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Basic Concepts from Quantum Mechanics

State space: the set of n× n positive definite trace one matrices, denoted byMn.
Observables: n× n self adjoint matrices (Msa).

For given state D ∈Mn and observables A,B ∈Msa we have the following concepts.

Expectation value: ED(A) = Tr (DA) .

Normalization of A: A0 = A− ED(A)I. (One has ED(A0) = 0.)

Variance: VarD(A) = ED
(
A2
)
− (ED(A))2 .

Covariance: CovD(A,B) = ED
(

1

2
(AB + BA)

)
− ED(A)ED(B).

Brief History of Early Uncertainty Relations

The very first formalization of the uncertainty principle was

1927, Heisenberg DfDF(f ) = constant,

where f is a Gaussian distribution, Df its width (its uncertainty) and DF(f ) is the width of the Fourier
transformation of f .

Later for any state D and every observables A,B the following relations were proved.

1927, Kennard VarD(A) VarD(B) ≥ 1

4
if [A,B] = − i,

1929, Robertson VarD(A) VarD(B) ≥ 1

4
|Tr(D [A,B])|2

1930, Schrödinger VarD(A) VarD(B)− CovD(A,B)2 ≥ 1

4
|Tr(D [A,B])|2

1934, Robertson: For every set of observables (Ai)1,...,N

det

([
CovD(Ah, Aj)

]
h,j=1,...,N

)
≥ det

([
− i

2
Tr(D

[
Ah, Aj

]
)

]
h,j=1,...,N

)
.

Riemannian Metrics on the State Space

In classical probability setting the Fisher information matrix can be used to endow a statistical model with
Riemannian metric.

Naturally arises the question: What is the analogue of the Fisher information in the quantum mechanical
framework?

Fop: set of operator monotone functions f : R+→ R with properties f (x) = xf (x−1) and f (1) = 1.

Examples for such functions: f (x) =
2x

1 + x
,

1 + x

2
,

(
1 +
√
x

2

)2

,
x− 1

log x
.

For every f ∈ Fop introduce the notation gf : R+ × R+→ R+, gf (x, y) = (yf (x/y))−1.
(The function gf is known as Chentsov–Morozova function.)

Theorem [Petz]. In quantum setting there is a bijective correspondence between Fisher informations
and functions in f ∈ Fop. For every f ∈ Fop the Fisher information is given by

〈A,B〉D,f = Tr
(
A
(
gf (LD, RD) (B)

))
,

where LD(X) = DX, RD(X) = XD. (The form 〈·, ·〉D,f is known as Petz scalar product)

=⇒ For every f ∈ Fop the pair
(
Mn, 〈·, ·〉·,f

)
is a Riemannian manifold.

Covariances

For observables A,B ∈Msa, state D ∈Mn and function f ∈ Fop let us define the following covariances.

Covariance: CovD(A,B) =
1

2
Tr (DAB + DBA)− Tr(DA) Tr(DB).

Quantum f-covariance: Cov
f
D(A,B) = Tr

(
Af (LDR

−1
D )RD(B)

)
.

Antisymmetric f-covariance: qCovasD,f (A,B) =
f (0)

2
〈i [D,A] , i [D,B]〉D,f .

Symmetric f-covariance: qCovsD,f (A,B) =
f (0)

2
〈{D,A} , {D,B}〉D,f .

Here [., .] is the commutator of matrices and {., .} denotes the anticommutator respectively.

For a fixed density matrix D ∈ Mn, a function f ∈ Fop and an N -tuple of matrices (A(k))k=1,...,N ∈ Msa

we define the following N ×N matrices CovD, Cov
f
D, qCovasD,f and qCovsD,f with entries

[CovD]ij = CovD(A
(i)
0 , A

(j)
0 )

[
Cov

f
D

]
ij

= Cov
f
D(A

(i)
0 , A

(j)
0 )[

qCovasD,f

]
ij

= qCovasD,f (A
(i)
0 , A

(j)
0 )

[
qCovsD,f

]
ij

= qCovsD,f (A
(i)
0 , A

(j)
0 ).

Main Mathematical Ingredients

Generalization of Petz’s scalar product:
Define

CM =

{
g : R+ × R+→ R+

∣∣∣ g is a symmetric smooth function, with analytical
extension defined on a neighborhood of R+ × R+

}
.

Fix a function g ∈ CM. Define for every D ∈Mn and for every A,B ∈Msa

(A,B)D,g = Tr (Ag(LD, RD)(B)) .

Theorem [Andai, Lovas]. For every g ∈ CM the pair
(
Mn, (·) ··,g

)
is a Riemannian manifold.

Relation between covariance matrices:

Theorem [Andai, Lovas]. Consider a density matrix D ∈ Mn, an N-tuple of observables

(A(k))k=1,...,N and functions g1, g2 ∈ CM such that

g1(x, y) ≥ g2(x, y) ∀x, y ∈ R+.

For the N ×N matrices CovD,g1 and CovD,g2 with entries
[
CovD,gk

]
ij

= (A
(i)
0 , A

(j)
0 )D,gk (k = 1, 2) one

has
CovD,g1 ≥ CovD,g2, (as positive matrices).

Generalized Minkowski inequality for positive matrices:
For an n× n matrix A define the matrix invariants αk(A) (for k ∈ {1, . . . , n}) as

det(A + tI) = tn +

n−1∑
k=0

αn−k(A)tk.

(α1(A) = TrA, αn(A) = detA.)

Theorem [Andai, Lovas]. Consider the n×n positive matrices A,B. Then for every matrix invariant
(αk, k ∈ {1, . . . , n}) one has

αk(A + B) ≥ αk(A) + αk(B).

Recent Uncertainty Relations

Around 2000 it turned out that the lower bound in the Robertson uncertainty relation can
be sharpened using (antisymmetric) quantum covariances. First partial results considered
very specific functions from the set Fop, few (generally 2) observables and the inequalities
were expressed in a more complicated form.

Unification of these modern attempts:

The key point was to realize that these early results can be combined together.

Conjecture [Gibilisco and Isola in 2006]. det(CovD) ≥ det(qCovasD,f)

Theorem [Andai and Gibilisco, Imparato and Isola in 2008]. For any operator
monotone function f ∈ Fop at every state D ∈ Mn for every N-tuple of observables
(A(k))k=1,...,N we have for the covariance matrices

det(CovD) ≥ det(qCovasD,f).

A more accurate inequality:

Theorem [Lovas, Andai, 2016]. For any operator monotone function f ∈ Fop at
every state D ∈Mn for every N-tuple of observables (A(k))k=1,...,N, the following holds.

det(CovD) ≥ det(qCovsD,f) ≥ det(qCovasD,f)

We have an estimation for the gap between the symmetric and antisymmetric covariance:

Theorem [Lovas, Andai, 2016]. Using the same notation as in the previous Theorem
we have

det(qCovsD,f)− det(qCovasD,f) ≥ (2f (0))N det(Covf0D),

where f0(x) =
2x

1 + x
.

Moreover, we have shown that the symmetric covariance generated by the operator monoton

function fopt(x) =
1 + x

4
+

x

1 + x
is universal in the following sense.

Theorem [Lovas, Andai, 2016]. For every function g ∈ Fop the inequality

det(qCovsD,fopt) ≥ det(qCovasD,g)

holds and fopt gives the best upper bound in Fop.

Inequality for other invariants of the covariance matrix:

Theorem [Andai, Lovas, 2019]. For any operator monotone function f ∈ Fop at
every state D ∈ Mn for every N-tuple of observables (A(k))k=1,...,N and every matrix
invariant (αk, k ∈ {1, . . . , N}), the following holds.

αk(CovD) ≥ αk(qCovsD,f) ≥ αk(qCovasD,f)


