Information Geometry of Matrices and
Mean

Attila Andai

RIKEN, BSI, Amari Research Unit

May 29, 2008

Information

Geometry of

Matrices and
Mean

Attila Andai

Syn&Rosium

Information
Geometry

Generalizations

Def. of means
Means of more
variables
Means of
matrices
Problem

Means in qIG

Geometry and
Means

Examples

Questions



Outline

— Generalization of means.

general concept of the mean
extension to more variables

extension to matrices

difficulties with combining these ideas together
— Means in quantum information geometry.

— More geometry related to the means.
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For strictly positive numbers z, y
arithmetic mean

geometric mean

harmonic mean

My(z,y) = T—

IS
+ |
< | =

Well-known inequality

Mh(m’y) < Mg(gj7y) < Ma(ﬂf,y)
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Generalizations
Some natural questions related to means:
Is the function

r—Yy
Mlog(m’ y) =

is a mean? (logarithmic mean)

~ logz —logy
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Generalizations
Some natural questions related to means:

Is the function

Mlog(m’ y)

_ r—y
~ logz —logy

is a mean? (logarithmic mean)
For more variables we have the intuition

T+y+z
Ma(l’,y,Z) = + Mg(l‘,y,Z) - \3/ TYZ.

How to generalize the logarithmic mean to more

variables?
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My(X,Y) = J(X +Y).

But to compute the geometric mean of matrices?



Generalizations
Some natural questions related to means:
Is the function

M r—Yy
B ——
log(m’y) 10g$—10gy

is a mean? (logarithmic mean)
For more variables we have the intuition

T+y+z
Ma(l‘,y,z) = L Mg(l‘,y,Z) = \3/ TYz.

3

How to generalize the logarithmic mean to more

variables?
For matrices we have the intuition

My(X,Y) = J(X +Y).

But to compute the geometric mean of matrices?
What is the logarithmic mean of three matrices???
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(VZE, Y,Zo, Yo, i E R+)
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A function M : Rt x Rt — RT is a mean if
(VZE, Y,Zo, Yo, t e R+)
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(vxayu x()uy()at S R+)
M(z,x) ==z

M(z,y) = M(y,z)

<y = x< Mz,y <y
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(vxayu QUanOat S R+)
M(z,x) ==z

M(z,y) = M(y,z)
<y = x< Mz,y <y

$<$0,y<y0:>M(l’,y) < M("BO?yO)
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(vxayu x()uy()at S R+)
M(z,x) ==z

M(z,y) = M(y,x)

r<y = x< M(z,y) <y

x < 20,y < Yo = M(z,y) < M(xo,0)
M (x,y) is continuous

M(tz,ty) = tM(z,y)
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(vxayu x()uy()at S R+)
M(z,x) ==z f()y=1

M(z,y) = M(y,x)

r<y = x< M(z,y) <y

x < 20,y < Yo = M(z,y) < M(xo,0)
M (x,y) is continuous

M(tz,ty) = tM(z,y)

M(z,y) = =f (%)
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(vxayu QUanOat S R+)
M(z,x) ==z f()y=1

M(z,y) = M(y, ) fl) =tf(¢)
r<y = x< M(z,y) <y

T <m0,y <yo = M(z,y) < M(zo,%0)

M (x,y) is continuous

M(tz,ty) = tM(z,y)

M(z,y) =zf (%)
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(vxayu fEanOat S R+)
M(z,x) ==z f()y=1

M(z,y) = M(y,x) fl) =tf(¢)
r<y = s<Mz,y)<y f(>1)>1, f0<-<1)<1
z < w0,y < yo = M(z,y) < M(zo,y0)

M (x,y) is continuous

M(tz,ty) = tM(z,y)

M(z,y) = =f (%)
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(anyu fEanO,t S R+)
M(z,x) ==z f(1)y=1

M(z,y) = M(y,z) f)y=tft")
<y => < M@,y<y f(>1)>1 f0<-<1)<1
x < xo,y < yo= M(z,y) < M(x9,y0) [ increasing

M (x,y) is continuous

M(tz,ty) = tM(z,y)

M(z,y) = =f (%)
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What is a mean?

