An Invitation to Classical and Quantum Information Geometry

Attila Andai

September 4, 2017

These slides were presented at the following conference.

XXVI International Fall Workshop on Geometry and Physics

Universidade do Minho, Braga, Portugal
4-7 September 2017

The slides may contain minor errors and typos. Use at your own risk.

Classical information geometry

(1) Basic ideas
(2) Parametric probability distributions
(3) Fisher information
(9) Divergences
(0) Differential geometry
(0) Duality

Quantum information geometry

(1) Introduction to noncommutative information geometry
(2) Preparations for Petz theorem
(3) Means
(9) Petz theorem
(3) Operator monotone functions
(Computing monotone metrics

Advanced topics

(1) Relative entropy
(2) Duality
(3) About volume of the state space
(c) Uncertainty relations

- Outline

Classical information geometry

Attila Andai

Information Geometry

Statistical model \approx Parametric probability distribution
Information geometry \approx Riemannian metric on statistical model

- Parametric probability distributions

- Statistical model

Statistical model

Definition

Statistical model: $\mathcal{S}=(X, \mathcal{B}(X), S$, 三)
(1) $X \neq \emptyset$ set, $\mathcal{B}(X) \sigma$ algebra on X,
(2) the elements of S are probability measures on $\mathcal{B}(X)$,
(3) there exists a bijection $i: \equiv \rightarrow S \quad \vartheta \mapsto \mu_{\vartheta}$

三: Parameter space
(This setting is too general.)

We make more assumptions.
(1) $\exists n \in \mathbb{N}^{+}: \equiv \subseteq \mathbb{R}^{n}$, moreover \equiv connected open set. (n-dimensional statistical model)
(2) If X is finite, then $\mathcal{B}(X)=\mathcal{P}(X)$.
(3) If X is infinite, then $X \subseteq \mathbb{R}^{m}, X$ connected open set, $\mathcal{B}(X)$ contains Borel sets and for every $\vartheta \in$ 三 the probability distribution $\mu_{\vartheta} \in S$ has density function p_{ϑ} (with respect to the Lebesgue measure).
(9) We refer to the elements of S as density functions and denote it by $p(x, \vartheta)=p_{\vartheta}(x)$.
(0) Every function $p_{\vartheta} \in S$ has 1., 2., and 3. moment.
(0) For every $x \in X$ the function

$$
\equiv \rightarrow \mathbb{R} \quad \vartheta \mapsto p(x, \vartheta)
$$

is smooth. We use the notation

$$
\partial_{i} p(x, \vartheta)=\frac{\partial p(x, \vartheta)}{\partial \vartheta_{i}} \quad i=1, \ldots, m
$$

(1) We assume that

$$
\int_{X} \partial_{i_{1}} \ldots \partial_{i_{k}} p(x, \vartheta) \mathrm{d} x=\partial_{i_{1}} \ldots \partial_{i_{k}} \int_{X} p(x, \vartheta) \mathrm{d} x=0 .
$$

(8) $\forall \vartheta \in$ 三 and $\forall x \in X: p(x, \vartheta)>0$

The statistical model is denoted by (X, S, \equiv).

-Parametric probability distributions

Statistical model

Example (Discrete distribution)

$$
\begin{aligned}
X & =\{0,1, \ldots, n\} \\
& \equiv=\left\{\left(\vartheta_{1}, \ldots, \vartheta_{n}\right) \in \mathbb{R}^{n} \mid \vartheta_{i}>0, \sum_{k=1}^{n} \vartheta_{k}<1\right\} \\
p(x, \vartheta) & =\left\{\begin{array}{cc}
\vartheta_{x} & \text { if } 1 \leq x \leq n, \\
1-\sum_{k=1}^{n} \vartheta_{k} & \text { if } \quad x=0 .
\end{array}\right.
\end{aligned}
$$

The space of distributions:

$$
\mathcal{P}_{n}=\left\{\left(p_{0}, p_{1}, \ldots, p_{n}\right) \in\right] 0,1\left[^{n+1} \mid \sum_{i=0}^{n} p_{i}=1\right\}
$$

- Parametric probability distributions

-Statistical model

Example (Normal distribution)

$$
\begin{aligned}
X & =\mathbb{R} \\
\equiv & =\mathbb{R} \times \mathbb{R}^{+} \\
p(x, \mu, \sigma) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

- Fisher information

- Fisher information matrix

Fisher information matrix

For an n-dimensional statistical model (X, S, \equiv) the Fisher information is an $n \times n$ matrix for every parameter $\vartheta \in$ 三.

Definition

Assume that (X, S, \equiv) is an n dimensional statistical model. For every point $\vartheta \in$ 三 the Fisher information matrix is given by

$$
g^{(\mathrm{F})}(\vartheta)_{i k}=\int_{X} \frac{1}{p(x, \vartheta)}\left(\partial_{i} p(x, \vartheta)\right)\left(\partial_{k} p(x, \vartheta)\right) \mathrm{d} x
$$

The Fisher matrix denoted by $g^{(F)}(\vartheta)$.

- Fisher information

We will use the following representations for Fisher matrix.

$$
\begin{aligned}
g^{(\mathrm{F})}(\vartheta)_{i k} & =\int_{X} p(x, \vartheta)\left(\partial_{i} \log p(x, \vartheta)\right)\left(\partial_{k} \log p(x, \vartheta)\right) \mathrm{d} x \\
g^{(\mathrm{F})}(\vartheta)_{i k} & =4 \int_{X}\left(\partial_{i} \sqrt{p(x, \vartheta)}\right)\left(\partial_{k} \sqrt{p(x, \vartheta)}\right) \mathrm{d} x
\end{aligned}
$$

- Fisher information

Fisher information matrix

Theorem

Assume that (X, S, \equiv) is an n dimensional statistical model. If the functions $\left(\partial_{i} p(\cdot, \vartheta)\right)_{i=1, \ldots, n}$ are linearly independent at a point $\vartheta \in$ 三 then the Fisher matrix $g^{(F)}(\vartheta)$ positive definite.

Proof.

For every $c \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \left\langle\left(c_{1}, \ldots, c_{n}\right), g^{(\mathrm{F})}(\vartheta)\left(c_{1}, \ldots, c_{n}\right)\right\rangle \\
& \quad=\int_{X} p(x, \vartheta)\left(\sum_{i=1}^{n} c_{i} \partial_{i}(\log p(x, \vartheta))\right)^{2} \mathrm{~d} x \geq 0
\end{aligned}
$$

—Fisher information

L Induced statistical models

Induced statistical models

Assume that $(X, \mathcal{B}(X), S, \equiv)$ is a statistical model and

$$
f: X \rightarrow Y \quad x \mapsto f(x)
$$

is a surjective map.
Let us define $\mathcal{B}(Y)=\left\{A \subseteq Y \mid f^{-1}(A) \in \mathcal{B}(X)\right\}$.
For every $\vartheta \in \equiv, \mu_{\vartheta}$ is probability measure on X, with density function p_{ϑ}.

Now define $\tilde{\mu}_{\vartheta}$ as

$$
\tilde{\mu}_{\vartheta}(A)=\mu_{\vartheta}\left(-\frac{1}{f}(A)\right) \quad \forall A \in \mathcal{B}(Y)
$$

and denote its density function with \tilde{p}_{ϑ}.

Define \tilde{S} as $\left\{\tilde{\mu}_{\vartheta} \mid \vartheta \in \equiv\right\}$.

After these steps, we have an induced statistical model

$$
(Y, \mathcal{B}(Y), \tilde{S}, \equiv)
$$

-Fisher information
Monotonicity of Fisher matrix

Monotonicity of Fisher matrix

If we measure less precisely we can have less information.

Definition
Assume that (X, S, \equiv) is a statistical model and $f: X \rightarrow Y$ is a measurable surjective map. Let us define

f sufficient statistic of S, if for every $x \in X$ the function

is constant

— Fisher information

LMonotonicity of Fisher matrix

Monotonicity of Fisher matrix

If we measure less precisely we can have less information.

Definition

Assume that (X, S, \equiv) is a statistical model and $f: X \rightarrow Y$ is a measurable surjective map. Let us define

$$
r(\cdot, \cdot): X \times \equiv \rightarrow \mathbb{R} \quad(x, \vartheta) \mapsto r(x, \vartheta)=\frac{p(x, \vartheta)}{\tilde{p}(f(x), \vartheta)}
$$

f sufficient statistic of S, if for every $x \in X$ the function

$$
r(x, \cdot): \equiv \rightarrow \mathbb{R} \quad \vartheta \mapsto r(x, \vartheta)
$$

is constant.

- Fisher information

LMonotonicity of Fisher matrix

Monotonicity of Fisher matrix

Theorem

Assume that (X, S, \equiv) is a statistical model, $f: X \rightarrow Y$ is a measurable surjective map and (Y, Q, \equiv) is the induced statistical model. For every $\vartheta \in$ 三 the Fisher information matrix in S is $g_{S}^{(F)}(\vartheta)$ and in Q is $g_{Q}^{(F)}(\vartheta)$. For every $\vartheta \in \equiv$

$$
g_{Q}^{(F)}(\vartheta) \leq g_{S}^{(F)}(\vartheta)
$$

Information loss: $\Delta g(\vartheta)=g_{S}^{(F)}(\vartheta)-g_{Q}^{(F)}(\vartheta)$

$$
\Delta g_{i k}(\vartheta)=\int_{X} p(x, \vartheta) \frac{\partial \log r(x, \vartheta)}{\partial \vartheta_{i}} \frac{\partial \log r(x, \vartheta)}{\partial \vartheta_{k}} d x
$$

Equality holds in (\star) iff f sufficient statistic of S.

- Fisher information

LMonotonicity under Markov kernel

Monotonicity under Markov kernel

Definition

Assume that $X \subseteq \mathbb{R}^{n}$ and $Y \subseteq \mathbb{R}^{m}$ are connect open sets. The map

$$
\kappa: X \times Y \rightarrow \mathbb{R} \quad(x, y) \mapsto \kappa(y \mid x)
$$

is Markov kernel or transition probability if $\forall x \in X$ and $\forall y \in Y$: $\kappa(y \mid x) \geq 0$, and $\forall x \in X$:

$$
\int_{Y} \kappa(y \mid x) \mathrm{d} y=1
$$

- Fisher information

- Monotonicity under Markov kernel

Theorem

Assume that (X, S, \equiv) is a statistical model and

$$
\kappa: X \times Y \rightarrow \mathbb{R} \quad(x, y) \mapsto \kappa(y \mid x)
$$

is a Markov kernel. Define $\tilde{p}(y, \vartheta)=\int_{X} \kappa(y \mid x) p(x, \vartheta) d x$, and denote the set of these distributions by (Y, Q, \equiv). Then for every $\vartheta \in$ ミ we have

$$
g_{Q}^{(F)}(\vartheta) \leq g_{S}^{(F)}(\vartheta)
$$

The information loss $\Delta g(\vartheta)=g_{S}^{(F)}(\vartheta)-g_{Q}^{(F)}(\vartheta)$ is

$$
\Delta g_{i k}(\vartheta)=\int_{X} p(x, \vartheta) \frac{\partial \log r(x, \vartheta)}{\partial \vartheta_{i}} \frac{\partial \log r(x, \vartheta)}{\partial \vartheta_{k}} d x
$$

Cramer-Rao inequality

Cramer-Rao inequality

We consider the problem of estimating unknown parameter.
Assume that a data is randomly generated subject to a probability distribution which is unknown but is assumed to be in an n dimensional statistical model.

Assume that (X, S, \equiv) is a statistical model. The measurement is a map $\mathfrak{X}: X \rightarrow \mathbb{R}^{m} .(m=1$ is the real valued measurement)
After k measurements we estimate the parameter ϑ with an estimator

$$
\tilde{\vartheta}:\left(\mathbb{R}^{m}\right)^{k} \rightarrow \equiv\left(x_{1}, \ldots, x_{k}\right) \mapsto \tilde{\vartheta}\left(x_{1}, \ldots, x_{k}\right)
$$

-Fisher information

Cramer-Rao inequality
Assume that we have independent measurements. The expected value of $\tilde{\vartheta}$ with respect to $p^{(k)}(x, \vartheta)$ is

$$
E_{\vartheta}(\tilde{\vartheta})=\int_{X^{k}} p^{(k)}(x, \vartheta) \tilde{\vartheta}(x) \mathrm{d} x .
$$

The estimator $\tilde{\vartheta}$ is unbiased if for every $\vartheta \in \equiv$

$$
E_{\vartheta}(\tilde{\vartheta})=\vartheta .
$$

The variance of the estimator is

$$
\begin{aligned}
V_{\vartheta}(\tilde{\vartheta})_{i j} & =E_{\vartheta}\left(\left(\tilde{\vartheta}-E_{\vartheta}(\tilde{\vartheta})\right)_{i}\left(\tilde{\vartheta}-E_{\vartheta}(\tilde{\vartheta})\right)_{j}\right)= \\
& =\int_{x^{k}} p^{(k)}(x, \vartheta)\left(\tilde{\vartheta}(x)-E_{\vartheta}(\tilde{\vartheta})\right)_{i}\left(\tilde{\vartheta}(x)-E_{\vartheta}(\tilde{\vartheta})\right)_{j} \mathrm{~d} x .
\end{aligned}
$$

Theorem (Cramer-Rao)

Assume that (X, S, \equiv) is a statistical model, $k \in \mathbb{N}^{+}, g^{(F)}$ is the Fisher information of $\left(X^{k}, S^{(k)}, \equiv\right), \tilde{\vartheta}$ is an unbiased estimator of ϑ and $V_{(\vartheta)}(\tilde{\vartheta})$ its variance. For every $\vartheta \in \equiv$ we have

$$
V_{\vartheta}(\tilde{\vartheta}) \geq\left(g^{(F)}(\vartheta)\right)^{-1}
$$

- Fisher information

Cramer-Rao inequality

Example (Cramer-Rao inequality)

Define $X=\{0,1\}, \equiv=] 0,1[$ and S a set of functions

$$
p: X \times \equiv \rightarrow \mathbb{R} \quad(x, \vartheta) \mapsto\left\{\begin{array}{cll}
1-\vartheta & \text { if } & x=0 \\
\vartheta & \text { if } & x=1
\end{array}\right.
$$

Then (X, S, \equiv) is a statistical model. Assume that we have independent measurements x_{1}, \ldots, x_{k}. Consider the estimator for ϑ

$$
\tilde{\vartheta}: X^{k} \rightarrow \equiv \quad\left(x_{1}, \ldots, x_{k}\right) \mapsto \frac{1}{k} \sum_{i=1}^{k} x_{i}
$$

$\tilde{\vartheta}$ is unbiased

$$
E_{\vartheta}(\tilde{\vartheta})=\sum_{i=0}^{k}\binom{k}{i} \vartheta^{k-i}(1-\vartheta)^{i} \frac{k-i}{k}=\vartheta
$$

- Fisher information

Cramer-Rao inequality

Example (Cramer-Rao inequality (cont.))

The variance of $\tilde{\vartheta}$ is

$$
V_{\vartheta}(\tilde{\vartheta})=\sum_{i=0}^{k}\binom{k}{i} \vartheta^{k-i}(1-\vartheta)^{i}\left(\frac{k-i}{k}-\vartheta\right)^{2}=\frac{\vartheta(1-\vartheta)}{k}
$$

The Fisher information is $g_{S}(\vartheta)=\frac{1}{\vartheta(1-\vartheta)}$ for k measurements is $g^{(\mathrm{F})}(\vartheta)=k g_{S}(\vartheta)$.
The Cramer-Rao inequality in this setting is

$$
\frac{\vartheta(1-\vartheta)}{k} \geq \frac{\vartheta(1-\vartheta)}{k} .
$$

So $\tilde{\vartheta}$ has the least variance.

—Fisher information

Entropy and Fisher information

Fisher information of a density function

Consider a density function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and the shift as a parameter

$$
\tilde{f}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad(x, y) \mapsto \tilde{f}(x, y)=f(x+y)
$$

The Fisher information of \tilde{f} is

$$
g_{i k}(y)=\int_{\mathbb{R}^{n}} \frac{1}{\tilde{f}(x, y)} \frac{\partial \tilde{f}(x, y)}{\partial y_{i}} \frac{\partial \tilde{f}(x, y)}{\partial y_{k}} \mathrm{~d} x
$$

It does not depend on y, reasonable to define

$$
g_{i k}=\int_{\mathbb{R}^{n}} \frac{1}{p(x)} \frac{\partial p(x)}{\partial x_{i}} \frac{\partial p(x)}{\partial x_{k}} \mathrm{~d} x
$$

as Fisher information of f.

- Fisher information

Entropy and Fisher information

Entropy

Definition

The entropy of a density function $f: X \rightarrow \mathbb{R}$

$$
S(f)=-\int_{X} f(x) \log f(x) \mathrm{d} x
$$

$(0 \log 0=0)$

$\square_{\text {Fisher information }}$

Entropy and Fisher information

Fisher information vs. Entropy

(1) Fisher information is for family of distributions and for single distributions. Entropy is for single distributions.

- Fisher information

Entropy and Fisher information

Fisher information vs. Entropy

(1) Fisher information is for family of distributions and for single distributions. Entropy is for single distributions.
(2) Fisher information is strictly positive, entropy could be any real number.

—Fisher information

Entropy and Fisher information

Fisher information vs. Entropy

(1) Fisher information is for family of distributions and for single distributions. Entropy is for single distributions.
(2) Fisher information is strictly positive, entropy could be any real number.
(3) There is maximum entropy principle and minimum Fisher information principle.

- Fisher information

Entropy and Fisher information
(9) The Fisher information of the density function p with single variable is

$$
g=4 \int_{\mathbb{R}}\left(\frac{\mathrm{d} \sqrt{p(x)}}{\mathrm{d} x}\right)^{2} \mathrm{~d} x
$$

Fisher defined the probability amplitude $q(x)=\sqrt{p(x)}$.

-Fisher information

Entropy and Fisher information
(9) The Fisher information of the density function p with single variable is

$$
g=4 \int_{\mathbb{R}}\left(\frac{\mathrm{d} \sqrt{p(x)}}{\mathrm{d} x}\right)^{2} \mathrm{~d} x
$$

Fisher defined the probability amplitude $q(x)=\sqrt{p(x)}$. He also studied the Lagrange density

$$
\mathcal{L}=4\left(q(x)^{\prime}\right)^{2}
$$

and gave information theoretical background of potential energy. Fisher studied complex probability amplitudes too and examined the Lagrange function with kinetic energy term in the form of

$$
\mathcal{L}_{\mathrm{m}}=C \nabla \psi \times \nabla \psi^{*}
$$

(This was written down half year later in 1926 by Schrödinger for function ψ.)
\square Fisher information
Listance of coins

Distance of coins

What is the distance between coins $\left(p_{1}, 1-p_{1}\right)$ and $\left(p_{2}, 1-p_{2}\right)$?
\square Fisher information
Distance of coins

Distance of coins

What is the distance between coins $\left(p_{1}, 1-p_{1}\right)$ and $\left(p_{2}, 1-p_{2}\right)$?

- Fisher information

Listance of coins

Distance of coins

What is the distance between coins $\left(p_{1}, 1-p_{1}\right)$ and $\left(p_{2}, 1-p_{2}\right)$?

In 1925 Fisher suggested the angle between vectors $\left(\sqrt{p_{1}}, \sqrt{1-p_{1}}\right)$ and $\left(\sqrt{p_{2}}, \sqrt{1-p_{2}}\right)$ by theoretical arguments.

- Fisher information

LDistance of coins

Distance of coins

What is the distance between coins $\left(p_{1}, 1-p_{1}\right)$ and $\left(p_{2}, 1-p_{2}\right)$?

In 1925 Fisher suggested the angle between vectors $\left(\sqrt{p_{1}}, \sqrt{1-p_{1}}\right)$ and $\left(\sqrt{p_{2}}, \sqrt{1-p_{2}}\right)$ by theoretical arguments.

The measurement based consideration is the following.
Assume that $p_{1}<p_{2}$. If we can have n measurements then the uncertainty of measurements is the typical fluctuation

$$
\Delta p=\sqrt{\frac{p(1-p)}{n}}
$$

The distributions $\left(p_{1}, 1-p_{1}\right)$ and ($p_{2}, 1-p_{2}$) are said to be distinguishable in n measurements if

$$
\left|p_{1}-p_{2}\right| \geq \Delta p_{1}+\Delta p_{2}
$$

Define $k\left(n, p_{1}, p_{2}\right)$ as the number of those probability distributions $\left(p_{i}, 1-p_{i}\right)$ for which $p_{1}<p_{i}<p_{2}, p_{i}<p_{i+1}$ and $\left(p_{i}, 1-p_{i}\right)$ distinguishable in n measurements from $\left(p_{i+1}, 1-p_{i+1}\right)$. Let the distance be between $\left(p_{1}, 1-p_{1}\right)$ and $\left(p_{2}, 1-p_{2}\right)$

$$
d\left(p_{1}, p_{2}\right)=\lim _{n \rightarrow \infty} \frac{k\left(n, p_{1}, p_{2}\right)}{\sqrt{n}}
$$

This gives us for distance $d\left(p_{1}, p_{2}\right)$

$$
\int_{p_{1}}^{p_{2}} \frac{1}{\sqrt{p(1-p)}} \mathrm{d} p=\arccos \left(\sqrt{p_{1} p_{2}}+\sqrt{\left(1-p_{1}\right)\left(1-p_{2}\right)}\right)
$$

—Divergences

General contrast function

General contrast function

Definition

Let (X, S, \equiv) be a statistical model. A general contrast function is a function

$$
D: S \times S \rightarrow \mathbb{R} \quad(p, q) \mapsto D(p, q)
$$

if $\forall p, q \in S: D(p, q) \geq 0$ and $D(p, q)=0$ iff $p=q$.

General contrast function

General contrast function

Definition

Let (X, S, \equiv) be a statistical model. A general contrast function is a function

$$
D: S \times S \rightarrow \mathbb{R} \quad(p, q) \mapsto D(p, q)
$$

if $\forall p, q \in S: D(p, q) \geq 0$ and $D(p, q)=0$ iff $p=q$.

The dual divergence is given as $D^{*}(p, q)=D(q, p)$.

General contrast function

General contrast function

Definition

Let (X, S, \equiv) be a statistical model. A general contrast function is a function

$$
D: S \times S \rightarrow \mathbb{R} \quad(p, q) \mapsto D(p, q)
$$

if $\forall p, q \in S: D(p, q) \geq 0$ and $D(p, q)=0$ iff $p=q$.

The dual divergence is given as $D^{*}(p, q)=D(q, p)$.
Let us consider some examples.

Kullback-Liebler $D_{\mathrm{KL}}(p, q)=\int_{X} p(x) \log \frac{p(x)}{q(x)} \mathrm{d} x$
Hellinger
$D_{\mathrm{H}}(p, q)=\int_{X}(\sqrt{p(x)}-\sqrt{q(x)})^{2} \mathrm{~d} x$
χ^{2}
$D_{\chi^{2}}(p, q)=\int_{X} p(x)\left[\left(\frac{p(x)}{q(x)}\right)^{2}-1\right] \mathrm{d} x$
$\alpha \in]-1,1[$
$D_{\alpha}(p, q)=\frac{4}{1-\alpha^{2}}\left[1-\int_{X} p(x)^{\frac{1-\alpha}{2}} q(x)^{\frac{1+\alpha}{2}} \mathrm{~d} x\right]$
Harmonic
$D_{\mathrm{Ha}}(p, q)=1-\int_{X} \frac{2 p(x) q(x)}{p(x)+q(x)} \mathrm{d} x$
Triangle

$$
D_{\Delta}(p, q)=\int_{X} \frac{(p(x)-q(x))^{2}}{p(x)+q(x)} \mathrm{d} x
$$

These distance like functions used in many areas of mathematics and applications.

For example $D_{\mathrm{KL}}(p, q)$:

* is often called the information gain achieved if P is used instead of Q in the context of machine learning,
* can be constructed as measuring the expected number of extra bits required to code samples from P using a code optimized for Q rather than the code optimized for P, in the context of coding theory.

—Divergences

LCsiszár divergence

Csiszár divergence

These quantities can be handled as a special cases of Csiszár divergence

Definition

Assume that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a strictly convex function and $f(1)=0$. The Csiszár divergence is

$$
D_{f}(p, q)=\int_{X} p(x) f\left(\frac{q(x)}{p(x)}\right) \mathrm{d} x
$$

For the function $f^{\backslash}(u)=u f\left(u^{-1}\right)$ we have

$$
D_{f}(p, q)=D_{f \backslash}(q, p)
$$

—Divergences

-Csiszár divergence

α-divergence

If $\alpha \in \mathbb{R}$ and

$$
f_{\alpha}: \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto\left\{\begin{array}{clc}
\frac{4}{1-\alpha^{2}}\left(1-x^{\frac{1+\alpha}{2}}\right) & \text { if } & \alpha \neq \pm 1 \\
x \log x & \text { if } & \alpha=1 \\
-\log x & \text { if } & \alpha=-1
\end{array}\right.
$$

then $D_{f_{-1}}=D_{\mathrm{KL}}, D_{f_{0}}=2 D_{\mathrm{H}}$ and in the $\alpha \neq \pm 1$ case $D_{f_{\alpha}}=D_{\alpha}$.

The Csiszár divergence D_{f} is monotone and jointly convex.

Theorem

For probability functions $p, q: X \rightarrow \mathbb{R}$ and Markov kernel $\kappa: X \times Y \rightarrow \mathbb{R}$ define $\tilde{p}(y)=\int_{X} \kappa(y \mid x) p(x) d x$ and $\tilde{q}(y)=\int_{X} \kappa(y \mid x) q(x) d x$. For the Csiszár divergences we have

$$
D_{f}(\tilde{p}, \tilde{q}) \leq D_{f}(p, q) .
$$

The Csiszár divergence D_{f} is monotone and jointly convex.

Theorem

For probability functions $p, q: X \rightarrow \mathbb{R}$ and Markov kernel $\kappa: X \times Y \rightarrow \mathbb{R}$ define $\tilde{p}(y)=\int_{X} \kappa(y \mid x) p(x) d x$ and $\tilde{q}(y)=\int_{X} \kappa(y \mid x) q(x) d x$. For the Csiszár divergences we have

$$
D_{f}(\tilde{p}, \tilde{q}) \leq D_{f}(p, q)
$$

Theorem

For density functions $p_{1}, p_{2}, q_{1}, q_{2}: X \rightarrow \mathbb{R}$ and parameter $0 \leq \lambda_{1} \leq 1, \lambda_{2}=1-\lambda_{1}$

$$
D_{f}\left(\lambda_{1} p_{1}+\lambda_{2} p_{2}, \lambda_{1} q_{1}+\lambda_{2} q_{2}\right) \leq \lambda_{1} D_{f}\left(p_{1}, q_{1}\right)+\lambda_{2} D_{f}\left(p_{2}, q_{2}\right)
$$

holds.

A general contrast function D (in some cases) has series expansion. From now assume that for every $\vartheta \in$ 三 the function $y \mapsto D(p(x, \vartheta+y), p(x, \vartheta))$ has series expansion with respect to y.

$$
D(p(x, \vartheta+y), p(x, \vartheta))=\sum_{i, k=1}^{n} g_{i k}^{(D)}(p) \frac{y_{i} y_{k}}{2}+\sum_{i, j, k=1}^{n} h_{i j k}^{(D)} \frac{y_{i} y_{j} y_{k}}{6}+o\left(\|y\|^{3}\right)
$$

Definition

We call D to divergence or contrast function if for every $\vartheta \in$ 三 the function $D(p(x, \vartheta+y), p(x, \vartheta))$ has series expansion with respect to y and second order term $g_{i k}^{(D)}$ is positive definite.

L Divergences

Contrast function

Theorem

We have the following equalities for the series expansion of divergences.

$$
\begin{array}{lll}
g^{\left(D_{K L}\right)}=g^{(F)} & g^{\left(D_{H}\right)}=\frac{1}{2} g^{(F)} & g^{\left(D_{\chi^{2}}\right)}=2 g^{(F)} \\
g^{\left(D_{\alpha}\right)}=g^{(F)} & g^{\left(D_{B}\right)}=\frac{1}{4} g^{(F)} & g^{\left(D_{H a}\right)}=\frac{1}{2} g^{(F)} \\
g^{\left(D_{J}\right)}=2 g^{(F)} & g^{\left(D_{\Delta}\right)}=g^{(F)} & g^{\left(D_{L W}\right)}=\frac{1}{4} g^{(F)} \\
g^{\left(D_{f}\right)}=f^{\prime \prime}(1) g^{(F)} & &
\end{array}
$$

Differential geometry, Riemannian metric

Definition

(M, \mathcal{A}) is an n dimensional manifold if
(1) M is a Hausdorff topological space with countable base,
(2) \mathcal{A} is countable and its elements are homeomorphisms $\phi_{i}: U_{i} \rightarrow V_{i}$, where $U_{i} \subseteq M$ and $V_{i} \subseteq \mathbb{R}^{n}$ are open sets,
(3) for every pair of functions $\phi_{i}, \phi_{j} \in \mathcal{A}$ the map

$$
\phi_{i} \circ \phi_{j}^{-1}: \phi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \phi_{i}\left(U_{i} \cap U_{j}\right)
$$

is in C^{∞},
(9) every $x \in M$ point is contained in some U_{i}.

Assume that M is an n dimensional manifold and $p \in M$.
Denote by \mathcal{F}_{p} the set of smooth functions defined in a neighbourhood of p.

A derivation is a map

$$
D: \mathcal{F}_{p} \rightarrow \mathbb{R}
$$

such that for every $a, b \in \mathbb{R}$ and functions $f, g \in \mathcal{F}$

$$
D(a f+b g)=a D(f)+b D(g) \quad D(f g)=f(p) D(g)+D(f) g(p)
$$

holds.
The set of derivations denoted by $T_{p} M$ and called tangent space.

The tangent bundle is $T M=\bigcup_{p \in M}\{p\} \times T_{p} M$.
A vector field is a map

$$
X: M \rightarrow \bigcup_{p \in M} T_{p} M \quad p \mapsto X(p)
$$

if
(1) for every $p \in M: X(p) \in T_{p} M$,
(2) for every $p \in M$ and $f \in \mathcal{F}_{p}$ the function

$$
X f: \operatorname{Dom}(X) \cap \operatorname{Dom}(f) \rightarrow \mathbb{R} \quad p \mapsto X(p) f
$$

is smooth.
The set of vector fields is denoted by $\mathcal{X}(M)$.

\square Differential geometry

-Riemannian metric

Definition

A map

$$
g: M \rightarrow \bigcup_{p \in M} \operatorname{Lin}\left(T_{p} M \times T_{p} M, \mathbb{R}\right)
$$

is Riemannian metric if
(1) for every $p \in M$ the map $g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is a scalar product,
(2) for every vector field $X \in \mathcal{X}(M)$ the function

$$
g(X, X): M \rightarrow \mathbb{R} \quad p \mapsto g_{p}\left(X_{p}, X_{p}\right)
$$

is smooth.
The pair (M, g) is called Riemannian geometry or Riemannian manifold.

Assume that $p \in M$ and $\varphi: U \rightarrow \mathbb{R}^{n}$ is a local coordinate system around p. For every $f \in \mathcal{F}_{p}$ define $(i=1, \ldots, n)$

$$
\partial_{i} f=\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x_{i}}(\varphi(p)) .
$$

We consider $\left(\partial_{1}, \ldots, \partial_{n}\right)$ as a basis of $T_{p} M$. The Riemannian metric in this coordinate system can be described with the

$$
g_{i j}=g\left(\partial_{i}, \partial_{j}\right)
$$

matrix.

-Differential geometry

Covariant derivative

Covariant derivative

The map

$$
\nabla: \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathcal{X}(M) \quad(X, Y) \mapsto \nabla_{X} Y
$$

is a covariant derivative if
(1) for every vector field $X, Y, Z \in \mathcal{X}(M)$

$$
\nabla_{X+Y} Z=\nabla_{X} Z+\nabla_{Y} Z, \quad \nabla_{X}(Y+Z)=\nabla_{X} Y+\nabla_{X} Z
$$

(2) for every vector field $X, Y \in \mathcal{X}(M)$ and function $f \in \mathcal{F}(M)$

$$
\nabla_{f X} Y=f \nabla_{X} Y, \quad \nabla_{X}(f Y)=(X f) Y+f \nabla_{X} Y
$$

Assume that $p \in M$ and $\varphi: U \rightarrow \mathbb{R}^{n}$ is a local coordinate system around p. The covariant derivative can be described by Christoffel symbol of the first kind

$$
\Gamma_{i j k}=g\left(\nabla_{\partial_{i}} \partial_{j}, \partial_{k}\right)
$$

and by Christoffel symbol of the second kind

$$
\Gamma_{i j}^{k} \partial_{k}=\nabla_{\partial_{i}} \partial_{j} .
$$

-Differential geometry

Levi-Civita covariant derivative

Levi-Civita covariant derivative

The pair (M, ∇) is called to be an affine manifold.
The affine manifold (M, ∇) called torsion free if $\Gamma_{i j}{ }^{k}=\Gamma_{j i}{ }_{j i}$ holds in every local coordinate system.
The covariant derivative ∇ on a (M, g) Riemannian manifold called Riemannian covariant derivative if for every vector field $X, Y, Z \in \mathcal{X}(M)$

$$
X_{g}(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

The covariant derivative ∇ on a (M, g) Riemannian manifold called Levi-Civita covariant derivative if torsion free Riemannian covariant derivative.

Theorem

For every (M, g) Riemannian manifold there exists a unique Levi-Civita covariant derivative ∇, which can be expressed as

$$
\Gamma_{i i j}^{m}=g^{k m} \frac{1}{2}\left(\partial_{i} g_{j k}+\partial_{j} g_{i k}-\partial_{k} g_{i j}\right)
$$

in local coordinate systems.

—Differential geometry

Curvature

Curvature

Definition

For an affine manifold (M, ∇) define the curvature as

$$
\begin{gathered}
R: \mathcal{X}(M) \times \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathcal{X}(M) \quad(X, Y, Z) \mapsto R(X, Y) Z \\
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
\end{gathered}
$$

The affine manifold (M, ∇) is flat if $R=0$.

Curvature

In a local coordinate system the curvature tensor can be handled by the

$$
\begin{gathered}
R\left(\partial_{i}, \partial_{j}\right) \partial_{k}=R_{i j k}^{\prime i} \partial_{l} \\
g\left(R\left(\partial_{i}, \partial_{j}\right) \partial_{k}, \partial_{l}\right)=R_{i j k l}
\end{gathered}
$$

quantities.
The curvature tensor has symmetries

$$
R_{i j k l}=-R_{j i k l}, \quad R_{i j k l}=-R_{i j l k}, \quad R_{i j k l}=R_{k l i j} .
$$

One can compute the curvature tensor as

$$
R_{i j k}^{\prime \prime}=\partial_{i} \Gamma_{j k}^{\prime \prime}-\partial_{j} \Gamma_{i k}^{\prime}+\Gamma_{j k}^{m} \Gamma_{i m}^{\prime \prime}-\Gamma_{i k}^{m} \Gamma_{j m}^{\prime \prime} .
$$

Definition

For an (M, ∇) affine manifold with curvature R the function

$$
\text { Ric : } \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathcal{F}(M) \quad(X, Y) \mapsto \operatorname{Tr}(Z \mapsto R(Z, X) Y)
$$

is called Ricci curvature.
In local coordinate system the matrix

$$
\operatorname{Ric}_{i j}=\operatorname{Ric}\left(\partial_{i}, \partial_{j}\right)
$$

can be computed as

$$
\operatorname{Ric}_{j k}=R_{i j j^{i}}{ }^{i} .
$$

\square Differential geometry

Length and volume

Length and volume

Assume that (M, g) is a Riemannian manifold and $\gamma:] a, b[\rightarrow M$ is a smooth curve. The length of the curve defined as

$$
I_{\gamma}(a, b)=\int_{a}^{b} \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))} \mathrm{d} t .
$$

The volume of the set $U \subseteq \operatorname{Dom}(\phi)$

$$
V(U)=\int_{\phi(U)} \sqrt{\operatorname{det} g}
$$

-Differential geometry

Geodesic line

Geodesic line

A smooth curve $\gamma:] a, b[\rightarrow M$ is called to be a geodesic line if in local coordinate systems

$$
\frac{\mathrm{d}^{2} \gamma^{k}}{\mathrm{~d} t^{2}}+\sum_{i, j=1}^{\operatorname{dim} M}\left(\Gamma_{i j}^{k} \circ \gamma\right) \frac{\mathrm{d} \gamma^{i}}{\mathrm{~d} t} \frac{\mathrm{~d} \gamma^{j}}{\mathrm{~d} t}=0
$$

holds.

-Differential geometry

LInformation geometry basics

Information geometry basics

Consider a statistical model (X, S, \equiv).

-Differential geometry

LInformation geometry basics

Information geometry basics

Consider a statistical model (X, S, \equiv).
The manifold $M=\equiv$, open connected subset of \mathbb{R}^{n}.

LDifferential geometry

LInformation geometry basics

Information geometry basics

Consider a statistical model (X, S, \equiv).
The manifold $M=\equiv$, open connected subset of \mathbb{R}^{n}.
The Riemannian metric $g=g^{(F)}$ is the Fisher information.

\square Differential geometry

L Information geometry basics

Information geometry basics

Consider a statistical model (X, S, \equiv).
The manifold $M=\equiv$, open connected subset of \mathbb{R}^{n}.
The Riemannian metric $g=g^{(F)}$ is the Fisher information.
We can compute the Levi-Civita covariant derivative or define new ones.

- Information geometry basics

In 1945, Rao suggested to consider the Fisher information as Riemannian metric.

In 1945, Rao suggested to consider the Fisher information as Riemannian metric.

In 1975, Efron studied first the curvature of statistical manifolds.

