Information Geometry of Matrices and Mean

Attila Andai

RIKEN, BSI, Amari Research Unit

May 29, 2008

Outline

- Generalization of means.
general concept of the mean
extension to more variables
extension to matrices
difficulties with combining these ideas together
- Means in quantum information geometry.
- More geometry related to the means.

Symposium Information Geometry

Generalizations

For strictly positive numbers x, y arithmetic mean

$$
M_{a}(x, y)=\frac{x+y}{2}
$$

Information Geometry of
Matrices and Mean

Attila Andai
Symposium Information Geometry
geometric mean

$$
M_{g}(x, y)=\sqrt{x y}
$$

harmonic mean

$$
M_{h}(x, y)=\frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

Well-known inequality

$$
M_{h}(x, y) \leq M_{g}(x, y) \leq M_{a}(x, y)
$$

Generalizations

Some natural questions related to means:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations

```
Def. of means
```

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means

Examples
Questions

Generalizations

Some natural questions related to means:
Is the function

$$
M_{\log }(x, y)=\frac{x-y}{\log x-\log y}
$$

is a mean? (logarithmic mean)

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Generalizations

Some natural questions related to means:
Is the function

$$
M_{\log }(x, y)=\frac{x-y}{\log x-\log y}
$$

Symposium Information Geometrv

is a mean? (logarithmic mean)
For more variables we have the intuition

$$
M_{a}(x, y, z)=\frac{x+y+z}{3} \quad M_{g}(x, y, z)=\sqrt[3]{x y z} .
$$

How to generalize the logarithmic mean to more variables?

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Generalizations

Some natural questions related to means:
Is the function

$$
M_{\log }(x, y)=\frac{x-y}{\log x-\log y}
$$

is a mean? (logarithmic mean)
For more variables we have the intuition

$$
M_{a}(x, y, z)=\frac{x+y+z}{3} \quad M_{g}(x, y, z)=\sqrt[3]{x y z} .
$$

How to generalize the logarithmic mean to more variables?
For matrices we have the intuition

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

$$
M_{a}(X, Y)=\frac{1}{2}(X+Y)
$$

But to compute the geometric mean of matrices?

Generalizations

Some natural questions related to means:
Is the function

$$
M_{\log }(x, y)=\frac{x-y}{\log x-\log y}
$$

is a mean? (logarithmic mean)
For more variables we have the intuition

$$
M_{a}(x, y, z)=\frac{x+y+z}{3} \quad M_{g}(x, y, z)=\sqrt[3]{x y z} .
$$

How to generalize the logarithmic mean to more variables?
For matrices we have the intuition

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

$$
M_{a}(X, Y)=\frac{1}{2}(X+Y) .
$$

But to compute the geometric mean of matrices? What is the logarithmic mean of three matrices???

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$
$M(x, x)=x$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$
$M(x, x)=x$
$M(x, y)=M(y, x)$

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$
$M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$
$M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$
$x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)$

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$
$M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$
$x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)$
$M(x, y)$ is continuous

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$
$M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$
$x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)$
$M(x, y)$ is continuous
$M(t x, t y)=t M(x, y)$

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$
$M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$
$x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)$
$M(x, y)$ is continuous
$M(t x, t y)=t M(x, y)$

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
\begin{aligned}
& M(x, x)=x \\
& M(x, y)=M(y, x) \\
& x<y \Rightarrow x<M(x, y)<y \\
& x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right) \\
& M(x, y) \text { is continuous } \\
& M(t x, t y)=t M(x, y)
\end{aligned}
$$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
\begin{array}{ll}
M(x, x)=x & f(1)=1 \\
M(x, y)=M(y, x) & f(t)=t f\left(t^{-1}\right) \\
x<y \Rightarrow x<M(x, y)<y & \\
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right) & \\
M(x, y) \text { is continuous } & \\
M(t x, t y)=t M(x, y) &
\end{array}
$$

Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
\begin{array}{ll}
M(x, x)=x & f(1)=1 \\
M(x, y)=M(y, x) & f(t)=t f\left(t^{-1}\right) \\
x<y \Rightarrow x<M(x, y)<y \quad f(\cdot>1)>1, f(0<\cdot<1)<1 \\
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right) & \\
M(x, y) \text { is continuous } & \\
M(t x, t y)=t M(x, y) &
\end{array}
$$

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
\begin{array}{ll}
M(x, x)=x & f(1)=1 \\
M(x, y)=M(y, x) & f(t)=t f\left(t^{-1}\right) \\
x<y \Rightarrow x<M(x, y)<y \quad f(\cdot>1)>1, f(0<\cdot<1)<1 \\
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right) & f \text { increasing } \\
M(x, y) \text { is continuous } & \\
M(t x, t y)=t M(x, y) &
\end{array}
$$

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

What is a mean?

