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Structure:

– Space of classical probability distributions: Pn

– Geometry on Pn

– A Conjecture about the scalar curvature of Pn

– Scalar curvature computation of Pn

– Pull-back metric of the quantum mechanical state space: (Mn, gf)
– Scalar curvature computation of Mn

– Some result about the Conjecture
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Classical discrete distributions

Base set: Xn = {1, 2, . . . , n} (n ∈ N).

Space of distributions on Xn is

Pn =

{
(ϑ1, . . . , ϑn) ∈ Rn

∣∣∣ ∀k ∈ {1, . . . , n} : ϑk > 0,
n∑

k=1

ϑk = 1

}
.

Majorization:

a = (a1, . . . , an) ∈ Pn is said to be majorized by b = (b1, . . . , bn) ∈
Pn (denoted by a ≺ b) if for their decreasingly ordered set of
parameters (a↓i )i=1,...,n and (b↓i )i=1,...,n

k∑
l=1

a↓l ≤
k∑

l=1

b↓l

holds for all 1 ≤ k < n.
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Tangent space of the Riemannian manifold (M, g) at p ∈ M

will be denoted by Tp M , and the tangent bundle

T M =
⋃
p∈M

p× Tp M.

Riemannian metric is a function

g ∈
∏
p∈M

Lin(Tp M 2, R)

such that:
1. ∀p ∈ M g(p) : Tp M × Tp M → R is a scalar product,
2. the ”function g(p) is continuous in p”.

Riemannian manifold is a pair (M, g).

The canonical Riemannian metric gc of the spaces M = Rn, Rn
+

at every point p ∈ M for every tangent vectors x, y ∈ Tp M is

gc(p)(x, y) =
n∑

i=1

xiyi.
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Pull-back metric: Assume that N is a manifold and (M, g) is
a Riemannian space and φ : N → M is smooth function. For
every point p ∈ N we have a map

φ∗p : Tp N → Tφ(p) M

which connects the tangent spaces. We can define a Riemannian
metric on N : for a point p ∈ N and for tangent vectors X, Y ∈
Tp N

φ∗(g)(p)(X, Y ) := g
(
φ(p)

)(
φ∗p(X), φ∗pY

)
.

For every parameter α ∈ R the α-geometry of Pn is the pull-
back geometry of the Riemannian manifold (Rn, gc) induced by
the map

φα,n : Pn → Rn (ϑ1, . . . , ϑn) 7→


2

1−α

(
ϑ

1−α
2

1 , . . . , ϑ
1−α

2
n

)
, if α 6= 1

(log ϑ1, . . . , log ϑn), if α = 1.

This Riemannian space is denoted by (Pn, gα).
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The space (P2, gα):
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It is widely believed that the differential geometrical proper-
ties of the space Pn has statistical interpretation. For exam-
ple the scalar curvature measures the average statistical

uncertainty.

It is reasonable to expect that more mixed states are less distin-
guishable than less mixed states. It means mathematically that
in this case the scalar curvature of a Riemann structure should
have the following monotonicity property:

If D1 is more mixed than D2 then Scal(D2) should be smaller
then Scal(D1). (This is known as Petz conjecture, if the state
space is endowed with the Kubo–Mori metric.)

Conjecture(Gibilisco and Isola): On the spaces (Pn, gα) and
(Mn, gα) the scalar curvature is monotonously increasing, with
respect to the majorization relation if α ∈ ]−1, 0[ and it is
monotonously decreasing if α ∈ ]0, 1[.
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Extended Riemannian space is (P̃n, g̃α), where P̃n = Rn
+ and g̃

is the pull-back geometry of (Rn
+, gc) metric induced by the map

φ̃α,n : P̃n → Rn (ϑ1, . . . , ϑn) 7→


2

1−α

(
ϑ

1−α
2

1 , . . . , ϑ
1−α

2
n

)
, if α 6= 1

(log ϑ1, . . . , log ϑn), if α = 1.

