterization as each
family can be derived from one of the classical families applying finitely many Dar-
boux transformations, see [8]. Taking into account this characterization, below we
investigate some properties which are inherited to exceptional Jacobi polynomials
from the classical ones. Besides new results, we give some simple proofs to known
ones in exceptional orthogonal Jacobi case.

As an application of the properties proved in the second section, in the third one
we give the weak-star limit of the equilibrium measure of Julia sets of exceptional
Jacobi polynomials. In the standard case, the sequence of equilibrium measures of
Julia sets of polynomials orthonormal to a (probability) measure supported on a
compact set (of positive capacity) on the complex plane belongs to the family of
measure-sequences which tends to the equilibrium measure of set of orthogonality.
The other members of this family are for instance, the normalized counting measure
based on the zeros of the orthogonal polynomials in question, see e.g. [14] and
the references therein, the weighted reciprocal of the Christoffel functions as the
sequence of densities, see e.g. [16], [10], the normalized counting measure based
on the eigenvalues of the truncated multiplication operator, see e.g. [22], [20] and
the normalized counting measure based on the zeros of the average characteristic
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polynomials, see e.g. [23], [10], [11]. Similar theorems can be derived to exceptional
Jacobi polynomials, see e.g. [1], [13]. The result of the third section fits into this
family.

2. Some inherited properties of exceptional Jacobi polynomials

We use the Bochner-type characterization of exceptional polynomials given in
[8]. According to [8, Theorem 1.2] each system of exceptional (Jacobi) polynomials
can be obtained by applying a finite sequence of Darboux transformations to the
classical Jacobi system. Below we derive some properties which are inherited after
this procedure. Since for the proofs we need the construction, we summarize it in
brief, cf. [8].

2.1. Recursive construction. Classical Jacobi polynomials {p(α,β)k }∞k=0 are or-
thonormal on I = [−1, 1] with respect to the weight function W0(x) = (1−x)α(1+
x)β , where α, β > −1 and they are eigenfunctions of the second order linear differ-
ential operator with polynomial coefficients

(1) T0[y] = py′′ + q0y
′ + r0y,

with eigenvalues λn, where p(x) = 1 − x2, q0(x) = β − α − (α + β + 2)x, r0 = 0,
λn = −n(n+ α+ β + 1), see [23, (4.2.1)].

Exceptional (Jacobi) polynomials can be obtained from the classical ones by
application of finitely many Darboux transformations to the differential operator
T0 that is applying finitely many appropriate first order differential operators to the
classical (Jacobi) polynomials, cf. [8, Theorem 1.2]. This procedure is as follows.

(2) Tk−1 = BkAk + λ̃k, Tk = AkBk + λ̃k,

where

(3) Ak[y] = bk(y
′ − wky) Bk[y] = b̂k(y

′ − ŵky),

i.e. the decomposition of the differential operator of the second order, Tk−1 leads
to the definition of Tk, where

(4) Tk[y] = py′′ + qky
′ + rky.

wk is the logarithmic derivative of a quasi-rational eigenfunction of Tk−1 with eigen-

value λ̃k, that is wk is rational and fulfils the Riccati equation

(5) p(w′
k + w2

k) + qk−1wk + rk−1 = λ̃k.

bk is a suitable rational function and

(6) b̂k =
p

bk
, ŵk = −wk − qk−1

p
+

b′k
bk

.

The coefficients of Tk fulfil

(7) qk = qk−1 + p′ − 2
b′k
bk

p = q0 + kp′ − 2p

k∑
i=1

b′i
bi
.

(8) rk = rk−1 + q′k−1 + wkp
′ − b′k

bk
(qk−1 + p′) +

(
2

(
b′k
bk

)2

− b′′k
bk

+ 2w′
k

)
p
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=

k−1∑
i=0

q′i+p′

(
k∑

i=1

wi −
k∑

i=1

b′i
bi

)
−

k∑
i=1

q′i−1

b′i
bi
+p

(
2

k∑
i=1

(
b′i
bi

)2

−
k∑

i=1

b′′i
bi

+ 2

k∑
i=1

w′
i

)
.

Fixing α, β > −1 and denoting by

P̂ [0]
n = p(α,β)n ,

(2) implies that

(9) P [k]
n = AkP̂

[k−1]
n and TkP

[k]
n = λnP

[k]
n ,

where

(10) P̂ [k−1]
n =

P
[k−1]
n

σk−1
n

,

that is {P̂ [k]
n }∞n=0 is orthonormal on (−1, 1) with respect to the weight function

