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— Space of classical probability distributions: P, 2
— Geometry on P,
— A Conjecture about the scalar curvature of P,
— Scalar curvature computation of P,

— Pull-back metric of the quantum mechanical state space: (M, g¢) Discrete distributions
— Scalar curvature computation of M,
— Some result about the Conjecture
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Classical discrete distributions

Base set: X,, ={1,2,...,n} (n € N).

Space of distributions on X, is

Pn:{(191,...,19n)€R” Vke{l,...,n}: 9 >0, Zﬁkzl}_
k=1

Majorization:
a=(ay,...,a,) € P,issaid to be majorized by b = (by,...,b,) €
P, (denoted by a < b) if for their decreasingly ordered set of

parameters (af)izl ..... , and (bf)zzln

=1 =1
holds for all 1 < k < n.
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Tangent space of the Riemannian manifold (M, g) at p € M
will be denoted by T, M, and the tangent bundle

TM=|JpxT, M.
peM

Riemannian metric is a function

g € | ] Lin(T, M* R)
peEM

such that:
1. Vpe M g(p) : T, M x T, M — R is a scalar product,
2. the "function g(p) is continuous in p”.

Riemannian manifold is a pair (M, g).

The canonical Riemannian metric g. of the spaces M = R", R’}

at every point p € M for every tangent vectors x,y € T, M is

ge(p)(,y) = Z 2.

e
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Pull-back metric: Assume that N is a manifold and (M, g) is
a Riemannian space and ¢ : N — M is smooth function. For
every point p € N we have a map

Pup : Tp N — Ty M

which connects the tangent spaces. We can define a Riemannian
metric on N: for a point p € N and for tangent vectors X,Y €
Tp N

¢*(9)(0)(X,Y) := g(¢(p)) (¢sp(X), 6:pY).

For every parameter a € R the a-geometry of P, is the pull-
back geometry of the Riemannian manifold (R", g.) induced by
the map

e

2 (907, 0T, O a
(bamipn_)Rn (7917---a19n)'_>

(log ¥y, ..., log¥,), if a=1.

This Riemannian space is denoted by (P, ga)-

by
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The space (P2, ga):

P
HUE
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It is widely believed that the differential geometrical proper-
ties of the space P, has statistical interpretation. For exam-
ple the scalar curvature measures the average statistical
uncertainty.

It is reasonable to expect that more mixed states are less distin-
guishable than less mixed states. It means mathematically that
in this case the scalar curvature of a Riemann structure should
have the following monotonicity property:

If Dy is more mixed than D, then Scal(Dy) should be smaller
then Scal(D;). (This is known as Petz conjecture, if the state
space is endowed with the Kubo—Mori metric.)

Conjecture(Gibilisco and Isola): On the spaces (P,,g,) and
(M, go) the scalar curvature is monotonously increasing, with
respect to the majorization relation if o € |]—1,0[ and it is
monotonously decreasing if a € ]0, 1.
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Extended Riemannian space is (P,,a), where P, = R” and g
is the pull-back geometry of (R, g.) metric induced by the map

qga,n:,]sn%Rn (191,...,19n) =

Theorem: Assume that (M, g) is an n dimensional submanifold
of the n + 1 dimensional Riemannian space (M,§). The Levi-
Civita covariant derivative is V and the Riemannian curvature
tensor is R. The normal vector field of M is N : M — T M.
For every tangent vector X,Y & T M let us define the following
map.
S(X,)Y):M >R  p— —Gg(VxN,Y)

For every point p € M if (A;);=1. , is an orthonormal basis in
T, M (that is g(As, As) = di5) then the scalar curvature of M at
a point p is Scal(p) =

z”: G(R(Ay, A) Ay, A)+S(A,, A)S(As, A)—S(As, A)S(Ay, Ay).

0

2 (07,0 ) i et

(log ¥4, .. .,logd,), if a=1.
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Geometry of (P,, g,)

At a point ¥ € P,:
Riemannian metric: §;; = §(;, 0;) = 0;;0; .
The inverse of the metric tensor is ¥ = §;;0; .

The Christoffel symbol: Vy,0; = Z F;f;(?k.
k=1
. e~ o N N 1+a
F”k - 5 Z gk (aigjm + ajgim - amgij) - —
m=1

5 U T

The space P, is diffeomorphic to R", so R;:i = 0 holds.
The normal vector field of the submanifold P,, is

1 n
N = — Itag. h —
() ) ;:1 V;7%0;, where (V)

g(N,N)=1 and g(N,0;—0,) =0,

i
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B
c(0)?

e B s o
5(8:,05) = ~6(ValV,0;) = 5 orgs ity =

9,7

.....

Scal(¥) = > (S(Bs, B)S(By, By) — S(B, B)S(By, By))

t,s=1

— 23" (S(N (@), N(9))S(By, By) — S(Bi, N(9))S(N(9), By)).