A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
\begin{array}{ll}
M(x, x)=x & f(1)=1 \\
M(x, y)=M(y, x) & f(t)=t f\left(t^{-1}\right) \\
x<y \Rightarrow x<M(x, y)<y \quad f(\cdot>1)>1, f(0<\cdot<1)<1 \\
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right) & f \text { increasing } \\
M(x, y) \text { is continuous } & f \text { continuous }
\end{array}
$$

$$
M(t x, t y)=t M(x, y)
$$

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

We have

$$
\text { means }=\left\{\begin{array}{l|c}
f \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right) & \begin{array}{c}
f \text { increasing } \\
f(1)=1 \\
\forall t \in \mathbb{R}^{+}: f(t)=t f\left(t^{-1}\right)
\end{array}
\end{array}\right\}
$$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

We have

$$
\text { means }=\left\{\begin{array}{l|c}
f \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right) & \begin{array}{c}
f \text { increasing } \\
f(1)=1 \\
\forall t \in \mathbb{R}^{+}: f(t)=t f\left(t^{-1}\right)
\end{array}
\end{array}\right\}
$$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

arithmetic mean: $f(t)=\frac{1+t}{2}$
geometric mean: $f(t)=\sqrt{t}^{2}$
logarithmic mean: $f(t)=\frac{t-1}{\log t}$

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and

Definition: A mean m of three variables is said to be of type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z)
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Definition: A mean m of three variables is said to be of type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples

Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Define $x_{0}:=x, y_{0}:=y, z_{0}:=z$ and iterate

$$
x_{n+1}:=M\left(y_{n}, z_{n}\right) \quad y_{n+1}:=M\left(z_{n}, x_{n}\right) \quad z_{n+1}:=M\left(x_{n}, y_{n}\right)
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Define $x_{0}:=x, y_{0}:=y, z_{0}:=z$ and iterate

$$
x_{n+1}:=M\left(y_{n}, z_{n}\right) \quad y_{n+1}:=M\left(z_{n}, x_{n}\right) \quad z_{n+1}:=M\left(x_{n}, y_{n}\right)
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Define $x_{0}:=x, y_{0}:=y, z_{0}:=z$ and iterate

$$
x_{n+1}:=M\left(y_{n}, z_{n}\right) \quad y_{n+1}:=M\left(z_{n}, x_{n}\right) \quad z_{n+1}:=M\left(x_{n}, y_{n}\right)
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Define $x_{0}:=x, y_{0}:=y, z_{0}:=z$ and iterate

$$
x_{n+1}:=M\left(y_{n}, z_{n}\right) \quad y_{n+1}:=M\left(z_{n}, x_{n}\right) \quad z_{n+1}:=M\left(x_{n}, y_{n}\right)
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Define $x_{0}:=x, y_{0}:=y, z_{0}:=z$ and iterate

$$
x_{n+1}:=M\left(y_{n}, z_{n}\right) \quad y_{n+1}:=M\left(z_{n}, x_{n}\right) \quad z_{n+1}:=M\left(x_{n}, y_{n}\right)
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Define $x_{0}:=x, y_{0}:=y, z_{0}:=z$ and iterate

$$
x_{n+1}:=M\left(y_{n}, z_{n}\right) \quad y_{n+1}:=M\left(z_{n}, x_{n}\right) \quad z_{n+1}:=M\left(x_{n}, y_{n}\right)
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Define $x_{0}:=x, y_{0}:=y, z_{0}:=z$ and iterate

$$
x_{n+1}:=M\left(y_{n}, z_{n}\right) \quad y_{n+1}:=M\left(z_{n}, x_{n}\right) \quad z_{n+1}:=M\left(x_{n}, y_{n}\right)
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Definition: A mean m of three variables is said to be of type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z) .
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Definition: A mean m of three variables is said to be of type 1 invariant with respect to M if

$$
m(M(x, y), M(y, z), M(z, x))=m(x, y, z)
$$

Theorem: To each M there exists a unique m which is type 1 invariant with respect to M.
Proof:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions
variables:

Logarithmic mean $L(x, y)=\frac{x-y}{\log x-\log y}$ with three

$$
U_{0}(x, y, z)=\sqrt{\frac{1}{2} \times \frac{(x-z)(y-z)(x-y)}{x \log \frac{y}{z}+y \log \frac{z}{x}+z \log \frac{x}{y}}}
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

$$
U_{1}(x, y, z)=\frac{1}{2} \times \frac{(y-z)(x-z)(x-y)}{x(y-z) \log x+y(z-x) \log y+z(x-y) \log z}
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG

$$
U_{0}(x, y, z) \leq L_{3}(x, y, z) \leq U_{1}(x, y, z)
$$

Means

Examples
Questions

Logarithmic mean $L(x, y)=\frac{x-y}{\log x-\log y}$ with three variables:

$$
U_{0}(x, y, z)=\sqrt{\frac{1}{2} \times \frac{(x-z)(y-z)(x-y)}{x \log \frac{y}{z}+y \log \frac{z}{x}+z \log \frac{x}{y}}}
$$