(11) Wk = c
pWk−1

b2k
= c

pkW0∏k
i=1 b

2
i

,

and σk
n = ∥P [k]

n ∥2,Wk
. Since Wk has to possess finite moments (cf. [8, Definition

7.4]), bi > 0 on (−1, 1) (i = 1, . . . , k), say. Thus wi has no poles in (−1, 1). Actually
in view of [1, Table 1], bi are polynomials, they are positive on (−1, 1) and have at
most simple zeros at x = ±1 and (biwi)(±1) ̸= 0. Thus we denote by

p

bi
=:

p̃i

b̃i
,

where b̃i ̸= 0 on [−1, 1]. More precisely, bi(x) = (1−x)
1−εi1

2 (1+x)
1−εi2

2 b̃i(x), where

εij = ±1, j = 1, 2 and so Wk = c (1−x)α+
∑k

i=1 εi1 (1+x)β+
∑k

i=1 εi2∏k
i=1 b̃2i

, that is Wk has finite

moments if α+
∑k

i=1 εi1, β +
∑k

i=1 εi2 > −1.

Let ni = deg bi, mi := deg b̃i, Mk :=
∑k

i=1 mi. Let B̂k :=
∏k

i=1 bi, B̃k :=
∏k

i=1 b̃i.

The degree of B̃k, Mk, gives the number of gaps in the sequence of degrees of the
corresponding exceptional system. For sake of the third section we assume that B̂k

is monic and we denote by Zk the set of zeros of B̃k, furthermore we choose c such
that Wk be a probability measure.

2.2. Inherited properties of P̂
[k]
n . Here we concentrate mainly that properties

which are necessary to prove the result of the next section. We assume that

{P̂ [k]
n }∞n=0 is derived from classical Jacobi polynomials with finitely many Darboux

transformations as it is given above. According to [8, Theorem 1.2] a Sturm-
Liouville orthogonal polynomial system, see [8, Definition 7.4] can be obtained this
way.

The first property is connected to [1, section 6.5].

Property 1. P̂
[k]
n has simple zeros in (−1, 1), and P̂

[k]
n (±1) ̸= 0 for all n, k ≥ 0.

Proof. Since P̂
[0]
n has n simple zeros in (−1, 1), we can prove by induction. Assume

indirectly that P̂
[k−1]
n has simple zeros in (−1, 1) and there is an x0 ∈ (−1, 1), such

that P̂
[k]
n (x0) =

(
P̂

[k]
n

)′
(x0) = 0. Then by (2) and (9)

(12) BkP
[k]
n (x0) = (λn − λ̃k)P̂

[k−1]
n (x0).
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Since in view of (3) and (6) BkP
[k]
n = p

bk

((
P

[k]
n

)′
+
(
wk + qk−1

p − b′k
bk

)
P

[k]
n

)
, by

the assumption and by (12), P̂
[k−1]
n (x0) = 0. According to (9) and (3)

bk(x0)
(
P̂ [k−1]
n

)′
(x0) = (bkwk)(x0)P̂

[k−1]
n (x0) + P [k]

n (x0).

Because bk(x0) > 0,
(
P

[k−1]
n

)′
(x0) = 0, that is P

[k−1]
n has a double zero at x0,

which contradicts to the assumption.

We deal with the right end-point, say. p
(α,β)
n (1) ̸= 0. Assume that P̂

[k−1]
n (1) ̸= 0.

If bk(1) = 0, then recalling that (bkwk)(1) ̸= 0, P
[k]
n (1) = (AkP̂

[k−1]
n )(1) = 0 −

(bkwk)(1)P̂
[k−1]
n (1) ̸= 0.

If bk(1) ̸= 0, assume that P
[k]
n (1) = 0. As above, considering that pwk has no pole

in 1, we compute

(BkP
[k]
n )(1) = 1

bk(1)

(
p(1)

(
P

[k]
n

)′
(1) +

(
(pwk)(1) + qk−1(1)− pb′k

bk
(1)
)
P

[k]
n (1)

)
=

0 = (λn − λ̃k)P
[k−1]
n (1), which is contradiction.

Below we need the next assumption.

(13) (wkpWk−1)(±1) = 0, k ≥ 1.

Since bk > 0 on (−1, 1) and has at most simple zeros at x = ±1 and bkwk has no

poles in [−1, 1], thus (13) fulfils if α+ εk1+1
2 +

∑k−1
i=1 εi1, β + εk2+1

2 +
∑k−1

i=1 εi2 > 0.
Recalling the notation (10) we have

Property 2. Supposing (13),

σk
n =

√
−λn + C(k) ∼ n,

where C(k) is a constant which depends on k.

Proof. P̂
[0]
n fulfils this property, see [23, (4.3.4)]. By (9) and (5)(

σk+1
n

)2
=

∫
I

((
P̂ [k]
n (x)

)′)2

p(x)Wk(x)−2
(
P̂ [k]
n (x)

)′
P̂ [k]
n (x)wk+1(x)p(x)Wk(x)dx

+

∫
I

(λ̃k+1 − qk(x)wk+1(x)− p(x)w′
k+1(x))

(
P̂ [k]
n (x)

)2
Wk(x)dx.

