Publications

Research papers:

[1] A. Andai, A. Lovas.

Quantum Aitchison geometry.

Infinite Dimensional Analysis, Quantum Probability and Related Topics 24, 01, 2150001, 2021. arXiv:2003.08582
[2] A. Lovas, A. Andai.

Volume of the space of qubit-qubit channels and state transformations under random quantum channels.

Reviews in Mathematical Physics 30, 10, 1850019, 2018. arXiv:1708.07387
[3] A. Andai.

The Effects of Random Qubit-Qubit Quantum Channels to Entropy Gain, Fidelity and Trace Distance.

Ay N., Gibilisco P., Matúš F. (Editors): Information Geometry and Its Applications IGAIA IV 2016.
Springer Proceedings in Mathematics & Statistics 252 , 431-443, 2018.
[4] A. Lovas, A. Andai.

Invariance of separability probability over reduced states in 4×4 bipartite systems.

Journal of Physics A: Mathematical and Theoretical 50, 29, 295303, 2017. arXiv:1610.01410v3
[5] A. Lovas, A. Andai.

Refinement of Robertson-type uncertainty principles with geometric interpretation.

International Journal of Quantum Information 14, 2, 1650013, 2016. arXiv:1311.5069
[6] A. Andai, A. Lovas.

On Robertson-Type Uncertainty Principles.

Václav Kratochvíl (Editor): Information Geometry and its Applications IV.
Banach Center Publications 73 , 28-29, 2016.
[7] A. Lovas, A. Andai.

Volume of the space of qubit channels and the distribution of some scalar quantities on it.

Václav Kratochvíl (Editor): Information Geometry and its Applications IV.
Banach Center Publications 73 , 48-49, 2016.
[8] A. Lovas, A. Andai.

Mértékek abszolút és szimmetrikus normákon.

(Measure on gauge invariant symmetric norms)
Alkalmazott Matematikai Lapok 32, 1-16, 2015. arXiv:1504.04149
[9] I. Németi, J. X. Madarász, H. Andréka, A. Andai.

Visualizing ideas about Gödel-type rotating universes.

M. Scherfner and M. Plaue. (Editors): Gödel-type Spacetimes: History and New Developments.
Kurt Godel Society, Collegium Logicum X , 77-127, 2010. arXiv:0811.2910v1
[10] A. Andai.

On the geometry of generalized Gaussian distributions.

Journal of Multivariate Analysis 100, 777-793, 2008. arXiv:0706.0606v1
[11] A. Andai.

Uncertainty principle with quantum Fisher information.

Journal of Mathematical Physics 49, 012106, 2008. arXiv:0707.1147
[12] A. Andai.

On the curvature of the quantum state space with pull-back metrics.

Linear Algebra and Its Applications 423, 287-304, 2007. math-ph. 0604031
[13] A. Andai.

Volume of the quantum mechanical state space.

Journal of Physics A: Mathematical and Theoretical 39, 13641-13657, 2006. math-ph. 0604032
[14] A. Andai.

On the curvature of the space of qubits.

Banach Center Publications 73, 35-48, 2006. pdf
[15] A. Andai.

Monotone Riemannian metrics on density matrices with non-monotone scalar curvature.

Journal of Mathematical Physics 44, 3675-3688, 2003. math-ph. 0305060
[16] Andai A..

A III. típusú Neumann-algebrák osztályozása.

Matematikai Lapok 6, 40-46, 2000. pdf
[17] P. W. Michor, D. Petz, A. Andai.

On the curvature of a certain Riemannian space of matrices.

Infinite Dimensional Analysis, Quantum Probability and Related Topics 3, 199-212, 2000. math.DG. 9909157
[18] Z. Somogyvári, A. Andai, Gy. Székely, P. Érdi.

On the role of self-excitation in the development of topographic order in the visual system of the frog.

Biosystems 48, 215-222, 1998. pdf
[19] Z. Somogyvári, A. Andai, Gy. Székely, P. Érdi.

A self-organizing model of the ontogeny of the frog's visual system the generaion of the anisotropy.

Robert Trappl (editor): Cybernetics and Systems Research: '98 Austrian Society for Cybernetic Studies, Vienna, 317-322, 1998.


Dissertations:

[1] Andai A.

Information Geometry in Quantum Mechanics.

PhD dissertation (in Hungarian), BUTE, Applied Mathematics, 2003. pdf
[2] Andai A.

Mathematical Basis of Quantum Mechanics.

Master Thesis (in Hungarian), ELTE, physics, 1998. pdf


Other papers:

[1] B. Bárány, A. Andai.

Description of the free motion with momentums in Gödels's universe.

Preprint, 2008. arXiv:0807.4107
[2] A. Andai.

On the monotonicity conjecture for the curvature of the Kubo-Mori metric.

Preprint, 2003. math-ph. 0310064
[3] H. Andréka, J. Madarász, I. Németi, contribution with A. Andai, G. Sági, I. Sain, Cs. Tőke.

On the logical structure of relativity theories.

Research report, Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci., Budapest, 2001.