.....

S, N(@)) =0 and S(N(),N(®)) = 0.

_8 -
The set (ﬁt 2(9,5) form an ONB in Ty P, therefore

Scal(¥) = Y 978(0s,0,)9; "S(0y, 0,)— 979, 7S (04, 05)S(0s, By)-

t,s=1

e
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Theorem: The scalar curvature of the space (P,, g,) at a point
v € P, is

(L+ ) 5~ gaga o+ g
Scal(ﬁ) = W Z 1915 198 1— 0(19)2 ;

t,s=1
t#s

where ¢(d) =

— The parameter o« = —1 corresponds to the case, when ¢, :
P, — R" is the natural embedding. In this case P, is a part of
an n — 1 dimensional hyperplane, so its scalar curvature is zero.
— At the parameter value a = 0 the function ¢, , maps P, to the
surface of the Euclidean ball with radius R = 2. In this case the
scalar curvature formula gives

n—1)(n—-2) dim(P,)(dim(P,) —1)

Scal(v) = ( 1 = 7

which is just the scalar curvature of the dim(7P,) dimensional
sphere with radius R.

by
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Pull-back geometry of the state space

State space: For every n let us denote by M,, the set of positive
states, that is

M,={DeM,|D=D*, D>0, TtD = 1}.

Some concepts of the classical probability theory can be extended
to the noncommutative case. One of them is the majorization
relation.

The state D; € M,, is said to be majorized by the state Dy €
M,,, denoted by Dy < Ds, if the relation py < o holds for their
set of eigenvalues p; and po.

2
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In the classical case we have defined only a special kind of pull-
back metrics, in that case the function was a power function or
a logarithmic one. In this quantum setting we consider those
f :1]0,1] — R functions, which have an analytic extension to
a neighborhood of the interval ]0,1[ and f'(xz) # 0 for every
x € ]0,1[. We call such functions admissible functions.

The set of real or complex self-adjoint matrices will be denoted
by M and geometrically it will be considered as a Riemannian
space (RY, g.), where dg = w for real matrices and d¢ =
n? — 1 for complex ones and g is the canonical Riemannian
metric on M. That is, at every point D € M for every
vectors X,Y € M?® in the tangent space at D the metric is

g.(D)(X,Y) =Tr XY.

Assume that f : ]0,1] — R is an admissible function. The pull
back of the Riemannian metric (MS?, g.) to the space M,, in-
duced by the map

Gt My — M? D — f(D).

is called the pull-back geometry of M, and it is denoted by
gs- This Riemannian space will be denoted by (M., gy).
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Since the function f has an analytic extension to a neighborhood
of the interval ]0, 1| we have by the Riesz—Dunford operator cal-
culus for every D € M,,
1
f(D)

— %ff(z)(z id—D)'d z,

gl

where id denotes the identity matrix and + is a smooth curve
winding once around the spectrum of D counterclockwise. The
derivative of f at D € M,, for X € Tp M,, is

df (D)(X) = ijff(z)(z id—D)'X(zid—D)*qd 2.

i

n
Let D € M,, and choose a basis of R" such that D = Z A Ey; is
i=1
diagonal, where (E;;)1<; j<n is the usual system of matrix units.
Let us define the following self-adjoint matrices.

Fij = Eij + Ej, l<i<j<sm
Hy; =1 B — 1 By, I<i<jg<n

il
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The set of matrices (Fj;)i1<i<j<n U (Hij)1<i<j<n form a basis of
Tp M, for complex matrices and (Fj;)i1<i<j<, form a basis for
real ones. Using the equation

9(D)(X,Y) = Te(df (D)(X)df (D)(Y))

for the pull-back metric we have the following theorem.
Theorem: On the Riemannian space (M,, gs) for a state D €

M,, choose a basis of R"” where D = Z N E;;. Then we have for
i=1
the metric

9(D)(Hij, Hy) = dird2M;
if 1<1< j <n, 1< kE<l<n: g(D)(Eijkl) = 5zk5312M223
9(D)(H;j, Fr) = 0,
if 1<i<j<n,1<k<n: (D

9(D)
if 1<i<n,1<k<n: 9(D)(Fy, Fi) = did M

17

/N

where FO8) = FOy)
M;; = A=\ iRk
1) if A = ;.

Ho =S (N =0

006
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The Christoffel symbol can be computed from the derivative of
the Riemannian metric g(D)(I'(D)(X,Y),Z) =

S (dg(D)(X)(Y, Z) + dg(D)(V)(X, Z)  dg(D)(X, Y)).

Since the derivative of the Riemannian metric is dg(D)(Z)(X,Y) =
Tr(d f(D)(Z)(X)df (D)(Y) + df (D)(X)d*f(D)(Z)(Y))

we have the following expression for the Christoffel symbol

L(D)(X,Y) = (df (D))" (d*f(D)(X,Y)).