Considering (7) and (11)

(14) (Wkp)
′ = Wkqk.

So (
σk+1
n

)2
=

∫
I

((
P̂ [k]
n (x)

)′)2

p(x)Wk(x)dx

−
∫
I

((
P̂ [k]
n (x)

)2
wk+1(x)p(x)Wk(x)

)′

dx+

∫
I

λ̃k+1

(
P̂ [k]
n (x)

)2
Wk(x)dx

= I1 + I2 + I3.

By orthonormality I3 = λ̃k+1 which is independent of n. I2 = 0, by (13).
Integrating by parts and then considering (9), (4) and (14) we have

I1 = −
∫
I

P̂ [k]
n (x)

((
P̂ [k]
n (x)

)′
p(x)Wk(x)

)′

dx
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=

∫
I

(rk(x)− λn)
(
P̂ [k]
n (x)

)2
Wk(x)dx = −λn + I4.

Observe, that ∥rk∥∞,I = A(k), where A(k) is a constant depends on k but indepen-
dent of n and ∥ · ∥∞,I means the infinite norm on I. In view of (8) rk has no poles
in (−1, 1). Although according to (8) it can have a pole of order one at x = ±1, but

considering (7), qk has no poles at x = ±1, and since P̂
[k]
n (±1) ̸= 0, by (9) rk(±1)

must be finite. Thus, by orthonormality

|I4| ≤ A(k).

Since |λn| ∼ n2, the proof is finished.

Location of zeros of exceptional Jacobi polynomials were investigated by several
authors, see e.g. [9], [12]. The next property is proved in a different way in [1,
Theorem 6.6].

Property 3. Supposing (13) if n is large enough, P̂
[k]
n has Mk exceptional zeros

(with multiplicity), that is Mk zeros out of the interval of orthogonality. Moreover

the exceptional zeros tend to the zeros of B̃k, when n tends to infinity.

Proof. Recalling that P̂
[0]
n = p

(α,β)
n , for classical Jacobi polynomials we have

p
(
P̂ [0]
n

)′
= DnP̂

[0]
n+1 + EnP̂

[0]
n + FnP̂

[0]
n−1,

where limn→∞
Dn

n = 1
2 , limn→∞ En = α−β

2 , limn→∞
Fn

n = − 1
2 , see [23, (4.5.5)],

and

(15) lim
n→∞

P̂
[0]
n−1(z)

P̂
[0]
n (z)

= z −
√
z2 − 1,

where the convergence is locally uniform on C \ [−1, 1], see e.g. [17]. (Here and
below we take that branch of the square root, which takes positive numbers to
positive.) Thus

P̂
[1]
n

P̂
[0]
n

=
1

σ1
n

pb1

(
P̂

[0]
n

)′
pP̂

[0]
n

− b1w1


=

n

σ1
n

(
b1
p

(
Dn

n

P̂
[0]
n+1

P̂
[0]
n

+
En

n
+

Fn

n

P̂
[0]
n−1

P̂
[0]
n

)
− b1w1

n

)
,

that is in view of (15) and Property 2

lim
n→∞

P̂
[1]
n (z)

P̂
[0]
n (z)

= lim
n→∞

b1(z)
(
P̂

[0]
n (z)

)′
σ1
nP̂

[0]
n (z)

= − b1(z)√
z2 − 1

,

locally uniformly on C \ [−1, 1]. We continue by induction.

P̂
[k]
n

P̂
[k−1]
n

=
bk

(
P̂

[k−1]
n

)′
σk
nP̂

[k−1]
n

− bkwk

σk
n

= Q1 + Q2,

where Q2 → 0 locally uniformly on C. As P
[k−1]
n = Ak−1P̂

[k−2]
n ,

Q1 =
bkbk−1p

(
P̂

[k−2]
n

)′′
+ pbk

(
P̂

[k−2]
n

)′
(b′k−1 − bk−1wk−1)− pbk(bk−1wk−1)

′P̂
[k−2]
n

σk
nσ

k−1
n pP̂

[k−1]
n

.
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Expressing
(
P̂

[k−2]
n

)′′
from the differential equation we have

Q1 =
bk

(
P̂

[k−2]
n

)′
(pb′k−1 − pbk−1wk−1 − bk−1qk−2)

σk
nσ

k−1
n pP̂

[k−1]
n

+
P̂

[k−2]
n bk(−bk−1rk−2 + λnbk−1 − p(bk−1wk−1)

′)

σk
nσ

k−1
n pP̂

[k−1]
n

= Q3 + Q4.

