On Robertson-type uncertainty principles

Attila Andai and Attila Lovas
Budapest University of Technology and Economics
andaia@math.bme.hu, lovas@math.bme.hu

Basic Notations in Quantum Mechanics

State space: the set of $n \times n$ positive definite trace one matrices $\left(\mathcal{M}_{n}^{1}\right)$.
Observables: $n \times n$ self adjoint matrices ($M_{n, \mathrm{sa}}$).
For given state $D \in \mathcal{M}_{n}^{1}$ and observables $A, B \in M_{n, \mathrm{sa}}$
expectation value: $\operatorname{Tr}(D A)$;
normalization of A: $A_{0}=A-\operatorname{Tr}(D A) I ; \quad\left(\operatorname{Tr}\left(D A_{0}\right)=0\right)$
variance: $\operatorname{Var}_{D}(A)=\operatorname{Tr}\left(D A^{2}\right)-(\operatorname{Tr}(D A))^{2}$;
covariance: $\operatorname{Cov}_{D}(A, B)=\frac{1}{2}(\operatorname{Tr}(D A B)+\operatorname{Tr}(D B A))-\operatorname{Tr}(D A) \operatorname{Tr}(D B)$.

Uncertainty Relations in Early Years

1927, Heisenberg: Defined the uncertainty of a Gaussian distribution f as its width D_{f}. The width of the Fourier transformation of f is denoted by $D_{\mathcal{F}(f)}$. The first formalization of the uncertainty principle was $D_{f} D_{\mathcal{F}(f)}=$ constant.
1927, Kennard: Observables A, B with $[A, B]=-\mathrm{i}: \operatorname{Var}_{D}(A) \operatorname{Var}_{D}(B) \geq \frac{1}{4}$
1929, Robertson: For every observables A, B and state $D: \operatorname{Var}_{D}(A) \operatorname{Var}_{D}(B) \geq \frac{1}{4}|\operatorname{Tr}(D[A, B])|^{2}$.
1930, Scrödinger: $\operatorname{Var}_{D}(A) \operatorname{Var}_{D}(B)-\operatorname{Cov}_{D}(A, B)^{2} \geq \frac{1}{4}|\operatorname{Tr}(D[A, B])|^{2}$.
1934, Robertson: For every set of observables $\left(A_{i}\right)_{1, \ldots, N}$

$$
\operatorname{det}\left(\left[\operatorname{Cov}_{D}\left(A_{h}, A_{j}\right)\right]_{h, j=1, \ldots, N}\right) \geq \operatorname{det}\left(\left[-\frac{\mathrm{i}}{2} \operatorname{Tr}\left(D\left[A_{h}, A_{j}\right]\right)\right]_{h, j=1, \ldots, N}\right)
$$

(For $N=2$ gives the Scrödinger uncertainty relation.)

Quantum Fisher Information

$\mathcal{F}_{\text {op }}:$ set of operator monotone functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ with properties $f(x)=x f\left(x^{-1}\right)$ and $f(1)=1$. Examples in $\mathcal{F}_{\mathrm{op}}: f_{\mathrm{RLD}}(x)=\frac{2 x}{1+x}, f_{\mathrm{SLD}}(x)=\frac{1+x}{2}, f_{\mathrm{WY}}(x)=\left(\frac{1+\sqrt{x}}{2}\right)^{2}, f_{\mathrm{KM}}(x)=\frac{x-1}{\log x}$. Regular and non-regular elements: $\mathcal{F}_{\mathrm{op}}^{\mathrm{r}}=\left\{f \in \mathcal{F}_{\mathrm{op}} \mid f(0) \neq 0\right\}$ and $\mathcal{F}_{\mathrm{op}}^{\mathrm{n}}=\left\{f \in \mathcal{F}_{\mathrm{op}} \mid f(0)=0\right\}$. Theorem [Gibilisco, Hansen, Isola]. The map

$$
\mathcal{F}_{\mathrm{op}}^{\mathrm{r}} \rightarrow \mathcal{F}_{\mathrm{op}}^{\mathrm{n}} \quad f \mapsto \tilde{f}(x)=\frac{1}{2}\left[(1+x)-(1-x)^{2} \frac{f(0)}{f(x)}\right]
$$