In 1945, Rao suggested to consider the Fisher information as Riemannian metric.
In 1975, Efron studied first the curvature of statistical manifolds.
In 1979, Ruppeiner claimed that thermodynamic systems can be represented by Riemannian geometry, and that statistical properties can be derived from the model. (For example he found connection between the behaviour of correlation functions and curvature at second order phase transitions.)

In 1945, Rao suggested to consider the Fisher information as Riemannian metric.
In 1975, Efron studied first the curvature of statistical manifolds.
In 1979, Ruppeiner claimed that thermodynamic systems can be represented by Riemannian geometry, and that statistical properties can be derived from the model. (For example he found connection between the behaviour of correlation functions and curvature at second order phase transitions.)
In 1999, Brody and Ritz studied the curvature of statistical model of Ising chains.

Alpha covariant derivatives

Alpha covariant derivatives

Definition

Consider the \mathcal{P}_{n} set. For every $-1 \leq \alpha \leq 1$ define

$$
\begin{array}{rl}
\Gamma_{i j k}^{(\alpha)}=\sum_{l=0}^{n} & p(I, \underline{\vartheta})\left(\partial_{i} \partial_{j}(\log p(I, \underline{\vartheta}))\right. \\
& \left.\quad+\frac{1-\alpha}{2}\left(\partial_{i} \log p(I, \underline{\vartheta})\right)\left(\partial_{j} \log p(I, \underline{\vartheta})\right)\left(\partial_{k} \log p(I, \underline{\vartheta})\right)\right)
\end{array}
$$

which is called α-covariant derivative.

Theorem

The 0-covariant derivative is Levi-Civita covariant derivative.

LDifferential geometry

Examples

Example (Geodesic line in \mathcal{P}_{1})

In the space $\left(\mathcal{P}_{1}, \nabla\right) \gamma$ is geodesic line iff

$$
\frac{\mathrm{d}^{2} \gamma(t)}{\mathrm{d} t^{2}}-\frac{(1-2 \gamma(t))}{2 \gamma(t)(1-\gamma(t))}\left(\frac{\mathrm{d} \gamma(t)}{\mathrm{d} t}\right)^{2}=0
$$

The solution (with initial values $\gamma(0)=a$ and $\dot{\gamma}(0)=b$) is

$$
\gamma(t)=\cos ^{2}\left(\frac{b t}{2 \sqrt{a} \sqrt{1-a}}+\arccos \sqrt{a}\right)
$$

-Differential geometry

Examples

Example (Normal distribution)

Let us define the base set $X=\mathbb{R}$, the parameter space $\equiv=\mathbb{R} \times \mathbb{R}^{+}$and the elements of S as

$$
p(x, \mu, \sigma)=\frac{1}{\sqrt{\pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{\sigma^{2}}\right), \quad(\mu, \sigma) \in \equiv
$$

Using the coordinate system (μ, σ) the Fisher information of the statistical model (X, S, Ξ) is

$$
\left(g_{i k}^{(\mathrm{F})}\right)=\left(\begin{array}{cc}
\frac{2}{\sigma^{2}} & 0 \\
0 & \frac{2}{\sigma^{2}}
\end{array}\right) .
$$

The pair $\left(\equiv, g^{(F)}\right)$ is special Riemannian geometry, called hyperbolic plane.

-Differential geometry

Examples

Example (Normal distribution cont.)

The geodesic curves are those semicircles whose centre lies on the axis μ and the $\mu=$ constant half lines.

-Differential geometry

Examples

Example (Normal distribution cont.)

Consider the distributions given by parameters (μ_{1}, σ_{1}) and $\left(\mu_{2}, \sigma_{2}\right)\left(\mu_{1} \leq \mu_{2}\right)$, where $\mu_{1} \leq \mu_{2}$. If $\mu_{1}<\mu_{2}$ then define the parameters

$$
\begin{aligned}
R & =\sqrt{\left(\frac{\mu_{2}-\mu_{1}}{2}\right)^{2}+\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2}+\left(\frac{\sigma_{2}^{2}-\sigma_{1}^{2}}{2\left(\mu_{2}-\mu_{1}\right)}\right)^{2}} \\
C & =\frac{\mu_{1}+\mu_{2}}{2}+\frac{\sigma_{2}^{2}-\sigma_{1}^{2}}{2\left(\mu_{2}-\mu_{1}\right)}
\end{aligned}
$$

The geodesic curve connecting the points $\left(\mu_{1}, \sigma_{1}\right)$ and $\left(\mu_{2}, \sigma_{2}\right)$ is the $(\mu-C)^{2}+\sigma^{2}=R^{2}$ semicircle $(\sigma>0)$.

-Differential geometry

Examples

Example

Normal distribution cont. The geodesic distance between the points is the following.
(1) If $\left(\mu_{1}-\mu_{2}\right)^{2} \leq\left|\sigma_{2}^{2}-\sigma_{1}^{2}\right|$ then

$$
d\left(\left(\mu_{1}, \sigma_{1}\right),\left(\mu_{2}, \sigma_{2}\right)\right)=\sqrt{2}\left|\operatorname{arch} \frac{R}{\sigma_{1}}-\operatorname{arch} \frac{R}{\sigma_{2}}\right| .
$$

(2) If $\left(\mu_{1}-\mu_{2}\right)^{2} \geq\left|\sigma_{1}^{2}-\sigma_{2}^{2}\right|$ then

$$
d\left(\left(\mu_{1}, \sigma_{1}\right),\left(\mu_{2}, \sigma_{2}\right)\right)=\sqrt{2}\left(\operatorname{arch} \frac{R}{\sigma_{1}}+\operatorname{arch} \frac{R}{\sigma_{2}}\right)
$$

(3) If $\mu_{1}=\mu_{2}$ then $d\left(\left(\mu_{1}, \sigma_{1}\right),\left(\mu_{2}, \sigma_{2}\right)\right)=\sqrt{2}\left|\log \frac{\sigma_{1}}{\sigma_{2}}\right|$.

-Differential geometry

—Pull-back metric

Pull-back metric

Assume that $\varphi: M \rightarrow N$ is a smooth map between differentiable manifolds.
For every $p \in M$ we have maps

$$
\varphi_{1}: \mathcal{F}_{\varphi(p)}^{N} \rightarrow \mathcal{F}_{p}^{M} \quad f \mapsto f \circ \varphi
$$

and

$$
\varphi_{*}: T_{p} M \rightarrow T_{\varphi(p)} N \quad v \mapsto v \circ \varphi_{1} .
$$

Definition

If (N, g) is a Riemannian manifold then we can define the pull-back metric on M as

$$
g_{p}^{M}(x, y)=g_{\varphi(p)}^{N}\left(\varphi_{*}(x), \varphi_{*}(y)\right)
$$

-Differential geometry

—Pull-back metric

Theorem

The pull back metric of the euclidean metric by the map

$$
\mathcal{P}_{n} \rightarrow \mathbb{R}^{n+1} \quad\left(p_{1}, \ldots, p_{n}\right) \mapsto\left(\sqrt{1-\sum_{k=1}^{n} p_{k}}, \sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right)
$$

is the Fisher metric.

Theorem

The volume of the space \mathcal{P}_{n} equals to the surface of the $n+1$ dimensional ball divided by 2^{n+1}, that is

$$
V\left(\mathcal{P}_{n}\right)=\frac{\pi^{(n+1) / 2}}{2^{n} \Gamma\left(\frac{n+1}{2}\right)} .
$$

Uniqueness of Fisher metric

Theorem

Let us define $X_{n}=\{0,1, \ldots, n\} \quad\left(n \in \mathbb{N}^{+}\right)$. Assume than for every n a Riemannian metric g_{n} is given on \mathcal{P}_{n}. For a $\kappa: X_{n} \times X_{m} \rightarrow \mathbb{R}$ transition probability denote by $\tilde{\kappa}: \mathcal{P}_{n} \rightarrow \mathcal{P}_{m}$. If for every transition probability $\kappa: X_{n} \times X_{m} \rightarrow \mathbb{R}$ for every point $p \in \mathcal{P}_{n}$ for every tangent vector $X \in T_{p} \mathcal{P}_{n}$

$$
g_{\kappa(p)}\left(\tilde{\kappa}_{*}(X), \tilde{\kappa}_{*}(X)\right) \leq g_{p}(X, X)
$$

holds then there exists a unique positive number c such that for every $n \in \mathbb{N}^{+} g_{n}=c g_{n}^{(F)}$.

Duality on Riemannian manifolds

Definition

For an (M, g) Riemannian geometry the covariant derivatives ∇ and ∇^{*} are called dual covariant derivatives if for every vector field $X, Y, Z \in \mathcal{X}(M)$

$$
Z g(X, Y)=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z}^{*} Y\right)
$$

holds. We call $\left(M, g, \nabla, \nabla^{*}\right)$ dual Riemannian geometry.

Theorem

Consider a statistical model (X, S, \equiv) with Fisher metric g. For all $\alpha \in[-1,1]$ the covariant derivatives $\nabla^{(\alpha)}$ and $\nabla^{(-\alpha)}$ are torsion free and dual.

Theorem

Assume that $\left(M, g, \nabla, \nabla^{*}\right)$ torsion free dual geometry with curvatures R and R^{*}. In this case $R=0$ iff $R^{*}=0$.

In this case we call $\left(M, g, \nabla, \nabla^{*}\right)$ flat dual Riemannian geometry.

— Duality

From divergence to duality

From divergence to duality

Assume that M is an n dimensional manifold, $D: M \times M \rightarrow \mathbb{R}$ is a divergence, $\vartheta \in M, \phi$ is a local coordinate system in a neighbourhood of p. Consider the function

$$
D^{(\vartheta, \phi)}: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad y \mapsto D\left(\vartheta, \phi^{-1}(\phi(\vartheta)+y)\right)
$$

and its series expansion
$D^{(\vartheta, \phi)}(y)=\frac{1}{2} \sum_{i, k=1}^{n} g_{i k}^{(D)}(\vartheta) y_{i} y_{k}+\frac{1}{6} \sum_{i, j, k=1}^{n} h_{i j k}^{(D)}(\vartheta) y_{i} y_{j} y_{k}+o\left(\|y\|^{3}\right)$.
At every point $\vartheta \in M$ the matrix $g^{(D)}(\vartheta)$ is positive definite, so $\left(M, g^{(D)}\right)$ is Riemannian geometry. From the third order term define

$$
\Gamma_{i j k}^{(D)}=h_{i j k}^{(D)}-\partial_{k} g_{i j}^{(D)} \quad i, j, k \in\{1,2, \ldots, n\}
$$

Theorem (From divergence to duality)

Assume that M is an n dimensional manifold, D is a divergence on M and we have the induced quantities $g^{(D)}, \Gamma_{i j k}^{(D)}$ and $\Gamma_{i j k}^{\left(D^{*}\right)}$. In this case $\Gamma_{i j k}^{(D)}$ and $\Gamma_{i j k}^{\left(D^{*}\right)}$ can be considered as a Christoffel symbols of the first kind of torsion free covariant derivatives $\nabla^{(D)}$ and $\nabla^{\left(D^{*}\right)}$. Moreover $\left(M, g, \nabla^{(D)}, \nabla^{\left(D^{*}\right)}\right.$) is a torsion free dual geometry.

Theorem

If $\left(M, g, \nabla, \nabla^{*}\right)$ is a torsion free dual geometry then there exists a D divergence which induces the same duality.

From duality to divergence

From duality to divergence

Definition

If (M, ∇) is an affine manifold, $x \in M$ and ϕ and ϑ are local coordinate systems of a neighbourhood of x. We call ϕ to affine coordinate system if for all $1 \leq i, j \leq \operatorname{dim} M$

$$
\nabla_{\partial_{i}} \partial_{j}=0
$$

holds and we call ϕ and ϑ dual coordinate systems if

$$
g(x)\left(\partial_{i}^{(\vartheta)}, \partial_{j}^{(\eta)}\right)=\delta_{i j} .
$$

Theorem (From duality to divergence)

Assume that $\left(M, g, \nabla, \nabla^{*}\right)$ is a flat dual n dimensional geometry. Then every point $x \in M$ has a neighbourhood $U \subseteq M$ with dual coordinate systems ϑ and η. Assume that $U=M$.
(1) In this case there exists a function $\psi: M \rightarrow \mathbb{R}$ such that for every $1 \leq i \leq n$

$$
\partial_{i}^{(\vartheta)} \psi=\eta_{i}
$$

(2) For the function

$$
\phi: M \rightarrow \mathbb{R} \quad x \mapsto \phi(x)=\sum_{i=1}^{n} \vartheta_{i}(x) \eta_{i}(x)-\psi(x)
$$

we have

$$
\partial_{i}^{(\eta)} \phi=\vartheta_{i} \quad 1 \leq i \leq n .
$$

—Duality

$L_{\text {From duality to divergence }}$

Theorem (From duality to divergence cont.)

(3) For every indices $1 \leq i, j \leq n$

$$
g\left(\partial_{i}^{(\vartheta)}, \partial_{j}^{(\vartheta)}\right)=\partial_{i}^{(\vartheta)} \partial_{j}^{(\vartheta)} \psi \quad g\left(\partial_{i}^{(\eta)}, \partial_{j}^{(\eta)}\right)=\partial_{i}^{(\eta)} \partial_{j}^{(\eta)} \phi
$$

(9) The functions ψ, ϕ has extrema for every $x \in M$

$$
\begin{aligned}
& \phi(x)=\max _{y \in M}\left(\sum_{i=1}^{n} \vartheta_{i}(y) \eta_{i}(x)-\psi(y)\right) \\
& \psi(x)=\max _{y \in M}\left(\sum_{i=1}^{n} \vartheta_{i}(x) \eta_{i}(y)-\phi(y)\right) .
\end{aligned}
$$

Theorem (From duality to divergence cont.)

(3) The functions ϕ and ψ are strictly convex functions of $\left(\eta_{1}, \ldots, \eta_{n}\right)$ and $\left(\vartheta_{1}, \ldots, \vartheta_{n}\right)$ respectively.
(0) We have a canonical divergence $D: M \times M \rightarrow \mathbb{R}$

$$
D^{(g, \nabla)}(p, q)=\psi(p)+\phi(q)-\sum_{i=1}^{n} \vartheta^{i}(p) \eta^{i}(q)
$$

—Duality

Example (Duality for discrete distribution)

Base space is $X=\{0,1, \ldots, n\}$ and the parameter space is $\equiv=\left\{\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{R}^{+}\right)^{n} \mid \sum_{k=1}^{n} p_{k}<1\right\}$. The Fisher metric is g.
The covariant derivatives $\nabla^{(-1)}$ and $\nabla^{(1)}$ are torsion free and $\left(\equiv, g, \nabla^{(1)}, \nabla^{(-1)}\right)$ is flat dual geometry.

Let us define the following coordinate systems

$$
\begin{array}{rl}
\eta: \equiv \rightarrow \mathbb{R}^{n} & p \mapsto \eta(p)=\left(p_{1}, \ldots, p_{n}\right) \\
\vartheta: \equiv \rightarrow \mathbb{R}^{n} & p \mapsto \vartheta(p)=\left(\log \frac{p_{1}}{p_{0}}, \ldots, \log \frac{p_{n}}{p_{0}}\right),
\end{array}
$$

where $p_{0}=1-\sum_{k=1}^{n} p_{k}$.

Example (Duality for discrete distribution cont.)

The coordinate systems η and ϑ are affine for $\left(\equiv, \nabla^{(-1)}\right)$ and $\left(\right.$ 三, $\left.\nabla^{(1)}\right)$.
($\nabla^{(1)}$ called exponential covariant derivative and $\nabla^{(-1)}$ called mixture covariant derivative.)
If we use the potential function

$$
\psi: \equiv \rightarrow \mathbb{R} \quad p \mapsto-\log p_{0}
$$

then we have

$$
\partial_{i}^{(\vartheta)} \psi(p)=\eta_{i}
$$

—Duality

Example for duality

Example (Duality for discrete distribution cont.)

The function ϕ is the following

$$
\phi(p)=\sum_{i=0}^{n} p_{i} \log p_{i}=-S(p)
$$

The canonical divergence of the $\left(\equiv, g, \nabla^{(1)}, \nabla^{(-1)}\right)$ flat dual geometry is

$$
\begin{aligned}
D^{(g, \nabla)}(p, q) & =\psi(p)+\phi(q)-\sum_{i=1}^{n} \vartheta_{i}(p) \eta_{i}(q) \\
& =\sum_{i=0}^{n} q_{i} \log \frac{q_{i}}{p_{i}}=D_{\mathrm{KL}}(q, p)
\end{aligned}
$$

— Duality

-Pythagorean theorem

Pythagorean theorem

Theorem

Assume that $\left(M, g, \nabla, \nabla^{*}\right)$ is a flat dual geometry, $a, b, c \in M, \gamma_{1}$ is a ∇ geodesic curve connecting a and b, γ_{2} is a ∇^{*} geodesic curve connecting b and c such that $g(b)\left(\dot{\gamma}_{1}(b), \dot{\gamma}_{2}(b)\right)=0$. Then

$$
D^{(g, \nabla)}(a, c)=D^{(g, \nabla)}(a, b)+D^{(g, \nabla)}(b, c)
$$

—uality

-Pythagorean theorem

Pythagorean theorem

Attila Andai

Projection theorem

Theorem

Assume that $\left(M, g, \nabla, \nabla^{*}\right)$ is a flat dual geometry, N is a submanifold of M and $x \in M \backslash N$. The point $y \in N$ is a critical point of the function

$$
N \rightarrow \mathbb{R} \quad y \mapsto D^{(g, \nabla)}(x, y)
$$

iff the geodesic line between x and y is perpendicular to N.

- Introduction to noncommutative information geometry

Quantum mechanical setting

Quantum mechanical setting

In quantum setting we use n dimensional Hilbert space.
A self-adjoint, positive semidefinite trace one operator: state.
The set of states is called to be state space.
The interior of the state space is denoted by \mathcal{M}_{n}^{+}.
The extremal points of the state space: pure states.
A self-adjoint operator is called observable.
The expected value of an observable A in a state D is $\operatorname{Tr}(D A)$.

Example (2 dimensional Hilbert space (qubit))

Every state $D \in \mathcal{M}_{2}$ can be uniquely written in the form of

$$
D=\frac{1}{2}\left(\begin{array}{cc}
1+z & x+\mathrm{i} y \\
x-\mathrm{i} y & 1-z
\end{array}\right)
$$

For states we have

$$
x^{2}+y^{2}+z^{2} \leq 1
$$

and for parameters $(x, y, z) \in \mathbb{R}^{3}$ equation ($\star \star$) defines a state iff $x^{2}+y^{2}+z^{2} \leq 1$.
Therefore the state space of a two dimensional quantum system can be identified with the closed unit ball in \mathbb{R}^{3}.
(x, y, z) are called to be Stokes parameters.

Entropy

The entropy of a state D can be defined as in the classical case

$$
S(D)=-\operatorname{Tr} D \log D
$$

called Neumann entropy.
The entropy is a concave function.