We have

Q3 =

(P̂ [k−2]
n )

′

σk−1
n P̂

[k−2]
n

p P̂
[k−1]
n

P̂
[k−2]
n

bk(pb
′
k−1 − pbk−1wk−1 − bk−1qk−2)

σk
n

= Rk
nQ

k
n,

and

Q4 =
bk(−bk−1rk−2 + λnbk−1 − p(bk−1wk−1)

′)

σk
nσ

k−1
n

1

p P̂
[k−1]
n

P̂
[k−2]
n

= V k
n Sk

n.

Now we assume that limn→∞
P̂ [k−1]

n (z)

P̂
[k−2]
n (z)

= limn→∞
bk−1(z)(P̂ [k−2]

n (z))
′

σk−1
n P

[k−2]
n (z)

= − bk−1(z)√
z2−1

lo-

cally uniformly on C\[−1, 1]\Zk−2. Then Rk
n(z) →

−(z2−1)−
1
2

bk−1(z2−1)
1
2
on C\[−1, 1]\Zk−1

and Qk
n(z) → 0 on C locally uniformly, Q3 tends to zero on C\ [−1, 1]\Zk−1 locally

uniformly.
Since limn→∞

−λn

σk
nσ

k−1
n

= 1, V k
n tends to −bkbk−1 on the compacts of C, and as above

Sk
n(z) tends to

1
bk−1(z)

√
z2−1

on C \ [−1, 1] \ Zk−1 locally uniformly. Thus

lim
n→∞

Q4(z) = lim
n→∞

P̂
[k]
n (z)

P̂
[k−1]
n (z)

= − bk(z)√
z2 − 1

locally uniformly on C \ [−1, 1] \ Zk−1. Now take

lim
n→∞

P̂
[k]
n

P̂
[0]
n

(z) = lim
n→∞

P̂
[k]
n

P̂
[k−1]
n

P̂
[k−1]
n

P̂
[k−2]
n

. . .
P̂

[1]
n

P̂
[0]
n

(z) =
(−1)kB̂k(z)

(
√
z2 − 1)k

locally uniformly on C \ [−1, 1] \ Zk−1. Both the left-hand and right-hand sides
are regular on C \ [−1, 1], so we can extend the domain of convergence there.

Finally, considering that the zeros of B̂k and B̃k coincide on C\[−1, 1] and applying
Hurwitz’s theorem the statement is proved.

Property 4. Denote by γk
n the leading coefficient of P̂

[k]
n . Supposing (13), we have

(16) lim
n→∞

(γk
n)

1
n = 2.

Proof. Let γ0
n be the leading coefficient of P̂

[0]
n . (For simplicity assume, that γ0

n

and γk
n are positive.) It is known that limn→∞(γ0

n)
1
n = 2, see e.g. [23, (4.21.6),

(4.3.4)]. Notice that bi and biwi are polynomials, cf. (9). Denote the leading
coefficient of bk+1 and bk+1wk+1 by ck+1 and dk+1, respectively. If n is large
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enough, the degree of P̂
[k]
n is n+mk, where mk is independent of n. Recalling that

σk+1
n P̂

[k+1]
n = bk+1

(
P̂

[k]
n

)′
− bk+1wk+1P̂

[k]
n , we have

γk
n

σk+1
n

min {|ck+1|(n+mk), |dk+1|} ≤ γk+1
n ≤ γk

n

σk+1
n

max {|ck+1|(n+mk), |dk+1|} .

Thus the result can be derived from the corresponding result with respect to the
classical Jacobi polynomials, by induction.

The next property is proved in Xm-case in [9] and in general (with a different

proof) in [1, Theorem 6.5]. By the construction we have that the degree of P̂
[k]
n ,

N(n), is greater than n. In view of Property 3 (if n is large enough), P̂
[k]
n has

N(n) > n−Mk regular zeros.

Property 5. Let xk
1n, . . . , x

k
N(n)n be the regular zeros of the exceptional Jacobi

polynomials, P̂
[k]
n . Let xin = cosφin. Supposing (13), for every [γ, δ] ⊂ [0, π]∣∣∣∣∣∣∣

1

n

∑
i

γ≤φin≤δ

1− δ − γ

π

∣∣∣∣∣∣∣ ≤ Ck

√
log n

n
,

where Ck is a constant, depends on α; β; k; bi, biwi, i = 1, . . . , k but is independent
of n.

The basis of the proof is the next lemma.

Lemma 1. [6] Let 1 ≥ ζ1,n > · · · > ζn,n ≥ −1, n ∈ N+ any system of points, and
let ηi,n ∈ [0, π] be defined by ζi,n = cos ηi,n. Let ωn(ζ) =

∏n
i=1(ζ − ζi,n). If for all

ζ ∈ [−1, 1]

|ωn(ζ)| ≤
A(n)

2n

holds, then for every subinterval [γ, δ] ⊂ [0, π] we have

(17)

∣∣∣∣∣∣∣
∑

i
γ≤ηin≤δ

1− δ − γ

π
n

∣∣∣∣∣∣∣ <
8

log 3

√
n logA(n).