is a bijection.
For every $f \in \mathcal{F}_{\mathrm{op}}$ introduce the notation $m_{f}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, m_{f}=y f\left(\frac{x}{y}\right)$.
(The reciprocal of m_{f} is the Chentsov-Morozova function.)
Theorem [Petz]. In quantum setting there is a bijective correspondence between Fisher informations and functions in $f \in \mathcal{F}_{\mathrm{op}}$. For every $f \in \mathcal{F}_{\mathrm{op}}$ the Fisher information is given by

$$
\begin{equation*}
\langle A, B\rangle_{D, f}=\operatorname{Tr}\left(A m_{f}\left(L_{D}, R_{D}\right)^{-1}(B)\right), \tag{1}
\end{equation*}
$$

where $L_{D}(X)=D X, R_{D}(X)=X D$.
\Longrightarrow For every $f \in \mathcal{F}_{\mathrm{op}}\left(\mathcal{M}_{n},\langle\cdot, \cdot\rangle_{, f}\right)$ is a Riemannian manifold.

Covariances

For two observables $A, B \in M_{n, \mathrm{sa}}$, state $D \in \mathcal{M}_{n}^{1}$ and function $f \in \mathcal{F}_{\text {op }}$ we define covariance:

$$
\operatorname{Cov}_{D}(A, B)=\frac{1}{2}(\operatorname{Tr}(D A B)+\operatorname{Tr}(D B A))-\operatorname{Tr}(D A) \operatorname{Tr}(D B)
$$

quantum f-covariance: [introduced by Petz]

$$
\operatorname{Cov}_{D}^{f}(A, B)=\operatorname{Tr}\left(A f\left(L_{n, D} R_{n, D}^{-1}\right) R_{n, D}(B)\right) ;
$$

antisymmetric f-covariance:

$$
\mathrm{qCov}_{D, f}^{a s}(A, B)=\frac{f(0)}{2}\langle\mathrm{i}[D, A], \mathrm{i}[D, B]\rangle_{D, f} ;
$$

symmetric f-covariance:

$$
\mathrm{qCov}_{D, f}^{s}(A, B)=\frac{f(0)}{2}\langle\{D, A\},\{D, B\}\rangle_{D, f},
$$

where [.,.] is the commutator of matrices and $\{.,$.$\} denotes the anticommutator respectively$
For a fixed density matrix $D \in \mathcal{M}_{n}^{1}$, function $f \in \mathcal{F}_{\text {op }}$ and an N-tuple of nonzero matrices $\left(A^{(k)}\right)_{k=1, \ldots, N} \in M_{n, \mathrm{sa}}$ we define the following $N \times N$ matrices $\operatorname{Cov}_{D}, \operatorname{Cov}_{D}^{f}, \mathrm{qCov}_{D, f}^{a s}$ and $\mathrm{qCov}_{D, f}^{s}$ with entries

$$
\begin{aligned}
{\left[\operatorname{Cov}_{D}\right]_{i j} } & =\operatorname{Cov}_{D}\left(A_{0}^{(i)}, A_{0}^{(j)}\right) \\
{\left[\operatorname{qCov}_{D, f}^{a s}\right]_{i j} } & =\operatorname{qCov}_{D, f}^{a s}\left(A_{0}^{(i)}, A_{0}^{(j)}\right)
\end{aligned}
$$

$$
\begin{aligned}
{\left[\operatorname{Cov}_{D}^{f}\right]_{i j} } & =\operatorname{Cov}_{D}^{f}\left(A_{0}^{(i)}, A_{0}^{(j)}\right) \\
{\left[\operatorname{qCov}_{D, f}^{s}\right]_{i j} } & =\operatorname{qCov}_{D, f}^{s}\left(A_{0}^{(i)}, A_{0}^{(j)}\right) .
\end{aligned}
$$

Mathematical Toolbox

Petz's scalar produc (1) can be extended: Define

$$
\mathcal{C}_{\mathcal{M}}=\left\{g: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \left\lvert\, \begin{array}{l}
g \text { is a symmetric smooth function, with analytical } \\
\text { extension defined on a neighborhood of } \mathbb{R}^{+} \times \mathbb{R}^{+}
\end{array}\right.\right\}
$$