Theorem: Assume that (M, g) is an n dimensional submanifold
of the n + 1 dimensional Riemannian space (M̃, g̃). The Levi–
Civita covariant derivative is ∇̃ and the Riemannian curvature
tensor is R̃. The normal vector field of M is N : M → T M̃ .
For every tangent vector X, Y ∈ T M̃ let us define the following
map.

S(X, Y ) : M → R p 7→ −g̃(∇̃XN, Y )

For every point p ∈ M if (At)t=1,...,n is an orthonormal basis in

Tp M (that is g(At, As) = δts) then the scalar curvature of M at
a point p is Scal(p) =

n∑
t,s=1

g̃(R̃(At, As)As, At)+S(As, As)S(At, At)−S(At, As)S(As, At).

(1)
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Geometry of (Pn, gα)

At a point ϑ ∈ Pn:
Riemannian metric: g̃ij = g̃(∂i, ∂j) = δijϑ

−1−α
i .

The inverse of the metric tensor is g̃ij = δijϑ
1+α
i .

The Christoffel symbol: ∇∂i
∂j =

n∑
k=1

Γ..k
ij ∂k.

Γ̃..k
ij =

1

2

n∑
m=1

g̃km(∂ig̃jm + ∂j g̃im − ∂mg̃ij) = −1 + α

2
ϑ−1

k δijδjm

The space P̃n is diffeomorphic to Rn, so R̃...i
ijk = 0 holds.

The normal vector field of the submanifold Pn is

N(ϑ) =
1

c(ϑ)

n∑
i=1

ϑ1+α
i ∂i, where c(ϑ) =

√√√√ n∑
i=1

ϑ1+α
i ,

since
g̃(N, N) = 1 and g̃(N, ∂i − ∂n) = 0.
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S(∂i, ∂j) = −g̃(∇̃∂i
N, ∂j) =

β

2c(ϑ)
δijϑ

−1
i − β

c(ϑ)3ϑ
−β−1
i .

For every point ϑ ∈ Pn if (At)t=1,...,n−1 is an ONB in TϑPn,
(At)t=1,...,n−1∪N(ϑ) is an ONB in Tϑ P̃n. The scalar curvature is

Scal(ϑ) =
n∑

t,s=1

(
S(Bs, Bs)S(Bt, Bt)− S(Bt, Bs)S(Bs, Bt)

)
− 2

n∑
t=1

(
S(N(ϑ), N(ϑ))S(Bt, Bt)− S(Bt, N(ϑ))S(N(ϑ), Bt)

)
.

where (Bt)t=1,...,n is an orthonormal basis in Tϑ P̃n. We have

S(∂i, N(ϑ)) = 0 and S(N(ϑ), N(ϑ)) = 0.

The set
(
ϑ
−β

2
t ∂t

)
t=1,...,n

form an ONB in Tϑ P̃n, therefore

Scal(ϑ) =
n∑

t,s=1

ϑ−β
s S(∂s, ∂s)ϑ

−β
t S(∂t, ∂t)−ϑ−β

s ϑ−β
t S(∂t, ∂s)S(∂s, ∂t).
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Theorem: The scalar curvature of the space (Pn, gα) at a point
ϑ ∈ Pn is

Scal(ϑ) =
(1 + α)2

4c(ϑ)2

n∑
t,s=1
t6=s

ϑα
t ϑα

s

(
1− ϑα+1

t + ϑα+1
s

c(ϑ)2

)
,

where c(ϑ) =

√√√√ n∑
k=1

ϑα+1
k .

– The parameter α = −1 corresponds to the case, when φα,n :
Pn → Rn is the natural embedding. In this case Pn is a part of
an n− 1 dimensional hyperplane, so its scalar curvature is zero.