Proof. ∥P̂ [0]
n ∥∞,I ≤ C0n

q−1, see [23, (7.32.2) and (4.3.4)], where q = max{α, β}.
Assume that ∥P̂ [k−1]

n ∥∞,I ≤ ck−1n
k−1+q−1, where, recalling that bi and biwi are

polynomials,

ck−1 := C0

∏k−1
i=1 max{∥bi∥∞,I , ∥biwi∥∞,I}. In view of (9), Markov’s inequality and

Property 2,

∥P̂ [k]
n ∥∞,I ≤ ck−1 max{∥bk∥∞,I , ∥bkwk∥∞,I}nk−1+q−1+2−1 = ckn

k+q−1. Now let us
decompose

P̂ [k]
n = γk

ne
k
nr

k
n,

where ekn and rkn are monic polynomials, the zeros of ekn are the exceptional zeros

of P̂
[k]
n and the zeros of rkn are the regular ones. According to Property 3 there is

an ϵk > 0 such that for all x ∈ [−1, 1], |ekn(x)| > ϵk and by Property 4, γk
n > 2n−1

if n is large enough. Thus on [−1, 1]

|rkn| =
|P̂ [k]

n |
γk
n|ekn|

≤ 2ckn
k+q−1

ϵk2n
=:

ĉkAn

2n
.
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Thus the previous lemma implies the result with A(n) = A(k, n) = ĉkAn.

Besides the normalized zero-counting measure the Christoffel function measure
tends to the equilibrium measure as well.

Property 6. Assuming (13) for all k ∈ N

(18) ν[k]n → µe

in weak-star sense, where

dν[k]n (x) =
1

n

n−1∑
l=0

(
P̂

[k]
l

)2
(x)Wk(x)dx

and µe is the equilibrium measure of [−1, 1].

Proof. Since the twice continuously differentiable functions are dense in C[−1, 1] it

is enough to show that for any f ∈ C2[−1, 1], ν
[k]
n (f) tends to µe(f). The result is

known for {P̂ [0]
l }∞l=0, see e.g. [16]. Let k ≥ 1. Recalling that P̂

[k]
l = 1

σk
l

AkP̂
[k−1]
l∫

I

f(x)dν[k]n (x) =
1

n

n−1∑
l=0

∫
I

f(x)
(
P̂

[k]
l (x)

)2
Wk(x)dx =

1

n

n−1∑
l=0

J
[k]
l .

J
[k]
l =

1(
σk
l

)2
(∫

I

f(x)b2k(x)

((
P̂

[k−1]
l (x)

)′)2

Wk(x)dx

+

∫
I

f(x)b2k(x)w
2
k(x)

(
P̂

[k−1]
l (x)

)2
Wk(x)dx

−
∫
I

f(x)2b2k(x)wk(x)
(
P̂

[k−1]
l (x)

)′
P̂

[k−1]
l (x)Wk(x)dx

)
=

1(
σk
l

)2 (J[k]l,1 + J
[k]
l,2 − J

[k]
l,3).

In view of (11)

J
[k]
l,2 =

∫
I

f(x)
(
P̂

[k−1]
l (x)

)2
w2

k(x)p(x)Wk−1(x)dx.

By assumption (13) pWk−1(±1) = 0, thus taking into consideration (14) and (4)

J
[k]
l,1 = −

∫
I

P̂
[k−1]
l (x)

((
P̂

[k−1]
l (x)

)′′
p(x)f(x)Wk−1(x)

+
(
P̂

[k−1]
l (x)

)′
f ′(x)p(x)Wk−1(x) +

(
P̂

[k−1]
l (x)

)′
f(x)qk−1(x)Wk−1(x)

)
dx

= −
∫
I

P̂
[k−1]
l (x)

(
(λl − rk−1(x))P̂

[k−1]
l (x)f(x)Wk−1(x)

+
(
P̂

[k−1]
l (x)

)′
f ′(x)p(x)Wk−1(x)

)
dx.

Thus(
σk
l

)2
J
[k]
l =

∫
I

f(x)
(
p(x)w2

k(x)− λl + rk−1(x)
) (

P̂
[k−1]
l (x)

)2
Wk−1(x)dx

−
∫
I

((
P̂

[k−1]
l (x)

)2)′(
1

2
f ′(x) + f(x)wk(x)

)
p(x)Wk−1(x)dx = J

[k]
l,4 − J

[k]
l,5.
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Again by (13)

−J
[k]
l,5 =

∫
I

(
P̂

[k−1]
l (x)

)2(1

2
f ′′(x) + f ′(x)wk(x)

)
p(x)Wk−1(x)dx

+

∫
I

(
P̂

[k−1]
l (x)

)2
(p(x)w′

k(x) + qk−1(x)wk(x)) f(x)Wk−1(x)dx.

