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Classical discrete distributions

Base set: X, = {0,...,n} (n €N).
Distributions on the set X,, can be character-
ized by n independent parameters

p(x,90,...,0n) =1, ife=14, 0<i<n,

where ¥g 4+ --- + v = 1.

The 'open’ set of distributions on X, is

n
O<297;<1,Zl9i=1}.
i=0

Pn — {(6071917 SR 719’”)



Riemannian metric on Py,

a. Entropy:
The entropy of the distribution p(x,Yq,...,9n)
IS

SG) = — 3 p(i) logp(i) = — 3" 9;l0g v
1=0 1=0

This function is concave — (-1) times its sec-
ond derivative is a Riemannian metric.

b. Pull back metric from a sphere:

OéPnHSn (ﬁo,...,ﬂn)l—)(\/ﬁ,...,\/197)/).

This map generates a metric on P,,.



c. Fisher information: [Rao, 1945]
p € Pn, (1 <4,5 <n):

=~ 1 0p(k,9)0p(k,9)

g(p)ij - kgo p(k,9) 99, 603,

d. Cencov theorem:
Let us consider the family (Pn, gn)peN-
If for every Markovian map s : Xn X X;m — R

97y (K (X), ¥ (X)) < gp(X, X)

(Vp € Pn,VX € TpPn), then the family (gn),eN
IS unique.



The geometry of the space (Pn,g):

Theorem: The metrics a., b., ¢c. and d. are
the same.

Corollary: The geometry of the space (Pp, g)
is well-known (curvatures, geodesics, distance,
volume).



Noncommutative case

99 O 0
Pn 3 oz, 9, ...,0) < (_) ‘9:1 N (_)
0 0 ... O
A
a11 @12 ... aip
MFsD o | #2922 - A2n
apl Ap2 ... Qnn

M;L": n X n self adjoint, positive definite, trace
one, complex matrices.

von Neumann entropy:

n
S(p) =— > VYplogd — S(D) =—-TrDlogD .
k=0



Riemannian metrics on the space M- [~ 1990]

a. Entropy:
The entropy functional

S:MF—-R D+~ S(D)

is concave — (-1) times its second derivative
iIs Riemannian metric.

b. Pull back metric from a sphere:
Q' M;LI_ — sk D +— VD

This map generates a metric on /\/l;,"

c. Fisher-information: 7277



d. Cencov theorem — Petz theorem [1996]
Let us consider the family (M%',Kn)neN.

Markovian map — stochastic map (linear, trace
preserving, completely positive).

If for every stochastic map 17 : M,, — M,, the
following holds

(VD € M;L",VX € TDMf{), then there exists an
operator monotone function f : Rt — R with
the property f(z) = zf(z~1), such that

1 1 _
Kp(X,Y) = Tr(X(Rg’D f(Ln,pRy, H)RZ ) 1(Y)> ,

where L,, p and R, p are defined as L,, p(X) =
DX and R, p(X) = XD.

These metrics are the noncommutative gener-
alizations of the Fisher-information. (Mono-
tone metrics).



a. Entropy:
Monotone metric: f(z) =
Kubo—Mori metric:

r—1
log !

Kxm.p(X,Y) = Tr/OOO(D—I—t)_lX(D—I—t)_lY dt .

b. Pull back metric: ,
Monotone metric: f(x) = (1""21/5) ,
Wigner—Yanase-metric.

Note: On the set of diagonal matrices these
metrics coincide. (Classical case.)

Examples for monotone metrics: /
p+1/2
fom(z) = L fi alz) = 12—fx fri(z) = Qf_l_mzp

(0<p<1/2), ... (smallest, largest, paramet-
ric)




Series expansion of the volume:

Let (M, g) be an n-dimensional Riemannian ge-
ometry.

T he geodesic ball with center point p € M with
radius R is the following:

Bgr(p) :={x e M : dist(p,z) < R}.

For a fixed p point let V(R) denote the volume
of BR(D)



Series expansion of the volume:

Theorem: (Gray and Vanhecke, 1979; Andai,
2003) For an n-dimensional Riemannian ge-
ometry (M,g), p € M, the series expansion of
the volume V,(R) is

R+

n..n/2
Vo (R) — R [ Scal

1 —
r (g+ 1) 6(n + 2)
—3||R||?2 + 8||Ric||2 — 5Scal? —18(A ScaI)R4
360(n+2)(n+4)

higher order curvature invariants

720(n+2)(n+4)(n+6)

+ +

R® 4+ O(R®)

Remark: A higher order curvature invariant

n

> (VR);ikim(VR)opgrsgg’? ghglrgms.
i)j7k7l7m707p7Q7r7S:1



Theorem (Classical case) For the Riemannian
geometry (Pp,g) the series expansion of the
volume of the geodesic ball is

. rin/2 B n(n—1) _5
Vnlft) = r(5+1) [ 24(n+2) " |
n(n—1)(5n—7) 4
+ 5760(n + 4) -

_n(n —1)(35n2 —112n + 93)

6 38
2903040(n + 6) R+ 07|

Remark: The elements in the series expansion
are independent from the fixed point p € M.

The volume of the geodesic ball around the
point p can be written in the form

Va(R) = Cn(R)(14a1 R?+asR*+a3R°+0(R?)),

where only the functions «; depend on the
point p.



Note: It is widely believed that the quantity
V(D) has statistical interpretation. (For exam-
ple the scalar curvature measures average sta-
tistical uncertainty.) It is reasonable to expect
that more mixed states are less distinguishable
than less mixed states. It means mathemati-
cally that in this case the scalar curvature of
a Riemann structure should have the following
monotonicity property: if Dy is more mixed
than D> then Scal(D»>) should be smaller then
Scal(D1).

( This is known as Petz conjecture, if the state
space is endowed with the Kubo—Mori metric.)

et us combine this conjecture with the series
expansion.

Generalized Petz conjecture: If the state
space is endowed with the Kubo—Mori metric
and if D4 is more mixed than D» then

a;(D1) < a;(D2) Vie N .



Qubit case

In the simplest quantum case, dealing with 2x2
matrices we can use the Stokes parametriza-
tion, that is every state D can be uniquely writ-
ten in the form

1
D = E(I + x101 + 005 + :13303> :

where (o;);=123 are the Pauli matrices and
(1, 72,23) € R3 with 25 +254+23 < 1. The in-
terior of the set of states can be identified with
the open unit ball in R3 by this parametriza-
tion. For a fixed state D ¢ M; (qubit) from
the unit ball denote by r the distance from the
origin of the state.

Remark: r = |A\{—Xs|; » = 0 is the most mixed
state, r = 1 is a pure state.



Series expansion of the volume:

Smallest metric: (f(a:) = 142"””’)

The volume expansion for a fixed D & M;‘
qubit is

V(R)=

ATR3/ 1 5 2 _, 1 ¢ o
—~R*+-—-R"——-R°4+O(R ) .
( 5" 1105 045"t T (R%)



Largest metric: ( f(x) = 12%)

The volume expansion for a fixed D & M;‘
qubit is

R+

47 R3 1 6—1r2
V(R) = == (1 r

3 15 1 — 2
1 3r% 4 50r2 4+ 225
1575 (1 —1r2)2

+ R*+

1 75 —-84r% - 238012 — 2170 ¢ 5
RO+O(R )
+33075 (1 —1r2)3 +ORY)

Let denote the functions a1,a> and a3 by red,
green and blue:

Largest metric
0.75
0.65
0.55
0.45
03
02

0.1

01 02 03 04 05 06 07
r



Kubo—Mori-metric: (f(:p) = l‘gi)

The volume expansion for a fixed D & M;r
qubit can be computed, but the result is a
rather complicated formula.

01 Kubo-Mori metric

0.08
0.06 |
0.04 ]

0.02]




P1 parametric metric: f(x) = Qﬁ_%f (P = [O, %D

Remark: a3z(r) is the sum of about 500 ele-
ments!




If the operator monoton function is

922 4+ 82z + 9
f(x) = ,
5(x + 1)
then
03 DI:g=0.1
Oﬂl




Remark: For n x n density matrices the com-
puting time of the quantities «; is about n20.

Remark: From the above mentioned cases it
seems reasonable that the quantities a; some-
how measures statistical uncertainty. (It was
known for aq.)

Question: What is the behavior of the «; cur-
vature invariants for higher level quantum sys-
tems?