Theorem

For every state $D_{1}, D_{2} \in \mathcal{M}_{n}^{+}$and parameter $\lambda \in[0,1]$

$$
\lambda S\left(D_{1}\right)+(1-\lambda) S\left(D_{2}\right) \leq S\left(\lambda D_{1}+(1-\lambda) D_{2}\right)
$$

- Introduction to noncommutative information geometry

- Riemannian metric on state space

Riemannian metric on state space

We will refer to \mathcal{M}_{n}^{+}as open convex subset of \mathbb{R}^{k} with its canonical coordinate system. At a given point $D_{0} \in \mathcal{M}_{n}^{+}$we identify the tangent space with $n \times n$ self-adjoint trace zero operators \mathcal{M}_{n}. For a given smooth function $f: \mathcal{M}_{n}^{+} \rightarrow \mathbb{R}$ at a state $D_{0} \in \mathcal{M}_{n}^{+}$the effect of the tangent vector $X \in \mathcal{M}_{n}$ is

$$
(X f)\left(D_{0}\right)=\left.\frac{\mathrm{d} f\left(D_{0}+t X\right)}{\mathrm{d} t}\right|_{t=0}
$$

We denote by $T_{D} \mathcal{M}_{n}^{+}$the tangent space of \mathcal{M}_{n}^{+}at a point $D \in \mathcal{M}_{n}^{+}$.

- Riemannian metric on state space

We can define Riemannian metrics on \mathcal{M}_{n}^{+}, for example

$$
K_{D}(X, Y)=\operatorname{Tr} D X Y \quad D \in \mathcal{M}_{n}^{+} X, Y \in T_{M} \mathcal{M}_{n}^{+}
$$

is a Riemannian metric.

We can define Riemannian metrics on \mathcal{M}_{n}^{+}, for example

$$
K_{D}(X, Y)=\operatorname{Tr} D X Y \quad D \in \mathcal{M}_{n}^{+} X, Y \in T_{M} \mathcal{M}_{n}^{+}
$$

is a Riemannian metric.

Problems with Fisher metric:
How to generalise equations like below?

$$
\begin{aligned}
& g^{(\mathrm{F})}(\vartheta)_{i k}=\int_{X} p(x, \vartheta)\left(\partial_{i} \log p(x, \vartheta)\right)\left(\partial_{k} \log p(x, \vartheta)\right) \mathrm{d} x \\
& g^{(\mathrm{F})}(\vartheta)_{i k}=4 \int_{X}\left(\partial_{i} \sqrt{p(x, \vartheta)}\right)\left(\partial_{k} \sqrt{p(x, \vartheta)}\right) \mathrm{d} x
\end{aligned}
$$

- Riemannian metric on state space

There was the concepts of left and right logarithmic derivative

$$
\frac{\mathrm{d} D_{\vartheta}}{\mathrm{d} \vartheta}=D_{\vartheta} \times L_{r, \vartheta} \quad \frac{\mathrm{~d} D_{\vartheta}}{\mathrm{d} \vartheta}=L_{l, \vartheta} \times D_{\vartheta} .
$$

-Riemannian metric on state space

There was the concepts of left and right logarithmic derivative

$$
\frac{\mathrm{d} D_{\vartheta}}{\mathrm{d} \vartheta}=D_{\vartheta} \times L_{r, \vartheta} \quad \frac{\mathrm{~d} D_{\vartheta}}{\mathrm{d} \vartheta}=L_{l, \vartheta} \times D_{\vartheta} .
$$

The second derivative of the entropy generates a Riemannian metric too.

There was the concepts of left and right logarithmic derivative

$$
\frac{\mathrm{d} D_{\vartheta}}{\mathrm{d} \vartheta}=D_{\vartheta} \times L_{r, \vartheta} \quad \frac{\mathrm{~d} D_{\vartheta}}{\mathrm{d} \vartheta}=L_{l, \vartheta} \times D_{\vartheta} .
$$

The second derivative of the entropy generates a Riemannian metric too.

The pull back of the euclidean metric by

$$
\mathcal{M}_{n}^{+} \rightarrow \mathbb{R}^{k} \quad D \mapsto \sqrt{D}
$$

defines Riemannian metric too.

- Preparations for Petz theorem

Extending some classical concept to quantum setting

Extending some classical concept to quantum setting

Let us denote by M_{n} the space of $n \times n$ matrices and by $M_{m}\left(M_{n}\right)$ those $m \times m$ matrices whose elements are $n \times n$ matrices.

Definition

A linear map $T: M_{n} \rightarrow M_{m}$ is called positive if maps every positive operator to a positive operator.
A linear map $T: M_{n} \rightarrow M_{m}$ is called completely positive if for every $k \in \mathbb{N}$ the operator

$$
T^{(k)}: M_{k}\left(M_{n}\right) \rightarrow M_{k}\left(M_{m}\right) \quad\left[A_{i j}\right] \mapsto T^{(k)}\left(\left[A_{i j}\right]\right)=\left[T\left(A_{i j}\right)\right]
$$

is positive.
We call a linear map $T: M_{n} \rightarrow M_{m}$ is called to be a stochastic map if completely positive and trace preserving.

- Preparations for Petz theorem

Extending some classical concept to quantum setting

Theorem

A linear map $T: M_{n} \rightarrow M_{m}$ is completely positive iff there exist operators $V_{i}: M_{m} \rightarrow M_{n}$ such that

$$
T(A)=\sum_{i=1}^{N} V_{i} A V_{i}^{*} \quad \forall A \in M_{n}
$$

The map T is trace preserving iff $\sum_{i=1}^{N} V_{i} V_{i}^{*}=I$.

- Preparations for Petz theorem

- Extending some classical concept to quantum setting

Definition

Consider the family of Riemannian manifolds $\left(\mathcal{M}_{n}^{+}, K^{(n)}\right)_{n \in \mathbb{N}}$. If for every $n, m \in \mathbb{N}$, stochastic map $T: M_{n} \rightarrow M_{m}$, state $D \in \mathcal{M}_{n}^{+}$ and tangent vector $X \in \mathcal{M}_{n}$

$$
K_{T(D)}^{(m)}(T(X), T(X)) \leq K_{D}^{(n)}(X, X)
$$

holds then we call $\left(\mathcal{M}_{n}^{+}, K^{(n)}\right)_{n \in \mathbb{N}}$ a family of monotone metrics.

- Preparations for Petz theorem

Extending some classical concept to quantum setting
Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a self-adjoint matrix X.
How to compute $f(X)$:

- $X \in \mathcal{M}_{n}^{+}$can be diagonalized by some unitary matrix U, that is $X=U D U^{*}$.

$$
f(X):=U f(D) U^{*}
$$

-Preparations for Petz theorem

Extending some classical concept to quantum setting
Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a self-adjoint matrix X.
How to compute $f(X)$:

- $X \in \mathcal{M}_{n}^{+}$can be diagonalized by some unitary matrix U, that is $X=U D U^{*}$.

$$
f(X):=U f(D) U^{*}
$$

- X can be written as $X=\sum_{i=1}^{n} \lambda_{i} E_{i}$, where $\left(\lambda_{i}\right)_{i=1, \ldots, n}$ are the eigenvalues and $\left(E_{i}\right)_{i=1, \ldots, n}$ are the corresponding projections

$$
f(X)=\sum_{i=1}^{n} f\left(\lambda_{i}\right) E_{i}
$$

- Preparations for Petz theorem

- Extending some classical concept to quantum setting

Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a self-adjoint matrix X.
How to compute $f(X)$:

- $X \in \mathcal{M}_{n}^{+}$can be diagonalized by some unitary matrix U, that is $X=U D U^{*}$.

$$
f(X):=U f(D) U^{*}
$$

- X can be written as $X=\sum_{i=1}^{n} \lambda_{i} E_{i}$, where $\left(\lambda_{i}\right)_{i=1, \ldots, n}$ are the
eigenvalues and $\left(E_{i}\right)_{i=1, \ldots, n}$ are the corresponding projections

$$
f(X)=\sum_{i=1}^{n} f\left(\lambda_{i}\right) E_{i}
$$

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ called operator monotone if for every $n \in \mathbb{N}$ and self-adjoint matrices $A, B \in M_{n}$ from $A \leq B$ follows $f(A) \leq f(B)$.

- Preparations for Petz theorem

-Extending some classical concept to quantum setting
Denote by $\operatorname{Lin}\left(M_{n}\right)$ the set of linear $A: M_{n} \rightarrow M_{n}$ maps and define the Hilbert-Schmidt scalar product

$$
\langle\cdot, \cdot\rangle: \operatorname{Lin}\left(M_{n}\right) \times \operatorname{Lin}\left(M_{n}\right) \rightarrow \mathbb{C} \quad(A, B) \mapsto \operatorname{Tr} A^{*} B
$$

For $D \in M_{n}$ define the left and the right multiplication operators

$$
L_{n, D}(A)=D A \quad R_{n, D}(A)=A D
$$

If $D \in \mathcal{M}_{n}^{+}$then $L_{n, D}$ and $R_{n, D}$ are self-adjoint operator.

$$
\begin{aligned}
\left\langle L_{n, D} A, B\right\rangle & =\langle D A, B\rangle=\operatorname{Tr}(D A)^{*} B=\operatorname{Tr} A^{*} D^{*} B= \\
= & \operatorname{Tr} A^{*} D B=\langle A, D B\rangle=\left\langle A, L_{n, D} B\right\rangle \\
\left\langle R_{n, D} A, B\right\rangle & =\langle A D, B\rangle=\operatorname{Tr}(A D)^{*} B=\operatorname{Tr} D^{*} A^{*} B= \\
= & \operatorname{Tr} A^{*} B D=\langle A, B D\rangle=\left\langle A, R_{n, D} B\right\rangle
\end{aligned}
$$

-Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

-Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$ $M(x, x)=x$

-Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$ $M(x, x)=x$
$M(x, y)=M(y, x)$

-Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$ $M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$

-Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$ $M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$
$x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)$

- Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$ $M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$
$x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)$
$M(x, y)$ is continuous

- Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$ $M(x, x)=x$
$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$
$x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)$
$M(x, y)$ is continuous
$M(t x, t y)=t M(x, y)$

- Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
M(x, x)=x
$$

$$
M(x, y)=M(y, x)
$$

$$
x<y \Rightarrow x<M(x, y)<y
$$

$$
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)
$$

$M(x, y)$ is continuous
$M(t x, t y)=t M(x, y)$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

- Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
M(x, x)=x
$$

$$
f(1)=1
$$

$M(x, y)=M(y, x)$
$x<y \Rightarrow x<M(x, y)<y$
$x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)$
$M(x, y)$ is continuous
$M(t x, t y)=t M(x, y)$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

- Means

-Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
M(x, x)=x
$$

$$
f(1)=1
$$

$$
M(x, y)=M(y, x)
$$

$$
f(t)=t f\left(t^{-1}\right)
$$

$$
x<y \Rightarrow x<M(x, y)<y
$$

$$
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right)
$$

$M(x, y)$ is continuous
$M(t x, t y)=t M(x, y)$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

-Means

Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
\begin{array}{ll}
M(x, x)=x & f(1)=1 \\
M(x, y)=M(y, x) & f(t)=t f\left(t^{-1}\right) \\
x<y \Rightarrow x<M(x, y)<y f(\cdot>1)>1, f(0<\cdot<1)<1 \\
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right) &
\end{array}
$$

$M(x, y)$ is continuous
$M(t x, t y)=t M(x, y)$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

- Means

Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
\begin{array}{ll}
M(x, x)=x & f(1)=1 \\
M(x, y)=M(y, x) & f(t)=t f\left(t^{-1}\right) \\
x<y \Rightarrow x<M(x, y)<y f(\cdot>1)>1, f(0<\cdot<1)<1 \\
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right) & f \text { increasing }
\end{array}
$$

$M(x, y)$ is continuous
$M(t x, t y)=t M(x, y)$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

- Means

Basic property of means

Basic property of means

What is a mean?
A function $M: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a mean if $\left(\forall x, y, x_{0}, y_{0}, t \in \mathbb{R}^{+}\right)$

$$
\begin{array}{ll}
M(x, x)=x & f(1)=1 \\
M(x, y)=M(y, x) & f(t)=t f\left(t^{-1}\right) \\
x<y \Rightarrow x<M(x, y)<y f(\cdot>1)>1, f(0<\cdot<1)<1 \\
x<x_{0}, y<y_{0} \Rightarrow M(x, y)<M\left(x_{0}, y_{0}\right) & f \text { increasing }
\end{array}
$$

$M(x, y)$ is continuous
f continuous
$M(t x, t y)=t M(x, y)$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

$\square_{\text {Basic property of means }}$

We have

$$
\text { means }=\left\{\begin{array}{c|c}
& f \text { increasing } \\
f(1)=1 \\
& \left.\forall t \in \mathbb{R}^{+}, \mathbb{R}^{+}\right) \mid f(t)=t f\left(t^{-1}\right)
\end{array}\right\}
$$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

-Means

Basic property of means

We have

$$
\text { means }=\left\{\begin{array}{c|c}
f \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right) \mid & f \text { increasing } \\
f(1)=1 \\
\forall t \in \mathbb{R}^{+}: f(t)=t f\left(t^{-1}\right)
\end{array}\right\}
$$

$$
M(x, y)=x f\left(\frac{y}{x}\right)
$$

arithmetic mean: $f(t)=\frac{1+t}{2}$
geometric mean: $f(t)=\sqrt{t}$
logarithmic mean: $f(t)=\frac{t-1}{\log t}$

LMeans of matrices

Means of matrices

Define means on $n \times n$, positive definite matrices \mathcal{M}_{n}^{+}:

$$
X \in \mathcal{M}_{n}^{+} \Longleftrightarrow X=X^{*},\left\{\begin{array}{l}
\langle v, X v\rangle>0 \forall v \in \mathbb{C}^{n} \backslash\{0\} \\
\text { every eigenvalue of } X \text { is positive }
\end{array}\right.
$$

- Means

LMeans of matrices

Means of matrices

Define means on $n \times n$, positive definite matrices \mathcal{M}_{n}^{+}:

$$
X \in \mathcal{M}_{n}^{+} \Longleftrightarrow X=X^{*},\left\{\begin{array}{l}
\langle v, X v\rangle>0 \forall v \in \mathbb{C}^{n} \backslash\{0\} \\
\text { every eigenvalue of } X \text { is positive }
\end{array}\right.
$$

We write $X \leq Y$ if $Y-X \in \mathcal{M}_{n}^{+}$.
-Means of matrices
M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}^{+}$

Theorem (Kubo-Ando)
If M is a matrix mean, then there exists an operator monotone function f with properties $f(t)=t f\left(t^{-1}\right)$ and $f(1)=1$ such that for every $X, Y \in \mathcal{M}_{n}^{+}$

- Means of matrices
M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}^{+}$
$-X \leq X_{0}, Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$

Theorem (Kubo-Ando)
If M is a matrix mean, then there exists an operator monotone function f with properties $f(t)=t f\left(t^{-1}\right)$ and $f(1)=1$ such that for every $X, Y \in \mathcal{M}_{n}^{+}$

—Means

Means of matrices

M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}^{+}$
$-X \leq X_{0}, \quad Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}\right.$, $\left.Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n}^{+}with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

Theorem (Kubo-Ando)
If M is a matrix mean, then there exists an operator monotone function f with properties $f(t)=t f\left(t^{-1}\right)$ and $f(1)=1$ such that for every $X, Y \in \mathcal{M}_{n}^{+}$

-Means

Means of matrices

M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}^{+}$
$-X \leq X_{0}, \quad Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}\right.$, $\left.Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n}^{+}with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

- $T^{*} M(X, Y) T \leq M\left(T^{*} X T, T^{*} Y T\right)$ for all T

Theorem (Kubo-Ando)
If M is a matrix mean, then there exists an operator monotone function f with properties $f(t)=t f\left(t^{-1}\right)$ and $f(1)=1$ such that for every $X, Y \in \mathcal{M}_{n}^{+}$

-Means

Means of matrices

M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}^{+}$
$-X \leq X_{0}, \quad Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}\right.$, $\left.Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n}^{+}with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

- $T^{*} M(X, Y) T \leq M\left(T^{*} X T, T^{*} Y T\right)$ for all T
$-M(X, X)=X$
Theorem (Kubo-Ando)
If M is a matrix mean, then there exists an operator monotone function f with properties $f(t)=t f\left(t^{-1}\right)$ and $f(1)=1$ such that for every $X, Y \in \mathcal{M}_{n}^{+}$

- Means

$L_{\text {Means of matrices }}$
M is a mean of matrices if for every $X, Y \in \mathcal{M}_{n}^{+}$
$-X \leq X_{0}, \quad Y \leq Y_{0}: M(X, Y) \leq M\left(X_{0}, Y_{0}\right)$
$-\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences $\left(X_{n+1} \leq X_{n}\right.$, $\left.Y_{n+1} \leq Y_{n}\right)$ in \mathcal{M}_{n}^{+}with limits X and Y then $M\left(X_{n}, Y_{n}\right)$ is decreasing and

$$
\lim _{n \rightarrow \infty} M\left(X_{n}, Y_{n}\right)=M(X, Y)
$$

- $T^{*} M(X, Y) T \leq M\left(T^{*} X T, T^{*} Y T\right)$ for all T
$-M(X, X)=X$

Theorem (Kubo-Ando)

If M is a matrix mean, then there exists an operator monotone function f with properties $f(t)=t f\left(t^{-1}\right)$ and $f(1)=1$ such that for every $X, Y \in \mathcal{M}_{n}^{+}$

$$
M(X, Y)=X^{1 / 2} f\left(X^{-1 / 2} Y X^{-1 / 2}\right) X^{1 / 2}
$$

-Petz theorem
Looking for monotone metrics
Looking for monotone metrics:

-Petz theorem

Looking for monotone metrics
Looking for monotone metrics: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

- Petz theorem

Looking for monotone metrics
Looking for monotone metrics: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where $J_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

- Petz theorem

Looking for monotone metrics
Looking for monotone metrics: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where $J_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle
$$

- Petz theorem

Looking for monotone metrics
Looking for monotone metrics: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where $J_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle
\end{gathered}
$$

- Petz theorem

Looking for monotone metrics
Looking for monotone metrics: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where $\mathbf{J}_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle \\
g_{D}(X, X)=\left\langle X, \mathbf{J}_{D}^{-1}(X)\right\rangle=\left\langle X, T^{*} \mathbf{J}_{D}^{-1} T(X)\right\rangle
\end{gathered}
$$

- Petz theorem

Looking for monotone metrics
Looking for monotone metrics: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where $J_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle \\
g_{D}(X, X)=\left\langle X, \mathbf{J}_{D}^{-1}(X)\right\rangle=\left\langle X, T^{*} \mathbf{J}_{D}^{-1} T(X)\right\rangle
\end{gathered}
$$

monotonicity:

- Petz theorem

Looking for monotone metrics
Looking for monotone metrics: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where $J_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle \\
g_{D}(X, X)=\left\langle X, \mathbf{J}_{D}^{-1}(X)\right\rangle=\left\langle X, T^{*} \mathbf{J}_{D}^{-1} T(X)\right\rangle
\end{gathered}
$$

monotonicity: $\quad T^{*} \mathbf{J}_{T(D)}^{-1} T \leq \mathbf{J}_{D}^{-1}$

— Petz theorem

Looking for monotone metrics
Looking for monotone metrics: monotonicity:

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{p} \mathcal{M}_{n}
$$

$g_{D}(X, Y)=\left\langle X, \mathbf{J}_{D}^{-1}(Y)\right\rangle=\operatorname{Tr}\left(X \mathbf{J}_{D}^{-1}(Y)\right)$, where $J_{D}: \operatorname{Mat}(n, \mathbb{C}) \rightarrow \operatorname{Mat}(n, \mathbb{C})$ linear map.

$$
\begin{gathered}
g_{T(D)}(T(X), T(X))=\left\langle T(X), \mathbf{J}_{T(D)}^{-1}(T(X))\right\rangle \\
g_{T(D)}(T(X), T(X))=\left\langle X, T^{*} \mathbf{J}_{T(D)}^{-1} T(X)\right\rangle \\
g_{D}(X, X)=\left\langle X, \mathbf{J}_{D}^{-1}(X)\right\rangle=\left\langle X, T^{*} \mathbf{J}_{D}^{-1} T(X)\right\rangle
\end{gathered}
$$

monotonicity: $\quad T^{*} \mathbf{J}_{T(D)}^{-1} T \leq \mathbf{J}_{D}^{-1}$

$$
T \mathbf{J}_{D} T^{*} \leq \mathbf{J}_{T(D)}
$$

-Petz theorem

Looking for monotone metrics

What can $\mathbf{J}_{D}(X)$ be?