$U_{1}(x, y, z)=\frac{1}{2} \times \frac{(y-z)(x-z)(x-y)}{x(y-z) \log x+y(z-x) \log y+z(x-y) \log z}$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

$$
L_{3}(x, y, z)=?
$$

Define means on $n \times n$, positive definite matrices \mathcal{M}_{n} :
$X \in \mathcal{M}_{n} \Longleftrightarrow X=X^{*},\left\{\begin{array}{l}\langle v, X v\rangle>0 \forall 0 \neq v \in \mathbb{R}^{n}, \mathbb{C}^{n} \\ \text { every eigenvalue of } X \text { is positive }\end{array}\right.$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Define means on $n \times n$, positive definite matrices \mathcal{M}_{n} :
$X \in \mathcal{M}_{n} \Longleftrightarrow X=X^{*},\left\{\begin{array}{l}\langle v, X v\rangle>0 \forall 0 \neq v \in \mathbb{R}^{n}, \mathbb{C}^{n} \\ \text { every eigenvalue of } X \text { is positive }\end{array}\right.$
We write $X \leq Y$ if $Y-X \in \mathcal{M}_{n}$.

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Define means on $n \times n$, positive definite matrices \mathcal{M}_{n} :
$X \in \mathcal{M}_{n} \Longleftrightarrow X=X^{*},\left\{\begin{array}{l}\langle v, X v\rangle>0 \forall 0 \neq v \in \mathbb{R}^{n}, \mathbb{C}^{n} \\ \text { every eigenvalue of } X \text { is positive }\end{array}\right.$
We write $X \leq Y$ if $Y-X \in \mathcal{M}_{n}$.
How to compute $f(X)$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Define means on $n \times n$, positive definite matrices \mathcal{M}_{n} :
$X \in \mathcal{M}_{n} \Longleftrightarrow X=X^{*},\left\{\begin{array}{l}\langle v, X v\rangle>0 \forall 0 \neq v \in \mathbb{R}^{n}, \mathbb{C}^{n} \\ \text { every eigenvalue of } X \text { is positive }\end{array}\right.$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

$$
f(X)=\sum_{i=1}^{n} f\left(\lambda_{i}\right) E_{i}
$$

Define means on $n \times n$, positive definite matrices \mathcal{M}_{n} :
$X \in \mathcal{M}_{n} \Longleftrightarrow X=X^{*},\left\{\begin{array}{l}\langle v, X v\rangle>0 \forall 0 \neq v \in \mathbb{R}^{n}, \mathbb{C}^{n} \\ \text { every eigenvalue of } X \text { is positive }\end{array}\right.$
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more

$$
f(X):=U f(D) U^{*}
$$

- X can be written as $X=\sum_{i=1}^{n} \lambda_{i} E_{i}$, where $\left(\lambda_{i}\right)_{i=1, \ldots, n}$ are the eigenvalues and $\left(E_{i}\right)_{i=1, \ldots, n}$ are the corresponding projections

$$
f(X)=\sum_{i=1}^{n} f\left(\lambda_{i}\right) E_{i}
$$

f is operator monotone if $X \leq Y$ then $f(X) \leq f(Y)$.

M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}$

 and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences then $M\left(X_{n}, Y_{n}\right)$ is decreasing andInformation Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions
M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}$
$-X \leq X_{0}, Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

For real numbers we had:

M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}$
$-X \leq X_{0}, Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}, Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n} with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions
M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}$
$-X \leq X_{0}, Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}, Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n} with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}$
$-X \leq X_{0}, Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}, Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n} with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions
M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}$
$-X \leq X_{0}, Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}, Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n} with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Gcometry and Means

Examples
Questions
M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}$
$-X \leq X_{0}, Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}, Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n} with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

For real numbers we had:

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

Problems with means

- General mean

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark

Information Geometry of Matrices and Mean

- More variables

Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$

Information Geometry of Matrices and Mean
 Attila Andai
 Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geométry

Generalizations
Def. of means
Neans of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geométry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geométry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean \checkmark
- More variables : if more $=3 \checkmark$
if more $=4$:
\checkmark

Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean

Information Geometry of Matrices and Mean

Attila Andai

- More variables \checkmark

Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean
- More variables \checkmark Explicit form???

Information Geometry of Matrices and Mean
 Attila Andai
 Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean
- More variables \checkmark Explicit form???
- Matrices

Information Geometry of Matrices and Mean
 Attila Andai
 Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean
- More variables \checkmark Explicit form???
- Matrices
\checkmark

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean
- More variables \checkmark Explicit form???
- Matrices

General mean of more matrices:

Information Geometry of Matrices and Mean
 Attila Andai
 Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean
- More variables \checkmark Explicit form???
- Matrices

General mean of more matrices:

Information Geometry of Matrices and Mean
 Attila Andai
 Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Problems with means

- General mean
- More variables \checkmark Explicit form???
- Matrices

General mean of more matrices:
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

General mean of 3 matrices:

Problems with means

- General mean \checkmark
- More variables \checkmark Explicit form???
- Matrices
\checkmark

General mean of more matrices:
General mean of 3 matrices:

+ : The symmetrization method is convergent for the arithmetic, geometric and harmonic means.

Generalizations
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Problems with means

- General mean \checkmark
- More variables \checkmark Explicit form???
- Matrices
\checkmark

General mean of more matrices:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Problems with means

- General mean
- More variables \checkmark Explicit form???
- Matrices \checkmark

General mean of more matrices:
General mean of 3 matrices:

+ : The symmetrization method is convergent for the arithmetic, geometric and harmonic means.
- : The convergence is unknown in the other cases!
$+?:$ Conjecture: $\left\|x_{n+1}-y_{n+1}\right\| \leq\left\|x_{n}-y_{n}\right\|$. (Petz)

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Problems with means

- General mean
- More variables \checkmark Explicit form???
- Matrices \checkmark

General mean of more matrices:

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Contradiction!

Means in Quantum Info. Geometry

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

In the classical case: uniqueness of the Fisher information.

Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information. Open set of distributions on $X_{n}=\{1, \ldots, n\}$

$$
\mathcal{P}_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \mid 0<p_{i}<1, \sum_{i=1}^{n} p_{i}=1\right\}
$$

Symposium Information Geometrv

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information. Open set of distributions on $X_{n}=\{1, \ldots, n\}$

$$
\mathcal{P}_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \mid 0<p_{i}<1, \sum_{i=1}^{n} p_{i}=1\right\} .
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions
then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ is unique up to a positive real number.

Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
... set of distributions

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions
$g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \mathcal{P}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{P}_{n}$, positive real number.

Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
... set of distributions

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

(Petz:) Assume that for every $n \in \mathbb{N}$ the pair $\left(\mathcal{P}_{n}, g_{n}\right)$ is a Riemannian-manifold. If for every
Markovian map $\kappa: X_{n} \times X_{m} \rightarrow \mathbb{R}$ the following monotonicity property holds
$g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \mathcal{P}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{P}_{n}$,
Symposium Information Geometry

Generalizations
Def. of means
Means of more
then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ is unique up to a positive real number.

Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
... set of distributions

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

(Petz:) Assume that for every $n \in \mathbb{N}$ the pair $\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian-manifold. If for every Markovian map $\kappa: X_{n} \times X_{m} \rightarrow \mathbb{R}$ the following monotonicity property holds
$g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \mathcal{P}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{P}_{n}$,
Symposium Information Geometry

Generalizations
Def. of means
Means of more
then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ is unique up to a positive real number.

Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
... set of distributions

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

(Petz:) Assume that for every $n \in \mathbb{N}$ the pair $\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian-manifold. If for every stochastic map T (trace preserving CP. map) the following monotonicity property holds

$$
g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \mathcal{P}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{P}_{n},
$$ positive real number.

Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
... set of distributions

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

(Petz:) Assume that for every $n \in \mathbb{N}$ the pair $\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian-manifold. If for every stochastic map T (trace preserving CP. map) the following monotonicity property holds

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

Symposium Information Geometry

Generalizations
Def. of means
Means of more

Problems
Means in qIG
Geometry and
Means
Examples
Questions then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ is unique up to a positive real number.

Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
... set of distributions

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

Theorem (Petz:) Assume that for every $n \in \mathbb{N}$ the pair $\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian-manifold. If for every stochastic map T (trace preserving CP. map) the following monotonicity property holds
$g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}$,

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ is can be expressed as...

Idea of the proof:

Information Geometry of Matrices and Mean
 Attila Andai
 Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Idea of the proof:

 monotonicity:$g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}$,

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Idea of the proof: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

$$
g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right), \text { where }
$$

$$
\mathbf{J}_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C}) \text { linear map. }
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and

Idea of the proof: monotonicity:
$g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}$,
$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where
$\mathbf{J}_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Idea of the proof: monotonicity:
$g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}$,
$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where
$\mathbf{J}_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle
\end{gathered}
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Idea of the proof: monotonicity:
$g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}$,
$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where
$\mathbf{J}_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle \\
g_{D}(X, X)=\left\langle X, \mathbf{J}_{D}^{-1}(X)\right\rangle=\left\langle X, T^{*} \mathbf{J}_{D}^{-1} T(X)\right\rangle
\end{gathered}
$$

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Idea of the proof: monotonicity:
$g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}$,
$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where $\mathbf{J}_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle \\
g_{D}(X, X)=\left\langle X, \mathbf{J}_{D}^{-1}(X)\right\rangle=\left\langle X, T^{*} \mathbf{J}_{D}^{-1} T(X)\right\rangle
\end{gathered}
$$

monotonicity:

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Idea of the proof: monotonicity:
$g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}$,
$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where
$\mathbf{J}_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle \\
g_{D}(X, X)=\left\langle X, \mathbf{J}_{D}^{-1}(X)\right\rangle=\left\langle X, T^{*} \mathbf{J}_{D}^{-1} T(X)\right\rangle
\end{gathered}
$$

monotonicity:

$$
T^{*} \mathbf{J}_{T(D)}^{-1} T \leq \mathbf{J}_{D}^{-1}
$$

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Idea of the proof: monotonicity:
$g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}$,
$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where
$\mathbf{J}_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle \\
g_{D}(X, X)=\left\langle X, \mathbf{J}_{D}^{-1}(X)\right\rangle=\left\langle X, T^{*} \mathbf{J}_{D}^{-1} T(X)\right\rangle
\end{gathered}
$$

monotonicity:

$$
T^{*} \mathbf{J}_{T(D)}^{-1} T \leq \mathbf{J}_{D}^{-1}
$$

$$
T \mathbf{J}_{D} T^{*} \leq \mathbf{J}_{T(D)}
$$

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

What can $\mathbf{J}_{D}(X)$ be?

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

What can $\mathbf{J}_{D}(X)$ be?
$" D$ can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D) "$

Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

What can $\mathbf{J}_{D}(X)$ be?

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

What can $\mathbf{J}_{D}(X)$ be?
" D can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D)$ " in general $\varphi_{1}(D) X \varphi_{2}(D)$ gives the idea:

$$
\mathbf{J}_{D}(X)=M\left(L_{D}, R_{D}\right)(X)
$$

Where $L_{D}(X)=D X$ and $R_{D}(X)=X D$.
We have $M\left(L_{D}, R_{D}\right)=M\left(R_{D}, L_{D}\right)$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

What can $\mathbf{J}_{D}(X)$ be?
" D can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D)$ " in general $\varphi_{1}(D) X \varphi_{2}(D)$ gives the idea:

$$
\mathbf{J}_{D}(X)=M\left(L_{D}, R_{D}\right)(X)
$$

Where $L_{D}(X)=D X$ and $R_{D}(X)=X D$.
We have $M\left(L_{D}, R_{D}\right)=M\left(R_{D}, L_{D}\right)$
and the monotonicity

$$
T \mathbf{J}_{D} T^{*} \leq \mathbf{J}_{T(D)}
$$

gives

$$
T M\left(L_{D}, R_{D}\right) T^{*} \leq M\left(T L_{D} T^{*}, T R_{D} T^{*}\right)
$$

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

What can $\mathbf{J}_{D}(X)$ be?
" D can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D) "$ in general $\varphi_{1}(D) X \varphi_{2}(D)$ gives the idea:

$$
\mathbf{J}_{D}(X)=M\left(L_{D}, R_{D}\right)(X)
$$

Where $L_{D}(X)=D X$ and $R_{D}(X)=X D$.
We have $M\left(L_{D}, R_{D}\right)=M\left(R_{D}, L_{D}\right)$
and the monotonicity

$$
T \mathbf{J}_{D} T^{*} \leq \mathbf{J}_{T(D)}
$$

gives

$$
T M\left(L_{D}, R_{D}\right) T^{*} \leq M\left(T L_{D} T^{*}, T R_{D} T^{*}\right)
$$

Generalizations

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

M is a mean!

Theorem (Petz:) Assume that for every $n \in \mathbb{N}$ the pair $\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian-manifold. If for every stochastic map T the following monotonicity property holds

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

then there exists an operator monotone function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ with the property $f(x)=x f\left(x^{-1}\right)$, such that

$$
g_{D}(X, Y)=\operatorname{Tr}\left(X\left(R_{n, D}^{\frac{1}{2}} f\left(L_{n, D} R_{n, D}^{-1}\right) R_{n, D}^{\frac{1}{2}}\right)^{-1}(Y)\right) .
$$

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Examples:

$$
f(x)=\frac{2 x}{1+x}: g_{D}^{(\mathrm{LA})}(X, Y)=\frac{1}{2} \operatorname{Tr}\left(X D^{-1} Y+Y D^{-1} X\right)
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry
$f(x)=\frac{x-1}{\log x}: g_{D}^{(\mathrm{KM})}(X, Y)=\operatorname{Tr} \int_{0}^{\infty} X(D+t)^{-1} Y(D+t)^{-1} \mathrm{~d} t$

$$
f(x)=\frac{1+x}{2}: g_{D}^{(\mathrm{SM})}(X, Y)=\operatorname{Tr}\left(X Z_{D, Y}\right),
$$

where $Z_{D, Y}$ is the solution of the equation

$$
2 Y=D Z_{D, Y}+Z_{D, Y} D .
$$

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

We have the inequality

$$
g_{D}^{(\mathrm{SM})}(X, X) \leq g_{D}^{(f)}(X, X) \leq g_{D}^{(\mathrm{LA})}(X, X) .
$$

Geometry of Means

Geometrical point of view:
Assume that (\mathcal{M}, g) is a Riemannian manifold. Let us define the mean of two arbitrary points $X, Y \in \mathcal{M}$:

- Connect X and Y with a geodesic line γ, such that $\gamma(0)=X$ and $\gamma(1)=Y$.
- Then the mean of X and Y is the point $\gamma(1 / 2)$.

Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples

Geometry of Means

Geometrical point of view:
Assume that (\mathcal{M}, g) is a Riemannian manifold. Let us define the mean of two arbitrary points $X, Y \in \mathcal{M}$:

- Connect X and Y with a geodesic line γ, such that $\gamma(0)=X$ and $\gamma(1)=Y$.
- Then the mean of X and Y is the point $\gamma(1 / 2)$.

Let denote this mean with $\tilde{M}(X, Y)$.
Then we have:

Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples

Geometry of Means

Geometrical point of view:
Assume that (\mathcal{M}, g) is a Riemannian manifold. Let us define the mean of two arbitrary points $X, Y \in \mathcal{M}$:

- Connect X and Y with a geodesic line γ, such that $\gamma(0)=X$ and $\gamma(1)=Y$.
- Then the mean of X and Y is the point $\gamma(1 / 2)$.

Let denote this mean with $\tilde{M}(X, Y)$.
Then we have:
$\tilde{M}(X, Y)=\tilde{M}(Y, X)$

Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Geometry of Means

Geometrical point of view:
Assume that (\mathcal{M}, g) is a Riemannian manifold. Let us define the mean of two arbitrary points $X, Y \in \mathcal{M}$:

- Connect X and Y with a geodesic line γ, such that $\gamma(0)=X$ and $\gamma(1)=Y$.
- Then the mean of X and Y is the point $\gamma(1 / 2)$.

Let denote this mean with $\tilde{M}(X, Y)$.
Then we have:
$\tilde{M}(X, Y)=\tilde{M}(Y, X)$
$\tilde{M}(X, X)=X$

Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Geometry of Means

Geometrical point of view:
Assume that (\mathcal{M}, g) is a Riemannian manifold. Let us define the mean of two arbitrary points $X, Y \in \mathcal{M}$:

- Connect X and Y with a geodesic line γ, such that $\gamma(0)=X$ and $\gamma(1)=Y$.
- Then the mean of X and Y is the point $\gamma(1 / 2)$.

Let denote this mean with $\tilde{M}(X, Y)$.
Then we have:
$\tilde{M}(X, Y)=\tilde{M}(Y, X)$
$\tilde{M}(X, X)=X$
Symposium Information Geometry

Generalizations

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means
$X \prec \tilde{M}(X, Y) \prec Y$.

Example:

1. $\mathcal{M}:=\mathbb{R}^{+}$, and $g: \mathcal{M} \rightarrow \mathbb{R}^{+}$smooth function. At $p \in \mathcal{M}$ the "scalar product" of the "vectors" $x, y \in \mathbb{R}$ is

$$
g_{p}(x, y)=x y g(p)
$$

The equation of the geodesic line $\gamma(t)$

$$
\ddot{\gamma}(t)+\frac{g^{\prime}(\gamma(t))}{2 g(\gamma(t))}(\dot{\gamma}(t))^{2}=0 .
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Example:

1. $\mathcal{M}:=\mathbb{R}^{+}$, and $g: \mathcal{M} \rightarrow \mathbb{R}^{+}$smooth function.

At $p \in \mathcal{M}$ the "scalar product" of the "vectors" $x, y \in \mathbb{R}$ is

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions
in this case

$$
\tilde{M}(x, y)=\gamma\left(\frac{1}{2}\right)=\frac{x+y}{2} .
$$

2. Consider the following metric $g(t)=t^{2(p-1)}:(p \neq 1)$

The differential equation:

$$
\ddot{\gamma}(t)+(p-1) \frac{1}{\gamma(t)}(\dot{\gamma}(t))^{2}=0
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

$$
\left\{\begin{array}{lll}
\gamma(t)=\left(C_{1}+C_{2} t\right)^{1 / p} & \text { if } & p \neq 0 \\
\gamma(t)=C_{1} C_{2}^{t} & \text { if } & p=0
\end{array}\right.
$$

which satisfies $\gamma(0)=x, \gamma(1)=y$

$$
\begin{cases}\gamma(t)=\sqrt[p]{x^{p}+\left(y^{p}-x^{p}\right) t} & \text { if } p \neq 0 \\ \gamma(t)=x\left(\frac{y}{x}\right)^{t} & \text { if } p=0\end{cases}
$$

in this case

$$
\tilde{M}(x, y)=\gamma\left(\frac{1}{2}\right)= \begin{cases}\left(\frac{x^{p}+y^{p}}{2}\right)^{\frac{1}{p}} & \text { if } p \neq 0 \\ \sqrt{x y} & \text { if } p=0\end{cases}
$$

(Power-mean and Geometric Mean.)