So in view of (5)

J
[k]
l =

1(
σk
l

)2 (λ̃k − λl

)
J
[k−1]
l

+
1(

σk
l

)2 ∫
I

(
P̂

[k−1]
l (x)

)2(1

2
f ′′(x) + f ′(x)wk(x)

)
p(x)Wk−1(x)dx.

Notice that |J[k]l | ≤ ∥f∥∞,I and |pwk| is bounded on [−1, 1], thus the last integral is
also bounded independently of l. Thus considering Property 2 we finish the proof
with ∫

I

f(x)d(ν[k−1]
n − ν[k]n )(x) ≤ c(k, f)

1

n

n−1∑
l=0

1

l2 + 1
.

Let
Π̂k

n := span{P̂ [k]
0 , . . . , P̂ [k]

n }.
The next observation relates to the recurrence relation (see [18, Theorem 1]) which
is as follows. If s is a polynomial of degree L such that its derivative is divisible by

B̃k, then sP̂
[k]
n =

∑L
i=−L ai,nP̂

[k]
n+i, where ai,n-s are constants. The fact that B̃2

kP

can be expressed as a linear combination of exceptional polynomials P̂
[k]
n is proved

in [5, Lemma 1.1]. To our purpose a similar statement with any fixed polynomial
is enough, but we need that the lengths of the linear combinations does not exceed
a fixed number.

Property 7. There is a fixed s such that

(19) B̂2
kP ∈ Π̂k

n+s,

where P is an arbitrary polynomial of degree n.

Proof. Actually we prove that s = sk =
∑k

i=1(ni + 1), provided that deg(biwi) =
deg bi − 1, i = 1, . . . , k, cf. [1, Table 1].

For k = 0 it is obvious with s = 0. For k = 1, expressing P =
∑n

i=0 aip
(α,β)
i ,∫

I

b21(x)P (x)P̂
[1]
l (x)W1(x)dx

=
c

σ1
l

∫
I

b21(x)(

n∑
i=0

aip
(α,β)
i (x))

(
b1(x)

√
l(l + α+ β + 1)p

(α+1,β+1)
l−1 (x)

−b1(x)w1(x)p
(α,β)
l (x)

) p(x)w(α,β)(x)

b21(x)
dx

= kl

n∑
i=0

ai

∫
I

b1(x)p
(α,β)
i (x)p

(α+1,β+1)
l−1 (x)w(α+1,β+1)(x)dx

−dl

n∑
i=0

ai

∫
I

p(x)b1(x)w1(x)p
(α,β)
i (x)p

(α,β)
l (x)w(α,β)(x)dx,
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where kl, dl are constants depending on l, α and β and p(x) = 1 − x2, cf. (1).
Orthogonality and the remark above imply the statement.

For k > 1 ∫
I

B̂2
k(x)P (x)P̂

[k]
l (x)Wk(x)dx

=
c

σk
l

∫
I

B̂2
k−1(x)P (x)(bk(x)(P̂

[k−1]
l (x))′−bk(x)wk(x)P̂

[k−1]
l (x))p(x)Wk−1(x)dx = (∗)

Integrating by parts by (14)

(∗) = c

σk
l

([
P̂

[k−1]
l (x)P (x)bk(x)p(x)W0(x)

]
I

−
∫
I

P̂
[k−1]
l (x)

(
2B̂k−1(x)B̂

′
k−1(x)P (x)bk(x)p(x)Wk−1(x)

+B̂2
k−1(x)(Pbk)

′(x)p(x)Wk−1(x) + B̂2
k−1(x)P (x)bk(x)qk−1(x)Wk−1(x)

)
dx

−
∫
I

B̂2
k−1(x)P (x)bk(x)wk(x)p(x)P̂

[k−1]
l (x)Wk−1(x)dx

)
.

Considering that B̂′
k−1 = B̂k−1

∑k−1
i=1

b′i
bi

and (7)

(∗) = − c

σk
l

∫
I

P̂
[k−1]
l (x)B̂2

k−1(x) (p(x)(P (x)bk(x))
′

+P (x)bk(x)(p(x)wk(x) + q0(x) + (k − 1)p′(x)))Wk−1(x)dx.

Since the polynomial in the bracket is of degree n + nk + 1, the result is given by
induction.

Property 8. Supposing (13)

(20) lim
n→∞

1

n
log |P̂ [k]

n (z)| = log |z +
√
z2 − 1|

locally uniformly on C\[−1, 1]\Zk, where that branch of the square root is considered
which maps positive numbers to positive numbers.

Proof. Recalling that deg
∏k

i= b̃i = Mk and denoting by {xi,r}N(n)
i=1 , {xj,e}Mk

j=1,

{xi}ni=1 the regular zeros of P̂
[k]
n , the exceptional zeros of P̂

[k]
n and the zeros of

p
(α,β)
n , respectively, we have

(21)
1

n
log |P̂ [k]

n (z)| = 1

n
log γk

n +
1

n

n∑
i=1

log |z − xi,r|+
1

n

Mk∑
j=1

log |z − xj,e|.