– At the parameter value α = 0 the function φα,n maps Pn to the
surface of the Euclidean ball with radius R = 2. In this case the
scalar curvature formula gives

Scal(ϑ) =
(n− 1)(n− 2)

4
=

dim(Pn)(dim(Pn)− 1)

R2

which is just the scalar curvature of the dim(Pn) dimensional
sphere with radius R.
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Pull-back geometry of the state space

State space: For every n let us denote byMn the set of positive
states, that is

Mn = {D ∈ Mn | D = D∗, D > 0, Tr D = 1} .

Some concepts of the classical probability theory can be extended
to the noncommutative case. One of them is the majorization
relation.

The state D1 ∈ Mn is said to be majorized by the state D2 ∈
Mn, denoted by D1 ≺ D2, if the relation µ1 ≺ µ2 holds for their
set of eigenvalues µ1 and µ2.
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In the classical case we have defined only a special kind of pull-
back metrics, in that case the function was a power function or
a logarithmic one. In this quantum setting we consider those
f : ]0, 1[ → R functions, which have an analytic extension to
a neighborhood of the interval ]0, 1[ and f ′(x) 6= 0 for every
x ∈ ]0, 1[. We call such functions admissible functions.

The set of real or complex self-adjoint matrices will be denoted
by Msa

n , and geometrically it will be considered as a Riemannian

space (Rd, gc), where dR = (n−1)(n+2)
2 for real matrices and dC =

n2 − 1 for complex ones and gE is the canonical Riemannian

metric on Msa
n . That is, at every point D ∈ Msa

n for every
vectors X, Y ∈Msa

n in the tangent space at D the metric is

gc(D)(X, Y ) = Tr XY.

Assume that f : ]0, 1[ → R is an admissible function. The pull
back of the Riemannian metric (Msa

n , gc) to the space Mn in-
duced by the map

φf,n : Mn → M sa
n D 7→ f(D).

is called the pull-back geometry of Mn and it is denoted by
gf . This Riemannian space will be denoted by (Mn, gf).
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Since the function f has an analytic extension to a neighborhood
of the interval ]0, 1[ we have by the Riesz–Dunford operator cal-
culus for every D ∈Mn

f(D) =
1

2π i

∮
γ

f(z)(z id−D)−1
d z,

where id denotes the identity matrix and γ is a smooth curve
winding once around the spectrum of D counterclockwise. The
derivative of f at D ∈Mn for X ∈ TDMn is

df(D)(X) =
1

2π i

∮
γ

f(z)(z id−D)−1X(z id−D)−1
d z.

Let D ∈Mn and choose a basis of Rn such that D =
n∑

i=1

λiEii is

diagonal, where (Eij)1≤i,j≤n is the usual system of matrix units.
Let us define the following self-adjoint matrices.

Fij = Eij + Eji, 1 ≤ i ≤ j ≤ n;

Hij = i Eij − i Eji, 1 ≤ i < j ≤ n.
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The set of matrices (Fij)1≤i≤j≤n ∪ (Hij)1≤i<j≤n form a basis of

TD M̃n for complex matrices and (Fij)1≤i≤j≤n form a basis for
real ones. Using the equation

g(D)(X,Y ) = Tr(df(D)(X)df(D)(Y ))

for the pull-back metric we have the following theorem.
Theorem: On the Riemannian space (Mn, gf) for a state D ∈

Mn choose a basis of Rn where D =
n∑

i=1

λiEii. Then we have for

the metric

if 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n :


g(D)(Hij, Hkl) = δikδjl2M

2
ij

g(D)(Fij, Fkl) = δikδjl2M
2
ij

g(D)(Hij, Fkl) = 0,

if 1 ≤ i < j ≤ n, 1 ≤ k ≤ n : g(D)(Hij, Fkk) = g(D)(Fij, Fkk) = 0,

if 1 ≤ i ≤ n, 1 ≤ k ≤ n : g(D)(Fii, Fkk) = δik4M
2
ii,

where

Mij =


f(λi)− f(λj)

λi − λj
if λi 6= λj

f ′(λi) if λi = λj.