A function M : Rt x Rt — RT is a mean if
(anyu fEanO,t S R+)
M(z,x) ==z f(1)y=1

M(z,y) = M(y,x) f) =tf(t™")
<y => < M@,y<y f(>1)>1 f0<-<1)<1
x < xo,y < yo= M(z,y) < M(x9,y0) [ increasing

M (x,y) is continuous f continuous

M(tz,ty) = tM(z,y)

Af@ay)=:wf(%)
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We have

means —

f € CRY,RY)

f increasing

) =1

VteRY: f(t) =tf(t™})

M(z,y) =z f (%)
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We have

means = { f € C(R™,

f increasing
R*) f) =1
VteRY: f(t) =tf(t™})

M(z,y) =z f (%)

arithmetic mean: f(t) =

geometric mean: f(t) =

logarithmic mean: f(t)

1+¢
2
Vit
t—1
~ logt
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Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

m(M(z,y), M(y, 2), M (z, ) = m(z,y, 2) .
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Definition: A mean m of three variables is said to be of Information
type 1 invariant with respect to M if CE TR
Mean
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Definition: A mean m of three variables is said to be of
type 1 invariant with respect to M if

m(M(z,y), M(y, 2), M (z, ) = m(z,y, 2) .

Theorem: To each M there exists a unique m which is
type 1 invariant with respect to M.

Proof:

Define xg := z, yo := vy, 20 := z and iterate

Tn+l = M(ynazn) Yn+1 ‘= M(znaxn) Zn+1 = M(xmyn)
Check lim |z, —yn| =0.
Define

m(z,y,z) = 11113;0 T
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Definition: A mean m of three variables is said to be of

Information
type 1 invariant with respect to M if Geometry of
Mean
m(M(z,y), M(y, 2), M(z,2)) = m(z,y, 2) .

Attila Andai
Theorem: To each M there exists a unique m which is

SylgRosium
type 1 invariant with respect to M. Information
Geometny
Proof:
Define Lo =T, Yo := Y, 20 = 2 and iterate Generalizations

Def. of mean
Tni1 = M(Yn,2n) Unt1 = M(2n,%n) 2ny1 = M(Tn,Yn)  Meosns of more
Means of

Check lim |.’L’n — yn’ =0. matrices
n—oo

Problem

Deﬁne Means in qIG
m(z,y,z) = lim z, . Geometry and
n—oo
Example: Examples
Questions
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Logarithmic mean L(z,y) = % with three
ogz —logy

variables:

1 (x—2)(y—2)(z —y)
UO($7y)Z) - \/2 & xlogg+y10g§+zlog§

(y—2)—2)(—y)

1
Ui(z, v, Z)-g X z(y—z)logx + y(z — x)logy + z(z — y) log z

Conjecture:

UO(m7y’ Z) < Lg(.’lf,y, Z) < Ul(xvyv Z)
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o o r — y o Inf "
Logarithmic mean L(z,y) = logz —logy with three i
e Matrices and

variables: Mean

Attila Andai

\/1 o (x—2)(y—2)(x—y) Symposiun

2" zlog Y +ylog 2 + zlog 5 égfgrfang%?nv

UO(I7y’ Z) =

Generalizations

(y —2)(z = 2)(= —y)

2(y — 2)logx + y(z — z)logy + 2(z — y) log 2 ?%agblof e

>roblem

1
Ui(z,y, Z)=§><

Conjecture:
Means in qIG
Geometry and
Uo(x,y,2) < L3(x,y,2) < Ui(x,y, 2) Means
Examples
Numerical example z =1, y = 2, z = 3: Questions

~ 1.8644 <~ 1.8791 <~ 1.9111

Lg(l', Y, Z) =7



Define means on n X n, positive definite matrices M,,:

XeM, <— X=X

*

)

(v, Xv) >0V0#veR"C"
every eigenvalue of X is positive
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Define means on n X n, positive definite matrices M,,:

(v, Xv) >0V0#veR"C"

X — X=X . . "
€ Ma " \every eigenvalue of X is positive

We write X <Y ifY — X e M,,.
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Define means on n X n, positive definite matrices M,,:

_ v+ Jv,Xv) >0V0#v e R, C"
XeM, = X=X", {every eigenvalue of X is positive

We write X <Y ifY — X e M,,.

How to compute f(X):
— X € M,, can be diagonalized by some unitary matrix

U, that is X = UDU*
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Define means on n X n, positive definite matrices M,,:

_ v+ Jv,Xv) >0V0#v e R, C"
XeM, = X=X", {every eigenvalue of X is positive

We write X <Y ifY — X e M,,.
How to compute f(X):
— X € M,, can be diagonalized by some unitary matrix

U, that is X = UDU*

f(X):=Uf(D)U”

n
— X can be written as X = Z AiE;, where (X\;)i=1,...n are
i=1
the eigenvalues and (E;);—1, .., are the corresponding
projections

FX) = F)E;
=1
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Define means on n X n, positive definite matrices M,,:

_ v+ Jv,Xv) >0V0#v e R, C"
XeM, = X=X", {every eigenvalue of X is positive

We write X <Y if Y — X € M,,.