Example:
3. $\mathcal{M}:=\mathcal{M}_{n}$, and

$$
g_{D}(X, Y)=\frac{1}{2} \operatorname{Tr} D^{-1} X D^{-1} Y .
$$

(Fisher information metric on the space of Gaussian distributions.)
The equation of the geodesic line $\gamma(t): \mathbb{R} \rightarrow \mathcal{M}_{n}$

$$
\ddot{\gamma}(t)-\dot{\gamma}(t) \gamma(t)^{-1} \dot{\gamma}(t)=0
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Example:
3. $\mathcal{M}:=\mathcal{M}_{n}$, and

$$
g_{D}(X, Y)=\frac{1}{2} \operatorname{Tr} D^{-1} X D^{-1} Y
$$

(Fisher information metric on the space of Gaussian distributions.)
The equation of the geodesic line $\gamma(t): \mathbb{R} \rightarrow \mathcal{M}_{n}$

$$
\ddot{\gamma}(t)-\dot{\gamma}(t) \gamma(t)^{-1} \dot{\gamma}(t)=0
$$

and its solution $\gamma(t)=C_{1} C_{2}^{t}$ which satisfies $\gamma(0)=X, \gamma(1)=Y$

$$
\gamma(t)=X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{t} X^{1 / 2}
$$

Information
Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions
in this case

$$
\tilde{M}(X, Y)=X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{1 / 2} X^{1 / 2} .
$$

This gives the geometric mean. There are two candidates for the geometric mean of three matrices:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

This gives the geometric mean. There are two candidates for the geometric mean of three matrices:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

This gives the geometric mean. There are two candidates for the geometric mean of three matrices:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

This gives the geometric mean. There are two candidates for the geometric mean of three matrices:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

This gives the geometric mean.
There are two candidates for the geometric mean of three matrices:

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

$$
\log C^{-1} X+\log C^{-1} Y+\log C^{-1} Z=0
$$

Example:
4. $\mathcal{M}:=\left(\mathcal{M}_{n}, \mathbb{R}^{n}\right)$, and

$$
g_{D, \underline{u}}((X, \underline{x}),(Y, \underline{y}))=\frac{1}{2} \operatorname{Tr} D^{-1} X D^{-1} Y+\langle\underline{x}, D \underline{y}\rangle .
$$

(Fisher information metric on the space of Gaussian distributions.)

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometrv
The equation of the geodesic line $\gamma_{1}(t): \mathbb{R} \rightarrow \mathcal{M}_{n}$, $\gamma_{2}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
& \ddot{\gamma}_{1}(t)-\dot{\gamma}_{1}(t) \gamma_{1}(t)^{-1} \dot{\gamma}_{1}(t)=0 \\
& \ddot{\gamma}_{2}(t)+\gamma_{1}(t)^{-1} \dot{\gamma}_{1}(t) \dot{\gamma}_{2}(t)=0
\end{aligned}
$$

Example:
4. $\mathcal{M}:=\left(\mathcal{M}_{n}, \mathbb{R}^{n}\right)$, and

$$
g_{D, \underline{u}}((X, \underline{x}),(Y, \underline{y}))=\frac{1}{2} \operatorname{Tr} D^{-1} X D^{-1} Y+\langle\underline{x}, D \underline{y}\rangle .
$$

(Fisher information metric on the space of Gaussian distributions.)

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry
The equation of the geodesic line $\gamma_{1}(t): \mathbb{R} \rightarrow \mathcal{M}_{n}$, $\gamma_{2}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
& \ddot{\gamma}_{1}(t)-\dot{\gamma}_{1}(t) \gamma_{1}(t)^{-1} \dot{\gamma}_{1}(t)=0 \\
& \ddot{\gamma}_{2}(t)+\gamma_{1}(t)^{-1} \dot{\gamma}_{1}(t) \dot{\gamma}_{2}(t)=0
\end{aligned}
$$

...skip the details...

Example:
4. $\mathcal{M}:=\left(\mathcal{M}_{n}, \mathbb{R}^{n}\right)$, and

$$
g_{D, \underline{u}}((X, \underline{x}),(Y, \underline{y}))=\frac{1}{2} \operatorname{Tr} D^{-1} X D^{-1} Y+\langle\underline{x}, D \underline{y}\rangle .
$$

(Fisher information metric on the space of Gaussian distributions.)
The equation of the geodesic line $\gamma_{1}(t): \mathbb{R} \rightarrow \mathcal{M}_{n}$, $\gamma_{2}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
& \ddot{\gamma}_{1}(t)-\dot{\gamma}_{1}(t) \gamma_{1}(t)^{-1} \dot{\gamma}_{1}(t)=0 \\
& \ddot{\gamma}_{2}(t)+\gamma_{1}(t)^{-1} \dot{\gamma}_{1}(t) \dot{\gamma}_{2}(t)=0
\end{aligned}
$$

...skip the details...
$\tilde{M}((X, \underline{x}),(Y, \underline{y}))=\left(X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{1 / 2} X^{1 / 2}\right.$,

$$
\left.\underline{x}+\left[\exp \left(\frac{1}{2} X^{-1 / 2} \log \left(X^{-1 / 2} Y X^{-1 / 2}\right) X^{1 / 2}\right)+I_{n}\right]^{-1}(\underline{y}-\underline{x})\right)
$$

Geodesic lines between Gaussian distributions

Information Geometry of Matrices and Mean
 Attila Andai
 Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def, of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def, of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def, of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information Geometry of
Matrices and Mean

Attila Andai

Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information Geometry of
Matrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information Geometry of
Matrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information Geometry of
Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def, of means
Means of more variables

Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai

Symposium Information Geometrv

Generalizations Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations
Def. of means
Means of more
variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means

Examples
Questions

Geodesic lines between Gaussian distributions

Information Geometry of
Matrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations Def, of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations
Def. of means
Means of more
variables
Means of
matrices
Problems

Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information Geometry of
Matrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai

Symposium Information Geometry

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Geodesic lines between Gaussian distributions

Information

 Geometry ofMatrices and Mean

Attila Andai
Symposium Information Geometrv

Generalizations Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Example:
5. $\mathcal{M}:=\mathcal{M}_{n}$, and

$$
g_{D}(X, Y)=\frac{1}{2} \operatorname{Tr} D^{-2} X D^{-2} Y
$$

The equation of the geodesic line $\gamma(t): \mathbb{R} \rightarrow \mathcal{M}_{n}$

$$
\ddot{\gamma}(t)-2 \dot{\gamma}(t) \gamma(t)^{-1} \dot{\gamma}(t)=0
$$

Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

Generalizations

Def. of means

Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Example:
5. $\mathcal{M}:=\mathcal{M}_{n}$, and

$$
g_{D}(X, Y)=\frac{1}{2} \operatorname{Tr} D^{-2} X D^{-2} Y
$$

The equation of the geodesic line $\gamma(t): \mathbb{R} \rightarrow \mathcal{M}_{n}$
Information Geometry of Matrices and Mean

Attila Andai
Symposium Information Geometry

$$
\ddot{\gamma}(t)-2 \dot{\gamma}(t) \gamma(t)^{-1} \dot{\gamma}(t)=0
$$

and its solution $\gamma(t)=\left(C_{1}+C_{2} t\right)^{-1}$
which satisfies $\gamma(0)=X, \gamma(1)=Y$

$$
\gamma(t)=\left(X^{-1}+\left(Y^{-1}-X^{-1}\right) t\right)^{-1}
$$

in this case
Examples
Questions

$$
\tilde{M}(X, Y)=2\left(X^{-1}+Y^{-1}\right)^{-1}
$$

Questions

1. Which Riemannian metrics guarantee the scaling

property:

Information Geometry of Matrices and Mean
 Attila Andai
 Symposium
 Information Geometrv

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Neans in qIG
Geometry and
Means
Examples
Questions

Questions

1. Which Riemannian metrics guarantee the scaling property:

$$
t \tilde{M}(X, Y)=\tilde{M}(t X, t Y) ?
$$

Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Questions

1. Which Riemannian metrics guarantee the scaling property:

$$
t \tilde{M}(X, Y)=\tilde{M}(t X, t Y) ?
$$

2. How one can find a Riemannian metric for a given mean?

Symposium Information Geometry

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and Means

Examples
Questions

Questions

1. Which Riemannian metrics guarantee the scaling property:

$$
t \tilde{M}(X, Y)=\tilde{M}(t X, t Y) ?
$$

2. How one can find a Riemannian metric for a given

Symposium mean?
3. Can the geometrical background help to prove that the iteration
$x_{n+1}:=M\left(y_{n}, z_{n}\right), y_{n+1}:=M\left(z_{n}, x_{n}\right), z_{n+1}:=M\left(x_{n}, y_{n}\right)$
is convergent in the space of matrices?

Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Questions

1. Which Riemannian metrics guarantee the scaling property:

$$
t \tilde{M}(X, Y)=\tilde{M}(t X, t Y) ?
$$

2. How one can find a Riemannian metric for a given

Symposium Information Geometry mean?
3. Can the geometrical background help to prove that the iteration
$x_{n+1}:=M\left(y_{n}, z_{n}\right), y_{n+1}:=M\left(z_{n}, x_{n}\right), z_{n+1}:=M\left(x_{n}, y_{n}\right)$
is convergent in the space of matrices?
This work was supported by:
Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions

Questions

1. Which Riemannian metrics guarantee the scaling property:

$$
t \tilde{M}(X, Y)=\tilde{M}(t X, t Y) ?
$$

2. How one can find a Riemannian metric for a given

Symposium Information Geometrv mean?
3. Can the geometrical background help to prove that the iteration
$x_{n+1}:=M\left(y_{n}, z_{n}\right), y_{n+1}:=M\left(z_{n}, x_{n}\right), z_{n+1}:=M\left(x_{n}, y_{n}\right)$
is convergent in the space of matrices?
This work was supported by:
Generalizations
Def. of means
Means of more variables
Means of
matrices
Problems
Means in qIG
Geometry and
Means
Examples
Questions
Thank you for your attention!