Discrete distributions

Geometry of (Pn, gα)

Geometry of Mn

Conjecture

Title page

J I

Go back

Full Screen

Close

Quit

The Christoffel symbol can be computed from the derivative of
the Riemannian metric g(D)(Γ(D)(X, Y ), Z) =

1

2
(dg(D)(X)(Y, Z) + dg(D)(Y )(X, Z)− dg(D)(X, Y )).

Since the derivative of the Riemannian metric is dg(D)(Z)(X, Y ) =

Tr(d2f(D)(Z)(X)df(D)(Y ) + df(D)(X)d2f(D)(Z)(Y ))

we have the following expression for the Christoffel symbol

Γ(D)(X,Y ) = (df(D))−1(d2f(D)(X,Y )).

From the Riesz–Dunford operator calculus the second derivative
of the matrix-valued function f is

d2f(D)(Eij)(Ekl) = δjkMiljEil + δilMkjiEkj,

where

Mijk =
1

2π i

∮
γ

f(z)

(z − λi)(z − λj)(z − λk)
d z.
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Combining these results together the Christoffel symbol is the
following.

Γ(D)(Fij)(Fkl)=Filδjk
Milk

Mil
+ Fkjδil

Mijk

Mjk
+ Fikδjl

Mikl

Mik
+ Fljδik

Mijl

Mlj

Γ(D)(Hij)(Hkl)=−Filδjk
Milk

Mil
− Fkjδil

Mijk

Mjk
+ Fikδjl

Mikl

Mik
+ Fljδik

Mijl

Mlj

Γ(D)(Hij)(Fkl)=Hilδjk
Milk

Mil
+ Hkjδil

Mijk

Mjk
+ Hikδjl

Mikl

Mik
+ Hljδik

Mijl

Mlj

The normal vector field of the submanifold Mn is

N(D) =
1

c(D)
(f ′(D))−2, where c(D) =

√
Tr(f ′(D))−2

since

g(D)(N(D), N(D)) =
1

c(D)2

n∑
i,j=1

g(D)

(
1

M 2
ii

Eii,
1

M 2
jj

Ejj

)
= 1

g(D)(N(D), Eii − Enn) = 0.
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In this setting the definition of the map S, is

S(D)(X, Y ) = −g(D)(Γ(D)(X)(N), Y ).

First we note that

Γ(D)(X)(N) = dN(D)(X) + Γ(D)(X)(N(D)).

Using the h = (f ′)−2 notation the normal vector field is

N(D) =
1√

Tr h(D)
h(D)

and its derivative is dN(D)(X) =

−1

2

1

(Tr h(D))
3
2

Tr(dh(D)(X))h(D) +
1√

Tr h(D)
dh(D)(X).
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After some computation we have the function S:

If 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n :


S(D)(Hij, Hkl) = − 2

c(D)δikδjlρijM
2
ij

S(D)(Fij, Fkl) = − 2
c(D)δikδjlρijM

2
ij

S(D)(Hij, Fkl) = 0.

If 1 ≤ i < j ≤ n, 1 ≤ k ≤ n :

{
S(D)(Hij, Fkk) = S(D)(Fkk, Hij) = 0
S(D)(Fij, Fkk) = S(D)(Fkk, Fij) = 0.

If 1 ≤ i ≤ n, 1 ≤ k ≤ n : S(D)(Fii, Fkk)=−
8

c(D)3

Miii

M 3
ii

+
8

c(D)
δik

Miii

Mii
.

where

Mijj =


f(λi)− f(λj)

(λi − λj)2 +
f ′(λj)

λj − λi
if λi 6= λj

1

2
f ′′(λi) if λi = λj

ρij =


− 1

f ′(λi)f ′(λj)

f ′(λi)− f ′(λj)

f(λi)− f(λj)
if λi 6= λj

− f ′′(λi)

f ′(λi)3 if λi = λj.
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The basis of the scalar curvature computation is Equation (1),
where summation runs on an orthonormal basis of the tangent
space of the submanifold. Fortunately it is no matter if we add
the normal vector field to this summation or not, as in the clas-
sical case, its summand is 0 since

S(D)(Fij, N(D)) = 0,

S(D)(Hij, N(D)) = 0

S(D)(Fii, N(D)) =
1

2c(D)

n∑
k=1

S(D)(Fii, Fkk)

M 2
kk

=
4

c(D)2

Miii

M 3
ii

[
n∑

k=1

(
−1

c(D)2M 2
kk

)
+ 1

]
= 0,

S(D)(N(D), N(D)) =
1

2c(D)

n∑
k=1

1

M 2
kk

S(D)(Fkk, N(D)) = 0.
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It means that at a given point D ∈Mn for an orthonormal basis
(At)t∈I in TD M̃n the scalar curvature is

Scal(D) =
∑

t∈I,s∈I

S(As, As)S(At, At)− S(At, As)S(As, At).

At a point D ∈Mn the set of matrices{
1

2Mii
Fii

}
1≤i≤n

⋃{
1√

2Mij

Fij

}
1≤i<j≤n

⋃{
1√

2Mij

Hij

}
1≤i<j≤n

form an orthonormal basis in TD M̃n in the case of complex
matrices.

It means that we have three kinds of basis elements: diagonal,
off-diagonal real and off-diagonal complex ones.
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Theorem: The scalar curvature of the real and complex state
space (Mn, gf) for an admissible function f at a point D ∈ Mn

with eigenvalues (λi)i=1,...,n is

Scal(D)R =
4

c(D)4

 n∑
i6=k

MiiiMkkk

M 3
iiM

3
kk

(
c(D)2 − 1

M 2
ii

− 1

M 2
kk

)

−

(
n∑
k

Mkkk

M 3
kk

(
c(D)2 − 1

M 2
kk

))( n∑
i<j

ρij

)]
+

1

c(D)2

(
n∑

i<j

ρij

)2

− 1

c(D)2

n∑
i<j

ρ2
ij

Scal(D)C =
4

c(D)4

 n∑
i6=k

MiiiMkkk

M 3
iiM

3
kk

(
c(D)2 − 1

M 2
ii

− 1

M 2
kk

)

−2

(
n∑
k

Mkkk

M 3
kk

(
c(D)2 − 1

M 2
kk

))( n∑
i<j

ρij

)]
+

4

c(D)2

(
n∑

i<j

ρij

)2

− 2

c(D)2

n∑
i<j

ρ2
ij.
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Symbols in the scalar curvature formula

Mii = f ′(λi), Miii =
f ′′(λi)

2
, c(D) =

√√√√ n∑
k=1

1

f ′(λk)2 ,

ρij =


− 1

f ′(λi)f ′(λj)

f ′(λi)− f ′(λj)

f(λi)− f(λj)
if λi 6= λj

− f ′′(λi)

f ′(λi)3 if λi = λj.
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We can test the theorem in three different cases:

1. If we restrict ourselves to the functions of the form

f(x) =
2

1− α
x

1−α
2

and to diagonal matrices, then we get back the scalar curvature
of the classical α-geometry.

2. If we consider the full real or complex state space Mn and
the function is f(x) = 2

√
x then the pull-back metric is the

Wigner-Yanase metric. In this case we map the state space
to the surface of an Euclidean ball with radius R = 2. For a
given state D ∈ Mn with eigenvalues (λ1, . . . , λn) we have for
the scalar curvatures:

ScalR(D) =
dR(dR − 1)

R2

ScalC(D) =
dC(dC − 1)

R2

which are just the well-known scalar curvatures of the Euclidean
spheres in dimensions dR and dC with radius R.