How to compute f(X):

— X € M,, can be diagonalized by some unitary matrix
U, that is X = UDU*

f(X)=Uf(D)U"
— X can be written as X = Z AiE;, where (X\;)i=1,...n are
i=1

the eigenvalues and (E;);—1, .., are the corresponding
projections

FX) = F)E;
=1

f is operator monotone if X <Y then f(X) < f(Y).
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M is a mean of matrices if for every X, Y € M,
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M is a mean of matrices if for every X, Y € M,
- X<Xp, Y<Yy: M(X,Y) < M(Xo,Y)
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M is a mean of matrices if for every X, Y € M,

X <X, Y <Yy: M(X,Y) < M(Xo,Yo)

— (X3)nen and (Yy)nen are decreasing sequences
(Xnt1 < Xn, Vg1 < Yy,) in M, with limits X and Y
then M (X,,Y,) is decreasing and

lim M (X,,Y,) =M(X,Y)
n—oo
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M is a mean of matrices if for every X, Y € M,

X <X, Y <Yy: M(X,Y) < M(Xo,Yo)

— (X3)nen and (Yy)nen are decreasing sequences
(Xnt1 < Xn, Vg1 < Yy,) in M, with limits X and Y
then M (X,,Y,) is decreasing and

lim M (X,,Y,) =M(X,Y)

~T*M(X,Y)T < M(T*XT,T*YT) for all T
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M is a mean of matrices if for every X, Y € M,

X <Xo, Y <Yy: M(X,Y) < M(Xo,Y) Geometry of
— (X3)nen and (Yy)nen are decreasing sequences Mean
(Xnt1 < Xn, Vi1 < Y,) in M, with limits X and Y Atita Andas
then M (X,,Y,) is decreasing and Symposiun
Information
Tim M (X, Yn) = M(X,Y) Geonetry
~ T*M(X,Y)T < M(T*XT,T*YT) for all T SE——
- M(X,X) =X LM(
Theorem: (Kubo-Ando) If M is a matrix mean, then matrieet

Problem

there exists an operator monotone function f with o
properties f(t) =tf(t"1) and f(1) = 1 such that for every ... ..
X,Y 6 Mn Means
Examples
M(X,Y)= X2 x"2y x—1/2)x1/? Questions
For real numbers we had:

M(z,y) =zf (%)
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Problems with means

— General mean v
— More variables v Explicit form?7?
— Matrices v

General mean of more matrices: ................

General mean of 3 matrices:

+ : The symmetrization method is convergent for the
arithmetic, geometric and harmonic means.

- : The convergence is unknown in the other cases!
+7 : Conjecture: ||Zp+1 — Yntill < |2n — ynl|- (Petz)
-: xg:=0.01, yp :=0.02, 29 :=1

500z N 500z
999z +1 x4+ 999

f(z)

|Zns1 — Ynst|| & 0.02669>0.02 = ||z — yn]|.
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Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.

Open set of distributions on X,, = {1,...,n}

n
Pn=14(p1,..,pn) [0<pi <1, pi=1
=1
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Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
Open set of distributions on X, = {1,...,n}

n
Pn: (pl,-"apn) O<pz<17zp2:1
i=1

Theorem (Cencov:) Assume that for every n € N the pair
(Pn, gn) is a Riemannian-manifold. If for every
Markovian map « : X,, X X,;, = R

the following monotonicity property holds

Iy (K5 (X), £*(X)) < gp(X,X)  Vp € Py, VX € TPy ,

then the family of metrics (g, )nen is unique up to a
positive real number.

Information

Geometry of

Matrices and
Mean

Attila Andai

Syn&Rosium

Information
Geometny

Generalizations
Def. of means

Means of more
variables
Means of

matrices

Problem

Means in qIG

Geometry and
Means
Examples
Questions



Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
. set of distributions

M, = {DeMat(n,(C) D=D"D>0,TrD = 1}.

Theorem (Cencov:) Assume that for every n € N the pair
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In the classical case: uniqueness of the Fisher information.
. set of distributions

M, = {DEMat(n,(C) D=D"D>0,TrD = 1}.

