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Chapter 1

Introduction

These notes are mainly based on a course given by the author in Fall 2008. The title
of the course was “topics in functional analysis”, but with a very flexible syllabus
mainly about operator algebras. Therefore at the time, we decided to focus only
on one topic which was “C*-algebras”. We mainly followed Bruce Blackadar’s book
[6] in the course. Meanwhile, we had to refer to other books on C*-algebras and
operator algebras for more details. Therefore we also added many topics, results,
examples, details and exercises from other sources. These additional sources are
mentioned in these lectures from time to time, but to do them justice we have
to name a few of the most important of them; [27, 29, B2, 33, 34] [41], 43]. This
mixture of sources for the course made us to design the order and depth of the
topics differently than other books. Besides, since students attending the course
had different background, we had to give full proofs for every statement and explain
many details from measure theory and functional analysis as well as the theory of
C*-algebras itself. So, the result was a very self contained series of lectures on C*-
algebra. Hoping that this level of details would help beginners, we decided to prepare
these notes in an organized and standard form. During rewriting these notes, we
frequently were tempted to add more materials to the original lectures. Although
most of the time, we managed to control this temptation, we have added some new
topics in order to make the whole notes more consistent and useful. For instance,
Sections 2.2, 241 B3] (5.7, and B.8 were not part of the original course. On the other
hand, we presented GNS construction fully in the course, but it is not given in these
notes. Hopefully, a chapter on states, representations and GNS construction will be
added to the present notes in the near future.

The order and list of the topics covered in these notes are as follows: Chapter
begins with elements of Banach algebras and some examples. We also devote a
section to detailed study of Banach algebras of the form L'(G), where G is a locally
compact group. Afterwards, we discus spectrum of elements of Banach algebras. In
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Section 2] we study basics of the spectral theory of compact operators on Banach
spaces. The first chapter is concluded with a section on the holomorphic functional
calculus in Banach algebras. Chapter [B is mainly about the Gelfand transform
and its consequences. So, the Gelfand transform on commutative Banach algebras
and C*-algebras is discussed in Section B.] the continuous functional calculus is
presented in Section 3.2, and finally the Gelfand duality between commutative C*-
algebras and locally compact and Hausdorff topological spaces is studied in Section
B.3. We begin our study of abstract C*-algebras in Chapter @ Positivity in C*-
algebras, approximate units, ideals of C*-algebras, hereditary C*-subalgebras and
multiplier algebras are the main topics covered in this chapter. Finally, these notes
end in Chapter [, where we present various topics concerning the C*-algebra B(H )
of bounded operators on a Hilbert space H. We begin this chapter with presenting
necessary notions and materials about Hilbert spaces. Elementary topics about
bounded operators on Hilbert spaces are discussed in Section [5.21 We discuss three
important examples of concrete C*-algebras in Section including the reduced
group C*-algebra of a locally compact group G. Three locally convex topologies on
the C*-algebra B(H ), specifically the strong, weak and strong-* operator topologies
are discussed in Section .4l The Borel functional calculus in B(H) is presented
in Section BB Projections in B(H) and the polar decomposition of elements of
B(H) are studied in Section 0.6l In Section 517 C*-algebras of compact operators
are studied briefly. Finally, the von Neumann bicommutant theorem is presented in

Section (.8

Although we have tried to present every topic as easy and self contained as
possible, we have left many little details to readers in the form of exercises amongst
the main part of the text. We also added some exercises at the end of each chapter.
In order to distinguish between these two groups of the exercises, we named the
latter group “problems”. We only used a limited number of references to prepare
these notes, but we give a long list of books related to the subject. We hope this list
helps student and beginners to find complementary topics related to C*-algebras.

We welcome any suggestions and comments related to these notes, especially
regarding possible mistakes, typos or suggesting new examples, exercises and/or top-
ics. Please, send your comments to shirbisheh@gmail.com or shirbisheh@yahoo.com.



Chapter 2

Banach algebras and spectral
theory

C*-algebras are a special type of Banach algebras. Therefore many fundamental
facts about Banach algebras are usually applicable in the theory of C*-algebras too.
Besides, some C*-algebras are obtained from some Banach algebras, for instance,
the reduced group C*-algebra, see Example [5.3.4l Therefore we devote this chapter
to the study of several topics in Banach algebras which are relevant to the theory
of C*-algebras.

In Section 2.1, we gather basic definitions and facts concerning Banach alge-
bras and give some examples of Banach algebras and C*-algebras. A detailed study
of the Banach algebra L'(G) associated to a locally compact group G is given in
Section 2221 Although the materials presented in this section are not necessary for
the basic theory of C*-algebras, we include this section for several reasons: First,
L'(G) appears naturally in applications of the theory of C*-algebras in harmonic
analysis. Secondly, L*(G) motivates some constructions in C*-algebras. And finally,
it provides us with many examples of Banach algebras which are neither commuta-
tive nor the algebras of bounded operators on some Banach spaces. The spectrum
of an element of a Banach algebra is introduced and studied in Section 2.3l The
algebra of compact operators on a Banach space is another general example of Ba-
nach algebras. The spectral theory of compact operators is much richer than the
spectral theory of general elements of Banach algebras and it is used in the study
of C*-algebras of compact operators on Hilbert spaces. Therefore we devote Section
24 to a detailed study of this topic. Finally, in Section 23] we discuss the holomor-
phic functional calculus in Banach algebras. It is a useful theory which enables us to
construct new elements in a Banach algebra by applying certain holomorphic func-
tions defined over the spectrum of an element of Banach algebra. We include this
section , because we also discuss the continuous functional calculus in C*-algebras
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in Section B2l and the Borel functional calculus in the C*-algebra B(H) of bounded
operators on a Hilbert space H in Section Thus all the three major functional
calculi related to C*-algebras are covered.

Before starting our study of Banach algebras, we recall some well known the-

orems from functional analysis. Their proofs can be found in standard texts on
functional analysis such as [19] 34], [41].

Theorem 2.0.1. [Uniform boundedness theorem/] Let E and F be two Banach
spaces. Given a subset XCB(E, F), if the set {||Tz|;T € X} is bounded for ev-
ery x € X, then 3 is bounded, that is the set {||T||;T € X} is bounded.

Theorem 2.0.2. [Open mapping theorem] Every onto bounded linear map T : E—F
between two Banach spaces is open.

Theorem 2.0.3. [Closed graph theorem] A linear map T : E—F between two Ba-
nach spaces is bounded if and only if its graph is a closed subset of E X F'.

Theorem 2.0.4. [The Banach-Alaoglu theorem] Assume O is a neighborhood of 0
in a topological vector space V. The subset {p € V*;|p(x)| < 1for all x € O}CV*
is weak-* compact. In particular the closed unit ball of V* is weak-* compact.

For the proof of the following two theorems see Theorem 3.6 and 3.7 of [41].

Theorem 2.0.5. [The Hahn-Banach theorem] Assume X is a locally convex topo-
logical vector space and M is a subspace of X. Every bounded linear functional of
M can be extended to a bounded linear functional on X.

A subset Y of a complex vector space X is called balanced if oY CY for every
a € C such that |af < 1.

Theorem 2.0.6. Assume B is a convex, closed and balanced set in a locally convex
space X and xg € X — B. Then there exists p € X* such that |p(z)| < 1 for all
x € B and p(xg) > 1.

For the proof of the following proposition see Corollary 1.2.12 of [27].

Proposition 2.0.7. Assume Y is a closed convex subset of a locally convex topolog-
ical vector space X. For every x € X =Y, there exists a continuous linear functional
p € X* and a real number b such that Rep(x) > b and Rep(y) < b for ally € Y.
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2.1 Basics of Banach algebras

In this section, we recall basic definitions of topological algebras, normed algebras,
Banach algebras, involutive algebras, and C*-algebras. We also give many elemen-
tary examples for these algebras. Afterwards, we explain some methods for adding a
unit element to a Banach algebra or a C*-algebra. We also present some basic facts
about invertible elements in Banach algebras. Finally, we take a closer look at the
Banach algebra B(FE) of bounded operators on a Banach space £ and introduce two
important two sided ideal of this algebra; the algebra K (FE) of compact operators
on E and the algebra F(H) of finite rank operators on E. It is also shown that
K(E) is a Banach algebra itself.

Definition 2.1.1. (i) A topological vector space is a vector space endowed
with a topology such that both the scalar multiplication and the addition are
continuous maps.

(ii) A topological algebra is a topological vector space A with a jointly con-
tinuous multiplication, that is the multiplication A x A— A is a continuous
map.

(iii) A normed algebra is a normed space (A, || — ||) with a sub-multiplicative
multiplication, that is

labll < flall[[bll,  Va,b e A.

(v) A normed algebra (A, || — ||) is called a Banach algebra if A is complete with
respect to its norm.

The key point in topological algebras is that the multiplication is always as-
sumed to be jointly continuous. Let A be a ring or an algebra. We denote the
algebra of n x n matrices with entries in A by M, (A).

Example 2.1.2. (i) Endow M, (C) with the Euclidean topology of C**. Then
the matrix multiplication is jointly continuous. Therefore M, (C) with this
topology is a topological vector space.

(ii) Let E be a normed space. The norm operator on the algebra B(FE) of
bounded linear operators on F is defined as follows

[T = sup{||Tz|;z € E, ||lzf| =1}
= sup{[|Tz[;z € B, |lz[| < 1}
T
sup{ |||| 2|7|H7x € E,x#0}
x

= inf{k;||Tz| < k||z||, Vz € E}.
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It is easy to see that [|T'S]| < ||T||||S|| for all T, S € B(E), namely B(E) with
the operator norm is a normed algebra. When FE is a Banach space, B(FE) is a
Banach algebra. If A is a normed (resp. Banach) algebra, A" == A@---® A
(n copies of A) with the norm defined by

(1, xn)| = max{||z;|[;e =1,--- ,n}, ¥V(ry, -+ ,z,) € A"

is a normed (resp. Banach) algebra. Therefore M, (A) with the operator norm
is a normed (resp. Banach) algebra if A is a normed (resp. Banach) algebra.

Let X be a topological space. The algebra Bd(X) of bounded complex
functions over X equipped with the norm;

[ fllsup := sup{|f(2)|; 2 € X}
is a Banach algebra. Some of the subalgebras of Bd(X) are

(a) the algebra C,(X) of continuous and bounded functions,

(b) the algebra C.(X) of continuous and compact support functions,
and

(c) the algebra Cy(X) of continuous functions vanishing at infinity.
A continuous function f is called vanishing at infinity if f~*([e, oo|) is
compact for all € > 0.

One checks that Cy(X) and Cy(X) are Banach algebras. However, C.(X) is
not complete, and so it cannot be a Banach algebra, unless X is compact.
When X is compact, the above subalgebras of Bd(X) are the same as the
algebra C'(X) of complex continuous functions on X.

Let (X, ) be a measure space. For every measurable complex function f on
X, define
[ flloe := inf{a > 0; u({z € X;[f(2)] > a}) = 0}

It is called the essential supremum of |f|. One checks that || — ||, is a
semi-norm on the space

L¥(X,pu) = L™(X) :={f : X—C; fis measurable and ||f||o < 00}.

To obtain a norm, we consider the quotient of L>(X) module the subspace of
all null functions with respect to p and denote this quotient again by L>°(X).
Then || — ||« is @ norm on L*(X) and L*°(X) equipped with this norm and
multiplication of functions is a Banach algebra, see also Theorem 6.8 of [19].
The elements of L>°(X) are called essentially bounded complex function
on X.
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When g is the counting measure, we denote L>°(X) by £°°(X) and the essential
supremum is just the supremum of |f|.

When X is a topological space and (X, ) is a Borel measure space, namely
the domain of u as a o-algebra is generated by open subsets of X (or more
generally contains all open subsets of X)), || f||cc = || f||sup for every continuous
complex function on X. Therefore in this case, Banach algebras Cy(X) and
Co(X) are Banach subalgebras of L>(X) and C.(X) is just a subalgebra of
L>(X).

Exercise 2.1.3. Check the details of the above examples.

Remark 2.1.4. It is worthwhile to note that, for given f € L*(X), the set {z €
X5 f(@)] > || fllo} is @ null set. The following equality proves this:

o0

o € X1 > Il = U {o € Xi1£@) > Il + 1}

n=1

Definition 2.1.5. Let A be an algebra. An involution over A is a map * : A—A
satisfying the following conditions for all x,y € A and X\ € C:

(i) () ==,

(ii) (x+y) =a"+y",
(iii) (A\z)* = Az*,
(iv) (zy)” =y z".

When A is a normed algebra, we also assume
(v) llz=ll = ll=]].

An algebra A equipped with an involution * is called an involutive algebra and
is denoted, as an ordered pair, by (A4, *). Involutive normed algebras and in-
volutive Banach algebras are defined similarly and are denoted by (A, || — ||, *).
A subalgebra of an involutive algebra is called an involutive subalgebra or a
x-subalgebra if it is closed under the involution.

Example 2.1.6. (i) The conjugation map is an involution over C.

(ii) We denote the algebra of polynomials of two variables z and Z with coefficients
in C by C|z, z]. We define an involution on this algebra by mapping coefficients
of a polynomial to their complex conjugates and z to Z and vice versa.
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(iii) Let A be an involutive algebra. Then M, (A) is an involutive algebra with the
involution defined by

(ai;) = (aj;),  V(ai;) € M, (A).

(iv) Back to Example 2ZT.2((iii), the algebra Bd(X) and its subalgebras are involu-
tive normed algebras with the involution defined by

f*(x) = f(x), VfeBdX)zeX.

(v) Back to Example ZZT.2(iv), the map f*(z) := f(z) for all f € L*>°(X) defines
an involution on L™ (X).

(vi) Let H be a Hilbert space with an inner product (—, —). In Corollary 5.2.3]
we will show that the algebra B(H) of bounded operators on H has a
unique involution such that

(Tx,y) = (z,T*y), Yx,ye H,T e B(H).

Definition 2.1.7. An involutive Banach algebra (A, || — ||, %) is called a C*-algebra
if
(2.1) lo*2l] = [|l=[|*,  Vx € A.

We call the above identity the C*-identity. A norm satisfying this identity is called
a C"-norm.

One should note that the definition of a C*-norm does not require completeness
of A. In other words, we may consider C*-norms on involutive algebras which are
not necessarily complete. Sometimes, these norms are called pre-C*-norms and
the normed algebras equipped with them are called pre-C*-algebras.

Example 2.1.8. (i) Back to Examples ZT2(iii) and ZT.6(iv), Banach algebras
Co(X) and Cy(X) are C*-algebras for all topological spaces X.

(ii) Back to Example and 2.1.6{(vi), the algebra B(H) is a C*-algebra, see Propo-
sition 0.2.4l If H is finite dimensional, i.e. H = C", and is equipped with the

ordinary inner product;
n
<LU, y) = Z xi@a
i=1

for all z = (21, - ,2,),y = (y1,- -+ ,yn) in H, then B(H) = M, (C) with the

operator norm and the involution

(ai;) = (a@i).
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(iii) If (X, p) is a measure space, then the Banach algebra L>(X) is a C*-algebra.

(iv) A norm closed involutive subalgebra of a C*-algebra is a C*-algebra, and is
called a C*-subalgebra.

Exercise 2.1.9. Prove the content of the above examples.
Let A be a C*-algebra and let S be a subset of A. The smallest C*-subalgebra of
A containing S is called the C*-subalgebra generated by S and is denoted usually

by C*(S). A similar terminology is also used for the Banach (resp. involutive)
subalgebra generated by a subset in a Banach (resp. involutive) algebra.

Another easy construction on C*-algebras, which is needed here, is the direct
sum of finitely many C*-algebras. Fori =1,--- ,n, let A; be C*-algebras. We define
the following involution and norm on the algebraic direct sum @}, A;:

(ah ce 7an)* = (a1*7 . 7an*)’
[y, - s an)ll = max{f|aill;7=1,---,n},
for all (ay,---,a,) € &, A;.
Proposition 2.1.10. The direct sum @}, A; with the above norm and involution

1s a C*-algebra.

Proof. We only show the C*-identity. For all (aq,--- ,a,) € &, A; we have

(a1, -+ ap)(ar, -+ an)|| = max{|laa;"[[;i=1,---,n}
= max{||a;||}i=1,---,n}
(max{fla[l;i =1,--- ,n})”
[(ar, -+ an)|”

0

The above examples are fundamental classes of C*-algebras. In Chapter [3]
we shall see that every commutative C*-algebra is of the form Cy(X) for some
topological space X. This is the essence of the Gelfand duality. Also, every
C*-algebra is isomorphic to a C*-subalgebra of B(H) for some Hilbert space H.
This is the main goal of GNS construction. Moreover, every finite dimensional
C*-algebra is isomorphic to a direct sum of finitely many C*-algebras of the form
M,,(C) for some natural numbers n.

Definition 2.1.11. Let A be an algebra. An element a € A is called a left (resp.
right) unit of A if ab = b (resp. ba =b) for all b € A. If A has a left unit a; and a
right unit as, then a; = ajas = as and this unique element of A is called the unit
of A and usually is denoted by 14 (or simply by 1). In this case, A is called unital.
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Exercise 2.1.12. Let (A, || — ||) be a unital normed algebra. Show that ||1]] > 1.
If Ais a C*-algebra, then show that ||1|| = 1.

Given a Banach algebra (A, || — ||), for every real number r > 1, (A, 7| —||)
is a Banach algebra too. Thus the norm of the unit is not necessarily 1 in unital
Banach algebras. However, the norm of an arbitrary Banach algebra can be replaced
by another norm so that the new norm of the unit to be 1.

Proposition 2.1.13. Let (A, | —||) be a unital Banach algebra. Then there exists
a norm || — ||, on A such that
(1) The norms || — || and || — ||, are equivalent on A,

(i1) (A, || —|l,) is @ Banach algebra,
(i) ||1]], = 1.
Proof. We embed A into B(A) by left multiplication;
L:A—B(A), where L,(y):=xy, Vz,y€ A.

We define the norm || — ||, on A to be the restriction of the operator norm of B(A)
to the image of A, that is

[zllo == || Lall = sup{l[zyl;y € A, [ly| <1} Vze A

For ||y|| < 1, we have ||zy|| < ||z|||ly]| < ||z||. This shows that ||z||, < [|z||. On the
other hand, we have

zf|  [lo1] |||
= <sup{——;y € A,y # 0} = ||z,
[ Y ly]|

This shows that ||z| < ||1]|||z]|, for all z € A and completes the proof of (i). It
follows from (i) that A is a closed subalgebra of B(A), so it is a Banach algebra with
the new norm || — [|,. Part (iii) is clear from the definition. O

Using the above proposition, we can always assume that the norm of the unit
equals 1 in a unital Banach algebra. We shall see that the C*-norm on a C*-algebra
A is unique and there is no way to replace it with another C*-norm unless we change
A as well.

Many notions on Banach algebras and C*-algebras are defined when they are
unital. Now, we explain the process of adding unit to a non-unital Banach or C*-
algebra. For Banach algebras, the condition of being non-unital is superfluous and



2.1. BASICS OF BANACH ALGEBRAS 11

the unitization process can be applied to Banach algebras that are already unital
too. But for unital C*-algebras, we have to use another unitization process. Let A
be an involutive Banach algebra. Set A; := A X C and define the ordinary operations
by

(@, Ay, ) = (2y + Ay + p, A,
(,\)" = (2%, )\),
[(z, ) =z + [\l

for all xz,y € A and A\, € C. The algebra A; is called the Banach algebra
unitization of A.

Exercise 2.1.14. Show that A; with the above structure is a unital Banach algebra
with the unit (0,1) and the map A—A; is an isometry. Show also that the image
of A under this map, which is also shown by A, is a closed two sided ideal of A;.

For the definition of an isometry see Definition B.I.3|(v). Given a C*-algebra
A, Ay with the above norm is not a C*-algebra. In fact, one easily checks that the

C*-identity, Equality 2111 does not hold for = = (( 8 (1] ) ,1) € My(C) x C. In

the following, we define another norm on A x C which makes it a C*-algebra.

Proposition 2.1.15. Let A be a non-unital C*-algebra. Consider the map ¢ : A X
C—B(A), (x,A\) — L, + X, where I is the identity map on A. Then the image of
A x C under v which is denoted by A is a C*-algebra with the operator norm and
the involution defined by

Wz, \)* = u(z*, ), Vxe A NeC.

Proof. First, we show that ¢ is injective. For x € A, one notes ||¢(x,0)|| = || L.] =
|z|lo, where || — ||, is the operator norm defined in the proof of Proposition ZT.13]
Hence ¢(z,0) = 0 if and only if L, = 0. But L,(z*) = zz* and ||zz*|| = ||z*||* =

|z||? # 0if 2 # 0. For X\ # 0, if |[e(z,\)]| = 0, then zy + Ay = 0 for all y € A.
Substituting y with y/\, we get y = (—x/A\)y, namely —x /X is a left unit in A, and
consequently (—x/A)* is a right unit in A. This contradicts with the assumption
that A is non-unital.

Now, we note that the inclusion A < A is an isometry, because, for every
x € A, we have

]|

< [Je(, 0)[| = sup [ley| < [lz]]

2] =
|z Iyll<1
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Hence A is a Banach subspace of A of codimension 1. By Proposition 2.1.8 [34], A
is a Banach space as well. We only need to show the C*-identity. Fix x € A and
A e C. For 0 <t <1, there is y € A such that ||y|| <1 and we have

Ellu(@MI* < i@+ Ayl
= ly" (@ + Al (z + ADy|l
< gl + AL (@ + Ayl
< el A) (M)
< G, M) el M)
< {1, )l A

By letting t—1, we get [[¢(x, A)|| < |[e(x, N)*||. The converse of this inequality is
proved similarly. Thus we have

ez, NP < ([, ) e, )= lle, M1
which proves the C*-identity. O

Remark 2.1.16. When a C*-algebra A is already unital, we set A := A & C, where
the right hand side is the direct sum C*-algebra of A and C. Then (1,1) is the unit
element of A.

Exercise 2.1.17. Assume A is a unital C*-algebra. Find an algebraic isomorphism
from A = A® C onto A} = A x C which sends the unit element of A to the unit
element of A;.

Definition 2.1.18. Let A be a non-unital (resp. unital) C*-algebra. The C*-algebra
A defined in Proposition (resp. Remark [ZT.T6]) is called the C*-unitization
of A.

Although having a unit element is an advantage for a Banach algebra or a
C*-algebra, there is a weaker notion in these algebras that facilitate many proofs,
which use unit elements, in non-unital Banach algebras and C*-algebras. A net
{a;} in a Banach algebra A is called an approximate unit if |a;|| < 1 for all i
and |laa; — al|[—0 and ||a;a — a||—0 as i—oo. We will prove the existence of an
approximate unit for certain Banach algebras in Section 2.2 However, there are
some Banach algebras which admit no approximate units. For example, take a
Banach algebra A and change its multiplication into zero. Then it is still a Banach
algebra and has no approximate unit. On the contrary, every C*-algebra possesses
an approximate unit. A basic version of this notion for C*-algebras will be defined
in Chapter [3 and we will prove the existence of different types of approximate units
for C*-algebras in Chapter [4]
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Definition 2.1.19. Let A be a unital algebra. For a € A, we say b € A is a left
(resp. right) inverse of a if ba = 1 (resp. ab = 1). If a has a left inverse a; and
a right inverse as, then a; = ajaay = as and this unique element of A is called the
inverse of a and is denoted by a~!. In this case, a is called invertible. The group
of all invertible elements of A is denoted by A*.

Proposition 2.1.20. Let A be a unital Banach algebra. If ||z — 1| < 1, then x is
invertible and

! = Z(l —x)",
n=0
where a® := 1 for all 0 # a € A.
Proof.
xZ(l—x)" = (1—1x)) Zl—x
n=0
= 1—(1—x)m+1.

By letting m—o00 and using the fact that lim,, ,o.(1 — 2)™™ = 0, we see that the
series >~ (1 —z)™ is a right (and similarly left) inverse of . O

Proposition 2.1.21. Let A be a unital Banach algebra. The group A* is an open
subset of A. In fact, if a € A* and ||z — a|| < 1/||a™Y|| then x € A* and we have

Za 1—:ca )"

Proof. Consider the inequality ||[xa™' —1|| = ||(z — a)a™|| < ||z — al||la™|| < 1 and
apply the previous proposition for za=1. O

Corollary 2.1.22. Let A be a unital Banach algebra. The inversion map x > x~*

is continuous in A*. Therefore A* is a topological group.

Proof. Let a be a fixed invertible element of A. For all x € A such that ||z — al| <
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1/|la=t||, we have

e —a = 1300 - zatyra
n=1
< a0 = 2a )
n=1
< a1 S e o = @)L — e
n=1
= a2l — o S =z
n=0

where the latter series is a geometric series and convergent because |[(1—za™!)|| < 1.
Therefore the right hand side of the above inequality is dominated by a constant
coefficient of |ja — z||. This proves the continuity of inversion at a. O

In Example 2.1.2] we observed how the algebra of bounded operators on a
Banach space turns out to be a Banach algebra. This type of Banach algebras are
very important in the theory of C*-algebras. It is because every C*-algebra can be
thought of as a C*-subalgebra of B(H) for some Hilbert space. Therefore we explain
some more details here as well as in the exercises. The closed unit ball in a Banach
space E is denoted by (E);.

Definition 2.1.23. Let F and F be two Banach spaces and let T': E—F be a linear
map (not necessarily bounded). It is called compact if the image of (F); under T is
relatively compact in F', namely T'((F);) is compact. A bounded operator 7' is
called a finite rank operator if the dimension of its image is finite. The collection
of all compact linear maps (resp. finite rank operators) from F into F' is denoted
by K(E,F) (resp. F(E,F)). When E = F, we use the notation K(F) and F(E),
respectively.

Since (F); is relatively compact, it is norm bounded, and consequently every
compact linear map is bounded. On the contrary, being bounded is part of the
definition of a finite rank operator.

Proposition 2.1.24. Let F and F' be two Banach spaces. Then the following state-
ments are true:

(i) An operator T : E—F' is compact if and only if every bounded sequence {x;}
in E has a subsequence {x;; } such that {T(x,)} is convergent in F.
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(ii) The set K(F) is a closed two sided ideal of B(FE), and so it is a Banach
algebra.

(iii) The set F(E) of finite rank operators and its norm closure are subalgebras of
K(E).

Proof. (i) Using the fact that a subset K of a metric space X is compact if and
only if every bounded sequence has a convergent subsequence, it is easy to see
the statement.

(ii) Using the above item, it is easy to see that K (F) is a two sided ideal of B(F).
We only show that it is a closed subspace of B(E). Let {T,,} be a sequence in
K (FE) convergent to some element 7' € B(E). Let {z;} be a bounded sequence
in E. Assume M is a positive number such that ||z;|| < M for all i. Forn € N,
choose an increasing function f,, : N—N such that T},(x,, () is convergent in
E, where ¢, = fpofn—10---0f1. Therefore T,(x,,, ) is convergent for all
m > n. Define f : N=N by f(i) := ¢;(¢). It is an increasing function and
To(xys@)) is convergent for all n € N. For given ¢ > 0, pick n such that
|75, —T'|| < 557- Let y € E be the limit of T, (x(;)) in £. Choose iy € N such
that ||T,, (7)) —y| < 5 for all i > 4y. Then we have

1T (zray) —yll < T (2p6) — To(zra)ll + |1 Ta(@r6) — yll

ellzswll | €
_ < .
oM T3 S°

This shows that the subsequence {T'(z(;)} is convergent to y € E, and so T
is a compact operator.

(iii) Again, it is easy to see that the set of all finite rank operators is an ideal
in B(E). The rest of the statement follows from the above item if we show
every finite rank operator 7" is compact. Let R(T) denote the image of T
Then R(T') is homeomorphic to a copy of C", and so has the Heine-Borel
property, namely every closed and bounded subset of R(T') is compact. Since
T is bounded, the image of the unit ball under 7" is bounded. Therefore its
closure is compact.

O

To verify that an operator whether 7" € B(E) is invertible, one can use the
following proposition:

Proposition 2.1.25. Let T € B(FE) be a bounded operator on a Banach space.
Then T is invertible if and only if it is bijective.
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Proof. Let S be the algebraic inverse of 7. Then the graph of these two maps are
related as follows:

Graph(S) ={(a,S(x));z € E} ={(T(y),y);y € E}.

The right hand side of the above inequality is closed in E @ E because of the
continuity of T', and so is the left hand side. By the closed graph theorem S is
bounded, see Theorem O

We shall continue our study of operators on Banach spaces in Section 2.4]

2.2 LYG)

In this section, we study an important class of Banach algebras associated to topo-
logical groups. These Banach algebras have natural generalizations for other alge-
braic and topological classes of objects such as topological semi-groups, groupoids,
rings, Hecke pairs, which will be discussed later. Since groups and actions of groups
on other mathematical objects are commonplace in mathematics, these Banach al-
gebras and their generalizations appear in a number of applications of the theory
of C*-algebras, particularly, in noncommutative geometry and harmonic analysis.
Therefore we decided to introduce them in the very beginning of the book to pre-
pare the reader for the complementary discussions which will appear in the upcom-
ing chapters. Historically, these Banach algebras have also inspired some of the
developments of the theory of C*-algebras. For example, the Gelfand transform is
considered as the generalization of the Fourier transform. For the sake of briefness,
we skip some of the elementary technicalities, mostly from general topology and
measure theory. The interested reader can find them in any standard text book of
harmonic analysis such as [13] [1§].

Definition 2.2.1. A group G equipped with a topology is called a topological
group if the group multiplication G x G—G, (g,h) — gh and the inversion map
G—@G, g+ g~! are both continuous maps. It is called a locally compact group,
briefly an LCG, if its topology is locally compact and Hausdorff.

Every group with the discrete topology is an LCG. These examples of groups
are called discrete groups. In fact, the discrete topology is the only topology
which makes a finite group into an LCG, because of the Hausdorffness.

Example 2.2.2. (i) If G is an abelian LCG, it is called a locally compact
abelian group. The examples of these groups include R with summation and
with ordinary topology, T := {z € C; |z = 1} with multiplication and topology
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(i)

(iii)

(iv)

inherited from C, finite abelian groups, and their products and subgroups, for
instance R, T", @, and so on.

R* as the quaternion group with the ordinary topology is an LCG, so is its
subgroup S? := {x € R*; ||z|| = 1}.

Let F be a topological field, that is a field with a topology such that (F,+)
and (F*,.) are locally compact abelian groups. Then the nth order general
linear group of F

GL,(F) :={g € M,(F);det(g) # 0}

with the topology inherited from M, = R is an LCG. One of the most
important subgroup of GL,(F') is the special Linear group, denoted by
SL,(F), consisting of those elements of GL, (F) whose determinants are 1.

Finally, we should mention profinite groups. A profinite group is an inverse
limit of direct system of finite groups equipped with the inverse limit topology.
The set of examples of these groups includes all Galois groups of Galois ex-
tensions. Because of the complicated nature of these groups, there are several
important and challenging conjectures and theories around these groups which
deserve an operator algebraic approach towards them. To give an explicit ex-
ample, consider 7 :=lim. Z/nZ, which is the absolute Galois group of every
finite field IF,. For more details on these groups, we refer the reader to [20].

In the next statements, we summarize some of the elementary definitions and

properties of locally compact groups that we need in our discussion of L'(G). Let E
be a subset of a group G and g € G. The set {ge; e € E} is denoted by gFE. The set
Eg is defined similarly. If F' is another subset of G, then EF := {ef;e € E and f €

F) =

3.

Uecpel” = Upep B/ f. For the proof of the following lemma see Lemma 1.1.2 of

Lemma 2.2.3. Let G be an LCOG.

(i) For s € G, the translation maps g—sg and g—gs, as well as the inversion

map g—g~' are homeomorphisms of G.

(11) If U is a neighborhood of unit, then U™ := {u~';u € U} is a neighborhood

of the unit too. Therefore V. =U NU~! is a symmetric neighborhood of
unit, that is V = V1,

(iii) For a given neighborhood U of unit, there is a neighborhood V' of unit such

that V2 C U.
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(i) If A, B C G are compact, then AB is compact.
(v) If A, B C G and at least one of them is open, then AB is open.

Lemma 2.2.4. Every function f € C.(G) is uniformly continuous, namely, for
every € > 0, there is a neighborhood U of unit such that gh™' € U or g='h € U

imply that | f(g) = f(h)| <e.

See Lemma 1.3.6 of [13] for the proof of the above lemma. A function f : G—C
is called symmetric if f(g) = f(g7!) for all g € G. Given a function f, the formula
f5(g) :== f(g) + f(g7!) defines a symmetric function which possesses most of the
properties of f. For example if f is compact support or continuous, so is f*.

A reader not acquainted with measure theory is advised to consult with [19], or
similar text books, before reading the rest of this section. Let (X, .4) be a measurable
space, that is A is a o-algebra on a set X. If X is a topological space and A is
generated by all open subsets of X, then A is called the Borel o-algebra of X. A
measure g : A—[0, o] is called a Borel measure if A contains the Borel o-algebra
and it is called locally finite if for every point x € X there exists an open set
U containing x such that pu(U) < oo. In this section, we always assume that A
is the completion of the Borel o-algebra. Therefore a function f : X—C is called
measurable if f is Borel measurable, i.e. f~1(U) € A for all open subset U C C
and moreover u(f~'(E)) = 0 for every subset E of C whose Lebesgue’s measure is
zero, i.e. E is a null set. A measurable function f : X—C is called integrable
with respect to p if [, |f(z)|du(x) < 0.

Definition 2.2.5. Let p be a locally finite Borel measure on (X,.A). Then it is
called an outer Radon measure if the following two conditions hold:

(i) For all £ € A, we have

w(E) =inf{u(U);U is open and E C U}.

(ii) For all E € A such that either E is open or u(F) < oo, we have
w(E) = sup{u(K); K is compact and K C E}.

Definition 2.2.6. A non-zero outer Radon measure p on a locally compact group
G is called a Haar measure on G if it is left invariant, that is pu(gF) = p(FE) for
all measurable set £ C G and g € G.

The existence of a Haar measure on an arbitrary LCG is stated in the follow-
ing theorem, which is usually proved in harmonic analysis texts, see for instance
Theorem 1.3.4 of [13].
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Theorem 2.2.7. Let G be a locally compact group. Then there exist a Haar measure
won G. FEvery measure v on G is a Haar measure if and only if it is a multiplication
of i by a positive real number.

When G is discrete, the counting measure is a Haar measure, and so every
Haar measure on a discrete group is a positive multiple of the counting measure.

Example 2.2.8. Recall that the Lebesgue measure on R is a complete measure m
on R such that m([a,b]) = b —a for all a,b € [—00, +00]. Theorems 1.18 and 1.21
of [19] state that m is a Haar measure for the group (R, +).

Recall that a subset of a topological space is called o-compact if it can be
covered by the union of a sequence of compact sets. For the proof of the following
corollaries, we refer the reader to Page 10 of [13].

Corollary 2.2.9. Let G be an LCG with a Haar measure ji.

(i) Every non-empty open set has strictly positive measure.
(i) Every compact set has finite measure.

(i) Let f be a continuous positie function on G such that [, f(g)du(g) = 0. Then
f =0, namely f equals zero p-almost every where.

(iv) Let f be an integrable function on G with respect to . Then the support of f
s contained in a o-compact open subgroup of G.

The following two propositions show how the topological structure of an LCG
is related to the properties of its Haar measures.
Proposition 2.2.10. Let G be an LCG with a Haar measure p and unit element e.
The, the following statements are equivalent:

(i) There exists g € G such that u({g}) # 0.
(ii) We have p({e}) # 0.

(iii) The Haar measure is a strictly positive multiple of counting measure.

(iv) The topology of G is discrete.

Proof. We only show that (ii) and (iii) implies (iv). The rest of implications are easy
and left as an exercise. Let K be a compact neighborhood of e. Then there is an
open set U such that e € U C K. By the above corollary, we have 0 < pu(U) < oo.
By (iii), U has to be a finite set. Since the topology is Hausdorff, for all g € U the
singleton {g} must be an open set. Therefore all singletons of elements of G must
be open. In other words the topology of G is discrete. O
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Proposition 2.2.11. Let G be an LCG with a Haar measure pi. Then G is compact
if and only if n(G) < oo.

Proof. Prove it as an exercise or read the proof in Page 21 of [13]. O

Given f: G—C and g € G, we define two new functions L,(f) and R,(f) from
G into C by

Ly(f)(h) = flg™'h) and Ry(f)(h):= f(hg).  VheG.

They are respectively called left and right translations of f by g. These maps
are bijective over C.(G), Cy(G), etc.

Lemma 2.2.12. Let G be an LCG with a Haar measure p. Then for every f €
Ce(G), the function h — [, f(gh)du(g) is continuous on G.

Proof. To prove that the above function is continuous at an arbitrary point hg € G,
one can replace f by Ry, (f) and show that the function h — [, Ry, (f)(gh)dpu(g)
is continuous at the unit element e € G. So we prove this simple case instead. Let
K be the support of f and let V be a compact symmetric neighborhood of e. For
s € V, one easily sees that KV contains the support of Ry(f). Since L,-1(f) is
uniformly continuous, for given € > 0, there exists a symmetric neighborhood W of

e such that [f(gh)— f(g9)| < ocvy for all h € W. Therefore for h € WNV, we have

/ [f(gh)—f(g)]du(g)‘ < [ 1ot - s(@)ldnts)
(& KV
£

= UKV

WKV) =e.
This completes the proof. O

Since a Haar measure on an LCG G is determined up to a positive multiple,
we sometimes call it “the” Haar measure of G. This (sort of) uniqueness of a Haar
measure leads us to the definition of the modular function of an LCG. Let u be a
Haar measure on an LCG G. Given g € G, define p14(E) := p(Eg) for all measurable
set &/ C G. It is easy to see that p, is a Haar measure on G as well. Thus there is
a positive real number A(g) such that p, = A(g)p.

Definition 2.2.13. The function A : G—]0, 00|, defined in the above, is called the
modular function of G. Moreover, G is called unimodular if A is identically
equal to the constant function 1.
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Obviously, if G is either a locally compact abelian group or a discrete group,
then it is a unimodular group. In fact, every compact group is unimodular too,
which will be proved later.

The set of all integrable functions on an LCG G with respect to a Haar measure
w is denoted by LY(G), that is

LN(G) = {f : GoC ||| = / F(@)ldu(g) < 0o}.

The norm defined in the above formula is called the L'-norm and L'(G) is a Banach
space according to the this norm, see Theorem 6.6 of [19].

Lemma 2.2.14. Let G be an LCG with a Haar measure p. For f € LY(G) and
g € G, we have Ry(f) € L'(G) and

[ R0 = A6 [ fhyaun)
G G

Proof. When f is a characteristic function the statement is clear. The general case
follows from the usual approximation argument. O

Theorem 2.2.15. Let G be an LCG with a Haar measure v and the modular func-
tion A.

+
+

(ii) If G compact, then it is unimodular.

Proof. (i) Let E C G be a measurable set such that 0 < p(E) < oco. Then
for every g,h € G, one computes A(gh)u(E) = p(Egh) = A(h)u(Eg) =
A(h)A(g)u(E). Thus A(gh) = A(g)A(h), namely A is a group homomor-
phism. Choose f € C¢(G) such that ¢ = [, f(g)du(g) # 0. By Lemma 2214

we have
A(R) = 1/c /G F(gh™V)dp(g).

The right hand side as a function on h is continuous by Lemma 2.2.12] so is
A.

(ii) By (i), when G is compact, the image of A is a compact subgroup of RY. But
the only compact subgroup of R} is the trivial subgroup {1}. This means that
A=1.

O
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Remark 2.2.16. Let u be a complex Radon measure on G. See Section for
details. Define I, : Cy(G)—=Cby 1, = J.f ). By the Riesz representation
theorem, see Theorem [B.5.], the map ,u — I, is an 1somorphlsm between the vector
space M(G) of complex Radon measures on G and the dual vector space Cy(G)*.
By this correspondence, a left invariant measure p is mapped to a functional that
is unchanged by the left translation. In other words, u is a left invariant Radon
measure if and only if 1,(f) = I,(Ly(f)) for all g € G.

Lemma 2.2.17. Let G be an LCG with a Haar measure j1 and the modular function
A. Then

/f A dulg /f )dp(g Vf e LY(G).

Proof. Regarding the correspondence explained in the above remark, we define an-
other Haar measure by using p. Then we show that it is the same as p, and as
a consequence, we obtain the desired result. For all f € C.(G), define I(f) :=
Jo flgH)A(g7")du(g). Then by Lemma 2214 for all s € G, we have

I(Ly(f) = /G £(s7 g™ A W )dp()

- /Gf<<gs>—1>A<<gs—ls>—l>du<g>
_ A /G Flo™)A(sg™Y)dp(g)

= /Gf(g‘l)A(g‘l)du(g)
I(f)

This shows that the measure associated to [ is left invariant and consequently, a
Haar measure. Therefore there is a ¢ > 0 such that I(f) = ¢ f af . We need
to show that ¢ = 1 to complete the proof. For glven e > 0, Choose a symmetrlc
neighborhood V' of unit such that |1 — A(s)| < e for all s € V. Choose f € C.(V)
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such that it is positive, not identically zero, and symmetric. Then we have
— d = d -1
1=l [ faute) = | [ r@)into) =101
< [ 10 = 1)l ldulo)
G
= [ 16 = 26dnto)
= 6/Gf(g)du(g)-

Thus |1 — ¢| < e, where € > 0 is arbitrary. Hence ¢ = 1. O

There is an interesting multiplication formula over L'(G) which makes it a
Banach algebra. For every f,k € L*(G), define f * k: G—C by

fk(g) = /G FWE( g)du(h), Vg e G.

Proposition 2.2.18. With the above notation, f * k belongs to L'(G) and the
above formula defines an associative multiplication called convolution product.
Moreover, L*(GQ) is a Banach algebra with this multiplication.

Remark 2.2.19. In the following proof, we use the Fubini-Tonelli theorem several
times, see Theorem 2.37 of [I9]. It requires that the measure space (G, pu) to be
o-finite. But we can only show that the support of all functions in the following
integrals are contained in o-compact sets. As p is a Haar measure and by using
Parts (ii) and (iv) of Corollary 2.2.9] one easily sees that the Fubini-Tonelli theorem
holds in this case too.

Proof. Define o : G x G—G by (h,g) — (h,h7tg) and ¥ : G x G—C by 9(h, g) :=
f(h)k(h~tg). Tt is clear that ¢ = (f x k) oa. We know that (f x k) is a measurable
function. On the other hand, « is continuous, and so it is Borel measurable too.
Hence v is Borel measurable as well. To show ¢ is actually measurable we need
to show that the preimage of every null set in G x G under « is a null set again.
But this follows if we show that the following equality holds for every measurable
function ¢ : G X G—=G x G:

/ ol g)d(p % ) (s g) = / ol 7 g)d (1 x 1) (B, ).
GxG GxG

Since h and k are measurable we can use the Fubini-Tonelli theorem. Now by using
the fact that p is a Haar measure, one easily can check the above equality.
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Let S(f) and S(k) denote the supports of f and k, respectively. Then the
support of ¥ is contained in S(f) x S(f)S(k) which is a o-compact set. Therefore
again using Fubini-Tonelli theorem, we have

T //|f k(b1 g) dpu(h)du(g)

= [ [ ke glauto)duin
= | [ 1@ dutg)an)
- /|f |dh/|k Yldu(g)

= Al lIE] < oo

Besides the above inequality which shows L!(G) is a Banach algebra, the above
computation also shows that the function (g, .) is integrable for almost every g € G
and f*k is a measurable function. Other algebraic properties of L!(G), such as the
associativity of the multiplication, follow from straightforward computations which
are left as an exercise to the reader. O

A generalization of the above proposition is given in Proposition [£.3.3 In fact,
L*(@) is an involutive Banach algebra. With the above notations, the involution on
LY(@) is defined by

F(9) = A(g)f(g™D), Vfel' Q) Vged.

Exercise 2.2.20. Check all axioms of involution for the above *-operation.

It is tempting to see if L!'(G) is a C*-algebra. The answer is “no”, unless G is
the trivial group.

Proposition 2.2.21. With the above notions, L*(G) is a C*-algebra if and only if
G is the trivial group of one element. In this case L'(G) ~ C.

Proof. Let G has an element s other than the unit element e. Let V' be a compact
symmetric neighborhood of e such that s ¢ V. Choose an open set U such that
eeU C (G—sV)NV. It is easy to see that UNsU = () and 0 < p(U) < oo. Define
f(g9) == A™V2(g)(xv — ixsv)(g) for all g € G, where x stands for the characteristic
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function. Clearly, f € L'(G) and we have

1 = /G % £ (@)ldulg)

-,

= [ s \ JBsxelo™h) + oo ™h
G G

/ A(g‘lh)f(h)f(g‘lh)du(h)‘ dulg)

i (0 xu (g~ h) + e (R) e (9~ ) Jdp(h) \ du(g)

= [ AT 0 gU) + iV 0 g50)
—ip(sU N gU) + p(sU N gsU)|dp(g).

In the last integral each term of the integrand is non-zero at least for some values of
g and when one of the terms is non-zero the other three terms are zero. This feature
justifies the following steps of our argument:

571 < [ AU g0) + u(U 1 g50)
+u(sU N gU) + pu(sU N gsU)]dpu(g)
= [ A7) [ (whels DI+ = i)
+| = ixsu(h)xu (g™ h)| + [xsv (R)xsu (g~ 1)) dp(h)dp(g)
= [ [ Al D) duto)

/ () dp() / F@)dulg) = 112
G G

The following theorem and Theorem illustrate how algebraic properties
of the Banach algebra L'(G) reveal some of the algebraic and topological features
of G.

Theorem 2.2.22. Let G be an LCG. The algebra L*(G) is commutative if and only
if G is abelian.

0

Proof. Let L'(G) be commutative. Then for every f,k € L'(G) and g € G, we have
0 = fx*k( ) k= f(g)
= [ sk g)dn ~ [ K10 9o
G
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By replacing h with gh and then using Lemma 2217 in the first integral, we get
0 = [ fah KB du(h) [ k) £ )
= [ K (b)) = 07 ) ).

Since this is valid for every h, we conclude that f(gh™")A(h™') — f(h™'g) = 0 for
all f € C.(G) and g, h € G. By setting g = e, we conclude that A = 1. Therefore
f(gh™) = f(h'g) for all f € C.(G) and g, h € G. This implies that G is abelian.
The converse direction is easy to check. O

Before stating the next theorem, we need to introduce a notion in the Banach
algebra L'(G) which allows us to use some of the advantages of the unit element
even when L'(G) is not unital. This is actually a net which acts as the unit in
the limit. This technique is a powerful idea which also appears in the context of
C*-algebras under the name of approximate identity.

Convergence in topological spaces that are not necessarily metric spaces relies
on the notion of “nets”. Since this concept is going to appear frequently in the
future, we give the detailed definition here.

Definition 2.2.23. Let J be a set.

(i) A partial order on J is a binary relation < such that, for all a,b,c € J, we

have
(a) a < a, (it is reflexive),
(b) a <band b < a implies that a = b, (it is anti-symmetric),
(¢) a <band b < cimplies that a < ¢, (it is transitive).

Then the pair (J, <) is called a partially ordered set.

(ii) A partially ordered set (J, <) is called a directed set if for every a,b € J
there is ¢ € J such that a < ¢ and b < ¢, namely for every two elements of J
there is an upper bound.

(iii) Let (J, <) and (I,C) be two directed sets. A map ¢ : J—1 is called strictly
cofinal if for every iy € I there is some j, € J such that jo < j implies

io E ¢(j)-

For example, the collection of all subsets (resp. open subsets) of a set (resp.
topological space) S equipped with the relation C is a directed set. The same is
true if one considers the converse of inclusion, i.e. D, as the relation.
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Definition 2.2.24. Let X be a topological space.

(i) A net in X is a function « : J— X, where (J, <) is directed set. Often, a(j) is
denoted simply by «; for j € J and the net « is denoted by (c;);es or simply

by (o).

(ii) With the above notation, the net (o) is called convergent to a point x € X
if for every neighborhood V' of x, there is jo € J such that j, < j implies
% eV.

(iii) A subnet of ais a net 5 : [—X together with a strictly cofinal map ¢ : I—J
such that g = ap.

Most statements about sequences in metric spaces have generalizations for nets
in topological spaces. For example, a map f : X—Y between two topological space
is continuous if and only if a net convergent to a point, say x, is mapped to a net
convergent to f(z) by f, see Proposition A.6.4 of [13]. For the proof of the following
proposition see Proposition A.6.6 of [13]:

Proposition 2.2.25. A topological space X is compact if and only if every net in
X has a convergent subnet.

Definition 2.2.26. Let G be an LCG with a Haar measure . A Dirac net on G
is a net (f;) in C.(G) such that

o fi>0and [, f;(g9)du(g) =1 for all j

e the support of f;’s shrink to the unit element of GG, namely, for every neigh-
borhood V' of the unit there is jy such that jo < j implies supp(f;) C V,

e and f; is symmetric for all j.

Remark 2.2.27. In order to construct a Dirac net on an LCG G equipped with a Haar
measure y, consider the directed set (41, D) of all symmetric compact neighborhoods
of the unit with inclusion. For given U € i, by Urysohn’s Lemma, see Theorem 3.1
of [31]], there exists a continuous function fiy : G—[0, 1] such that fy(e) = 1 and
supp(fu) € U. We replace fy by f to get a symmetric function and then divide
it by [, fu(g)du(g). We denote the function just obtained again by fy and it is
straightforward to check that (fy) is a Dirac net on G.

Lemma 2.2.28. Let G be an LCG with a Haar measure p. For given 1 < p < 0o
and f € LP(G), the maps g — Ly(f) and g — Ry(f) are continuous maps from G
into LP(Q).
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Proof. We first prove this for the case that f € C.(G). Let K be the support of f
and let Uy be a compact symmetric neighborhood of e. Then the support of Ly(f)
is contained in UyK for all ¢ € Uy. Let ¢ > 0. By Lemma [2.2.4] there exists a
neighborhood U of e such that U C Uy and || Ly(f) — fllsup < W forall g e U.
Then we have

1/p
IL,(f) = £l = ( JNG0E f(h)lpdu(h)) <e.

For general f € LP(G), choose k € C.(G) such that || f — k||, < ¢/3. Also, choose
a neighborhood U of e such that ||k — L,(k)|, < ¢/3 for all ¢ € U. Then for all
g € U, we have

1f = Lo(Pllp < I = Kllp + [k = Lo(B)lp + | Lg(F) = Le(F)]| <&

In the last step, we used the fact that ||L,(k) — Ly(f)|l, = ||f — k||, which follows
from the left invariance of the Haar measure. The proof for R,, instead of L,, is
similar to the above argument except in the very last step. For the last step, one
can use Lemma 2T to show that || R,(f) — R, (k)|, = (A(g~1))?||f — k]|,. Since
A is continuous and g varies in U C Uy, where Uy is compact, one can easily find a
similar estimation to show that ||f — Ly(f)||,—0 when U shrinks to e. O

In the above lemma, we used the following proposition. see Proposition 7.9 of

[19].

Proposition 2.2.29. If i is a Radon measure on a locally compact and Hausdorff
topological space X, then C.(X) is dense in the Banach space LP(X, p) for all 1 <
p < 00.

Lemma 2.2.30. Let G be an LCG with a Haar measure p. Let (f;) be a Dirac
net on G and let f € L'(G). Then the nets (f;  f) and (f * f;) converge to f in
LY(G). Moreover, if f is continuous, then both the convolution products exist, and

(fi * [)(g) and (f * f;)(g) converge to f(g) for all g € G.

Proof. One computes

1% f — £l :/G

/G £ () (™ g)du(h) — £(g)| diu(g).
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Using the fact that f(g (9) J fi(h = Jo f( h)du(h), we have
1 f =l = /G /G 150 (F(~g) = £(9)) du(®)| du(9)
< [ ] 5015070 = f0)| dnta)autr)
= [ 5O = F@ldn(h)
-/ oy FHONE0)6) = Ta) )

By Lemma 2.2.28 this integral goes to zero when j tends to infinity. Similarly, one
computes ||f * f; — f|li—0 when j—o0.

Assume f is continuous and fix ¢ € G. For given £ > 0, by continuity of f,
there exists a neighborhood U of e such that gh € U implies that | f(h™')— f(g)| < &,
see LemmaP.2.4l By the definition of a Dirac net, there is jy such that j, < j implies
that supp(f;) C U. Therefore for jo < j, we have

el -1 < /G £ (1) | F(h~1g) — F(g)| duh)

- / £i(gh) |F(h™Y) = £(g)] du(h) <

Now, we describe L'(G) when G is a discrete group.

Remark 2.2.31. We need to explain the meaning of an uncountable summation, say
Y seg @s, where S is an uncountable set and all terms of this summation belong to
a (complex or real) topological vector space B. Let (§, C) be the directed set of all
finite subsets of S with inclusion. For every I’ € §, define xp = Zse ras. Then
(rp) is a net in B. We say that the summation ) __a, is convergent if the net
(xp) is convergent. The absolutely convergent summations are defined similar
to the ordinary absolutely convergent series.

Assume (X, p) is a measure space. When p is the counting measure, we use
(P(X) in lieu of LP(X, u) for all 1 < p < oo and drop p from the notation. The
Banach space ¢!(X) is the set of all absolutely convergent summations indexed by
X. In particular, when G is a discrete group, we have

HG) = {Z Ags Z | Ag| < oo}

geG geG
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By describing ¢*(G) as above, one easily sees that CG, the group algebra of
G, can be considered as a dense subalgebra of /!(G). We recall the definition of CG
now. Consider the complex vector space generated by elements of G. This vector
space becomes an algebra called the group algebra of G if we extend the group
multiplication linearly to all its elements. The explicit formula for the multiplication
of this algebra is as follows:

(Z aigi> (Z bjgj> = Z Z a;b;gig;,
i=1 Jj=1

i=1 j=1

where a;,b; € C and g;,9; € G for all 7, j.

To embed CG into ¢*(G), we send every element g € G to the characteristic
function of the singleton {g}, which we denote it by d,, and extend this map linearly
to whole CG. Clearly, it is a linear injection. We only have to show that it is actually
an algebraic homomorphism. We check this only for the product of two arbitrary
elements of the basis of CG. For all g1, g2, h € G, we have

691 * 692 (h) = 2591 (8)592(5_1}7')
seG
- 592 (91_1h>
_ { 1 go=g""h

0 otherwise

Og1g:(h)-

In fact, the image of CG in ¢*(G) is exactly C.(G) with convolution product. The
above observation leads us to two easy, but important, conclusions; first, CG is a

dense subalgebra of ¢!(G) and secondly, d. is the unit element of /*(G). However,
for a general LCG G, LY(G) is unital only if G is discrete.

Theorem 2.2.32. Let G be an LCG with a Haar measure . The Banach algebra
LY(G) is unital if and only if G is discrete.

Proof. Let k be the unit of L'(G) and let (f;) be a Dirac net on G. For given
e > 0, by Lemma 2230, there is jy such that j, < j implies ||f; * k — k|1 < ¢
or equivalently ||f; — k|1 < e. Since ¢ is arbitrary and the support of f; shrinks
as j—oo, supp(k) = {e} U E, where u(E) = 0. But k # 0, so pu({e}) > 0. This
implies that G is discrete by Proposition 2.2.10. The converse follows from the above
discussion. O

We conclude this section by introducing the Fourier transform briefly. Let G
be a locally compact abelian group with a Haar measure . A character on G is
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a continuous group homomorphism from G into the group T of complex numbers of
absolute value 1. The set of all characters of G is denoted by GG and it has a natural
group structure as follows:

(p1p2)(9) = pr(9)pa9); Vpr, po €@, Vgel
(P19 = (pl9)!, Ypel, Vged.

The group G with compact open topology is an LCG. The structure of this
group and its relation to the structure of G is discussed in harmonic analysis. The
key role is played by a mapping L'(G)—Cy(G) named the Fourier transform

defined as follows:
= f
= /Gf(g)p(g)5u(g)

The idea is to represent elements of the rather complicated Banach algebra L'(G)
as elements of the more simple Banach algebra CO(G). This technique motivates
a number of ideas in representation theory of groups as well as the theory of C*-
algebras, for example, see the Gelfand transform in Section B1

2.3 The spectrum of elements of a Banach algebra

Definition 2.3.1. Let A be a unital complex algebra. For a € A, the spectrum
of a in A is defined and denoted as follows:

oala) ={ e Cia— A1 ¢ A*}.

The complement of 04(a) in C is called the resolvent of a in A and is denoted by
Resa(a). If A is non-unital, the spectrum of an element a € A is defined by

oa(a) :=04,((a,0))U{0}.

To simplify the notation, we denote A1 € A by A for all A € C. Also, when
there is no risk of confusion, we drop A from the notation of the spectrum and the
resolvent of an element a € A and shortly write o(a) and Res(a).

Example 2.3.2. (i) Let a € M,(C). Then the spectrum of a in M,,(C) is the set
of all eigenvalues of a.

(ii) Let X be a compact topological space and let f € C(X). Then ocx)(f) =
f(X).
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Exercise 2.3.3. Verify the statements in the above example.

Proposition 2.3.4. If A is a unital algebra and a,b € A, then
oa(ab) U{0} = g4(ba) U {0}.

Proof. Let 0 # X\ € Resa(ab) and set u := (ab — \)~!. Hence abu = uab = 1 + \u,
and from this we obtain

(ba — X)(bua —1) = A
(bua — 1)(ba — A\) = A

Thus ba — A is invertible, and so A\ € Res4(ba). O

Definition 2.3.5. Let A be a Banach algebra. For every a € A, the spectral
radius of a in A is defined and denoted as follows:

ra(a) :=sup{|\[; A € ga(a)}.

To simplify the notation, sometimes the spectral radius of a in A is denoted
simply by r(a). Later, we shall show that the spectrum of an element a of a Banach
algebra is not empty and consequently 7(a) > 0. In the following proposition, we
find an upper bound for r(a).

Proposition 2.3.6. Let A be a Banach algebra and let a € A. Then r(a) < ||a|
and o4(a) is a compact subset of C.

Proof. We can assume that A is unital. Let A be an element of C such that ||z|| < |Al.
Then
1= =/ = llz/All < 1.

Thus 1—x/\ is invertible and so z— A is invertible, namely, A € Res(x). This shows
that r(a) < ||al|, and so o4(a) is a bounded subset of C. Next, we note that the map
¢ : C—A defined by A — a — \ is continuous. Thus the set Resa(a) = ¢ ' (G(A))
is open in C, and so 04(a) is closed. Therefore o4(a) is compact. O

Exercise 2.3.7. Let A be an algebra and a € A. If A € o(a), then show that
A" € o(a") for all n € N.

In the rest of this chapter, we use some facts from the theory of holomorphic
(analytic) vector valued functions of one complex variable. This theory is similar to
the elementary theory of complex functions and the interested reader can find more
details about it in Section III.4 of [I5].
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Proposition 2.3.8. Let A be a Banach algebra. For every a € A, the sequence
|a™||"/™ converges to r(a).

Proof. We prove the following inequalities:

lim sup [|a”||"/™ < r(a) < liminf ||a™||*/™.
n—oo

n—oo

Let A € o(a). Then it follows from the above exercise and Proposition
that |A\|" < [|a"]], for all n € N. Hence r(a) < |la®||'/", for all n € N, which implies
that the right hand side inequality.

For A € C with |A| > r(a), we claim the series Y "/ 5%+ is absolutely con-

ny\ 1/
vergent. Thus by the nth root test, we must have lim sup,,_, (”a ”) < 1. This

>\7L+1

clearly implies the left hand side inequality.

To prove the above claim, we first note that the function f(u) := aiu is

holomorphic on Res(a) because of the following discussion. If py € Res(a) and
|[=pol < [la=poll, then [[(a—p0)—(a—p)|| < [la—poll, which implies [|1— =5[] < 1.

Hence % is invertible. By computing its inverse and after some simplifications,

we obtain
o0

Fi) =Y (=)™ (f (o))",
n=0
This power series is convergent over the open neighborhood {; |11 — po| < [|a— pol| }
of 1o and shows that f is holomorphic in this neighborhood.

Secondly, we observe that, for A € C such that [A| > ||al|, the series Y7 | =4+
is absolutely convergent in norm to f(\) and this convergence is uniformly over any
neighborhood like {y; || > |la|| + €} for some € > 0. Therefore this series is the
Laurent expansion of f around oco. Since f is holomorphic in Res(a), and so in the
neighborhood {y;|p| > r(a)}, the above series is absolutely convergent for every A
in this latter neighborhood as we claimed. O

Proposition 2.3.9. Let A be a unital Banach algebra. Then oa(a) is non-empty
foralla € A.

Proof. Given a € A, let f be as above. For every ¢ € A*, define f, = ¢f :
Res(a)—C. Then f, is holomorphic. Hence if o(a) is empty, then f, is entire. On
the other hand, it is easy to see that limy_,o f,(\) = 0, which implies that f, is
bounded. Therefore by the Liouville theorem, see Theorem 10.23 of [40], f, is a
constant function. Moreover, f, has to be the zero function because of the above
limit. Since this holds for all ¢ € A*, we conclude f(\) =0, for all A € C. But this
contradicts with the fact that values of f are inverses of some elements of A. O
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Corollary 2.3.10. [Gelfand-Mazur] If a Banach algebra A is a division ring, then
it 1s isomorphic to C.

Proof. Since A is a division ring, it is unital and so it contains a copy of C. For an
arbitrary element a € A, there is some A € C such that a — A is not invertible in A
and so it has to be zero because A is a division ring. Hence a € C. O

Proposition 2.3.11. Let A be a closed unital subalgebra of a unital Banach algebra
B, i.e. 15 € A. Then for every a € A, we have

doa(a) C op(a) C oala),

where 0o 4(a) denotes the boundary of oa(a) in C.

Proof. Every invertible element of A is invertible in B too. This implies the right
hand side inclusion. It follows from that o4(a) is a closed subset of C, so
Joa(a) C oala). Given A € doa(a), let {\,} be a sequence in Resa(a) convergent
to A. Then a — \,—a — A in A and so in B. If a — X is invertible in B, then by
continuity of inversion, see Corollary 2.1.22) we obtain (a — A,) ™' —(a — \)~'. Now,
since A is closed and the sequence {(a — A\,)"'} is in A, its limit, namely (a — \)~*
belongs to A, that is A ¢ g4(a). This is a contradiction. Therefore A € og(a). This
proves the left hand side inclusion. O

2.4 The spectral theory of compact operators

In this section, E and F' are two Banach spaces and we are often dealing with
compact operators in K(F,F) or K(E). For every operator T' € B(E,F), we
denote the kernel of 7" by N(T') and the image of T" by R(T).

Definition 2.4.1. Given T' € B(E, F'), a complex numbers A is called an eigen-
value of T if T'— X is not one-to-one. The set of all eigenvalues of T" is denoted by
e(T). For every A € e(T), the eigenspace of A\ is N(T'— \) and every element of
the eigenspace of \ are called an eigenvector of .

Clearly, e(T)Co(T) for all T € B(E). We shall show that every non-zero
A € 0(T) is an eigenvalue of T" as well provided that T € K(F).

Proposition 2.4.2. (i) AssumeT € K(E,F) and R(T') is closed, then T is finite
rank.

(i) Assume T' € K(E) and 0 # X\ € C, then dimN(T — \) < o0.
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(iii) If E is infinite dimensional and T € K(E) then 0 € o(T).

Proof. (i) If R(T) is closed, then R(T') is complete, because F is complete. Hence
the map 7' : E—R(T) is open by the open mapping theorem, see Theorem
2.0.2] Therefore the image of every ball in £ under 7" is an open set in R(T")
whose closure is compact. This means R(7') is a locally compact topological
vector space. Hence by Theorem 1.22 of [41], R(T) is finite dimensional.

(ii) For every x € N(T — ), we have (T'— \)Tx = T(T — X\)x = 0. Therefore The
map T|nr—x : N(T'— \)—=N(T — ) is well defined. Since A # 0, this map
is onto as well. By (i), since T'| y(r—») is compact and N (T — A) is closed, the
image of this map, which is N(7" — \), is finite dimensional.

(iii) If 0 ¢ o(T'), then T is invertible. By an argument similar to Part (i), one can
show that R(T") = E is locally compact, and so finite dimensional. But this is
a contradiction. Hence 0 € o(T).

!
Lemma 2.4.3. Let M be a closed subspace of a topological vector space X .

(i) If X is locally convex and dimM < oo, then there exist a closed subspace N
of X such that X = M @& N.

(ii) If dim(X/M) < oo, then there exist a closed subspace N of X such that
X=Mo®N.

Proof. (i) Let {ey,...,e,} be a basis for M and let {1, - -, ,} be its dual basis.
Applying the Hahn-Banach theorem [Z.0.5] we extend «; to a (bounded) linear
functional on X for all 1 <i <n. Set N := N, N(q;). It is straightforward
to check that X = M & N.

(ii) It is an easy linear algebra exercise that there is a finite dimensional N of X
such that X = M @& N. Since N is finite dimensional, it is closed in X.

O

Exercise 2.4.4. Prove that if M and N are two closed subspace of E such that
E = M & N, then the projections maps m : E—M and m : E—N are bounded
operators, (Hint: use the closed graph theorem). Therefore if we equip M @& N with
the norm ||m+n|| := ||m||+||n| for allm € M and n € N, then m; +m : E-M &N
is a bounded isomorphism with a bounded inverse.

Exercise 2.4.5. Assume H is a Banach space and T': E—H and S : E—F are
compact operators. Show that 7'+ S : E—H & F defined by x — Tx + Sx is a
compact operator, where the norm on H & F' is defined as the above example.
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Definition 2.4.6. An operator T' € B(E, F') is called bounded below if there is
an ¢ > 0 such that e||z|| < ||Tz|| for all x € E.

Exercise 2.4.7. Let T € B(E,F) be a bounded below operator. Then R(T) is
closed.

Proposition 2.4.8. For every T € K(E) and A # 0, the subspace R(T — \) is
closed in E.

Proof. By Proposition 224.2)(ii), N(7 — A) is a finite dimensional closed subspace of
E, and consequently by Lemma 2.4.3] there exists a closed subspace M of E such
that £ = N(T'— \) @& M. Let S : M—FE be the restriction of T'— X\ to M. Then
S is bounded, one-to-one and R(S) = R(T — \A). Since, E is complete and S is
continuous, in order to prove that R(S) is closed, it is enough to show that S is
bounded below. If it is not bounded below, then there is a sequence {z,} in M such
that Sz,—0 and ||z,|| = 1 for all n € N. Since T" is a compact operator, there is
a subsequence of {T'(x,)}, say {T(x,,)}, converging to some point o € E. Since
S=T—-Xon M and Sz,,—0, we have

lim Az, = im (T'z,, — Sw,,) = xo.
11— 00 1—00

This implies zyp € M and Szy = lim; ,., ASz,,, = 0. Since S is one-to-one, zy = 0.
But, this contradicts with ||z,,| = 1. O

Lemma 2.4.9. Let X be a normed vector space and let M be a subspace of X.
Assume M s not dense in X. For every r > 1, there exists x € X such that
|x|| <r and ||z —y|| > 1 for all y € M.

Proof. Since M is not dense in X, the quotient space X/M is at least one dimen-
sional. Using the quotient norm, it is clear that one can find x; € X such that
inf{|lzy —y|l;y € M} = 1. Hence there exists y; € M such that ||z —yi|| < r. Set
=21 — Y1 ]

Proposition 2.4.10. For given T' € K(E) and r > 0, set
er(T) = {A € e(T); [A[ > r}.
Then we have
(i) R(T — \) # E for all X\ € e.(T), and

(ii) e.(T) is finite.
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Proof. We first describe a hypothesis which leads to a contradiction. Afterwards,
we shall show that the failure of either one of (i) or (ii) implies our hypothesis, and
so a contradiction. Assume there exist a sequence of closed subspaces M,, of EF and
a sequence of scalars \,, € e,(7) such that the following conditions hold:

(a) My G My G Ms G ---.
(b) T(M,)CM,, for all n € N.
(¢) (T — N\p)(M,11)CM,, for all n € N.

By Lemma [2.4.9] for every n > 2, there exists y,, € M,, such that
(2.2) lyall <2 and |y, —z[ > 1, Vo e M,_.
Then for n > m > 2, we define
Zmm = TYm — (T — ) Yn.
Conditions (b) and (c) imply that z,,, € M,_;. Hence by (2.2), we have
1Ty = Tymll = X = 2mall = Aallyn = AT 2l = [An] > 7.

This shows that the sequence {T'y,} has no convergent subsequence and this con-
tradicts with 7" being a compact operator.

Assume (i) is false, namely R(T'—Xg) = F for some \g € e,.(T). Set S :=T—X\g
and define M, := N(S™) for all n € N. Since \q is an eigenvalue of T, there
exists 0 # 1 € M;. Since R(S) = E for all n € N, one can inductively find
Tpi1 € M, 1 —M, such that Sz, = x,. Then S"x,,1 = x1 # 0, but S" "'z, .1 = 0.
This proves Condition (a) in the above. Condition (b) follows from the fact that
ST =TS. Set A\, := Ao for all n € N. Then Condition (c¢) holds already.

Assume (ii) is false, then there exist a sequence {\,} of distinct elements of
e-(T). For n € N, pick a non-zero eigenvector e, of A, and let M, be the subspace
generated by {ej,---,e,}. Conditions (a) and (b) follow immediately from the
definition of M,,. For every n € N and x = ajeq + -+ - + app1€,01 € M, 11, we have
(T — A1) = ar(A1 — Aprr)er + -+ an(Ay — A\ps1)en € M,. This shows that
Condition (c) holds too. O

In the rest of this section, the adjoint of an operator T € B(X,Y’) between
two topological vector space is the map 7% € B(Y™*, X*) defined by T%p := pT for
all p € Y*, where X* (resp. Y*) is the dual space of X (resp. Y), that is the
vector space of all continuous linear functionals on X (resp. Y'). We recall that the
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locally convex topology on X induced by semi-norms of the form x — |p(x)|, where
p € X* is called the weak topology of X. Similarly, the locally convex topology
on X* induced by semi-norms of the form p — |p(z)|, where z € X, is called the
weak-* topology of X*. When X is a normed space, X* := B(X,C) is equipped
with the operator norm, and so it is a normed space as well. We review some of the
properties of dual spaces in the following exercise:

Exercise 2.4.11. Assume X is a normed space.

(i) Using Theorem 3.3 of [41], show that, for every zo € X, there exists p € X*
such that p(zg) = ||zo|| and |p(x)| < ||z|| for all z € X.

(ii) Using Part (i), for every x € X, show that
[zl = sup{[p(z)[; p € X*, l|pll < 1}.

(iii) Let X** := (X*)* be the double dual of X. Define 6 : X—X** by 0(x) :=
x**, where **(p) := p(x) for all x € X and p € X*. Show that ||z| = ||z,
and therefore @ is an isometry.

(iv) Let Y be another normed space. For every T' € B(X,Y), show that
7| = sup{[p(Tz)[;z € X, ||z[ < 1,p € Y7, [|pl| < 1}.

Conclude that | T|| = ||T*]|.

(v) Prove that the weak topology of X is the weakest topology on X for which
every linear functional p € X* is continuous. Similarly, prove that the weak-
*topology is the weakest topology on X* for which every element of 6(X) is
continuous.

(vi) Assume X is a Banach space. Show that #(X) is a closed subspace of X**.
Prove that the members of 6(X) are exactly those linear functionals on X*
that are continuous with respect to the weak-* topology of X*. In other words,
the dual space of the locally convex topological vector space X* with weak-
*topology is exactly 6(X).

A subset Y of metric space (X,d) is called totally bounded if, for every
€ > 0, Y lies in a union of finitely many balls of radius €. The reader can find the
proof of the next theorem in Page 394 of [41].

Theorem 2.4.12. [The Arzela-Ascoli theorem] Let X be a compact space. Assume
A is a subset of C'(X) such that it is



2.4. THE SPECTRAL THEORY OF COMPACT OPERATORS 39

(i) pointwise bounded, namely {|f(z)|; f € A} < oo for all x € X, and

(ii) equicontinuous, namely, for every e > 0 and x € X, there is a neighborhood
U of x such that ' € U implies |f(x) — f(2')] < e for all f € A.

Then A is totally bounded in C(X).

Corollary 2.4.13. Let A be as described in the Arzela-Ascoli theorem. Then every
sequence in A has a convergent subsequence.

Since the topology of C'(X) is induced by the supremum norm, we can rephrase
this corollary by saying that every sequence in A has a uniformly convergent subse-

quence.

Proof. Since C'(X) is complete, the closure of A is complete and totally bounded.
This implies that the closure of A is compact, see Theorem 45.1 in [31]. O

Example 2.4.14. Let E be the Banach space C(]0, 1]).

(i) For every K € C([0,1] x [0,1]), we define a compact operator Tk € K(F) as
follows: For given f € E, we define

1
Txf(s) = / K(s,t)f(t)dt, Vs € [0, 1].
0
In order to show that Tk f € E, for every s, s € [0, 1], we compute

T f(s) = T f(s))] = / (K (s,1) — K(s', 1)) f(£)dt

IN

/0 K (s,1) — K(s',0)|| £ (1) dt
< sup [K(5,8) = K( )| F()laup:

te(0,1]

Since [0, 1] x [0, 1] is compact, K is uniformly continuous. In particular, for
every € > 0, there exists a § > 0 such that |s — s'| < § implies

Tic f(s) = T f(s)] < sup [K(s,t) = K(s", )L f()llsup < €llf(E)l]sup-

te[0,1]

This shows that Tk f is continuous on [0, 1]. It also shows that Tk ((E);) is
equicontinuous. On the other hand, for every f € (E);, we have

1
T f(s)] < / K (5, ) F Ot < 1K Jaupll Fllawp < 15 oy
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This shows that Tk ((E)) is pointwise bounded. Therefore by Corollary 22413
every sequence in Tk ((E);) has a convergent subsequence. Hence Tk is a
compact operator. This operator is called an integral operator associated
with K and the continuous function K is called the kernel of Ty.

(ii) For every f € E, define

Vf(s):= /OS f(t)dt, Vs € [0, 1].

Clearly, V f is continuous, and so V' defines a linear map from F into F. Next,
for every s, s" € [0, 1], we have
/ f(t)dt

This shows that V((E);) is equicontinuous and pointwise bounded. Therefore
V' is a compact operator on E. This operator is called the Volterra integral
operator on F.

Vf(s) = V() =

< Is = SII[.f lsup-

Proposition 2.4.15. An operator T' € B(E,F) is compact if and only if T* €
B(F*, E*) is compact.

Proof. Assume T' € B(E, F) is a compact operator. Let {y:} be sequence in the
unit ball of F*. Since ||y}|| < 1 for all n € N, this sequence is equicontinuous as
a family of functions on F. Let X be the closure of T'(E;), where £} is the closed
unit ball of E. Then X is compact, and so, for every x € X, the set {|y:z|;n € N}
is bounded. By Corollary 2413, the sequence {y:} has a uniformly convergent
subsequence, say {y; }, on X. Now, for every i,j € N, we compute

1Ty, — T yn || = sup [Ty, — Ty, ()]
reFy

= sup [(y, = y,,)(T2)]|

reF

= |lyn, — ¥n,llsup—0, asi, j—oo,

where || — ||sup in the last term is the norm of C'(X). This shows that the sequence
{Tyy.} is Cauchy, and since F* is complete, it is convergent. Therefore T is a
compact operator. The converse is proved similarly. O

Exercise 2.4.16. Complete the proof of the above proposition.

Assume X is a topological vector space, M is a subset of X and N is a subset
of X*. We define the annihilator of M as follows:

M+ :={pe X* p(x) =0,Yo € M}.
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Clearly, M~ is a subspace of X* even when M is not a subspace of X. Furthermore,
it is straightforward to show that M* is closed in weak-*topology. Similarly, we
define the annihilator of N as follows:

tN :={z € X;p(x)=0,Ypc N}
One easily checks that N is a closed subspace of X.

Proposition 2.4.17. Assume X is a Banach space, M is a subspace of X and N
1s a subspace of X*.

(i) (M%) is the norm closure of M in X.

(ii) (-N)* is the weak-* closure of N in X*.

Proof. (i) Tt is easy to see that +(M™) is norm closed and contains M, and so
MCH(M?1). Let xp € X — M. Then using the Hahn-Banach theorem, one
can find a linear functional p € X* such that p(xy) # 0 and p(z) = 0 for all
x € M. Since p € M+, we conclude that xy ¢ +(M*). Thus +(M*+)CM.

(i) Due to the fact that (*N)* is a weak-* closed subspace containing N, it con-
tains the weak-* closure of N as well. Let py € X* — N , where N denotes
the weak-* closure of N. Similar to Part (i), by applying the Hahn-Banach
theorem to X*, equipped with weak-* topology, we find a linear functional «
on X* such that a is continuous with respect to the weak-*topology of X*,
a(po) # 0 and a(p) = 0 for all p € N. By Exercise 2.24TT|(vi), there exists
some = € X such that 0(z) = o. Hence po(x) # 0 and p(z) =0 for all p € N.
Therefore py ¢ (*N)*. This shows that (*N)-CN.

O

Remark 2.4.18. 1t follows from the Hahn-Banach theorem that the elements of E*
separate points of E, namely, for every x € F, there exists p € E* such that p(x) # 0.
Similarly, the elements of F separate points of E*.

Lemma 2.4.19. Let T € B(E, F). Then the following statements hold:
(i) N(T*) = R(T)*.
(ii) N(T) = +R(T*).

(i) N(T*) is weak-* closed in F*.

(iv) R(T) is dense in F if and only if T* is one-to-one.
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(v) T is one-to-one if and only if R(T*) is weak-* dense in X*.

Proof. (i) pe N(T*) & T*p=0% pT(x) =0,V € E < pec R(T)*.
(i) 2 € N(T) & Tz = 0 & p(Tz) = 0,Yp € F* & Tp(z) = 0,Yp € F*
&€ TR(TY).
(iii) It follows from Part (i).
(iv) It follows from Part (i), Proposition 2.4.17(i), and the above remark.

(v) It follows from Part (ii), Proposition Z4.I7(ii), and the above remark.
U

Proposition 2.4.20. For every T € B(E, F), the following statements are equiva-
lent:

(i) R(T) is closed in F.
(i) R(T*) is weak-* closed in E.
(i) R(T™*) is norm closed in E.

Proof. Assume (i) holds. By Propositions ZZZT9(ii), we have N(T)* = (*R(T*))*,
and by ZAT7(ii), (L R(T*))* is the weak-* closure of R(T*). Thus N (T')* is the weak-
* closure of R(T*). Therefore to prove (ii), it is enough to show N(T)*CR(T*). For
0% pe€ N(T)*, define p' : R(T)—C by p/(Tx) := p(x). One easily checks that p’ is
well defined because p € N(T)*. Since R(T) is closed, and consequently complete,
by open mapping theorem, 7' : E— R(T') is open. Therefore for every € > 0, there
is 6 > 0 such that ||Tz|| < ¢ implies that ||z|| < &/||p||. Now, for every x € E such
that || Tz]| < J, we have

3
10'(Tx)] = |p()] < llpllll=ll < ||p||m =

This shows that p’ is continuous. By the Hahn-Banach theorem, p’ has an extension
A : F—C. Then for every x € E, we have T*A(z) = A(T'z) = p'(Tz) = p(z). Hence
p € R(T*).

Clearly, (iii) follows from (ii).

Assume (iii) holds. Let Z denote the norm closure of R(T"). Define S €
B(E,Z) by Sx = Tz for all x € E. By Proposition Z4.T9(iv), S* € B(Z*, E*) is
one-to-one. For every p € F* and p' € Z* such that p|z = p/, we have

T*p(z) = p(Tx) = p'(Tx) = p'(Sz) = S*p'(x), Vx € E,
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and therefore T*p = S*p’. Now, due to the fact that every bounded linear functional
on Z has an extension to whole F', this shows R(7T*) = R(S*). Hence R(S*) is closed,
and consequently complete. Therefore we can apply the open mapping theorem to
the bijective operator S* : Z*— R(S*) and conclude that its inverse is bounded too.
This means that there is a constant ¢ > 0 such that o||p|| < ||S*p|| for all p € Z*.
Now, it follows from this inequality and the following lemma that S(X) = Z. Hence
Z = R(S) = R(T), and therefore R(T') is norm closed. O

Lemma 2.4.21. Let T € B(E, F) and let U and V' be the open unit balls in E and
F, respectively. Then the following four statements are equivalent:

(i) There is § > 0 such that &||p|| < ||T*pl|| for all p € F*. In other words T* is
bounded below.

(ii) There is 6 > 0 such that SV CT(U).
(i11) There is 0 > 0 such that §VCT'(U).
(iv) T(E) = F.

Moreover, the same & works for all first three conditions.

Proof. Assume (i) holds. Since T'(U) is convex, closed and balanced, by Theorem
206 for every yo € F'— T'(U), one can find p € F* such that |p(y)| < 1 for all
y € T(U) and p(yo) > 1. Hence for all = € U, we have |T"p(z)| = |p(Tx)| < 1, and
so ||[T*p|| < 1. Using (i), we obtain

6 < 10p(yo)| < ollwoll TPl < llyoll-

Therefore y € T(U) for all y € §V. Hence (i) implies (ii).

Next, assume (ii) holds, then §V CT(U) for some § > 0. For every 3, € V, let
{en} be a sequence of strictly positive real numbers such that >~ e, <1 —|[jy].
This implies that £,—0 as n—oo. Find 27 € E such that ||z1/d| < |ly1]| and
|lyr — T(x1/0)|| < e1. For n > 2, set y, :== y,—1 — T(x,_1/0) and find z,, € E such
that
[ /0]l < llynll and|lyn — T(2n/0) < en.

By this construction, we get two sequences {x, }CFE and {y,}CV such that
[Zn+1/81l < Nynrll = llyn = T'(@n/6)l| < €n, Vn €N

Therefore y,—0 as n—o00 and we have

S llza/oll < e /ol + e < llonll + 3w < 1.
n=1 n=1 n=1
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Since E is complete, > > x,/d is convergent to some z € E and [jz| < 1, see

Problem Now, we compute

Tx = ZT(QL’n/(S) = Z(yn — yn—l—l) =1 — JL%yMl =y
n=1 n=1

This shows that y; € T'(U) and proves (iii).
Assume (iii) holds. For every p € F'*, we have
IT*pll = sup{|T"p(x)[;x € U}
= sup{[p(Tz)[;z € U}
> sup{|p(y)l;y € 0V} = dlpl.
This proves (i).
Finally, we note that (iii) clearly implies (iv), and by open mapping theorem,
(iv) implies (iii). O

Exercise 2.4.22. For given T' € B(E, F'), show that T" is onto if and only if 7 is
one-to-one and R(7T™) is norm closed.

Lemma 2.4.23. Let E be a locally convex topological space and let My be a closed
subspace of X. Then we have

dim X /M, < dim M;".

Proof. For every positive integer k£ < dim X/M,, there are vectors xy, -+, xp in X
such that if we set M; := (1, -+, x;) ® My for all 1 < i < k, then every M, is closed
by Theorem 1.42 of [41] and My & My & My & --- & M. Applying the Hahn-

Banach theorem, there are k linear functionals py,--- , pr on X such that p;z; = 1
and p; € M;*,. Since xy,--- ,x; are linearly independent, so are py,- -, pr. This
implies the desired inequality. O

Theorem 2.4.24. Let T € K(F).

(i) For every non-zero A € C, the following four numbers are equal and finite:
a = dimN(T — ),
= dim E/R(T — \),
o = dim N(T* = \),
p* = dim E*/R(T* — \).

(i) For every non-zero A € (1), X is an eigenvalue of both T and T*.
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(#ii) The spectrum of T is at most countable and its only possible limit point is 0.

Proof. (i) Set S := T — A. By Proposition 248 R(S) is norm closed and, by
Lemma Z4T9%i), R(S)t = N(S*). Therefore applying Lemma for
R(S)*CE, we obtain

(2.3) g <a

Since R(S) is norm closed, R(S™*) is weak-* closed by Proposition 2.4.200 Con-
sidering R(S*) as a closed subspace of E* in weak-* topology, it follows from
Exercise ZAI1(vi) that R(S*)t = +R(S*). On the other hand, by Lemma
R.AT9(ii), we have *R(S*) = N(S). Therefore if we apply Lemma for
the closed subspace R(S*), we obtain

(2.4) g* < a.
Now, we want to prove
(2.5) a < p.

By Proposition Z42((ii), « is finite. If a > 3, then § is finite too and Lemma
2.4.3 implies that there are closed subspaces M, NCFE such that

(2.6) N(S)® M = E = R(S) @ N.

Using the first equality in ([2.6]), for every x € E, there are unique z; € N(S)
and xo € M such that + = x; + x9. Define 7 : E—-N(S) by 7z := z;. By
Exercise 244, 7 is bounded. Also, since dim N = < a < oo, there is a
bounded and onto linear map K : N(S)—N such that Kzy = 0 for some
0 # x9 € N(S). Clearly, K is a compact operator. Therefore & : F—FE
defined by ®x := Tx + Krx is a compact operator, see Exercise 245 One
easily sees that ® —\ = S+ Kr. For every x € M, mx = 0 and (& —\)z = Sz.
Hence (& — \)(E) = R(S). For every z € N(S), mx =z and (® — \)z = K.
Hence (& — A\)(N(S)) = K(N(S)) = N. Therefore = R(S) ® NCR(® — \).
However, (& — \)zog = Kzy = 0 shows that A is an eigenvalue of ® and since ®
is a compact operator, Proposition Z4.10(i) implies that R(® — \) C E. This
contradiction proves 2.0

The inequality
(2.7) ot < B

follows from Inequality (2] and the fact that 7™ is compact too, see Propo-
sition 2418 Finally, Inequalities (23), 24), 23), and (2Z71) show that
a = =a* = f* < oo and complete the proof of (i).
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(ii) Assume a complex number A # 0 is not an eigenvalue of 7. Then by (i), we
have
dim N(T — \) = dim E/R(T — \) = 0.

Therefore T' — X is one-to-one and onto. By Proposition 22125, T — X is
invertible and so A ¢ o (7).

(iii) By (ii) and Proposition 2ZZT0(ii), the set of all A € o(7") such that A > r is
finite for all » > 0. Therefore the only possible limit point of o(7") is 0 and
o(T) is at most countable.

O

2.5 The holomorphic functional calculus

It is often useful to construct new elements in Banach algebras and operator algebras
with certain properties similar to what one used to work with in elementary calculus.
In operator algebras, various functional calculi provide us with practical methods
to apply certain functions to operators to construct new operators. Polynomial
functional calculus is the most simple functional calculus which works in two
levels; Banach algebras and operator algebras.

Let P(z, Z) be a complex polynomial of two variables z and z and let T' € B(H)
be a bounded operator on a Hilbert space H. Then by substituting z and z with
T and T, respectively, we obtain a new operator which formally we denote it by
P(T,T*) and it behaves the same way as the original polynomial P. For example, the
values of the polynomial P(z2z) = 2z = |2|? are always positive (non-negative) real
numbers, and similarly, the operator constructed by P over an operator T' € B(H),
i.e. P(T,T*) =TT* is also a positive operator , as it will be explained later.

Let Clz, z] denote the algebra of complex polynomials of two variables z and
Z. Sending z to z defines an involution on this algebra. Then for given T' € B(H),
the polynomial functional calculus is a *-homomorphism (a homomorphism be-
tween two involutive algebras which preserves the involution) from C|z, z| into B(H).
Clearly this definition works for any involutive algebra including arbitrary C"*-
algebras. Since the target of this functional calculus is an operator algebra with
an involution, we had to consider two variables z and Z in the domain of the map-
ping to be able to define an involution. However to define polynomial functional
calculus in Banach algebras, one variable is sufficient. Let C[z] be the algebra of
complex polynomials. Given an element @ in a Banach algebra A, we define C[z]—A
by sending a polynomial P(z) to P(a). This is the polynomial functional calculus
over an element a € A and it is a homomorphism of algebras.
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As for generalizing this functional calculus, it is tempting to consider conver-
gent power series, like > ¢,2", and define the functional calculus for them. It
works when the series Y7 ¢, ||a||™ is convergent in the Banach algebra, for example,
the exponential of a € A is defined by e* = Y~ a"/n!. The exponential function
is an entire function, that is why it can be applied to every element of a Banach
algebra. More general holomorphic functions can only be applied to those elements
whose spectrum is contained in the domain of the function.

Let A be a unital Banach algebra and a € A. Let f be a holomorphic function
on an open set Uy containing o(a). Assume vy = Z?:l%' is a finite collection of
smooth simple closed curves in U; whose interiors contains o(a). The existence of
such a finite collection of curves follows from the fact that o(a) is compact. We also
assume these curves are oriented positively with respect to the spectrum, namely
if a piece of the spectrum, say X, is surrounded by 7, then a person walking on
~v1 always has X on his left. In the proof of Proposition 2.3.8] we proved that the
map A—(\ — a)~! is a holomorphic function on Res(a). Hence for every ¢ € A*,
the function ¢ : A — f(A)e((A —a)™') is a holomorphic function on Res(a) which
contains the image of v. Now we can define F' : A*—C by

Clearly, we have |F'(y)| < %snpﬂf@ﬂ”()\ —a)71||}, where [ is the sum of the
lengths of all curves in . This shows that F' is a bounded functional over A*.

Let P denote a partition of the curve v, with points Ag, Ai,---, A\, = Ay €
Image(v1). Since the function A — f(A)(XA — a)~! is continuous, the limit of the
Riemann sum

Z SN —a) ' (A — Aia)

exists in A when P varies in the set of partitions of y; such that max; |\; — \;_1|—0.
Let us denote this limit by b;. The same argument holds for the rest of the curves
Yo, ++ , Yk We denote the similar limits by by, - - -, by. By continuity of o, it is clear
that F(¢) = ¢(5= Z?Zl b;), namely F' € A and is equal to b := 5 ;?:1 b;. By
Cauchy’s theorem, see Theorems 7.47 and 7.49 of [35], b does not depend on the
curve y = Zle 7;- It also follows from Cauchy’s theorem that if the interior of any
of the curves 71, -, 7, does not intersect o(a) then the corresponding integral is

zero. We denote b by f(a) and symbolically write

f(a) ZQLM/{(_A)GCM.
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Here, one final remark is necessary. When Uy consists of several connected com-
ponents. For every component one can choose a single curve enclosing the part of
o(a) that lies in that component. Therefore to keep our arguments easy to follow,
we usually assume there is only one curve around the spectrum.

Let f and g be two holomorphic functions with domains Uy and U,. Then
the domains of fg, f + g and any scalar multiplication of f and g contain Uy N U,.
Therefore the set of all holomorphic functions whose domains contain o4 (a) is an
algebra called the algebra of holomorphic functions over o,4(a) and is denoted
by Ha(a), or simply H(a).

Definition 2.5.1. The mapping H(a)—A, f — f(a) is called the holomorphic
functional calculus over a.

Theorem 2.5.2. With the above notation, the holomorphic functional calculus is
an algebra homomorphism which maps the constant function 1 to 14 € A and maps
the identity function z — z to a € A.

Proof. 1t is straightforward to check that the holomorphic functional calculus is
linear. Let f,g,U; and U, be as described in the above. Let v, and 7, be two
smooth simple closed curves in Uy N U, enclosing o(a). We can assume that v, lies
in the interior of v;. Then we have

flalgla) = (%L/f 1w)(;%49wxu—@*w0

. MQAQMfugm (=) = (=) dhdy
_ TNy g(u
A)

1 FN)g(p) g(u
+ 13 [m e DTN — a) "dNdp.

After changing the order of integration, the second term equals

ﬁ . (/7 %dﬂ) FO)A = a)~ldA.

M is holomorphic in the interior of ~;, by Cauchy’s theorem, the integral

Since
fw S d is zero for all A € ;. Therefore the second term is zero, and so we have

f(a)g(a>=i./w< L[ A )dA) g()(n— a) " Mdu

271 27 )\ —
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By Cauchy’s integral formula, see Theorem 8.1 of [35], f(1) = 5= fﬁﬂ f\t()‘ud)\ Hence
we obtain

fmmm»:;%/fﬂmmmw—arwuzqmmy

This shows two facts: First, the holomorphic functional calculus preserves the mul-
tiplication. Secondly, its image is always a commutative subalgebra of A, because
fg = gf as two holomorphic function.

Let f be the constant function 1 over C. Then for every a € A, we have

Fla) = —— / (A —a)ld),

21

where one can choose 7 to be a circle centered at the origin of a reduce greater than
|al|. Then for every A € v, > | <%+ converges uniformly to (A — a)~'. Hence we
have

ﬂ@zgm/ZMH
- QMZ/)\nH

- 1A>

where the last step follows from the following lemma. A similar computation shows
that f(a) = a whenever f is the identity function. O

Exercise 2.5.3. Prove the last sentence of the above proof.

Lemma 2.5.4. Let C' be a circle centered at the origin of radius r. Then

L 2mt n=20
Czn-i-l 0 n%o

Proof. Tt is a straightforward computation if we apply the change of variable z =
ret. O

Theorem 2.5.5. [The holomorphic spectral mapping theorem] Let A be a unital

Banach algebra and a € A. If f is a holomorphic function over a neighborhood

of o(a), then o(f(a)) = f(o(a)). Moreover, if g is a holomorphic function over a
a

neighborhood of o(f(a)), then gof(a) = g(f(a)).

Proof. Set b:= f(a) and let p ¢ f(o(a)). Since the function k(z) := ﬁ is holomor-

phic over C — {u}, the function h(X) := f(/\ﬁ—u is holomorphic over a neighborhood
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of o(a). Then we have (b — u)h(a) = h(a)(b— ) = 1. Thus b — p is invertible, and
so i ¢ o(f(a)). This shows that o(f(a)) C f(o(a)).
Let u = f(Xo) for some A\g € o(a). Since f is holomorphic over a neighborhood,

say Uy, of o(a), there is a holomorphic function I over Uy such that f(\) — pu =
(A= Ao)l(A) for all X € Uy. Thus

fla) = p=(a—=Ao)l(a) = l{a)(a = Xo).

Since a — \g is not invertible, f(a) — p cannot be invertible either. This show
flo(a)) C a(f(a)).
Now, let v, and 7, be two smooth simple closed curves in C such that

lies inside of the domain of g enclosing o(f(a)) and 7, lies in the domain of f and
encloses f~1(72). Then we have

gof(@) = 5 | gof(VO~ )i
= = [ (] o0 100 ) 0=
= 5 o0 ([ =g =0 )
= [ ol @)
= /()

Exercise 2.5.6. Let A be a unital Banach algebra.

(i) For given a € A, show that the definition of exponential map of a by holomor-

phic functional calculus is equivalent to its definition by the series >~ %

(i) If @ and b are two elements of A such that ab = ba, then show that e?*® = e%e?,
and conclude that e™@ = (e®)~1.

By the above exercise, the image of the exponential map lies in A*. Moreover,
for every a € A, it defines a one parameter subgroup in A* by p, : R—A*, t — €',

Proposition 2.5.7. Let A be a unital Banach algebra and U C C be an open set.
Then the set
Ly :={a € Ajoa(a) C U}

s an open subset of A.
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Proof. Set U¢ := C — U. For a € FEy, the function U°—A, A — (a — )7}
continuous and limA_m (@ — A)7| = 0. Hence sup,cpe [[(a — X) 7| < 00, and so

§ = infyepe iy > 0. If [la — bl] < 6, then [|(a — A) — (b~ \)|| < qmiy=ry for

all A € U¢. Thus by Proposition ZI.2T], (b — \) is invertible for all A € U¢. In other
words, 04(b) C E, or equivalently, b € Ey. a

2.6 Problems

Problem 2.1. Find an example for a linear map T between two Banach spaces such
that the rank of 7' is finite, but 7" is not bounded.

Problem 2.2. Let A be a unital involutive Banach algebra. Prove that o(a*) = o(a)
for all a € A.

Problem 2.3. Let B be a unital Banach subalgebra of a unital Banach algebra A.
For every b € B, show that r4(b) = rp(b).

Problem 2.4. Assume A is an involutive Banach algebra. Show that every left unit
in A is a unit element of A.

Problem 2.5. Find an example for a unital Banach algebra A with two elements
a,b € A such that ab =1 but ba # 1. (Hint: Consider A = B(¢*(N)), the bounded
operators on /*(N).)

Problem 2.6. Find a sequence {e,} of non-negative integrable functions on R such
that supp(e,)C[—1/n,1/n] and [, e,(x)dz =1 for all n € N. Show that {e,} is an
approximate unit for the Banach algebra L'(R).

Problem 2.7. Let {c,} be a sequence of complex numbers. Define an operator
T : B(*(N))—=B(*(N)) by T(f)(n) := c,f(n) for all f € B({*(N)) and n € N.
Prove the following statements:

(i) T is a well defined bounded operator if and only if {¢,} is bounded.

(ii) 7' is an invertible operator if and only if there is a ¢ > 0 such that |¢,| > € for
all n € N. When T' is invertible, describe its inverse.

(iii) 7" is a compact operator if and only if ¢,—0.
(iv) o(T) = {c,;n € N}.

(v) For n € N, let T,, be the operator defined by the sequence {c, , }men, where

. )1 m<n
Y0 m>n

Then the sequence {7} is an approximate unit for K (¢*(N)).



52 CHAPTER 2. BANACH ALGEBRAS AND SPECTRAL THEORY
Problem 2.8. Let A be a unital Banach algebra such that [|1]| = 1.

(i) For given a € A such that [|a| < 1, show that there is a continuous path
7 : 0, 1]—A* such that v(0) =1 and v(1) = (1 —a)~".

(ii) Show that, for every a € A* there is € > 0 such that for every b € A satisfying
la — b|| < e there is a continuous path in A* connecting a to b.

(iii) Define
Gy = {Hai;n € N,Vi,o; = (1 —2) tora; = 1 — 2, for some |[|z] < 1} :
i=1
Prove that Gy is an open subgroup of A*.
(iv) Prove that G is the connected component of A* containing 1.
v) Prove that Gy is normal in A% and consequently, o is a discrete group.
P that Gy i lin A%, and tly, A*/Gy is a discrete g

Problem 2.9. Assume E is a Banach space. Prove that F/(E) is not closed in B(E),
unless E is finite dimensional.

Problem 2.10. Let £ and F' be two Banach spaces.

(i) Show that T' € F(E, F) if and only if T* € F(F*, E*).

(ii) Show that 7' is an isometric isomorphism if and only if 7 is an isometric
isomorphism.

(iii) Let o and 7 be the weak-* topologies on E* and F*, respectively. Prove that
S : (E*,0)—(F* 7) is a continuous linear map if and only if there is T €
B(E, F) such that S = T*.

(iv) For T € B(E, F), assume R(T) is closed. Show that
(a) dim N(T') = dim E*/R(T™),
(b) dim N(7*) = dim F/R(T).
This generalizes the equalities a = * and o = 8 in Theorem

Problem 2.11. Set X := L'([0,1]). Then X* = L*([0,1]), see Theorem 6.15 of
[19]. Describe the weak-*topology of X* using integrations on [0,1]. For given
T € B(X, E), prove that if R(T*) contains all continuous functions on [0, 1], then 7'
1s one-to-one.
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Problem 2.12. Let E be a Banach space, S € B(E) and T' € K(F). Prove that
S(1—T)=1if and only if (1 —T)S = 1. In this case, show that 1 — (1 —7)" ' is a
compact operator.

Problem 2.13. Let E and F' be Banach spaces. Prove that a subset ACB(E, F) is
equicontinuous if and only if there exists M < oo such that | 7| < M for all T' € A.

Problem 2.14. Let E' and F' be Banach spaces. Use the Arzela-Ascoli theorem,
2212 and Corollary to show that K(E, F) is closed in B(E, F).

Problem 2.15. Let E be a Banach space. Show that if T € K(F) is an idempotent,
ie. T2 =T, then T € F(E).

Problem 2.16. Let E and F' be two Banach spaces and 7' € B(E, F'). Show that
if R(T*)= N(T)*, then R(T) is closed.

Problem 2.17. Let F and F' be two Banach spaces. Prove that the subset of all
onto operators in B(FE, F') is open.

Problem 2.18. Let E be a Banach space and let T' € B(E). Prove that A € o(7T)
if and only if there exists a sequence {z,} in E such that ||z,|| = 1 for all n € N
and lim,, . || Tz, — Ax,| = 0.

Problem 2.19. Assume F is a Banach space, T' € K(F),and A # 0. Set S :=T—\.

(i) Prove that there is some n € N such that N(S™) = N(S™*1).
(ii) For n € N satisfying (i), prove that N(S™) = N(S"™") for all k € N.

(iii) Let n be the smallest natural number satisfying (i). Prove that dim N(S™) is
finite and £ = N(S™) & R(S™). Moreover, show that the restriction of S to
R(S™) is a bijective mapping from R(S™) onto itself.

Problem 2.20. Let X be a compact subset of C and let a € C'(X) be the identity
map, i.e. a(z) = z for all z € C. Show that the holomorphic functional calculus over
a, i.e. the map H(a)—C(X), is actually the inclusion of the algebra of holomorphic
functions on a neighborhood of X into the algebra of continuous functions on X.
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Chapter 3

The Gelfand duality

We begin our journey in abstract C*-algebras with a thorough study of commutative
C*-algebras in this chapter. Our main goal here is to show that every commutative
C*-algebra A can be realized as the C*-algebra of continuous functions at infinity
over some locally compact and Hausdorff topological space, denoted by Q(A), which
is intrinsically associated to A. This topological space is nothing but the space of
all characters of A, or in other words, the space of all non-zero continuous homo-
morphisms from A into C. Every such a homomorphism is also a functional on A,
and therefore (2(A) is a subset of A*, the dual space of A. This realization gives us
a way to topologize Q(A) by inducing the weak-* topology of A*. Also, the natu-
ral inclusion of A into A**, the double dual space of A, suggests considering every
element of A as a continuous function over Q(A). This is the core of the famous
Gelfand transform which, generally, maps a given commutative Banach algebra A
into the C*-algebra Cy(€2(A)). As one notices the original setting of the Gelfand
transform goes beyond the theory of C*-algebras and includes Banach algebras. But
the theory finds its edge when it is restricted to C*-algebras, because in this case,
the Gelfand transform is always an isometric isomorphism. Besides many applica-
tions of the Gelfand transform in the theory of commutative Banach algebras and
specifically commutative C*-algebras, it also gives rise to a very important tool in
the abstract theory of C*-algebras, namely the continuous functional calculus.

In Section B2 we study the continuous functional calculus and some of its
corollaries. For instance, we show that every injective x-homomorphism between
two C*-algebra is an isometry. This shows that the C*-norm of a C*-algebra is
unique. In other words, the analytical structure of a C*-algebra is closely related
to its algebraic structure. It is also proved that the continuous functional calculus
is consistent with the holomorphic functional calculus. More applications of the
continuous functional calculus are given in Chapter @l

95
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We return to the Gelfand theory in Section and prove that the corre-
spondence between commutative C*-algebras and locally compact and Hausdorff
topological spaces is actually an equivalence of categories provided that we choose
the sets of morphisms carefully.

3.1 The Gelfand transform

In this section, we assume A is a Banach algebra, and by an ideal, we mean a two
sided ideal.

Definition 3.1.1. An ideal m of A is called proper if m # A. A proper ideal m of
A is called a maximal ideal of A if it is not contained in any other proper ideal of

A.

Exercise 3.1.2. Let A be unital.

(i) Assume m is a proper ideal of A. Show that it contains no invertible element
of A.

(ii) Show that if m is an ideal (resp. a proper ideal) of A, then so is its closure.
(iii) Show that every maximal ideal of A is closed.

Definition 3.1.3. Let A and B be two Banach algebras.

(i) A homomorphism from A into B is a continuous linear map ¢ : A—B such
that p(ab) = ¢(a)p(b) for all a,b € A.

(ii)) A homomorphism which is not necessarily continuous is called an algebraic
homomorphism.

(iii)) When A and B are involutive, ¢ is called a *-homomorphism if ¢(a*) =
o(a)* for all a € A.

(iv) An isomorphism from A into B is a one-to-one and onto homomorphism
such that its inverse is also continuous.

(v) An isometry from A into B is a homomorphism ¢ which preserves the norm,
that is ||¢(a)|| = ||a|| for all @ € A. When an isomorphism preserves the norm,
it is called an isometric isomorphism.

One notes that every isometry is one-to-one.
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Proposition 3.1.4. Let m be a closed ideal of A. Then A/m equipped with the
quotient norm is a Banach algebra and the quotient map © : A—A/m is a homo-
morphism.

Proof. The quotient map is clearly an algebraic homomorphism. Also we know from
functional analysis that A/m is a Banach space and 7 is continuous, see Theorem
1.41 of [1]. In fact, ||w]] < 1. We only need to show that the quotient norm is
sub-multiplicative. For given a,b € A and for every ¢ > 0, by the definition of
the quotient norm, there exist m,n € m such that ||a + m| < |7(a)| + ¢ and
b+ n|| < ||7(b)|| + . Since (a +m)(b+ n) € ab+ m, we have

(@) @) = [7((a+m)(b+n))
< [l(@a+m)(b+n)|
< la+m|[|b+n]|
< |[m(@)[llx®)] + e(llr(a)]] + lw(b)] + €).
This holds for every e, and so it implies the desired inequality. O

Definition 3.1.5. Let A be commutative and let m be an ideal of A. An element
e € A is called a unit modulo m if its image € in A/m is the unit of A/m, i.e.
ea—a €mand ae —a € m for all a € A. An ideal m of A is called regular if there
exists a unit modulo m in A.

Lemma 3.1.6. Let A be as above. If m is a proper ideal of A and e € A is a unit
modulo m, then inf{|le — al|;a € m} > 1.

Proof. 1f |le — al| < 1 for some a € m, then the power series b := Y >~ (e — )"
converges and we have b = (e —a)b+e —a = eb —ab+ e —a. Hence e = (ab +
a) — (eb — b) € m. By the definition of e, we deduce that m = A, which is a

contradiction. O

Using the above lemma, one can repeat Parts (ii) and (iii) of Exercise B2 for
non-unital commutative Banach algebras too.

Proposition 3.1.7. Fvery reqular and proper ideal of a commutative Banach algebra
A is contained in a reqular maximal ideal of A.

Proof. This statement follows from a routine argument based on Zorn’s lemma and
is left to the reader. O

Corollary 3.1.8. Let A be unital and commutative. For every non-invertible ele-
ment a € A, there exists a mazximal ideal of A containing a.
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Let A be commutative and let m be a regular maximal ideal of A. The quotient
algebra A/m is a field and by the Gelfand-Mazur theorem, Corollary 2310 it
has to be isomorphic to the field C of complex numbers. Since the only algebra
automorphism of C is identity, the isomorphism A/m—C is uniquely determined
by m. Therefore by combining this isomorphism with the quotient map A—A/m,
we get a homomorphism uniquely defined by m. In other words, we correspond
a homomorphism w, : A—C to each regular maximal ideal m in A. There is a
reverse correspondence too. To each non-zero homomorphism w : A—C, we simply
associate its kernel, m, := kerw. One notes that since C is a simple and unital
algebra, m,, is a regular maximal ideal of A. This discussion is summarized in the
following proposition.

Proposition 3.1.9. Assume A is a commutative Banach algebra. Let M(A) denote
the set of all reqular mazimal ideals of A and let Q(A) denote the set of all non-zero
homomorphisms from A into C. Then the mappings M(A)—Q(A), m — wy, and
Q(A) > M(A), w — my, are inverse of each other.

Proof. By the definition, it is clear that m,, = ker(w,) = m for every regular
maximal idea m in A. For w € Q(A), the mapping A/Kerw—C defined by [a] —
w(a) for all @ € A is an isomorphism. Thus by combining this isomorphism with
the quotient map A—A/Kerw, we obtain a homomorphism from A into C, which
is exactly w. This means wy,, = w. O

One notes that if a homomorphism ¢ : A—C is non-zero, then ¢(14) = 1 and
p(a) # 0 for all a € A*. Now, we are going to prove that these two conditions are
sufficient for a linear map ¢ : A—C to be a homomorphism.

Lemma 3.1.10. Let f be an entire function over C and let f(0) = 1, f'(0) = 0,
and 0 < |f(N)| < e for all \ € C. Then f(A\) =1 for all X € C.

Proof. Since f has no zero, % is an entire function, and consequently, it has an
anti-derivative, say g. Considering the aforementioned initial conditions of f, we
have f = exp(g), g(0) = ¢’(0) = 0, and Re|g(\)| < |A| for all A € C. For given
positive real number r, this inequality implies that |g(\)| < [2r—g(A)] for all |A] < 7.
Then it is clear that the function

gV
1) = 2 — o)

is holomorphic in the domain {\;0 < |A| < 2r}. It is also holomorphic at 0,
because (2r — ¢g(0)) # 0 and the Taylor expansion of g at zero can be divided by
A2, Therefore h,(\) is holomorphic in the disc {\;|\| < r}. Now, by the maximum
modulus theorem, see Theorem 8.59 of [35], either g is constant or it attains its
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maximum at the boundary of this disc. In the latter case, we note that |h,.(A)| < 1
for all |A| = r. Thus |h,.(A)| < 1 for all |A\] < 1. If we fix A and let r—o0, then
we must have g(A) = 0. This is true for every A € C and implies the desired
conclusion. 0

Proposition 3.1.11 (Gleason, Kahane, Zelazko). Let A be a unital Banach algebra,
(not necessarily commutative). Let ¢ : A—=C be a linear map such that p(14) = 1
and p(a) # 0 for all a € A*. Then ¢ is a homomorphism.

Note that the continuity of ¢ is not a part of the hypothesis, but it follows
from the proof.

Proof. Let N denote the kernel of ¢. Since A = N & C as a vector space, for
arbitrary a,b € A, we can find z,y € N such that a = = + ¢(a) and b = y + ¢(b).
Thus we have ab = xy + zp(b) + yp(a) + p(a)e(b). Since (1) = 1, by applying ¢
to the both sides of this identity, we obtain ¢(ab) = ¢(xy)+ ¢(a)p(b). Therefore to
prove that ¢ is an algebraic homomorphism, it is enough to show that ¢(zy) = 0
for all z,y € N. First, we claim that ¢(z?) =0 for all x € N.

Since N contains no invertible elements, ||[I — z|| > 1 for all z € N. Hence
lo(A—2z)| = |A\| < ||]A—z| for all z € N and X\ € C. This shows that ¢ is continuous
and its norm is less than or equal 1.

Now, fix x € N. Without loss of generality, we can assume that |z| = 1.
Define

FO) = f: PN e

|
e n:

Since [p(2")| < ||2"|| < ||z||™ = 1, f is entire and |f(A)| < exp(|A]|) for all A €
C. Also, f(0) = ¢(1) = 1 and f'(0) = p(z) = 0. Moreover, one observes that
f(A) = ¢(exp(Ax)) for all A € C. But the image of the exponential map lies in A%,
so f(A\) # 0 for all A € C. Now, by Lemma BII0, f”(0) = 0, and consequently,

¢(2%) = 0, which proves our claim.

Setting a = b in the equation ¢(ab) = ¢(zy) + ¢(a)p(b), we get p(a?) = p(a)?
for all @ € A. By replacing a with a + b in this equation, we obtain ¢(ab + ba) =
2¢(a)p(b). This shows that if x € N and y is an arbitrary element of A, then
xy +yxr € N. Applying this fact to the identity

(zy — yx)? + (zy + yx)* = 2(x(yzy) + (yay)z),

we conclude (xy — yx)? € N for all x € N. This amounts to o(xy — yz) = 0. By
adding this equation to ¢(xy + yx) = 0, we get 2p(ry) = 0 whenever z € N, and
this completes the proof. O
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Let (A*); denote the (norm) closed unit ball of the dual space A*, namely the
set of all bounded linear maps from A into C of norm less than or equal to 1.

Proposition 3.1.12. Let A be a commutative Banach algebra. Then

(i) QA) C (A*)1, and

(i) QUA) is a locally compact set in the weak-* topology of A*. Moreover, Q(A) is
compact if A is unital.

Proof. (i) This follows from Proposition BITT], but we also give a simple proof.
Given w € Q(A) and for every a € A and n € N, we have |w(a)| = |w(a™)|'/" <
]| *™[[a™||*/™. Thus |w(a)| < lim, e [|w||*™||a™||*™ = r(a) < ||a||. Therefore
Jw[] < 1.

(i) Set '(A) := Q(A)U{0}. