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Classical discrete distributions

Base set: Xn = {0, . . . , n} (n ∈ N).

Distributions on the set Xn can be character-

ized by n independent parameters

p(x, ϑ0, . . . , ϑn) = ϑi, if x = i, 0 ≤ i ≤ n,

where ϑ0 + · · ·+ ϑn = 1.

The ’open’ set of distributions on Xn is

Pn =



(ϑ0, ϑ1, . . . , ϑn)

∣∣∣∣∣∣
0 < ϑi < 1,

n∑

i=0

ϑi = 1



 .



Riemannian metric on Pn

a. Entropy:

The entropy of the distribution p(x, ϑ0, . . . , ϑn)

is

S(p) = −
n∑

i=0

p(i) log p(i) = −
n∑

i=0

ϑi logϑi .

This function is concave → (-1) times its sec-

ond derivative is a Riemannian metric.

b. Pull back metric from a sphere:

α : Pn → Sn (ϑ0, . . . , ϑn) 7→ (
√

ϑ0, . . . ,
√

ϑn).

This map generates a metric on Pn.



c. Fisher information: [Rao, 1945]

p ∈ Pn, (1 ≤ i, j ≤ n):

g(p)ij :=
n∑

k=0

1

p(k, ϑ)

∂p(k, ϑ)

∂ϑi

∂p(k, ϑ)

∂ϑj

d. Cencov theorem:

Let us consider the family (Pn, gn)n∈N.
If for every Markovian map κ : Xn ×Xm → R

gκ̃(p)(κ
∗(X), κ∗(X)) ≤ gp(X, X)

(∀p ∈ Pn, ∀X ∈ TpPn), then the family (gn)n∈N
is unique.



The geometry of the space (Pn, g):

Theorem: The metrics a., b., c. and d. are

the same.

Corollary: The geometry of the space (Pn, g)

is well-known (curvatures, geodesics, distance,

volume).



Noncommutative case

Pn 3 p(x, ϑ0, . . . , ϑn) ⇔




ϑ0 0 . . . 0
0 ϑ1 . . . 0
... ... . . . ...
0 0 . . . ϑn




⋂

M+
n 3 D ⇔




a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

an1 an2 . . . ann




M+
n : n×n self adjoint, positive definite, trace

one, complex matrices.

von Neumann entropy :

S(p) = −
n∑

k=0

ϑk logϑk −→ S(D) = −TrD logD .



Riemannian metrics on the space M+
n [∼ 1990]

a. Entropy:

The entropy functional

S : M+
n → R D 7→ S(D)

is concave → (-1) times its second derivative

is Riemannian metric.

b. Pull back metric from a sphere:

α : M+
n → Sk D 7→

√
D

This map generates a metric on M+
n .

c. Fisher-information: ???



d. Cencov theorem → Petz theorem [1996]
Let us consider the family (M+

n , Kn)n∈N.

Markovian map→ stochastic map (linear, trace
preserving, completely positive).

If for every stochastic map T : Mn → Mm the
following holds

KT (D)(T (X), T (X)) ≤ KD(X, X)

(∀D ∈M+
n , ∀X ∈ TDM+

n ), then there exists an
operator monotone function f : R+ → R with
the property f(x) = xf(x−1), such that

KD(X, Y ) = Tr

(
X

(
R

1
2
n,Df(Ln,DR−1

n,D)R
1
2
n,D

)−1
(Y )

)
,

where Ln,D and Rn,D are defined as Ln,D(X) =
DX and Rn,D(X) = XD.

These metrics are the noncommutative gener-
alizations of the Fisher-information. (Mono-
tone metrics).



a. Entropy:

Monotone metric: f(x) = x−1
logx,

Kubo–Mori metric:

KKM,D(X, Y ) = Tr
∫ ∞
0

(D+t)−1X(D+t)−1Y d t .

b. Pull back metric:

Monotone metric: f(x) = (1+
√

x)2

4 ,

Wigner–Yanase-metric.

Note: On the set of diagonal matrices these

metrics coincide. (Classical case.)

Examples for monotone metrics:

fSM(x) = 1+x
2 , fLA(x) = 2x

1+x, fP1(x) = 2xp+1/2

1+x2p

(0 ≤ p ≤ 1/2), ... (smallest, largest, paramet-

ric)



Series expansion of the volume:

Let (M, g) be an n-dimensional Riemannian ge-

ometry.

The geodesic ball with center point p ∈ M with

radius R is the following:

BR(p) := {x ∈ M : dist(p, x) < R}.

For a fixed p point let V (R) denote the volume

of BR(D).



Series expansion of the volume:

Theorem: (Gray and Vanhecke, 1979; Andai,

2003) For an n-dimensional Riemannian ge-

ometry (M, g), p ∈ M , the series expansion of

the volume Vn(R) is

Vn(R) =
Rnπn/2

Γ
(

n
2 + 1

)
[
1− Scal

6(n + 2)
R2+

+
−3‖R‖2 + 8‖Ric ‖2 − 5Scal2−18(∆Scal)

360(n + 2)(n + 4)
R4+

+
higher order curvature invariants

720(n + 2)(n + 4)(n + 6)
R6 + O(R8)

]
.

Remark: A higher order curvature invariant

n∑

i,j,k,l,m,o,p,q,r,s=1

(∇R)ijklm(∇R)opqrsg
iogjpgkqglrgms.



Theorem (Classical case) For the Riemannian

geometry (Pn, g) the series expansion of the

volume of the geodesic ball is

Vn(R) =
rnπn/2

Γ
(

n
2 + 1

)
[
1− n(n− 1)

24(n + 2)
R2+

+
n(n− 1)(5n− 7)

5760(n + 4)
R4−

−n(n− 1)(35n2 − 112n + 93)

2903040(n + 6)
R6 + O(R8)

]
.

Remark: The elements in the series expansion

are independent from the fixed point p ∈ M .

The volume of the geodesic ball around the

point p can be written in the form

Vn(R) = Cn(R)(1+α1R2+α2R4+α3R6+O(R8)),

where only the functions αi depend on the

point p.



Note: It is widely believed that the quantity
V (D) has statistical interpretation. (For exam-
ple the scalar curvature measures average sta-
tistical uncertainty.) It is reasonable to expect
that more mixed states are less distinguishable
than less mixed states. It means mathemati-
cally that in this case the scalar curvature of
a Riemann structure should have the following
monotonicity property: if D1 is more mixed
than D2 then Scal(D2) should be smaller then
Scal(D1).

(This is known as Petz conjecture, if the state
space is endowed with the Kubo–Mori metric.)

Let us combine this conjecture with the series
expansion.

Generalized Petz conjecture: If the state
space is endowed with the Kubo–Mori metric
and if D1 is more mixed than D2 then

αi(D1) ≤ αi(D2) ∀i ∈ N .



Qubit case

In the simplest quantum case, dealing with 2×2

matrices we can use the Stokes parametriza-

tion, that is every state D can be uniquely writ-

ten in the form

D =
1

2

(
I + x1σ1 + x2σ2 + x3σ3

)
,

where (σi)i=1,2,3 are the Pauli matrices and

(x1, x2, x3) ∈ R3 with x2
1+x2

2+x2
3 ≤ 1. The in-

terior of the set of states can be identified with

the open unit ball in R3 by this parametriza-

tion. For a fixed state D ∈ M+
2 (qubit) from

the unit ball denote by r the distance from the

origin of the state.

Remark: r = |λ1−λ2|; r = 0 is the most mixed

state, r = 1 is a pure state.



Series expansion of the volume:

Smallest metric:
(
f(x) = 1+x

2

)

The volume expansion for a fixed D ∈ M+
2

qubit is

V (R)=
4πR3

3

(
1−1

5
R2+

2

105
R4− 1

945
R6+O(R8)

)
.



Largest metric:
(
f(x) = 2x

1+x

)

The volume expansion for a fixed D ∈ M+
2

qubit is

V (R) =
4πR3

3

(
1− 1

15

6− r2

1− r2
R2+

+
1

1575

3r4 + 50r2 + 225

(1− r2)2
R4+

+
1

33075

r6 − 84r4 − 2380r2 − 2170

(1− r2)3
R6+O(R8)

)
.

Let denote the functions α1, α2 and α3 by red,
green and blue:

Largest metric
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Kubo–Mori-metric:
(
f(x) = x−1

logx

)

The volume expansion for a fixed D ∈ M+
2

qubit can be computed, but the result is a

rather complicated formula.

Kubo-Mori metric

0
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0.1
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r



P1 parametric metric: f(x) = 2xp+1/2

1+x2p

(
p ∈

[
0, 1

2

])

Remark: α3(r) is the sum of about 500 ele-

ments!
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If the operator monoton function is

f(x) =
9x2 + 82x + 9

5(x + 1)
,

then

DI : q=0.1
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r



Remark: For n× n density matrices the com-

puting time of the quantities αi is about n20.

Remark: From the above mentioned cases it

seems reasonable that the quantities αi some-

how measures statistical uncertainty. (It was

known for α1.)

Question: What is the behavior of the αi cur-

vature invariants for higher level quantum sys-

tems?