(Petz:) Assume that for every n € N the pair
(Pn, gn) is a Riemannian-manifold. If for every
Markovian map k : X, x X,, = R
the following monotonicity property holds
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In the classical case: uniqueness of the Fisher information.
. set of distributions

M, = {DEMat(n,(C) D=D"D>0,TrD = 1}.

(Petz:) Assume that for every n € N the pair
(M, gn) is a Riemannian-manifold. If for every
stochastic map T (trace preserving CP. map)
the following monotonicity property holds

o) (K (X), 17 (X)) < gp(X,X)  Vp € Py, VX € TPy ,

then the family of metrics (g, )nen is unique up to a
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Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.

. set of distributions

My = {D € Mat(n, C)

D:D*,D>O,TrD=1}.

(Petz:) Assume that for every n € N the pair
(M, gn) is a Riemannian-manifold. If for every
stochastic map T (trace preserving CP. map)
the following monotonicity property holds

gr(p)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,

then the family of metrics (g, )nen is unique up to a
positive real number.

Information

Geometry of

Matrices and
Mean

Attila Andai

Syn&Rosium

Information
Geometny

Generalizations

Means in qIG

Geometry and
Means

Examples

Questions



Means in Quantum Info. Geometry

In the classical case: uniqueness of the Fisher information.
. set of distributions

M, = {DEMat(n,C) D=D*D>0,TrD = 1}.

Theorem (Petz:) Assume that for every n € N the pair
(M, gn) is a Riemannian-manifold. If for every
stochastic map T (trace preserving CP. map)

the following monotonicity property holds

gro)(T(X),T(X)) < gp(X, X) VD € M,,¥X € TyM, ,

then the family of metrics (gn)nen i can be expressed
as...
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Idea of the proof:
monotonicity:

grp)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,
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Idea of the proof:
monotonicity:

grp)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,

gp(X,Y) = (X, INY)) = Te(X T, (Y)), where
Jp : Mat(n,C) — Mat(n,C) linear map.
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monotonicity:

grp)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,

gp(X,Y) = (X, INY)) = Te(X T, (Y)), where
Jp : Mat(n,C) — Mat(n,C) linear map.
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Information

Geometry of

Matrices and
Mean

Attila Andai

SylgRosium

Information
Geometry

Generalizations
Def. of mean
Means of more

wwwww

Means in qIG

Geometry and
Means

Examples

Questions



Idea of the proof:
monotonicity:

grp)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,

gp(X,Y) = (X, INY)) = Te(X T, (Y)), where
Jp : Mat(n,C) — Mat(n,C) linear map.

97(p)(T(X), T(X)) = (T(X), I7{p (T(X)) )

910y (T(X), T(X)) = <X, T*3
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Idea of the proof:
monotonicity:

grp)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,

gp(X,Y) = (X, INY)) = Te(X T, (Y)), where
Jp : Mat(n,C) — Mat(n,C) linear map.

97(p)(T(X), T(X)) = (T(X), I7{p (T(X)) )
97() (T(X), T(X)) = (X, T"I7}, T(X) )

gp(X, X) = (X35! (X)) = (X, T"I5'T(X))
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Idea of the proof:
monotonicity:

grp)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,

gp(X,Y) = (X, INY)) = Te(X T, (Y)), where
Jp : Mat(n,C) — Mat(n,C) linear map.

91 (D) (T'(X), T(X))

910y (T(X), T(X)) = <X, T*3-1 T

gp(X, X) = (X35! (X)) = (X, T"I5'T(X))

monotonicity:
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Idea of the proof:
monotonicity:

grp)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,

gp(X,Y) = (X, INY)) = Te(X T, (Y)), where
Jp : Mat(n,C) — Mat(n,C) linear map.

97(p)(T(X), T(X)) = (T(X),3

910y (T(X), T(X)) = <X, T*3-1 T

gp(X, X) = (X35! (X)) = (X, T"I5'T(X))

monotonicity:

*7—1 —1
T35, T <Jp

TIpT* < Ippy
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What can Jp(X) be?
"D can act on left ¢1(D)X and on the right X¢,(D)”
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What can Jp(X) be?

"D can act on left ¢1(D)X and on the right X¢,(D)”
in general ¢1 (D)X pa(D) gives the idea:

Jp(X)=M(Lp,Rp)(X).