3. Finally if we use the f(x) = x function, then we map the state
space into the flat Euclidean space, so the scalar curvature is 0.
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Monotonicity conjecture

Conjecture(Gibilisco and Isola): On the spaces (Pn, gα) and
(Mn, gα) the scalar curvature is monotonously increasing, with
respect to the majorization relation if α ∈ ]−1, 0[ and it is
monotonously decreasing if α ∈ ]0, 1[.

Gibilisco and Isola proved a similar statement only for the cur-
vature of the space (P2, gα).

A linear map T on Rn is a T-transform if there exists 0 ≤ t ≤ 1
and indices k, l such that T (x1, . . . , xn) is equal to

(x1, . . . , xk−1, txk+(t−1)xl, xk+1, . . . , xl−1, (1−t)xk+txl, xl+1, . . . , xn).

For every a ∈ Pn and for every T transform T (a) ≺ a.

For given a, b ∈ Pn if a ≺ b, then we can go continuously from a

to b using only T -transformations.
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Theorem: Assume that we have a, b ∈ Pn with decreasingly or-
dered elements (a1, . . . , an) and (b1, . . . , bn). The following state-
ments are equivalent.

1. The distribution a is more mixed than b.

2. One can find a sequence (cz)z=1,...,d between them such that
for all z = 1, . . . , d: cz ∈ Pn,

a = c1 ≺ c2 ≺ · · · ≺ cd = b

holds and the set of values of cz and cz−1 is the same except
two elements.

3. The set (a1, . . . , an) can be obtained from (b1, . . . , bn) by a
finite number of T-transforms.

According to this Theorem in order to prove the monotonicity
of the scalar curvature with respect to the majorization, it is
enough to consider those distributions which have only two dif-
ferent elements.
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Corollary: The scalar curvature of the space (P3, gα) at ϑ =
(ϑ1, ϑ2, ϑ3) ∈ P3 is

Scal(ϑ) =
(1 + α)2

2

ϑα
1ϑα

2ϑα
3(

ϑα+1
1 + ϑα+1

2 + ϑα+1
3

)2 .
Corollary: To prove Gibilisco’s and Isola’s Conjecture for the
space (P3, gα) it is enough to show that for every distribution
(a1, a2, a3) ∈ P3 if a1 > a2 then the function[

0,
a1 − a2

2

]
→ R x 7→ (a1 − x)α(a2 + x)α(

(a1 − x)α+1 + (a2 + x)α+1 + aα+1
3

)2
is decreasing if α ∈ ]−1, 0[ and increasing if α ∈ ]0, 1[.
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Corollary: The scalar curvature of the real and complex state
space (M2, gf) for an admissible function f at a point D ∈ M2

with eigenvalues λ1 and λ2 are

Scal(D)R = 2x2 Scal(D)C = 4x2 + 2x4,

where

x2 =
f ′(λ1)f

′(λ2)

(f ′(λ1)2 + f ′(λ2)2)2

(
f ′′(λ1)

f ′(λ1)
+

f ′′(λ2)

f ′(λ2)

)
f ′(λ1)− f ′(λ2)

f(λ1)− f(λ2)

x4 =
1

f ′(λ1)2 + f ′(λ2)2

(
f ′(λ1)− f ′(λ2)

f(λ1)− f(λ2)

)2

.

We write the eigenvalues of a state D ∈M2 as
r + 1

2
and

r − 1

2
,

where r is the interval ]0, 1[. Using this parameter, for states
D1, D2 ∈ M2 the relation D1 ≺ D2 holds if and only if r1 ≤ r2.
Numerically we computed the scalar curvature of the state space
(M2, gα) using Maple.
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The scalar curvature of the real state space can be seen on the
following graphs.
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α ∈ ]0, 1[:
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It seems that the scalar curvature is increasing with respect to
the majorization if α ∈ ]−1, 0[ and decreasing for parameters
α ∈ ]0, 1[.
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The following graphs are about the scalar curvature of the com-
plex state space (M2, gα).
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We can check again that the foreseen properties of the scalar
curvature function seems to be true.
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