Looking for monotone metrics

What can $\mathbf{J}_{D}(X)$ be?
" D can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D)$ "

- Petz theorem

Looking for monotone metrics

What can $\mathbf{J}_{D}(X)$ be?
" D can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D)$ " in general $\varphi_{1}(D) X \varphi_{2}(D)$ gives the idea:

$$
J_{D}(X)=M\left(L_{D}, R_{D}\right)(X)
$$

Where $L_{D}(X)=D X$ and $R_{D}(X)=X D$.

- Petz theorem

Looking for monotone metrics

What can $\mathbf{J}_{D}(X)$ be?
" D can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D)$ " in general $\varphi_{1}(D) X \varphi_{2}(D)$ gives the idea:

$$
J_{D}(X)=M\left(L_{D}, R_{D}\right)(X)
$$

Where $L_{D}(X)=D X$ and $R_{D}(X)=X D$.
We have $M\left(L_{D}, R_{D}\right)=M\left(R_{D}, L_{D}\right)$

- Petz theorem

Looking for monotone metrics

What can $\mathbf{J}_{D}(X)$ be?
" D can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D)$ " in general $\varphi_{1}(D) X \varphi_{2}(D)$ gives the idea:

$$
\mathbf{J}_{D}(X)=M\left(L_{D}, R_{D}\right)(X)
$$

Where $L_{D}(X)=D X$ and $R_{D}(X)=X D$.
We have $M\left(L_{D}, R_{D}\right)=M\left(R_{D}, L_{D}\right)$
and the monotonicity

$$
T \mathbf{J}_{D} T^{*} \leq \mathbf{J}_{T(D)}
$$

gives

$$
T M\left(L_{D}, R_{D}\right) T^{*} \leq M\left(T L_{D} T^{*}, T R_{D} T^{*}\right)
$$

- Petz theorem

Looking for monotone metrics

What can $\mathbf{J}_{D}(X)$ be?
" D can act on left $\varphi_{1}(D) X$ and on the right $X \varphi_{1}(D)$ " in general $\varphi_{1}(D) X \varphi_{2}(D)$ gives the idea:

$$
\mathbf{J}_{D}(X)=M\left(L_{D}, R_{D}\right)(X)
$$

Where $L_{D}(X)=D X$ and $R_{D}(X)=X D$.
We have $M\left(L_{D}, R_{D}\right)=M\left(R_{D}, L_{D}\right)$
and the monotonicity

$$
T \mathbf{J}_{D} T^{*} \leq \mathbf{J}_{T(D)}
$$

gives

$$
T M\left(L_{D}, R_{D}\right) T^{*} \leq M\left(T L_{D} T^{*}, T R_{D} T^{*}\right)
$$

M is a mean!

- Petz theorem

A variant of Petz theorem

Theorem (Petz)

Assume that for every $n \in \mathbb{N}$ the pair $\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian-manifold. If for every stochastic map T the monotonicity

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in T_{p} \mathcal{M}_{n}
$$

holds then there exists an operator monotone function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ with the property $f(x)=x f\left(x^{-1}\right)$, such that

$$
g_{D}(X, Y)=\operatorname{Tr}\left(X\left(R_{n, D}^{\frac{1}{2}} f\left(L_{n, D} R_{n, D}^{-1}\right) R_{n, D}^{\frac{1}{2}}\right)^{-1}(Y)\right)
$$

- Petz theorem

A variant of Petz theorem
Classical case:

$$
\mathcal{P}_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \mid 0<p_{i}<1, \sum_{i=1}^{n} p_{i}=1\right\}
$$

Theorem (Cencov) Assume that for every $n \in \mathbb{N}$ (\mathcal{P}_{n}, g_{n}) is a Riemannian manifold. If for every transition probability $\kappa: X_{n} \times X_{m} \rightarrow \mathbb{R}$

$$
g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \Delta_{n-1}, \forall X \in \mathrm{~T}_{p} \Delta_{n-1},
$$

(monotonicity) holds, then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ unique up to a positive factor.

-Petz theorem

A variant of Petz theorem
Quantum case:

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

Theorem (Cencov) Assume that for every $n \in \mathbb{N}$ (\mathcal{P}_{n}, g_{n}) is a Riemannian manifold. If for every transition probability $\kappa: X_{n} \times X_{m} \rightarrow \mathbb{R}$

$$
g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \Delta_{n-1}, \forall X \in \mathrm{~T}_{p} \Delta_{n-1},
$$

(monotonicity) holds, then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ unique up to a positive factor.

- Petz theorem

A variant of Petz theorem
Quantum case:

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

Assume that for every $n \in \mathbb{N}$ $\left(\mathcal{P}_{n}, g_{n}\right)$ is a Riemannian manifold. If for every transition probability $\kappa: X_{n} \times X_{m} \rightarrow \mathbb{R}$

$$
g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \Delta_{n-1}, \forall X \in \mathrm{~T}_{p} \Delta_{n-1},
$$

(monotonicity) holds, then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ unique up to a positive factor.

- Petz theorem

A variant of Petz theorem
Quantum case:

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

Assume that for every $n \in \mathbb{N}$
$\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian manifold. If for every transition probability $\kappa: X_{n} \times X_{m} \rightarrow \mathbb{R}$

$$
g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \Delta_{n-1}, \forall X \in \mathrm{~T}_{p} \Delta_{n-1},
$$

(monotonicity) holds, then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ unique up to a positive factor.

- Petz theorem

- A variant of Petz theorem

Quantum case:

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

Assume that for every $n \in \mathbb{N}$
$\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian manifold. If for every stochastic map $T: \mathcal{M}_{n}^{+} \rightarrow \mathcal{M}_{n}^{+}$

$$
g_{\tilde{\kappa}(p)}\left(\kappa^{*}(X), \kappa^{*}(X)\right) \leq g_{p}(X, X) \quad \forall p \in \Delta_{n-1}, \forall X \in \mathrm{~T}_{p} \Delta_{n-1},
$$

(monotonicity) holds, then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ unique up to a positive factor.

- Petz theorem

A variant of Petz theorem
Quantum case:

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

Assume that for every $n \in \mathbb{N}$
$\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian manifold. If for every stochastic map $T: \mathcal{M}_{n}^{+} \rightarrow \mathcal{M}_{n}^{+}$

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{D} \mathcal{M}_{n}
$$

(monotonicity) holds, then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ unique up to a positive factor.

- Petz theorem

A variant of Petz theorem
Quantum case:

$$
\mathcal{M}_{n}=\left\{D \in \operatorname{Mat}(n, \mathbb{C}) \mid D=D^{*}, D>0, \operatorname{Tr} D=1\right\}
$$

Theorem (Petz) Assume that for every $n \in \mathbb{N}$ $\left(\mathcal{M}_{n}, g_{n}\right)$ is a Riemannian manifold. If for every stochastic map $T: \mathcal{M}_{n}^{+} \rightarrow \mathcal{M}_{n}^{+}$

$$
g_{T(D)}(T(X), T(X)) \leq g_{D}(X, X) \forall D \in \mathcal{M}_{n}, \forall X \in \mathrm{~T}_{D} \mathcal{M}_{n}
$$

(monotonicity) holds, then the family of metrics $\left(g_{n}\right)_{n \in \mathbb{N}}$ given by the equation

$$
g_{D}(X, Y)=\operatorname{Tr}\left(X\left(R_{n, D}^{\frac{1}{2}} f\left(L_{n, D} R_{n, D}^{-1}\right) R_{n, D}^{\frac{1}{2}}\right)^{-1}(Y)\right)
$$

where $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is an operator monotone function such that $f(x)=x f\left(x^{-1}\right)\left(\forall x \in \mathbb{R}^{+}\right)$.

- Petz theorem

A variant of Petz theorem

Definition

Consider the Riemannian manifold $\left(\mathcal{M}_{n}^{+}, K^{(n)}\right)$. The metric $K^{(n)}$ is called monotone metric if there exists an operator monotone function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that for every positive number x $f(x)=x f\left(x^{-1}\right)$ and $K^{(n)}$ is generated by f.

$$
g_{D}(X, Y)=\operatorname{Tr}\left(X\left(R_{n, D}^{\frac{1}{2}} f\left(L_{n, D} R_{n, D}^{-1}\right) R_{n, D}^{\frac{1}{2}}\right)^{-1}(Y)\right)
$$

- Operator monotone functions
 LProperties of operator monotone functions
 Properties of operator monotone functions

Definition

Assume that $f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ is an operator monotone function.
$f(x)=x f\left(x^{-1}\right)$ is called to transpose of f,
$f^{\perp}(x)=\frac{x}{f(x)}$ is called to dual of f.
f is symmetric if $f=f \backslash$
f is normalized if $f(1)=1$.

Theorem

If $f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ is symmetric operator monotone, then its dual is symmetric and operator monotone too.

Representations of operator monotone functions

Denote by $\mathcal{F}_{\mathbb{R}_{0}^{+}}$the set of operator monotone functions defined on \mathbb{R}_{0}^{+}and by $\mathcal{F}_{\mathbb{R}_{0}^{+}}^{(\mathrm{S}, \mathrm{n})}$ the symmetric normalized ones.
Denote by $\mathcal{G}_{\text {/ }}$ the set of positive Radon-measures on the interval $I \subseteq \mathbb{R}$.

A measure $\mu \in \mathcal{G}$ I is said to be normalized if $\mu(I)=1$.
Denote by $\mathcal{G}_{l}^{(\mathrm{n})}$ the set of normalized measures.

- Operator monotone functions

Representation theorems for operator monotone functions

Theorem (Löwner)

There is a bijective correspondence

$$
\begin{gathered}
\phi: \mathcal{G}_{\mathbb{R}_{0}^{+}} \rightarrow \mathcal{F}_{\mathbb{R}_{0}^{+}} \quad \mu \mapsto f_{\mu} \\
f_{\mu}(x)=\int_{0}^{\infty} \frac{x(1+t)}{x+t} d \mu(t) .
\end{gathered}
$$

- Operator monotone functions

Representation theorems for operator monotone functions

Theorem

There is a bijective correspondence

$$
\begin{array}{r}
\phi: \mathcal{G}_{[0,1]} \rightarrow \mathcal{F}_{\mathbb{R}_{0}^{+}} \quad \mu \mapsto f_{\mu} \\
f_{\mu}(x)=\int_{0}^{1} \frac{x}{(1-t) x+t} d \mu(t)
\end{array}
$$

The function f_{μ} is symmetric iff $\mu([0, s])=\mu([1-s, 1])$ holds for every $0 \leq s \leq 1$.

- Computing monotone metrics

Cencov-Morozova function

Cencov-Morozova function

Definition

The function $c:\left(\mathbb{R}_{0}^{+}\right)^{2} \rightarrow \mathbb{R}$ is called Cencov-Morozova function if there exists an $f \in \mathcal{F}_{\mathbb{R}_{0}^{+}}$such that for every positive x, y

$$
c(x, y)=\frac{1}{y f\left(\frac{x}{y}\right)}
$$

If $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is operator monotone then it is smooth, moreover it can be extended to a horizontal in the complex plane around the positive real axes.
So if f is operator monotone then for every $\rho \in \mathbb{R}$ we have

$$
f(\rho)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} f(\xi)(\xi-\rho)^{-1} \mathrm{~d} \xi
$$

by Cauchy integral formula, where Γ is a smooth closed curve around ρ with counter-clockwise orientation.
$\square_{\text {Riesz-Dunford operator calculus }}$
The Riesz-Dunford operator calculus states that this can be done for operators too. If A is a self-adjoint operator then

$$
f(A)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} f(\xi)(\xi \mathrm{I}-A)^{-1} \mathrm{~d} \xi
$$

where the interior of Γ contains all the eigenvalues of A.

Computing monotone metrics

We have seen that for a state $D \in \mathcal{M}_{n}^{+}$the multiplications $L_{n, D}$ and $R_{n, D}$ are self-adjoint operators, so we have

$$
\begin{aligned}
& f\left(L_{n, D}\right)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} f(\xi)\left(\xi \mathrm{I}-L_{n, D}\right)^{-1} \mathrm{~d} \xi \\
& f\left(R_{n, D}\right)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} f(\xi)\left(\xi \mathrm{I}-R_{n, D}\right)^{-1} \mathrm{~d} \xi
\end{aligned}
$$

This leads us to

$$
\begin{aligned}
& f\left(L_{n, D}\right)(X)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} f(\xi)(\xi \mathrm{I}-D)^{-1} X \mathrm{~d} \xi \\
& f\left(R_{n, D}\right)(X)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} f(\xi) X(\xi \mathrm{I}-D)^{-1} \mathrm{~d} \xi
\end{aligned}
$$

- Computing monotone metrics

-Petz theorem with Cencov-Morozova functions

These expressions can be extended to multivariate case, such as
$c\left(L_{n, D}, R_{n, D}\right)=\frac{1}{(2 \pi \mathrm{i})^{2}} \oint \oint c(\xi, \eta)\left(\xi \mathrm{I}-L_{n, D}\right)^{-1}\left(\eta \mathrm{I}-R_{n, D}\right)^{-1} \mathrm{~d} \xi \mathrm{~d} \eta$,
which effect can be computed as
$c\left(L_{n, D}, R_{n, D}\right)(X)=\frac{1}{(2 \pi \mathrm{i})^{2}} \oint \oint c(\xi, \eta)(\xi \mathrm{I}-D)^{-1} X(\eta \mathrm{I}-D)^{-1} \mathrm{~d} \xi \mathrm{~d} \eta$.

Computing monotone metrics

$L_{\text {Petz theorem with Cencov-Morozova functions }}$

Theorem

If $K^{(n)}$ is a monotone metric on \mathcal{M}_{n}^{+}generated by an operator monotone function f then for every state $D \in \mathcal{M}_{n}^{+}$and tangent vector $X, Y \in T_{D} \mathcal{M}_{n}^{+}$we have

$$
K_{D}^{(n)}(X, Y)=\operatorname{Tr} \frac{1}{(2 \pi \mathrm{i})^{2}} \oint \oint c(\xi, \eta) X(\xi I-D)^{-1} Y(\eta I-D)^{-1} d \xi d \eta
$$

-Computing monotone metrics

Examples for monotone metrics
Examples for functions in $\mathcal{F}_{\mathbb{R}_{0}^{+}}^{(\mathrm{S}, \mathrm{n})}$.

$$
\begin{aligned}
f_{\mathrm{SM}}(x) & =\frac{1+x}{2} \quad f_{\mathrm{LA}}(x)=\frac{2 x}{1+x} \quad f_{\mathrm{KM}}(x)=\frac{x-1}{\log x} \\
f_{\mathrm{P} 1}(x) & =\frac{2 x^{\alpha+1 / 2}}{1+x^{2 \alpha}} \quad 0 \leq \alpha \leq 1 / 2 \\
f_{\mathrm{P} 2}(x) & =\frac{\beta(1-\beta)(x-1)^{2}}{\left(x^{\beta}-1\right)\left(x^{1-\beta}-1\right)} \quad \beta \in[-1,2] \backslash\{0,1\}, \\
\mathrm{WYD}(x) & =\frac{1-\alpha^{2}}{4} \frac{(x-1)^{2}}{\left(1-x^{\frac{1-\alpha}{2}}\right)\left(1-x^{\frac{1+\alpha}{2}}\right)} \quad \alpha \in[-3,3] \backslash\{-1,1\} \\
f_{\mathrm{WY}}(x) & =\frac{1}{4}(\sqrt{x}+1)^{2} \\
f_{\mathrm{P} 3}(x) & =\left(\frac{1+x^{\frac{1}{\nu}}}{2}\right)^{\nu} \quad \nu \in[1,2]
\end{aligned}
$$

Computing monotone metrics

Consider the matrix units $E_{i j}\left(\left(E_{i j}\right)_{a b}=\delta_{i a} \delta_{j b}\right)$ and matrices $F_{i j}=E_{i j}+E_{j i}$ and $H_{i j}=\mathrm{i} E_{i j}-\mathrm{i} E_{j i}$. (These form a basis of the tangent space.)

Theorem

If the monotone metric $K^{(n), f}$ on \mathcal{M}_{n}^{+}is generated by f then at a state $D \in \mathcal{M}_{n}^{+}$in the form of $D=\sum_{k=1}^{n} \lambda_{k} E_{k k}$ we have

$$
\begin{array}{ll}
1 \leq i<j \leq n, 1 \leq k<I \leq n: & \left\{\begin{array}{l}
G_{D}\left(H_{i j}, H_{k l}\right)=\delta_{i k} \delta_{j \mid} 2 c\left(\lambda_{i}, \lambda_{j}\right) \\
G_{D}\left(F_{i j}, F_{k l}\right)=\delta_{i k} \delta_{j l} 2 c\left(\lambda_{i}, \lambda_{j}\right) \\
G_{D}\left(H_{i j}, F_{k l}\right)=0,
\end{array}\right. \\
1 \leq i<j \leq n, 1 \leq k \leq n: \quad & G_{D}\left(H_{i j}, F_{k k}\right)=G\left(F_{i j}, F_{k k}\right)=0, \\
1 \leq i \leq n, 1 \leq k \leq n: & G_{D}\left(F_{i i}, F_{k k}\right)=\delta_{i k} 4 c\left(\lambda_{i}, \lambda_{i}\right) .
\end{array}
$$

Computing monotone metrics

Examples

Example (Smallest metric)

The metric $K_{\mathrm{SM}}^{(n)}$ generated by the function $f_{\mathrm{SM}}(x)=\frac{1+x}{2}$ is called smallest metric since $f_{S M}(x)$ is maximal among functions in $\mathcal{F}_{\mathbb{R}_{0}^{+}}^{(\mathrm{S}, \mathrm{n})}$ with respect to the pointwise order

$$
f_{[0,1]}^{\leq} g \Longleftrightarrow f(x) \leq g(x) \quad \forall x \in[0,1] .
$$

The corresponding Chencov-Morozova function is

$$
\operatorname{CSM}(x, y)=\frac{2}{x+y}
$$

- Computing monotone metrics

Examples

Example (Smallest metric cont.)

The inner product of vectors X, Y can be written in the form of

$$
K_{\mathrm{SM}, D}^{(n)}(X, Y)=\operatorname{Tr} X Z
$$

where Z is the solution of the equation

$$
D Z+Z D=2 Y
$$

The geodesic distance between states D_{1} and D_{2} according to this metric is

$$
d_{\mathrm{SM}}\left(D_{1}, D_{2}\right)=\sqrt{2\left(1-\operatorname{Tr}\left(D_{1}^{1 / 2} D_{2} D_{1}^{1 / 2}\right)^{1 / 2}\right)} .
$$

(1992 Uhlmann, studying Berry phase)

-Computing monotone metrics

Examples

Example (Largest metric)

The metric $K_{\mathrm{LA}}^{(n)}$ generated by the function $f_{\mathrm{LA}}(x)=\frac{2 x}{1+x}$ is called largest metric since $f_{\mathrm{SM}}(x)$ is maximal among functions in $\mathcal{F}_{\mathbb{R}_{0}^{+}}^{(\mathrm{S}, \mathrm{n})}$. In this case the metric can be written in a simple form

$$
K_{\mathrm{LA}, D}^{(n)}(X, Y)=\operatorname{Tr} X D^{-1} Y
$$

Computing monotone metrics

Examples

Example (Kubo-Mori metric)

The metric generated by the function $f_{\mathrm{KM}}(x)=\frac{x-1}{\log x}$. Its Cencov-Morozova function is

$$
c_{\mathrm{KM}}(x, y)=\frac{\log x-\log y}{x-y} .
$$

Using the integral representation

$$
c_{\mathrm{KM}}(x, y)=\int_{0}^{\infty}(t+x)^{-1}(t+y)^{-1} \mathrm{~d} t
$$

we have for the metric

$$
K_{\mathrm{KM}, D}^{(n)}(X, Y)=\operatorname{Tr} \int_{0}^{\infty} X(t+D)^{-1} Y(t+D)^{-1} \mathrm{~d} t
$$

(Linear response theory Fick, Sailer.)

- Computing monotone metrics

A simple consequences of ordering

A simple consequences of ordering

Theorem

For every $f \in \mathcal{F}_{\mathbb{R}_{0}^{+}}^{(S, n)}$ we have

$$
f_{S M} \underset{[0,1]}{\geq} f_{[0,1]}^{\geq} f_{L A} .
$$

Theorem

Assume that $f \in \mathcal{F}_{\mathbb{R}_{0}^{+}}^{(S, n)}$. For every state $D \in \mathcal{M}_{n}^{+}$and tangent vector $X \in T_{D} \mathcal{M}_{n}^{+}$we have

$$
K_{L A, D}^{(n)}(X, X) \geq K_{D}^{(n), f}(X, X) \geq K_{S M, D}^{(n)}(X, X)
$$

- Computing monotone metrics

A simple consequences of ordering

We have a continuous path in $\mathcal{F}_{\mathbb{R}_{0}^{+}}^{(\mathrm{S}, \mathrm{n})}$ from smallest to largest.

$$
\begin{aligned}
& f_{\mathrm{SM}}=f_{\mathrm{P} 3}^{(\nu=1)} \underset{[0,1]}{\geq} f_{\mathrm{P} 3}^{(1 \leq \nu \leq 2)} \underset{[0,1]}{\geq} f_{\mathrm{P} 3}^{(\nu=2)}=f_{\mathrm{WY}} \\
& f_{\mathrm{WY}}=f_{\mathrm{WYD}}^{(\alpha=0)} \underset{[0,1]}{\geq} f_{\mathrm{WYD}}^{(0 \leq \alpha \leq 3)} \underset{[0,1]}{\geq} f_{\mathrm{WYD}}^{(\alpha=3)}=f_{\mathrm{LA}}
\end{aligned}
$$

\square Computing monotone metrics

- Monotone metric from entropy

Monotone metric from entropy

Consider the integral representation of the log function

$$
\log x=\int_{0}^{\infty}(1+t)^{-1}-(x+t)^{-1} \mathrm{~d} t
$$

We have for the entropy

$$
S(D)=\operatorname{Tr} D \int_{0}^{\infty}(D+t)^{-1}-(\mathrm{I}+t)^{-1} \mathrm{~d} t
$$

The first derivative of the entropy is $\mathrm{d} S(D)(A)=-\operatorname{Tr} A \log D$.

$\boxed{\text { Computing monotone metrics }}$

- Monotone metric from entropy

The second derivative is

$$
\begin{aligned}
& \mathrm{d}^{2} S: \mathcal{M}_{n}^{+} \rightarrow \operatorname{Lin}\left(T \mathcal{M}_{n}, \operatorname{Lin}\left(T \mathcal{M}_{n}, \mathbb{R}\right)\right) \\
& \quad \mathrm{d}^{2} S(D)(A)(B)=-\operatorname{Tr} \int_{0}^{\infty}(D+t)^{-1} A(D+t)^{-1} B \mathrm{~d} t
\end{aligned}
$$

which is (-1) times the Kubo-Mori metric.

$\boxed{\text { Computing monotone metrics }}$

-Monotone metric from euclidean metric

Monotone metric from euclidean metric

For the complex state space \mathcal{M}_{n}^{+}denote by $S_{1}^{n^{2}-1}$ the unit ball in the euclidean space $\mathbb{R}^{n \times n}$ and consider the map

$$
\phi: \mathcal{M}_{n}^{+} \rightarrow S^{n^{2}-1} \quad D \mapsto \sqrt{D}
$$

Using derivative of ϕ

$$
\left(\mathrm{d}_{D} \phi\right)(A)=\left(L_{D}^{1 / 2}+R_{D}^{1 / 2}\right)^{-1}(A)
$$

we can deduce that the pull back metric in this case is

$$
\begin{aligned}
\left(\phi^{*} g\right)(A, B) & =\left\langle\left(d_{D} \phi\right)(A),\left(d_{D} \phi\right)(B)\right\rangle \\
& =\operatorname{Tr} A\left(L_{D}^{1 / 2}+R_{D}^{1 / 2}\right)^{-2}(B) \\
& =\frac{1}{4} \operatorname{Tr} A c_{\mathrm{WY}}\left(L_{D}, R_{D}\right)(B)
\end{aligned}
$$

- Monotone metric from euclidean metric

So in this case easy to compute the geodesic distance between states D_{1} and D_{2}

$$
d_{\mathrm{WY}}\left(D_{1}, D_{2}\right)=2 \arccos \operatorname{Tr} D_{1}^{1 / 2} D_{2}^{1 / 2}
$$

\boxed{R} Relative entropy

LRelative entropy from operator convex functions

First relative entropy

The first version of relative entropy in quantum setting was given by Umegaki in 1962. He defined the relative entropy of states $D_{1}, D_{2} \in \mathcal{M}_{n}^{+}$as

$$
S\left(D_{1}, D_{2}\right)=\operatorname{Tr} D_{1}\left(\log D_{1}-\log D_{2}\right)
$$

This relative entropy is called to Umegaki relative entropy.

LRelative entropy

Relative entropy from operator convex functions

Relative entropy from operator convex functions

Definition

A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called operator convex if for every $n \in \mathbb{N}$ and $n \times n$ self-adjoint operator A, B and parameter $\lambda \in[0,1]$

$$
f(\lambda A+(1-\lambda) B) \leq \lambda f(A)+(1-\lambda) f(B)
$$

holds.
The set of operator convex functions g with property $g(1)=0$ defined on the interval $I \subseteq \mathbb{R}$ is denoted by \mathcal{K}_{I}.

Lelative entropy

$L_{\text {Relative entropy from operator convex functions }}$

Representation theorem for operator convex functions

Theorem

If $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is an operator convex function then there exist parameters $a \in \mathbb{R}, b, c \in \mathbb{R}_{0}^{+}$and a positive finite measure μ_{g} on the interval \mathbb{R}_{0}^{+}such that

$$
g(x)=a(x-1)+b(x-1)^{2}+c \frac{(x-1)^{2}}{x}+\int_{0}^{\infty}(x-1)^{2} \frac{1+t}{x+t} d \mu_{g}(t) .
$$

For every parameter $a \in \mathbb{R}, b, c \in \mathbb{R}_{0}^{+}$and finite measure μ equation above defines an operator convex function.

LRelative entropy

$L_{\text {Relative entropy from operator convex functions }}$

Definition (Petz)

If $g \in \mathcal{K}_{\mathbb{R}^{+}}$then the function $H_{g}(\cdot, \cdot): \mathcal{M}_{n}^{+} \times \mathcal{M}_{n}^{+} \rightarrow \mathbb{R}$

$$
H_{g}\left(D_{1}, D_{2}\right)=\operatorname{Tr}\left(D_{1}^{1 / 2} g\left(L_{D_{2}} R_{D_{1}}^{-1}\right) D_{1}^{1 / 2}\right)
$$

is called to g-relative entropy.

Theorem (Properties of g-relative entropy)

Assume that H is a g-relative entropy.
(1) Then for every state $D_{1}, D_{2}: H\left(D_{1}, D_{2}\right) \geq 0$, and $H\left(D_{1}, D_{2}\right)=0$ iff $D_{1}=D_{2}$.
(2) H is jointly convex, that is for every state $D_{1}, D_{2}, D_{3}, D_{4}$ and parameter $\lambda \in[0,1]$ we have

$$
\begin{aligned}
H\left(\lambda D_{1}\right. & \left.+(1-\lambda) D_{2}, \lambda D_{3}+(1-\lambda) D_{4}\right) \\
& \leq \lambda H\left(D_{1}, D_{3}\right)+(1-\lambda) H\left(D_{2}, D_{4}\right)
\end{aligned}
$$

Theorem (Properties of g-relative entropy cont.)

(3) H is monotone: for every stochastic map $T: \mathcal{M}_{n}^{+} \rightarrow \mathcal{M}_{n}^{+}$

$$
H\left(T\left(D_{1}\right), T\left(D_{2}\right)\right) \leq H\left(D_{1}, D_{2}\right) \quad \forall D_{1}, D_{2} \in \mathcal{M}_{n}^{+} .
$$

(1) H is differentiable: for every state $D_{1}, D_{2} \in \mathcal{M}_{n}^{+}$and tangent vectors $A \in T_{D_{1}} \mathcal{M}_{n}^{+}, B \in T_{D_{2}} \mathcal{M}_{n}^{+}$the map $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$

$$
(x, y) \mapsto H\left(D_{1}+x A, D_{2}+y B\right)
$$

is differentiable at the origin.

LRelative entropy

LProperties of the relative entropy

The quantity $H_{g}\left(D_{1}, D_{2}\right)$ depends mainly on $D_{1}-D_{2}$.

Theorem

If $g \in \mathcal{K}_{\mathbb{R}^{+}}$then for every state $D_{1}, D_{2} \in \mathcal{M}_{n}^{+}$

$$
H_{g}\left(D_{1}, D_{2}\right)=\operatorname{Tr}\left(\left(D_{1}-D_{2}\right) R_{D_{1}}^{-1}\left(g\left(L_{D_{2}} R_{D_{1}}^{-1}\right)\left(D_{1}-D_{2}\right)\right)\right)
$$

For an operator convex function g define its transpose as $g^{\}(x)=x g\left(x^{-1}\right)$, and dual as $g^{\perp}(x)=\frac{x}{g(x)}$.
g is said to be symmetric if $g \backslash=g$.
g is said to be normalised if $g^{\prime \prime}(1)=1$.
The effect of transpose is changing the arguments

$$
H_{g}\left(D_{1}, D_{2}\right)=H_{g} \backslash\left(D_{2}, D_{1}\right) .
$$

-Relative entropy

$\square_{\text {Riemannian }}$ metric from relative entropy

Theorem (Riemannian metric from relative entropy)

Assume that $g \in \mathcal{K}_{\mathbb{R}_{0}^{+}}$. Then
$K^{g,(n)}: \mathcal{M}_{n}^{+} \rightarrow \operatorname{Lin}\left(T \mathcal{M}_{n} \times T \mathcal{M}_{n}, \mathbb{R}\right)$

$$
K_{D}^{g,(n)}(X, Y)=-\left.\frac{\partial^{2}}{\partial s \partial t} H_{g}(D+t X, D+s Y)\right|_{t=s=0}
$$

is a Riemannian metric on \mathcal{M}_{n}^{+}.
Define an equivalence relation on $\mathcal{K}_{\mathbb{R}^{+}}$as

$$
f \sim g \Longleftrightarrow f+f \backslash=g+g \backslash
$$

Theorem

The functions $g_{1}, g_{2} \in \mathcal{K}_{\mathbb{R}^{+}}$generates the same metric iff $g_{1} \sim g_{2}$.

- Relative entropy

-Relative entropy and monotone metrics

Relative entropy and monotone metrics

Theorem

The map $\phi: \mathcal{K}_{\mathbb{R}^{+}}^{S} \rightarrow \mathcal{F}_{\mathbb{R}_{0}^{+}}^{S}$

$$
g(x) \mapsto \phi(g)(x)= \begin{cases}\frac{(x-1)^{2}}{g(x)+x g\left(x^{-1}\right)} & \text { if } x>0, x \neq 1, \\ \frac{1}{g^{\prime \prime}(1)} & \text { if } x=1,\end{cases}
$$

is well-defined and

$$
K_{D}^{g,(n)}(X, Y)=K_{D}^{(n), \phi(g)}(X, Y) \quad \forall D \in \mathcal{M}_{n}^{+} \quad \forall X, Y \in T \mathcal{M}_{n}
$$

-Relative entropy

LRelative entropy and monotone metrics

Relative entropy and monotone metrics

Theorem

The map $\epsilon: \mathcal{F}_{\mathbb{R}_{0}^{+}}^{(S)} \rightarrow \mathcal{K}_{\mathbb{R}^{+}}^{(S)}$

$$
f(x) \mapsto \epsilon(f)(x)=\frac{(x-1)^{2}}{2 f(x)}
$$

is well-defined and $K^{(n), f}=K^{\epsilon(f),(n)}$ holds.

LRelative entropy

LRelative entropy and monotone metrics

Relative entropy and monotone metrics

Combining these we have the following theorem.

Theorem

There is a simple bijective correspondence between
(1) the set of monotone metrics,
(2) $\mathcal{F}_{\mathbb{R}_{0}^{+}}^{(S)}$,
(3) $\mathcal{K}_{\mathbb{R}^{+}}^{(S)}$.

Example (Smallest metric)

The corresponding operator monotone function is $f(x)=\frac{1+x}{2}$ and the generated operator convex function is

$$
g(x)=\frac{(x-1)^{2}}{1+x}
$$

and the relative entropy

$$
\begin{aligned}
& H_{\mathrm{SM}}: \mathcal{M}_{n}^{+} \times \mathcal{M}_{n}^{+} \rightarrow \mathbb{R} \quad\left(D_{1}, D_{2}\right) \mapsto H_{\mathrm{SM}}\left(D_{1}, D_{2}\right) \\
& H_{\mathrm{SM}}\left(D_{1}, D_{2}\right)=\operatorname{Tr}\left(D_{1}-D_{2}\right)\left(L_{D_{2}}+R_{D_{1}}\right)^{-1}\left(D_{1}-D_{2}\right) .
\end{aligned}
$$

Bures relative entropy

-Relative entropy

Examples

Example (Largest metric)

The corresponding operator monotone function is $f(x)=\frac{2 x}{1+x}$ and the generated operator convex function is

$$
g(x)=(x-1)^{2} \frac{1+x}{4 x}
$$

and the relative entropy is

$$
H_{g_{1}}\left(D_{1}, D_{2}\right)=\frac{1}{2} \operatorname{Tr}\left(D_{1}-D_{2}\right) D_{1}^{-1}\left(D_{1}-D_{2}\right) .
$$

Quadratic relative entropy

-Relative entropy

Examples

Example (Kubo-Mori metric)

The corresponding operator monotone function is $f(x)=\frac{x-1}{\log x}$ and the generated operator convex function is

$$
g(x)=\frac{x-1}{2} \log x
$$

and the generated relative entropy is

$$
H_{g_{1}}\left(D_{1}, D_{2}\right)=\operatorname{Tr} D_{1}\left(\log D_{1}-\log D_{2}\right)
$$

Umegaki relative entropy

\square Duality

—Basic definitions
Assume that $f \in \mathcal{F}_{\mathbb{R}_{0}^{+}}^{(\mathrm{n})}$ and $h \in \mathcal{K}_{\mathbb{R}^{+}}^{\mathrm{n}}$. We use the term h is compatible with f if for the function

$$
g(x)=\frac{(x-1)^{2}}{2 f(x)}
$$

$h \sim g$ holds.
For a monotone metric $K^{(n), f}$ and a compatible function h we define a covariant derivative $\nabla^{f, h}: T \mathcal{M}_{n} \times T \mathcal{M}_{n} \rightarrow T \mathcal{M}_{n}$ as

$$
K_{D}^{(n), f}\left(\nabla_{X}^{f, h} Y, Z\right)=-\left.\frac{\partial^{3}}{\partial s \partial t \partial u} H_{h}(D+s X+t Y, D+u Z)\right|_{s, t, u=0}
$$

where $X, Y, Z \in T_{D} \mathcal{M}_{n}^{+}$.
(Giblisco, Isola, Uhlmann, Dabrowksi, Jadczyk, Hübner)

—Duality

-Main theorem of duality

Main theorem of duality

Theorem

For a function $f \in \mathcal{F}_{\mathbb{R}_{0}^{+}}^{(S, n)}$ and a compatible function $h \in \mathcal{K}_{\mathbb{R}^{+}}^{(n)}$ the quadruplet $\left(\mathcal{M}_{n}^{+}, K^{(n), f}, \nabla^{f, h}, \nabla^{f, h}\right)$ is torsion free dual geometry.

- Duality

A characterization of the Kubo-Mori metric

A characterization of the Kubo-Mori metric

Theorem

If $\left(\mathcal{M}_{n}^{+}, g, \nabla^{(1)}, \nabla^{(-1)}\right)$ is a dual geometry for some Riemannian metric then g equals to Kubo-Mori metric $g^{(K M)}$ up to a positive multiplicative factor.

—Duality

-Pythagorean theorem

Pythagorean theorem

Theorem

Consider states $D_{1}, D_{2}, D_{3} \in \mathcal{M}_{n}^{+}$and $\nabla^{(1)}$ geodesic curve γ_{1} connecting D_{1} and D_{2} and $\nabla^{(-1)}$ geodesic curve γ_{2} connecting D_{2} and D_{3}. If

$$
K_{K M, D_{2}}^{(n)}\left(\dot{\gamma}_{1}\left(D_{2}\right), \dot{\gamma}_{2}\left(D_{2}\right)\right)=0
$$

holds then

$$
H_{\log }\left(D_{1}, D_{3}\right)=H_{\log }\left(D_{1}, D_{2}\right)+H_{\log }\left(D_{2}, D_{3}\right)
$$

—uality

-Pythagorean theorem

Pythagorean theorem

Attila Andai

Hilbert-Schmidt measure

The Hilbert-Schmidt measure on \mathcal{M}_{n}^{+}is defined by the Euclidean metric

$$
d\left(D_{1}, D_{2}\right)=\sqrt{\operatorname{Tr}\left(D_{1}-D_{2}\right)^{2}}
$$

We can consider \mathcal{M}_{n}^{+}as a manifold with metric

$$
g_{D}(X, Y)=\operatorname{Tr}(X Y) \quad D \in \mathcal{M}_{n}^{+} \quad X, Y \in T_{D} \mathcal{M}_{n}^{+}
$$

Induces the flat, Euclidean geometry on the set of states.

The invariant volume measure is

$$
\rho(D)=\sqrt{\operatorname{det} g_{D}}=1
$$

(Which is the most simple prior on \mathcal{M}_{n}^{+}.)

The invariant volume measure is

$$
\rho(D)=\sqrt{\operatorname{det} g_{D}}=1
$$

(Which is the most simple prior on \mathcal{M}_{n}^{+}.) The volume of the state space is

$$
\text { Volume }=\int_{\mathcal{M}_{n}^{+}} 1 \mathrm{~d} D
$$

where

$$
\mathrm{d} D=\mathrm{d} a_{11} \mathrm{~d} a_{12} \ldots \mathrm{~d} a_{22} \mathrm{~d} a_{23} \ldots \mathrm{~d} a_{n-1, n} .
$$

\square_{A} decomposition of the state space

Some notations:

$$
A_{4}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right)
$$

\square_{A} decomposition of the state space

Some notations:

$$
A_{4}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right) \quad A_{1}
$$

\square_{A} decomposition of the state space

Some notations:

$$
A_{4}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right) \quad A_{2}
$$

$\square_{\text {About volume of the state space }}$
\square_{A} decomposition of the state space

Some notations:

$$
A_{4}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right) \quad A_{3}
$$

\square_{A} decomposition of the state space

Some notations:

$$
\begin{gathered}
A_{4}=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right) \quad A_{3} \\
T_{n}:=\operatorname{det}\left(A_{n}\right) \times\left(A_{n}\right)^{-1} \\
\quad \operatorname{det} T_{n}=\left(\operatorname{det} A_{n}\right)^{n-1}
\end{gathered}
$$

Some notations:

$$
\begin{gathered}
A_{4}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right) \quad A_{3} \\
T_{n}:=\operatorname{det}\left(A_{n}\right) \times\left(A_{n}\right)^{-1} \\
A_{4}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right) \quad \underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}
\end{gathered}
$$

Some notations:

$$
\begin{gathered}
A_{4}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right) \quad A_{3} \\
T_{n}:=\operatorname{det}\left(A_{n}\right) \times\left(A_{n}\right)^{-1} \\
A_{4}=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44}
\end{array}\right) \quad x_{n}=\left(\operatorname{det} A_{n}\right)^{n-1} \\
\text { Lemma: } \underline{x}_{2}, \operatorname{x}_{3} \\
\operatorname{det} A_{n}=a_{n n}\left(\operatorname{det} A_{n-1}\right)-\left\langle\underline{x}_{n-1}, T_{n-1} \underline{x}_{n-1}\right\rangle .
\end{gathered}
$$

About volume of the state space
L_{A} decomposition of the state space
Decomposition of the state space: 3×3 real case:
diagonal elements

About volume of the state space
\square_{A} decomposition of the state space
Decomposition of the state space: 3×3 real case:

About volume of the state space
\square_{A} decomposition of the state space
Decomposition of the state space: 3×3 real case:
diagonal elements

About volume of the state space
\square_{A} decomposition of the state space
Decomposition of the state space: 3×3 real case:

About volume of the state space
\square_{A} decomposition of the state space
Decomposition of the state space: 3×3 real case:

About volume of the state space
\square_{A} decomposition of the state space
Decomposition of the state space: 3×3 real case:

About volume of the state space
\square_{A} decomposition of the state space
Decomposition of the state space: 4×4 real case:

Theorem

For every $n \in \mathbb{N}$ the volume of the state space \mathcal{M}_{n}^{+}is

$$
V\left(\mathcal{M}_{n}^{+}\right)=\frac{\pi^{d n(n-1) / 4}}{\Gamma\left(d \frac{n(n-1)}{2}+n\right)} \prod_{i=1}^{n-1} \Gamma\left(\frac{i d}{2}+1\right)
$$

and the integral of the function $\operatorname{det}^{\alpha}$ with respect to the normalized Hilbert-Schmidt measure is

$$
\int_{\mathcal{M}_{n}^{+}} \operatorname{det}^{\alpha}=\frac{\Gamma\left(\frac{d n(n-1)}{2}+n\right)}{\Gamma\left(\frac{d n(n-1)}{2}+n+n \alpha\right)} \prod_{i=1}^{n} \frac{\Gamma\left(d \frac{i-1}{2}+1+\alpha\right)}{\Gamma\left(d \frac{i-1}{2}+1\right)} .
$$

In the space of qubits we use the Stokes parametrization

$$
D=\frac{1}{2}\left(\begin{array}{cc}
1+x & y+\mathrm{i} z \\
y+\mathrm{i} z & 1-x
\end{array}\right)
$$

\mathcal{M}_{2} can be identified with the unit ball in \mathbb{R}^{3} and \mathbb{R}^{2}. The Riemannian metric $g^{(f)}$ in this coordinate system is

$$
\begin{aligned}
g_{f}(x, y, z) & =\frac{1}{2}\left(\begin{array}{ccc}
\frac{1}{2 \lambda_{1} \lambda_{2}} & 0 & 0 \\
0 & \frac{1}{\lambda_{1} f\left(\frac{\lambda_{2}}{\lambda 1}\right)} & 0 \\
0 & 0 & \frac{1}{\lambda_{1} f\left(\frac{\lambda_{2}}{\lambda_{1}}\right)}
\end{array}\right) \\
g_{f}(x, y) & =\frac{1}{2}\left(\begin{array}{cc}
\frac{1}{2 \lambda_{1} \lambda_{2}} & 0 \\
0 & \frac{1}{\lambda_{1} f\left(\frac{\lambda_{2}}{\lambda 1}\right)}
\end{array}\right) .
\end{aligned}
$$

The volume is an integral on the unit ball, which can be expressed as

$$
\begin{aligned}
& V\left(\mathcal{M}_{2}^{(\mathbb{C})}\right)=2 \pi \int_{0}^{1}\left(\frac{1-t}{1+t}\right)^{2} \frac{1}{\sqrt{t} f(t)} \mathrm{d} t \\
& V\left(\mathcal{M}_{2}^{(\mathbb{R})}\right)=\sqrt{2} \pi \int_{0}^{1} \frac{1-t}{1+t} \frac{1}{\sqrt{t+t^{2}} \sqrt{f(t)}} \mathrm{d} t
\end{aligned}
$$

The volume of the state space with monotone metric is unknown.

Some operator monotone functions and the corresponding volumes.

$f(x):$	$V\left(\mathcal{M}_{2}^{(\mathbb{C})}\right):$	$V\left(\mathcal{M}_{2}^{(\mathbb{R})}\right):$
$\frac{1+x}{2}$	π^{2}	2π
$\frac{2 x}{1+x}$	∞	∞
$\frac{x-1}{\log x}$	$2 \pi^{2}$	~ 8.298
\sqrt{x}	∞	4π
$(\sqrt{x}+1)^{2} / 4$	$4 \pi(\pi-2)$	$4 \pi(2-\sqrt{2})$
$\frac{2 \sqrt{x}(x-1)}{(1+x) \log x}$	∞	~ 19.986

- Uncertainty relations

Brief history of uncertainty relations

Brief history of uncertainty relations

1927, Heisenberg: not possible to measure the position and moment at a same time. (Idea, not a theorem.)
Heisenberg studied Gauss distributions $(f(q))$, where "uncertainty" was the width of D_{f}.

If $\mathcal{F}(f)$ denotes the Fourier transform of f then the first equation for uncertainty was

$$
D_{f} D_{\mathcal{F}(f)}=\text { constant }
$$

1927, Kennard: For observables A, B if $[A, B]=-\mathrm{i}$ then

$$
\operatorname{Var}_{D}(A) \operatorname{Var}_{D}(B) \geq \frac{1}{4}
$$

where $\operatorname{Var}_{D}(A)=\operatorname{Tr}\left(D A^{2}\right)-(\operatorname{Tr}(D A))^{2}$.

- Uncertainty relations

- Brief history of uncertainty relations

1927, Kennard: For observables A, B if $[A, B]=-\mathrm{i}$ then

$$
\operatorname{Var}_{D}(A) \operatorname{Var}_{D}(B) \geq \frac{1}{4}
$$

where $\operatorname{Var}_{D}(A)=\operatorname{Tr}\left(D A^{2}\right)-(\operatorname{Tr}(D A))^{2}$.
1929, Robertson: For all observables A, B

$$
\operatorname{Var}_{D}(A) \operatorname{Var}_{D}(B) \geq \frac{1}{4}|\operatorname{Tr}(D[A, B])|^{2}
$$

- Uncertainty relations

Brief history of uncertainty relations
1930, Schrödinger: For all observables A, B

$$
\operatorname{Var}_{D}(A) \operatorname{Var}_{D}(B)-\operatorname{Cov}_{D}(A, B)^{2} \geq \frac{1}{4}|\operatorname{Tr}(D[A, B])|^{2}
$$

where

$$
\operatorname{Cov}_{D}(A, B)=\frac{1}{2}(\operatorname{Tr}(D A B)+\operatorname{Tr}(D B A))-\operatorname{Tr}(D A) \operatorname{Tr}(D B)
$$

-Uncertainty relations

Brief history of uncertainty relations
1930, Schrödinger: For all observables A, B

$$
\operatorname{Var}_{D}(A) \operatorname{Var}_{D}(B)-\operatorname{Cov}_{D}(A, B)^{2} \geq \frac{1}{4}|\operatorname{Tr}(D[A, B])|^{2}
$$

where

$$
\operatorname{Cov}_{D}(A, B)=\frac{1}{2}(\operatorname{Tr}(D A B)+\operatorname{Tr}(D B A))-\operatorname{Tr}(D A) \operatorname{Tr}(D B)
$$

Or in a bit different form:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ll}
\operatorname{Cov}_{D}(A, A) & \operatorname{Cov}_{D}(A, B) \\
\operatorname{Cov}_{D}(B, A) & \operatorname{Cov}_{D}(B, B)
\end{array}\right) \geq \\
& \geq \operatorname{det}\left[-\frac{\mathrm{i}}{2}\left(\begin{array}{ll}
\operatorname{Tr}(D[A, A]) & \operatorname{Tr}(D[A, B]) \\
\operatorname{Tr}(D[B, A]) & \operatorname{Tr}(D[B, B])
\end{array}\right)\right] .
\end{aligned}
$$

1934, Robertson: For finite set of observables $\left(A_{i}\right)_{i \in I}$

$$
\operatorname{det}\left(\left[\operatorname{Cov}_{D}\left(A_{h}, A_{j}\right)\right]_{h, j \in I}\right) \geq \operatorname{det}\left(\left[-\frac{\mathrm{i}}{2} \operatorname{Tr}\left(D\left[A_{h}, A_{j}\right]\right)\right]_{h, j \in I}\right)
$$

- Brief history of uncertainty relations

1934, Robertson: For finite set of observables $\left(A_{i}\right)_{i \in I}$

$$
\operatorname{det}\left(\left[\operatorname{Cov}_{D}\left(A_{h}, A_{j}\right)\right]_{h, j \in I}\right) \geq \operatorname{det}\left(\left[-\frac{\mathrm{i}}{2} \operatorname{Tr}\left(D\left[A_{h}, A_{j}\right]\right)\right]_{h, j \in I}\right) .
$$

~2000-, Furuichi, Gibilisco, Hansen, Imparato, Isola, Kosaki, Kuriyama, Luo, Petz, Yanagi, Q. Zhang, Z. Zhang

U Uncertainty relations

LCovariances

New concepts

For observables A, B, state $D \in \mathcal{M}_{n}^{+}$and operator monotone function f :

$$
\begin{aligned}
\operatorname{Cov}_{D}(A, B) & =\frac{1}{2}(\operatorname{Tr}(D A B)+\operatorname{Tr}(D B A))-\operatorname{Tr}(D A) \operatorname{Tr}(D B) \\
\operatorname{Cov}_{D}^{f}(A, B) & =\langle A, B\rangle_{D, f} \quad(2002, \operatorname{Petz}) \\
\mathrm{qCov}_{D, f}^{a s}(A, B) & =\frac{f(0)}{2}\langle\mathrm{i}[D, A], \mathrm{i}[D, B]\rangle_{D, f} \\
\mathrm{qCov}_{D, f}^{s}(A, B) & =\frac{f(0)}{2}\langle\{D, A\},\{D, B\}\rangle_{D, f},
\end{aligned}
$$

where $[.,$.$] is the commutator and \{.,$.$\} is the anticommutator.$

U Uncertainty relations

LCovariances

New concepts

For observables A, B, state $D \in \mathcal{M}_{n}^{+}$and operator monotone function f :

$$
\begin{aligned}
\operatorname{Cov}_{D}(A, B) & =\frac{1}{2}(\operatorname{Tr}(D A B)+\operatorname{Tr}(D B A))-\operatorname{Tr}(D A) \operatorname{Tr}(D B) \\
\operatorname{Cov}_{D}^{f}(A, B) & =\langle A, B\rangle_{D, f} \quad(2002, \operatorname{Petz}) \\
\mathrm{qCov}_{D, f}^{a s}(A, B) & =\frac{f(0)}{2}\langle\mathrm{i}[D, A], \mathrm{i}[D, B]\rangle_{D, f} \\
\mathrm{qCov}_{D, f}^{s}(A, B) & =\frac{f(0)}{2}\langle\{D, A\},\{D, B\}\rangle_{D, f},
\end{aligned}
$$

where $[.,$.$] is the commutator and \{.,$.$\} is the anticommutator.$
For an observable A and state D define $A_{0}=A-\operatorname{Tr}(D A) I$, then $\operatorname{Tr} D A_{0}=0$.

\boxed{Z} Uncertainty relations

Covariances

For observables $\left(A^{(k)}\right)_{k=1, \ldots, N}$ with zero mean at a state D define

$$
\begin{aligned}
{\left[\operatorname{Cov}_{D}\right]_{i j} } & =\operatorname{Cov}_{D}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{Cov}_{D}^{f}\right]_{i j} } & =\operatorname{Cov}_{D}^{f}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{qov}_{D, f}^{a s}\right]_{i j} } & =\operatorname{qov}_{D, f}^{a s}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{Cov}_{D, f}^{s}\right]_{i j} } & =\operatorname{qov}_{D, f}^{s}\left(A^{(i)}, A^{(j)}\right)
\end{aligned}
$$

- Uncertainty relations

For observables $\left(A^{(k)}\right)_{k=1, \ldots, N}$ with zero mean at a state D define

$$
\begin{aligned}
{\left[\operatorname{Cov}_{D}\right]_{i j} } & =\operatorname{Cov}_{D}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{Cov}_{D}^{f}\right]_{i j} } & =\operatorname{Cov}_{D}^{f}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{qCov}_{D, f}^{a s}\right]_{i j} } & =\operatorname{qov}_{D, f}^{a s}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{qCov}_{D, f}^{s}\right]_{i j} } & =\operatorname{qov}_{D, f}^{s}\left(A^{(i)}, A^{(j)}\right) .
\end{aligned}
$$

2006, Gibilisco: Conjecture: $\operatorname{det}\left(\operatorname{Cov}_{D}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{2 s}\right)$.

- Uncertainty relations

For observables $\left(A^{(k)}\right)_{k=1, \ldots, N}$ with zero mean at a state D define

$$
\begin{aligned}
{\left[\operatorname{Cov}_{D}\right]_{i j} } & =\operatorname{Cov}_{D}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{Cov}_{D}^{f}\right]_{i j} } & =\operatorname{Cov}_{D}^{f}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{qCov}_{D, f}^{a s}\right]_{i j} } & =\operatorname{qCov}_{D, f}^{a s}\left(A^{(i)}, A^{(j)}\right) \\
{\left[\operatorname{qCov}_{D, f}^{s}\right]_{i j} } & =\operatorname{qCov}_{D, f}^{s}\left(A^{(i)}, A^{(j)}\right) .
\end{aligned}
$$

2006, Gibilisco: Conjecture: $\operatorname{det}\left(\operatorname{Cov}_{D}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{25}\right)$.
2008, Andai: The conjecture is true.

L Uncertainty relations

LUp to date results

Up to date results

Theorem (2016, Lovas, Andai)

$$
\operatorname{det}\left(\operatorname{Cov}_{D}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{s}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{a s}\right)
$$

$$
2 f(0) \operatorname{Cov}_{D}^{f_{R L D}}\left(A_{0}, B_{0}\right)
$$

$$
\leq \mathrm{qCov}_{D, f}^{s}\left(A_{0}, B_{0}\right)-\mathrm{qCov}_{D, f}^{a s}\left(A_{0}, B_{0}\right)
$$

$$
\leq \operatorname{Cov}_{D}^{f_{P L D}}\left(A_{0}, B_{0}\right)
$$

Up to date results

Theorem (2016, Lovas, Andai)

$$
\begin{aligned}
& \quad \operatorname{det}\left(\operatorname{Cov}_{D}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{s}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{\mathrm{as}}\right) \\
& 2 f(0) \operatorname{Cov}_{D}^{f_{R L D}}\left(A_{0}, B_{0}\right) \\
& \quad \leq \mathrm{q}^{\mathrm{Cov}}{ }_{D, f}^{s}\left(A_{0}, B_{0}\right)-\mathrm{qCov}_{D, f}^{a s}\left(A_{0}, B_{0}\right) \\
& \quad \leq \operatorname{Cov}_{D}^{f_{R L D}}\left(A_{0}, B_{0}\right) \\
& \operatorname{det}\left(\mathrm{qCov}_{D, f}^{s}\right)-\operatorname{det}\left(\mathrm{qCov}_{D, f}^{a s}\right) \geq(2 f(0))^{N} \operatorname{det}\left(\operatorname{Cov}_{D}^{f_{R L D}}\right)
\end{aligned}
$$

Up to date results

Theorem (2016, Lovas, Andai)

$$
\begin{aligned}
& \quad \operatorname{det}\left(\operatorname{Cov}_{D}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{s}\right) \geq \operatorname{det}\left(\mathrm{qCov}_{D, f}^{a s}\right) \\
& 2 f(0) \operatorname{Cov}_{D}^{f_{R L D}}\left(A_{0}, B_{0}\right) \\
& \quad \leq \operatorname{qCov}_{D, f}^{s}\left(A_{0}, B_{0}\right)-\mathrm{qCov}_{D, f}^{a s}\left(A_{0}, B_{0}\right) \\
& \quad \leq \operatorname{Cov}_{D}^{f_{R L D}}\left(A_{0}, B_{0}\right) \\
& \operatorname{det}\left(\mathrm{qCov}_{D, f}^{s}\right)-\operatorname{det}\left(\mathrm{qCov}_{D, f}^{a s}\right) \geq(2 f(0))^{N} \operatorname{det}\left(\operatorname{Cov}_{D}^{f_{R L D}}\right)
\end{aligned}
$$

2017, Lovas, Andai: Further extensions of symmetric and antisymmetric covariant derivatives and simplified proof for the original Robertson inequality
2018: ???

Uncertainty relations

LUp to date results

References I

[1] P. M. Alberti és A. Uhlmann.
Stochasticity and partial order, volume 18 of Mathematische Monographien [Mathematical Monographs]. VEB Deutscher Verlag der Wissenschaften, Berlin, 1981
Doubly stochastic maps and unitary mixing.
[2] S. Amari.
Differential-geometrical methods in statistics, volume 28 of Lecture Notes in Statistics.
Springer-Verlag, New York, 1985.
[3] S. Amari és H. Nagaoka.
Methods of information geometry, volume 191 of Translations of Mathematical Monographs.
American Mathematical Society, Providence, RI, 2000.
Translated from the 1993 Japanese original by Daishi Harada.
[4] S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, és C. R. Rao. Differential geometry in statistical inference.
Institute of Mathematical Statistics Lecture Notes-Monograph Series, 10. Institute of Mathematical Statistics, Hayward, CA, 1987.
[5] T. Ando.
Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl., 26:203-241, 1979.
[6] W. B. Arveson.
Subalgebras of C^{*}-algebras.
Acta Math., 123:141-224, 1969.
[7] R. Balian, Y. Alhassid, és H. Reinhardt.
Dissipation in many-body systems: a geometric approach based on information theory. Phys. Rep., 131(1-2):1-146, 1986.
[8] M. B. Bassat.
f-entropies, probability of error and feature selection.
Inform. Control, 39:227-242, 1978.

Attila Andai

Information Geometry

- Uncertainty relations

LUp to date results

References II

[9] V. P. Belavkin és P. Staszewski.
C^{*}-algebraic generalization of relative entropy and entropy.
Ann. Inst. H. Poincaré Sect. A (N.S.), 37(1):51-58, 1982.
[10] R. Bhatia.
Matrix analysis, volume 169 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1997.
[11] A. Bhattacharyya.
On a measure of divergence between two statistical populations defined by their probability distributions.
Bull. Calcutta Math. Soc., 35:99-109, 1943.
[12] F. J. Bloore.
Geometrical description of the convex sets of states for systems with spin- $1 / 2$ and spin-1.
J. Phys. A, 9(12):2059-2067, 1976.
[13] J. Bognár, F. Göndőcs, L. Kászonyi, A. Kováts, Gy. Michaletzky, T. Móri, Á. Somogyi, L. Szeidl, és J. G. Székely. Matematikai statisztika.
Nemzeti Tankönyvkiadó, Budapest, 1995.
Szerkesztette J. Mogyoródi és Gy. Michaletzky.
[14] M. Bolla, I. Csiszár, I. Gaudi, O. Gulyás, B. Hajtman, A. Kun, T. Lengyel, G. Michaletzky, L. Rejtő, T. Rudas, G. Székely, L. Telegdi, és G. Tusnády.

Többváltozós statisztikai analízis.
Müszaki Könyvkiadó, Budapest, 1986
Szerkesztette T. Móri és Székely, G.
[15] D. C. Brody és A. Ritz.
Geometric phase transitions.
cond-mat/9903168, 1999.
[16] N. N. Čencov.
Statistical decision rules and optimal inference, volume 53 of Translations of Mathematical Monographs.
American Mathematical Society, Providence, R.I., 1982.
Translation from the Russian edited by Lev J. Leifman.

- Uncertainty relations

LUp to date results

References III

[17] Man Duen Choi.
Completely positive linear maps on complex matrices.
Linear Algebra and Appl., 10:285-290, 1975.
[18] J. Conway.
A Course in Functional Analysis.
Graduate Texts in Mathematics. Springer Verlag, 1990.
Second Edition.
[19] I. Csiszár.
Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar., 2:299-318, 1967
[20] I. Csiszár.
On topology properties of f-divergences.
Studia Sci. Math. Hungar., 2:329-339, 1967
[21] I. Csiszár.
I-divergence geometry of probability distributions and minimization problems.
Ann. Probability, 3:146-158, 1975
[22] I. Csiszár és G. Tusnády.
Information geometry and alternating minimization procedures.
Statist. Decisions, (suppl. 1):205-237, 1984.
Recent results in estimation theory and related topics.
[23] L. Dabrowski és A. Jadczyk.
Quantum statistical holonomy.
J. Phys. A, 22(15):3167-3170, 1989.
[24] C. Davis.
Notions generalizing convexity for functions defined on spaces of matrices.
In Proc. Sympos. Pure Math., Vol. VII, pages 187-201. Amer. Math. Soc., Providence, R.I., 1963.

Attila Andai

Information Geometry

- Uncertainty relations

LUp to date results

References IV

[25] J. Dittmann.
On the curvature of monotone metrics and a conjecture concerning the Kubo-Mori metric.
Linear Algebra Appl., 315(1-3):83-112, 2000.
[26] J. Dittmann és A. Uhlmann.
Connections and metrics respecting purification of quantum states.
J. Math. Phys., 40(7):3246-3267, 1999.
[27] B. Efron.
Defining the curvature of a statistical problem (with applications to second order efficiency).
Ann. Statist., 3(6):1189-1242, 1975.
With a discussion by C. R. Rao, Don A. Pierce, D. R. Cox, D. V. Lindley, Lucien LeCam, J. K. Ghosh, J. Pfanzagl, Neils Keiding, A. P. Dawid, Jim Reeds and with a reply by the author.
[28] S. Eguchi.
Second order efficiency of minimum contrast estimators in a curved exponential family. Ann. Statist., 11(3):793-803, 1983.
[29] S. Eguchi.
A characterization of second order efficiency in a curved exponential family. Ann. Inst. Statist. Math., 36(2):199-206, 1984.
[30] S. Eguchi.
A geometric look at nuisance parameter effect of local powers in testing hypothesis.
Ann. Inst. Statist. Math., 43(2):245-260, 1991.
[31] E. Fick és G. Sauermann.
The quantum statistics of dynamic processes, volume 86 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, 1990.
Translated from the German by W. D. Brewer.
[32] R. A. Fisher.
On the mathematical foundations of theoretical statistics.
Phil. Trans. R. Soc., A, 222:309-368, 1922.

Attila Andai Information Geometry

- Uncertainty relations

LUp to date results

References V

[33] R. A. Fisher.
The statistical utilization of multiple measurements.
Annals of Eugenics, 8:376-386, 1938.
[34] R. A. Fisher.
Statistical methods and scientific inference.
2nd ed.. revised. Hafner Publishing Company, New York, 1959.
[35] B. R. Frieden.
Fisher information, disorder, and the equilibrium distributions of physics.
Phys. Rev. A (3), 41(8):4265-4276, 1990.
[36] A. Fujiwara és H. Nagaoka.
Quantum Fisher metric and estimation for pure state models.
Phys. Lett. A, 201(2-3):119-124, 1995.
[37] A. Fujiwara és H. Nagaoka.
An estimation theoretical characterization of coherent states.
J. Math. Phys., 40(9):4227-4239, 1999
[38] P. Gibilisco és T. Isola.
Connections on statistical manifolds of density operators by geometry of noncommutative L^{p}-spaces.
Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2(1):169-178, 1999.
[39] P. Gibilisco és T. Isola.
A characterisation of Wigner-Yanase skew information among statistically monotone metrics.
Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4(4):553-557, 2001.
[40] P. Gibilisco és T. Isola.
On characterization of dual statistically monotone metrics.
math.PR/0303059, 2003.
Probability Theory.

Attila Andai

Information Geometry

- Uncertainty relations

LUp to date results

References VI

[41] P. Gibilisco és T. Isola.
Wigner-Yanase information on quantum state space: the geometric approach. math.PR/0304170, 2003.
Probability Theory.
[42] P. Gibilisco és G. Pistone.
Connections on non-parametric statistical manifolds by Orlicz space geometry.
Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1(2):325-347, 1998.
[43] P. Giblisco és T. Isola.
Monotone metrics on statistical manifolds of denity matrices by geometry of non-commutative I^{2}-spaces. ???, pages 129-140, 2001.
[44] M. R. Grasselli és R. F. Streater.
On the uniqueness of the Chentsov metric in quantum information geometry. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4(2):173-182, 2001.
[45] F. Hansen és G. K. Pedersen. Jensen's inequality for operators and Löwner's theorem. Math. Ann., 258(3):229-241, 1981/82.
[46] H. Hasegawa.
Dual geometry of the Wigner-Yanase-Dyson information content.
[47] H. Hasegawa.
α-divergence of the noncommutative information geometry.
In Proceedings of the XXV Symposium on Mathematical Physics (Toruń, 1992), volume 33, pages 87-93, 1993.
[48] H. Hasegawa.
Non-commutative extension of the information geometry.
In Quantum communications and measurement (Nottingham, 1994), pages 327-337. Plenum, New York, 1995.

Attila Andai Information Geometry

- Uncertainty relations

LUp to date results

References VII

[49] M. Hayashi.
Asymptotic estimation theory for a finite-dimensional pure state model.
J. Phys. A, 31(20):4633-4655, 1998.
[50] M. Hayashi.
Corrigenda: "Asymptotic estimation theory for a finite-dimensional pure state model".
J. Phys. A, 31(41):8405, 1998.
[51] E. Hellinger.
Neue Bergründung der Theorie quadratischer Formen von unendlich vielen Veränderlichen.
J. für reine and Angew. Math., 36:210-271, 1909.
[52] F. Hiai és D. Petz.
The semicircle law, free random variables and entropy, volume 77 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2000.
[53] M. Hübner.
Computation of Uhlmann's parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space. Phys. Lett. A, 179(4-5):226-230, 1993.
[54] R. S. Ingarden, H. Janyszek, A. Kossakowski, és T. Kawaguchi. Information geometry of quantum statistical systems.
Tensor (N.S.), 37(1):105-111, 1982.
[55] H. Jeffreys.
An invariant form for the prior probability in estimation problems.
Proc. Roy. Soc. London. Ser. A., 186:453-461, 1946.
[56] A. Jenčová.
Dualistic properties of the manifold of quantum states.
In Disordered and complex systems (London, 2000), volume 553 of AIP Conf. Proc., pages 147-152. Amer. Inst. Phys., Melville, NY, 2001.

Attila Andai

Information Geometry

- Uncertainty relations

Up to date results

References VIII

[57] A. Jenčová.
Geometry of quantum states: dual connections and divergence functions.
Rep. Math. Phys., 47(1):121-138, 2001.
[58] A. Jenčová.
Quantum information geometry and standard purification.
J. Math. Phys., 43(5):2187-2201, 2002.
[59] A. Jenčová.
Flat connections and Wigner-Yanase-Dyson metrics.
math-ph/0307057, 2003
Mathematical Physics.
[60] K. Kraus.
States, effects, and operations, volume 190 of Lecture Notes in Physics.
Springer-Verlag, Berlin, 1983.
Fundamental notions of quantum theory, Lecture notes edited by A. Böhm, J. D. Dollard and W. H. Wootters.
[61] F. Kubo és T. Ando.
Means of positive linear operators.
Math. Ann., 246(3):205-224, 1979/80.
[62] Leibler R. A. Kullback, S.
On information and sufficiency.
Ann. Math. Statistics, 22:79-86, 1951.
[63] S. Kullback.
Information theory and statistics.
Dover Publications Inc., Mineola, NY, 1997.
Reprint of the second (1968) edition.
[64] A. Lesniewski és M. B. Ruskai.
Monotone Riemannian metrics and relative entropy on noncommutative probability spaces.
J. Math. Phys., 40(11):5702-5724, 1999.

Attila Andai

Information Geometry

- Uncertainty relations

Up to date results

References IX

[65] J. Lin és S. K. M. Wong.
A new directed divergence measure and its characterization.
Int. J. General Systems, 17:73-81, 1990.
[66] G. Lindblad.
Entropy, information and quantum measurements.
Comm. Math. Phys., 33:305-322, 1973.
[67] G. Lindblad.
Expectations and entropy inequalities for finite quantum systems.
Comm. Math. Phys., 39:111-119, 1974.
[68] G. Lindblad.
Completely positive maps and entropy inequalities.
Comm. Math. Phys., 40:147-151, 1975
[69] K. Löwner.
Über monotone Matrixfunctionen.
Math. Z., 38:177-216, 1934.
[70] T. Matumoto.
Any statistical manifold has a contrast function-on the C^{3}-functions taking the minimum at the diagonal of the product manifold.
Hiroshima Math. J., 23(2):327-332, 1993.
[71] M. Mei.
The theory of genetic distance and evaluation of human races.
Japan J. Human Genetics, 23:341-369, 1978.
[72] E. A. Morozova és N. N. Chentsov.
Markov invariant geometry on state manifolds.
In Current problems in mathematics. Newest results, Vol. 36 (Russian), Itogi Nauki i Tekhniki, pages 69-102, 187. Akad. Nauk
SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989.
Translated in J. Soviet Math. 56 (1991), no. 5, 2648-2669.

Attila Andai Information Geometry

- Uncertainty relations

LUp to date results

References X

[73] H. Nagaoka.
On the parameter estimation problem for quantum statistical models.
In Proceedings of 12th Symposium on Information Theory ans Its Applications, pages 577-582. Society of Information Theory ans Its Applications in Japan, 1989.
[74] H. Nagaoka és S. Amari.
Differential geometry of smooth families of probability distributions.
Technical Report 82-7, Dept. of Math. Eng. and Instr. Phys., Univ. of Tokyo, 1982.
[75] J. von Neumann.
Thermodynamik quantenmechanischer gesamtheiten.
Gött. Nachr., pages 273-291, 1927.
[76] M. Ohya és D. Petz.
Quantum entropy and its use.
Texts and Monographs in Physics. Springer-Verlag, Berlin, 1993.
[77] M. Ohya és D. Petz.
Notes on quantum entropy.
Studia Sci. Math. Hungar., 31(4):423-430, 1996.
[78] D. Petz.
Quasi-entropies for finite quantum systems.
Rep. Math. Phys., 23(1):57-65, 1986.
[79] D. Petz.
On certain properties of the relative entropy of states of operator algebras.
Math. Z., 206(3):351-361, 1991.
[80] D. Petz.
Geometry of canonical correlation on the state space of a quantum system.
J. Math. Phys., 35(2):780-795, 1994.

Attila Andai

Information Geometry

- Uncertainty relations

Up to date results

References XI

[81] D. Petz.
Monotone metrics on matrix spaces.
Linear Algebra Appl., 244:81-96, 1996.
[82] D. Petz.
Information-geometry of quantum states.
In Quantum probability communications, QP-PQ, X, pages 135-157. World Sci. Publishing, River Edge, NJ, 1998.
[83] D. Petz.
Covariance and Fisher information in quantum mechanics.
J. Phys. A, 35(4):929-939, 2002
[84] D. Petz.
Monotonicity of quantum relative entropy revisited.
Rev. Math. Phys., 15(1):79-91, 2003.
[85] D. Petz és H. Hasegawa.
On the Riemannian metric of α-entropies of density matrices.
Lett. Math. Phys., 38(2):221-225, 1996
[86] D. Petz és M. B. Ruskai,
Contraction of generalized relative entropy under stochastic mappings on matrices.
Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1(1):83-89, 1998.
[87] D. Petz és G. Tóth.
The Bogoliubov inner product in quantum statistics.
Lett. Math. Phys., 27(3):205-216, 1993
[88] E. C. Pielou.
Ecological diversity.
Wiley, New York, 1975.
[89] C. R. Rao.
Information and accuracy atainable in the estimation of statistical parameters.
Bulletin of the Calcutta Mathematical Society, 37:81-91, 1945

Attila Andai Information Geometry

- Uncertainty relations

LUp to date results

References XII

[90] C. R. Rao.
Diversity and dissimilarity coefficients: a unified approach.
Theoretic Population Biology, 21:24-43, 1982.
[91] G. Ruppeiner.
Riemannian geometry in thermodynamic fluctuation theory.
Rev. Modern Phys., 67(3):605-659, 1995.
[92] M. B. Ruskai.
Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy.
Rev. Math. Phys., 6(5A):1147-1161, 1994.
With an appendix on applications to logarithmic Sobolev inequalities, Special issue dedicated to Elliott H. Lieb.
[93] K. Sailer.
Nemegyensúlyi statisztikus fizika.
Kossuth Lajos Tudományegyetem, Debrecen, 1994.
Speciális előadások.
[94] W. F. Stinespring.
Positive functions on C^{*}-algebras.
Proc. Amer. Math. Soc., 6:211-216, 1955.
[95] R. F. Streater.
Statistical dynamics and information geometry.
In Geometry and nature (Madeira, 1995), volume 203 of Contemp. Math., pages 117-131. Amer. Math. Soc., Providence, RI, 1997.
[96] T. Tanaka.
Information geometry of mean-field approximation.
In Advanced mean field methods (Birmingham, 1999), Neural Inf. Process. Ser., pages 259-273. MIT Press, Cambridge, MA, 2001.
[97] I. J. Taneja.
Generalised information measures and their applications.
preprint.
http://www.mtm.ufsc.br/ $\sim_{\text {taneja/bhtml/bhtml.html. }}$

Attila Andai

Information Geometry

- Uncertainty relations

LUp to date results

References XIII

[98] F. Topsoe.
Some inequalities for information divergence and related measures of discrimination.
Res. Rep. Coll., RGMIA, 2(1):85-98, 1999.
[99] A. Uhlmann.
Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory.
Comm. Math. Phys., 54(1):21-32, 1977.
[100] A. Uhlmann.
Parallel transport and "quantum holonomy" along density operators.
Rep. Math. Phys., 24(2):229-240, 1986.
[101] A. Uhlmann.
Density operators as an arena for differential geometry.
In Proceedings of the XXV Symposium on Mathematical Physics (Toruń, 1992), volume 33, pages 253-263, 1993.
[102] A. Uhlmann.
Geometric phases and related structures.
In Proceedings of the XXVII Symposium on Mathematical Physics (Toruñ, 1994), volume 36, pages 461-481, 1995.
[103] A. Uhlmann.
Spheres and hemispheres as quantum state spaces.
J. Geom. Phys., 18(1):76-92, 1996.
[104] H. Umegaki.
Conditional expectation in an operator algebra. IV. Entropy and information.
Kōdai Math. Sem. Rep., 14:59-85, 1962.
[105] E. P. Wigner és Mutsuo M. Yanase.
Information contents of distributions.
Proc. Nat. Acad. Sci. U.S.A., 49:910-918, 1963.
[106] W. K. Wooters.
Statistical distance and Hilbert space.
Physical Review D, 23:357-362, 1981.

Attila Andai

Information Geometry

L Uncertainty relations
LUp to date results

Thank you for your attention!