Fix a function $g \in \mathcal{C}_{\mathcal{M}}$. Define for every $D \in \mathcal{M}_{n}$ and for every $A, B \in M_{n, \mathrm{sa}}$

$$
(A, B)_{D, g}=\operatorname{Tr}\left(A g\left(L_{n, D}, R_{n, D}\right)(B)\right)
$$

\Longrightarrow For every $g \in \mathcal{C}_{\mathcal{M}}\left(\mathcal{M}_{n},(\cdot, \cdot)_{\cdot, g}\right)$ is a Riemannian manifold.
Connection to Petz's scalar product: For $f \in \mathcal{F}_{\text {op }}$ define $g(x, y)=\frac{1}{y f\left(\frac{x}{y}\right)}$, then we have

$$
\langle A, B\rangle_{D, f}=(A, B)_{D, g} \quad \forall D \in \mathcal{M}_{n}, \forall A, B \in M_{n, \mathrm{sa}}
$$

Theorem [Andai, Lovas]. Consider a density matrix $D \in \mathcal{M}_{n}^{1}$, an N-tuple of observables $\left(A^{(k)}\right)_{k=1, \ldots, N}$ and functions $g_{1}, g_{2} \in \mathcal{C}_{\mathcal{M}}$ such that

$$
g_{1}(x, y) \geq g_{2}(x, y) \quad \forall x, y \in \mathbb{R}^{+}
$$

Define the $N \times N$ matrices $\mathfrak{C o v}_{D, g_{1}}$ and $\mathfrak{C o v}_{D, g_{2}}$ with entries $\left[\mathfrak{C o v}_{D, g_{k}}\right]_{i j}=\left(A_{0}^{(i)}, A_{0}^{(j)}\right)_{D, g_{k}}$ ($k=1,2$). Then
$\operatorname{det}\left(\mathfrak{C o v}_{D, g_{1}}\right) \geq \operatorname{det}\left(\mathfrak{C o v}_{D, g_{2}}\right)+\operatorname{det}\left(\mathfrak{C o v}_{D, g_{1}}-\mathfrak{C o v}_{D, g_{2}}\right)$
holds.

Uncertainty Relations Nowadays

Gibilisco and Isola in 2006 conjectured the inequality $\operatorname{det}\left(\operatorname{Cov}_{D}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{a s}\right)$.
Which was based on numerous partial results for very specific f functions for few (generally 2) observables and the inequalities were expressed in different form. The conjecture was proved by Andai and Gibilisco, Imparato and Isola in 2008.

We have found a more accurate inequality:
Theorem [Lovas, Andai]. For any operator monotone function $f \in \mathcal{F}_{\text {op }}$ at every state $D \in \mathcal{M}_{n}^{1}$ for every N-tuple of observables $\left(A^{(k)}\right)_{k=1, \ldots, N}$ we have for the covariance matrices

```
det( }\mp@subsup{\operatorname{Cov}}{D}{})\geq\operatorname{det}(\mp@subsup{\textrm{qCov}}{D,f}{s})\geq\operatorname{det}(\mp@subsup{\textrm{qCov}}{D,f}{as})
```

We have an estimation for the gap between the symmetric and antisymmetric covariance:
Theorem [Lovas, Andai]. Using the same notation as in the previous Theorem we have

$$
\operatorname{det}\left(\mathrm{qCov}_{D, f}^{s}\right)-\operatorname{det}\left(\mathrm{qCov}_{D, f}^{a s}\right) \geq(2 f(0))^{N} \operatorname{det}\left(\operatorname{Cov}_{D}^{f_{R L D}}\right)
$$

where $f_{R L D}(x)=\frac{2 x}{1+x}$.
Moreover we have shown that the symmetric covariance generated by the function $f_{\text {opt }}(x)=\frac{1}{2}\left(\frac{1+x}{2}+\frac{2 x}{1+x}\right)$ is universal in the following sense:
Theorem [Lovas, Andai]. For every function $g \in \mathcal{F}_{\text {op }}$ the inequality

```
det (q\mp@subsup{Cov}{D,fopt}{s}
```

holds and $f_{\text {opt }}$ gives the best upper bound in $\mathcal{F}_{\text {op }}$.