From the Riesz—Dunford operator calculus the second derivative
of the matrix-valued function f is

d*f(D)(E;i;)(Er) = 6;xMy; Eq + 61 Myji Ex;,

where

1 f(2) z

by
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Combining these results together the Christoffel symbol is the
following.

MZ MZ Ml Mz
I'(D)(Fij)(Fe)=Fudx Mjk + Fi0i Mj: + Fipdir MZZ + Fi0: Mlj]l
M, M;i, Mz M
I'(D)(H;;)(Hy ) =—Fy0; — F}.:0; / Fid F:6; J
(D)( g)( ki) 105k =7 M, kj lM]k == ]ZM + £y klej
M M zkl Ml il
(D)(Hij)(Fr)= zng+ kleJ—i— 0+ Hy "N,

The normal vector field of the submanifold M,, is

N(D) = —(f(D))2, where ¢(D) = /Tr(F/(D))"

1
g ( uaMQE)l
zyl
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In this setting the definition of the map .5, is
S(D)(X,Y) = —g(D)(L(D)(X)(N),Y).
First we note that
I'(D)(X)(N) = dN(D)(X) + L(D)(X)(N(D)).

Using the h = (f")~2 notation the normal vector field is

1
N(D) = —Wh(D)
and its derivative is dN (D)(X) =
1 1 1
_EW Tr(dh(D)(X))h(D) + mdh(p)(x),

by
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After some computation we have the function S

S(D)(Hija Hy) = _%&'kdﬂpijM@?j
f1<i< 1<n,1< E<l<n: S(D)(E],Fkl> = —%&ké‘ﬂpmej
S(D)(Hij, Frr) = 0.
(Hij, Fix) = S(D)(Fyk, Hij) = 0
(Fij, Frr) = S(D)(Fix, Fij) = 0.

8 M 8 M;i;
ik

(
If1<i<n1<k<n:SD)(Fi Fr)=—

. S(D)
< < < k<n:
If1_2<j_n,1_k_n{SD)

where

~

JO) = FO9) S AD) ey Ly

Mijj = 1()\i_)‘j)2 +)‘j_)\i i 7N

§f//(>\i) if Ai =X

T )t 4 ) R WY

o= 4 FODFQ) FO) = () i 7N
SR I (CY)

f(x)?

if A= \j.

Ve

(DY ME (D) My

by
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The basis of the scalar curvature computation is Equation (1),
where summation runs on an orthonormal basis of the tangent
space of the submanifold. Fortunately it is no matter if we add
the normal vector field to this summation or not, as in the clas-
sical case, its summand is 0 since

S(D)(Ey, N(D)) = 0,
S(D)(Hij, N(D)) = 0

S(D)(Fi, N(D)) = 2c(1D) S(D>](\5é: Flr;)
k=1
4 My, - ——1 B
— C(D)Q Mz‘%’ kz:; <C(D)2M/3k) +1{ =0,
S(D)(N(D),N(D)) = 20(1 D) > A;l?kS(D)(Fkk,N(D)) —0
k=1

by
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It means that at a given point D € M,, for an orthonormal basis
(A¢)ter in Tp M, the scalar curvature is

by

Scal(D) = 3 S(A,, A,)S(As, A) — S(As, A)S(Ay, Ay). i

tel sel .

At a point D € M, the set of matrices

Discrete distributions

, . 1
e, N\ Va0 U\ s i
B . B - eometry of M,

form an orthonormal basis in Tp M, in the case of complex
matrices.

It means that we have three kinds of basis elements: diagonal, T |
off-diagonal real and off-diagonal complex ones. T
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Theorem: The scalar curvature of the real and complex state
space (M, g) for an admissible function f at a point D € M,,

with eigenvalues (\;)i=1.. ., is
4 "\ Mii My 5 1 1 o
Scal(D)p = ——— o D? - —
oDk = 55 | 2 g, (02 3z 3
7
& M kkk 2 ]- n 1 n Discrete distributions
- D = —— iy o
(Z M, (C( ) M, Zp 2 c(D)? Zp g
k <] i<j
1 - 9 Geometry of M,
" (D) ;p g
i<j

4 “ Mii Migk 5 L 1
Scal(D)¢ = TR (c(D) - _)
c(D)* 2 MM, ME Mg, T s

itk i
—2 (2}; Aj\ﬁfg: (C(D)2 - ML]?])) (Z Pz’j) + . (Z Pm) ’—

c(D)? i<j | Fulscreen
2 zn: 2 | e
c(D)? — Pij- ’—




Symbols in the scalar curvature formula

M= £, Ma=120 \l 2T ZHHE

2
1 ) =) .
— if )\2 7& Aj

/') f(h) = f() !
L/ "

S (i) .

_ lf )\Z — )\ . Geometry of (P, go)
f/(AZ)?) ’ Geometry of M,
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We can test the theorem in three different cases:

1. If we restrict ourselves to the functions of the form
2 1=e)
T) = Tr?
fla) = +—
and to diagonal matrices, then we get back the scalar curvature

of the classical a-geometry.

2. If we consider the full real or complex state space M, and
the function is f(z) = 2y/x then the pull-back metric is the
Wigner-Yanase metric. In this case we map the state space
to the surface of an Euclidean ball with radius R = 2. For a

given state D € M, with eigenvalues (\1,...,\,;) we have for
the scalar curvatures:
dr(dg — 1)
Scalg (D) = —
de(de — 1)
Scalc(D) = —

which are just the well-known scalar curvatures of the Euclidean
spheres in dimensions dr and d¢ with radius R.

3. Finally if we use the f(x) = z function, then we map the state
space into the flat Euclidean space, so the scalar curvature is 0.

o
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Monotonicity conjecture

Conjecture(Gibilisco and Isola): On the spaces (P,,g,) and
(M, go) the scalar curvature is monotonously increasing, with
respect to the majorization relation if a € ]—1,0[ and it is
monotonously decreasing if a € ]0, 1.

Gibilisco and Isola proved a similar statement only for the cur-
vature of the space (P2, ga)-

A linear map T on R" is a T-transform if there exists 0 <t <1
and indices k, [ such that T'(xq,...,x,) is equal to

(:Eh sy Th—1, tl’k+(t_1)xl, Lht1ly- -5 Ll-15 (1_t)xk+t$l, Lit1y--- 7xn)‘

For every a € P,, and for every T transform T'(a) < a.

For given a,b € P, if a < b, then we can go continuously from a
to b using only T-transformations.

i
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Theorem: Assume that we have a,b € P,, with decreasingly or-
dered elements (a1, ..., a,) and (by, ..., b,). The following state- i
ments are equivalent. 2

006

1. The distribution a is more mixed than b.

2. One can find a sequence (c;),—1,. 4 between them such that

for all o= 17 Tt d: CZ E Pn, Discrete distributions
S R SO P

holds and the set of values of ¢, and c,_; is the same except
two elements.

Conjecture

3. The set (ay,...,a,) can be obtained from (by,...,b,) by a
finite number of T-transforms. T e

According to this Theorem in order to prove the monotonicity
of the scalar curvature with respect to the majorization, it is
enough to consider those distributions which have only two dif-

ferent elements.
’—



Corollary: The scalar curvature of the space (Ps,g.) at ¢ =
(191,192, 193) - Pg 1S

(14 a)? 99594
2 (19?+1 _}_193—1—1 +19§+1)2'

Scal(¥) =

Corollary: To prove Gibilisco’s and Isola’s Conjecture for the
space (Ps,g,) it is enough to show that for every distribution
(a1, a9,a3) € Ps if a3 > ay then the function

|:07 a; — CLQ] R v (al — x)a(ag + .CC)a 2
2 ((al _ x)a+1 + (a2 4+ x)a—H 4+ a§‘+1)

is decreasing if a € |—1,0] and increasing if a € |0, 1].

by
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Corollary: The scalar curvature of the real and complex state
space (Ms, g¢) for an admissible function f at a point D € My
with eigenvalues \; and A\, are

Scal(D)r = 2z Scal(D)c = 4xy + 24,

where
_ ) ) (f"()\l) N f"()\2)> J'(A1) = f'(Aa)
(FO)2+ /)2 \F/(A) ') ) f(a) = f(Ae)
7y = ! (f’(h) —f’(Az>>2
PO PO\ FO0) = Fw) )
We write the eigenvalues of a state D € M as ! ; ! and ! ; 1,

where r is the interval ]0,1[. Using this parameter, for states
Dy, Dy € M, the relation D; < Dy holds if and only if r1 < rs.
Numerically we computed the scalar curvature of the state space
(Ma, go) using Maple.

i3
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The scalar curvature of the real state space can be seen on the —
following graphs. ﬂ «

a €]-1,0[ ﬂ”E

\
\
Scal TS
‘\‘ TSI
‘\‘\\\“:‘%’:%
R
Conjecture
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a€]0,1]:

Geometry of (P, go)
Geometry of M,

Conjecture
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It seems that the scalar curvature is increasing with respect to
the majorization if a € ]—1,0[ and decreasing for parameters

a €]0,1].
—
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The following graphs are about the scalar curvature of the com- N
plex state space (Ma, go). [P
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a€]0,1f:

Geometry of (P, go)
Geometry of M,

Conjecture
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We can check again that the foreseen properties of the scalar
curvature function seems to be true.
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