Where Lp(X) = DX and Rp(X) = XD.
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What can Jp(X) be? Matrices and
"D can act on left ¢1(D)X and on the right X¢,(D)”
in general ¢1 (D)X pa(D) gives the idea:

Attila Andai

SylgRosium
Information
JD(X) = M(LD,RD)(X) G’eomé‘t?v
Where LD(X) = DX and RD(X) =XD. Generalizations
We have M(Lp, Rp) = M(Rp, Lp)
and the monotonicity foans o
TJDT* S JT(D) Means in qIG
. (\,;I((“L()‘]]l\l:‘T!}' and
gives N |
LXamples
Questions

TM(Lp, Rp)T* < M(TLpT* TRpT*).

M is a mean!



Theorem (Petz:) Assume that for every n € N the pair
(M, gn) is a Riemannian-manifold. If for every
stochastic map T

the following monotonicity property holds

grp)(T(X),T(X)) < gp(X, X) VD € My, VX € TyM,, ,

then there exists an operator monotone function
f:RT — R with the property f(x) = zf(z~!), such that

9o(X,¥) = Te <X (RZ pJ (L Ry )2 p) (¥ >) .
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_ 2 ) _1 -1 ~1
f(m)—1+$. 9p (X,Y)—2Tr(XD Y+YD X)

(e.9]

fla) = :f—_l L g5 (X, Y) =T¥X(D+t)_1Y(D+t)_1dt
ogx
- 0
1+
fz) = Tm (X Y) = (X Zpy),

where Zp y is the solution of the equation

2Y = DZD7Y 4= ZD7yD.

We have the inequality

A
dSM(x, x) < g¥(x, X) < g (X, X).
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Geometrical point of view:

Assume that (M, g) is a Riemannian manifold. Let us sypasiui
define the mean of two arbitrary points X, Y € M: égfg’ﬁ“é%?”v
— Connect X and Y with a geodesic line ~y, such that

'Y(O) = X and ’7(1) =& Cererifmiions
— Then the mean of X and Y is the point v(1/2). il‘}:

Means of

matrices

Let denote this mean with M (X,Y). e
Then we have: Means in qIG
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Geometry of Means

Geometrical point of view:

Assume that (M, ¢g) is a Riemannian manifold. Let us
define the mean of two arbitrary points X, Y € M:

— Connect X and Y with a geodesic line ~y, such that
7(0) =X and 7(1) =Y.

— Then the mean of X and Y is the point v(1/2).

Let denote this mean with M (X,Y).
Then we have:

M(X,Y) = M(,X)
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Geometry of Means

Geometrical point of view:

Assume that (M, ¢g) is a Riemannian manifold. Let us
define the mean of two arbitrary points X, Y € M:

— Connect X and Y with a geodesic line ~y, such that
7(0) =X and 7(1) =Y.

— Then the mean of X and Y is the point v(1/2).

Let denote this mean with M (X,Y).
Then we have:

M(X,Y) = M(,X)

M(X,X)=X
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Geometry of Means

Geometrical point of view:

Assume that (M, ¢g) is a Riemannian manifold. Let us
define the mean of two arbitrary points X, Y € M:

— Connect X and Y with a geodesic line ~y, such that
7(0) =X and 7(1) =Y.

— Then the mean of X and Y is the point v(1/2).

Let denote this mean with M (X,Y).
Then we have:

M(X,Y)= M(Y,X)

M(X,X)=X

X <MX,Y)<Y.
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Example:
1. M:=R*, and g : M — RT smooth function.
At p € M the ”scalar product” of the ”vectors” z,y € R is

gp(x,y) = zyg(p)-
The equation of the geodesic line ~(t)

5(0) + L) (442

290+ (%)) =0
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Example:
1. M:=R*, and g : M — RT smooth function.
At p € M the ”scalar product” of the ”vectors” z,y € R is
gp(z,y) = zyg(p).
The equation of the geodesic line ~(t)
/
. g 0@) 22
5() + 2222 (4(4))° = 0.