Let z ∈ C \ [−1, 1]. Property 5 means that the normalized counting measure based

on the regular zeros of P̂
[k]
n tends to the equilibrium measure of [−1, 1] in weak-star

sense. Thus

lim
n→∞

1

n

N(n)∑
i=1

log |z − xi,r| =
∫
I

log |z − x|dµe(x)

= lim
n→∞

1

n

n∑
i=1

log |z − xi| = log |z +
√
z2 − 1| − log 2,

where we used the corresponding result for classical Jacobi polynomials, and the last
equality fulfils by [24, Theorem 1]. Note, that on each compact set K ⊂ C \ [−1, 1]
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the functions fn(z) =
1
n

∑N(n)
i=1 log |z − xi,r| are equicontinuous. Indeed, let z, w ∈

K, dist(K, I) = d and then

|fn(z)− fn(w)| ≤
1

n

N(n)∑
i=1

log

(
1 +

|z − w|
|w − xi,r|

)
≤ |z − w|

d
.

Since the sequence is pointwise convergent, it is uniformly convergent on K as well.
According to Property 3, the third sum of (21) tends to zero locally uniformly

on C \ [−1, 1] \ Zk. Indeed, as K is compact and has a positive distance from Zk,
if n is large enough, then | log |z − xj,e|| is uniformly bounded on K.
Comparing the first term of the right-hand side of (21) to (16), the proof is finished.

3. Application - Equilibrium measures of Julia sets

Dynamical properties of sequences of orthonormal polynomials given by a Borel
probability measure supported on a non-polar compact subset of the complex plane
were investigated in [3] and [19]. Although the results are proved in general cir-
cumstances for standard orthogonal polynomials in the cited paper, they cannot
be applied to exceptional families since they have finite codimension in the space
of polynomials. Below we give the extension of the result mentioned above to ex-
ceptional families.
For sake of simplicity in this section j > 0 is fixed and arbitrary; we denote by

P̂n := P̂
[j]
n , we omit the index j everywhere, and assume (13). The corresponding

weight function is denoted by W .

3.1. Tools.

3.1.1. Polynomial Dynamics. The basin of attraction for ∞ for P̂n is

(22) Ωn := {z ∈ C : lim
k→∞

P̂ k
n (z) = ∞},

where P̂ k
n = P̂n ◦ P̂n ◦ · · · ◦ P̂n, that is composition k times. (Similarly P̂−k

n denotes
the inverse.)

Kn := C \ Ωn, Jn := ∂Ωn = ∂Kn

are the filled Julia set and the Julia set for P̂n, respectively.

First we note that for each polynomial p(z) = γzn+ · · ·+ c of degree n > 1 there
is an Rp such that for all z with |z| > Rp |p(z)| > 2|z|. Thus Ωp (cf. (22)) can be
expressed as

(23) Ωp := {z ∈ C : lim
k→∞

pk(z) = ∞} = ∪k≥0p
−k(C \D(0, Rp)).

So the filled Julia set of P̂n is

(24) Kn = ∩k≥0P̂
−k
n (D(0, Rn)).

As in general, Jn and Kn are compact, completely invariant sets, i.e. P̂−1
n (Jn) =

Jn = P̂n(Jn).



12 Á. P. HORVÁTH

3.1.2. Potential Theory. µ is a compactly supported Borel probability measure on
the complex plane denoted by µ ∈ M. The (logarithmic) potential function of µ is

Uµ(z) =

∫
C
log

1

|w − z|
dµ(w).

The energy of µ is

E(µ) =

∫
C
Uµ(z)dµ(z).

Let K ⊂ C compact.

V (K) = inf{E(µ) : µ ∈ M, suppµ ⊂ K}.

The capacity of K is

capK = e−V (K).

3.2. Limit of equilibrium measures of Julia sets. The next theorem is the
main result of this section.

Theorem 1. With the notation above, for n ∈ N let Jn be the Julia set of the
exceptional orthonormal Jacobi polynomial P̂n, and let µn and µe be the equilibrium
measure of Jn and [−1, 1], respectively. Then

(25) µn → µe

in weak-star sense.

We remark here that the equilibrium measure of the Julia set of a polynomial
is the unique measure of maximal entropy with respect to the polynomial, cf. [2,
Theorem 17.1] and [15, Theorem 9].

To prove Theorem 1 we need some lemmas. At first let us consider some corol-
laries of Property 8.

Corollary 1. (of Property 8) There is an R̃, such that Kn ⊂ D(0, R̃) for all n ∈ N.

Proof. As Kn is compact for each n, it is enough to show that there is an R̃ such
that |P̂n(z)| > 2|z| if |z| > R̃ and n is large enough, cf. (24). The required inequality
is ensured by (20).

Similarly to [3, Lemma 2.2] one can derive

Corollary 2. (of Property 8) There exist R > 1 and N ∈ N such that for all n > N

(26) Kn ⊂ P̂−1
n (D(0, R)) ⊂ D(0, R).

Proof. Let R > max{1, R̃} such that D(0, R) ⊃ Zk. Let ε := inf |z|=R log |z +√
z2 − 1|, which is positive. By Property 8 1

n log |P̂n(z)| ≥ ε
2 if n > N and |z| =

R. We can choose N so large that logR < N ε
2 . Thus the generalized minimum

principle implies that

P̂n(C \D(0, R)) ⊂ C \D(0, R), ∀ n > N,

and so

(27) P̂−1
n (D(0, R)) ⊂ D(0, R).

Comparing (24), Corollary 1 and (27) the proof is complete.
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Proposition 1. Let K ⊂ C compact, K ∩ [−1, 1] = ∅. Then there is an M ∈ N
(depending on K, but independent of n) such that for all P̂n, degP̂n > 0, and any
w ∈ Kn

(28) card
(
P̂−1
n (w) ∩K

)
< M.

Proof. In view of Corollary 1 we can take |w| < R with an arbitrary fixed R rather
than w ∈ Kn. We can also assume, that M is large enough. Let d = d(K, I) be

the distance of K and I, and define a := 1√
1+ d2

4

. Let ∥B̂∥∞,I =: A, and choose

c := 1
κ(1+R)A2 . Here κ is a constant ensured by (16) such that γn+u

γn
< κ with a

fixed u (will be given later), for all n. We assume that M is so large that aM < c.
Now suppose indirectly that for all M (large enough) and N there is an n > N

such that P̂n(z) = w has at least M solutions, z1, . . . , zM in K.
Choosing y1, . . . , yM to be the nearest points from I to z1, . . . , zM , respectively, one
can define the rational function

(29) r(z) :=

M∏
j=1

z − yj
z − zj

, ∥r∥∞,I ≤ aM < c,

cf. [21, Lemma I.3.2] and [19, Lemma 3.3]. With this rational function we define

the monic polynomial of degree deg P̂n + s0, where s0 = 2
∑j

i=1 deg bi as

Q(z) =
1

γn
rB̂2(P̂n(z)− w).

Taking u = s0 + s, in view of (29)

∥Q∥2,W ≤ 1

γn
∥r∥∞,[−1,1]∥B̂2∥∞,[−1,1]∥P̂ (

nz)− w∥2,W

≤ 1

γnκ(1 +R)
∥P̂ [k]

n (z)− w∥2,W .

In that case, when deg P̂0 > 0, let 1 =
∑∞

i=0 eiP̂i, in norm. By orthonormality

∥P̂n(z)− w∥2,W =
√

1 + |w|2 − 2ℜwen ≤
√

1 +R2 + 2R|en|.

Note, that if deg P̂0 = 0, the right-hand side above is 1 +R2. As 1 ∈ L2
W , en tends

to zero thus if n is large enough
∥P̂n(z)−w∥2,W

1+R < 1.

According to (19)

(30) Q =
1

γn+s0+s
P̂n+s0+s +

n+s0+s−1∑
i=0

aiP̂
[k]
i .

and choosing κ as above we have

∥Q∥2,W <
γn+s0+s

κγn

1

γn+s0+s
1 <

1

γn+s0+s
∥P̂n+s0+s∥2,W .

Comparing to (30) it is impossible.
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Proof. (of Theorem 1) In view of Corollary 1 the supports of equilibrium measures
of the Julia sets, µn, are uniformly bounded. Furthermore applying the Möbius
transform w1 = w

(γn)
1

n−1
, z1 = z

(γn)
1

n−1
to w = P̂n(z) = γnz

n + . . . a0, and de-

noting by F (w) := 1
n

∑
z, P̂n(z)=w f(z) for an f measurable, and observing that

1
ni

∑
z, z=P̂−i

n (0) f(z) =
1

ni−1

∑
w, w=P̂

−(i−1)
n (0)

F (w), [2, Theorem 16.1] reads as

(31)

∫
C
f(z)dµn(z) =

∫
C

1

n

∑
z, P̂n(z)=w

f(z)dµn(w).

If K ⊂ C such that K is compact and disjoint from I, then applying (31) to the
indicator function of K and considering Proposition 1 one can derive that µn(K)
tends to zero. Thus, if a subsequence µni

has a weak-star limit, say ν, its support
is contained by I.

According to [2, Lemma 15.1] and (16), lower semicontinuity of the energy implies
that I(ν) ≤ lim infi I(µni

) = I(µe). That is ν must be the unique equilibrium
measure for any subsequence and so the proof is finished.
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