Consider the metric g(t) = 1. The differential equation:
() =0
and its solution (t) = Cy + Cat
which satisfies y(0) =z, v(1) =y
V() =+ (y — )t

in this case
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2. Consider the following metric g(t) = t2®=1: (p # 1)
The differential equation:

. 1 p

H+(p—1D—(3(1)° =0

() + (0~ 1) =55 (0)
and its solution

¥(t) = (Cr+ Cot)/? if p#0

7(t) = 0105 if p = 0

which satisfies v(0) =z, v(1) =y

Y(t) = /P + (y? —aP)t if p#0

7(t):w<%>t if p=0

in this case

1
P4 P\ p
- 1 L A
M(w,y)—7<2)— ( 2 ) it p70
vy if p=0.

(Power-mean and Geometric Mean.)
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Example:
3. M :=M,, and

1
gp(X,Y) =3 TrD XD Y.
(Fisher information metric on the space of Gaussian

distributions.)
The equation of the geodesic line v(¢) : R — M,

() — () A (E) =0
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Example:

3. M :=M,, and
1 —1y -1
gp(X,Y) = §TI"D XD™Y.

(Fisher information metric on the space of Gaussian
distributions.)
The equation of the geodesic line v(¢) : R — M,

F(8) = 4Oy TH(t) =0

and its solution ~(t) = C;C}%
which satisfies 7(0) = X, v(1) =Y

,Y(t) _ X1/2(X71/2YX71/2)tX1/2
in this case

M(X, Y) _ XI/Z(X—I/QYX—I/Q)I/QXI/Q )
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This gives the geometric mean.
There are two candidates for the geometric mean of three

matrices:
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There are two candidates for the geometric mean of three

matrices:
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This gives the geometric mean.
There are two candidates for the geometric mean of three

matrices:
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This gives the geometric mean. ‘
K . Information
There are two candidates for the geometric mean of three Geometry of

Matrices and

matrices: Mean
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Example:

4. M = (M,,R"), and

1
gD,g((X, Q)v (Y7 y)) = 5 TI'.DilXDily + <§7 DQ>

(Fisher information metric on the space of Gaussian
distributions. )

The equation of the geodesic line v1(t) : R — M,,
Y2(t) : R — R"
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Example:

4. M = (M,,R"), and

1
gD,g((X, Q)v (Y7 y)) = 5 TI'.DilXDily + <§7 DQ>

(Fisher information metric on the space of Gaussian
distributions. )

The equation of the geodesic line v1(t) : R — M,,
Y2(t) : R — R"

...skip the details...
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Example:

4. M = (M,,R"), and

1 _ _
gD,g((X, £)7 (Y7 y)) = 5 Tr D 1XD 1Y + <§7 DQ>

(Fisher information metric on the space of Gaussian
distributions. )

The equation of the geodesic line v1(t) : R — M,,
Y2(t) : R — R"

...skip the details...

M((X,z),(Y,y)) = <X1/2(X‘l/QYX‘l/Q)l/QXW,

1 -1
T+ [exp <2X_1/2 1og(X—1/2YX—1/2)X1/2> + In]

(y — )

) .
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Geodesic lines between Gaussian distributions
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Example:
5 M :=M,, and

1
gp(X,Y) = 3 Tr D2XD7%Y.
The equation of the geodesic line v(¢) : R — M,,

H(t) — 29()y() "4 (t) =0

and its solution y(t) = (C1 + Cat) !
which satisfies v(0) = X, v(1) =Y

) =X+ ¥ -XxHy)T
in this case

M(X,Y)=2(X"1+y 1=t
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1. Which Riemannian metrics guarantee the scaling Mean
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property:

Japan Society for the Promotion of Science (JSPS)

Thank you for your attention!




Questions

1. Which Riemannian metrics guarantee the scaling

property:

tM(X,Y) = M(tX,tY) ?
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Questions

1. Which Riemannian metrics guarantee the scaling

property:

2. How one can find a Riemannian metric for a given

mean?

tM(X,Y) = M(tX,tY) ?
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Questions

1. Which Riemannian metrics guarantee the scaling

property: _ ~
tM(X,Y) = M(tX,tY) ?

2. How one can find a Riemannian metric for a given

mean?
3. Can the geometrical background help to prove that the

iteration
Tp+1 = M(yrw Zn)a O M(Zna xn)7 “n+l ‘= M(Il?n, yn)
is convergent in the space of matrices?

This work was supported by:
Japan Society for the Promotion of Science (JSPS)
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Questions

1. Which Riemannian metrics guarantee the scaling

property: _ ~
tM(X,Y) = M(tX,tY) ?

2. How one can find a Riemannian metric for a given

mean?
3. Can the geometrical background help to prove that the

iteration
Tnt1 = M(yrw Zn)a O M(Zna xn)7 “n+l ‘= M(Il?n, yn)
is convergent in the space of matrices?

This work was supported by:
Japan Society for the Promotion of Science (JSPS)

Thank you for your attention!
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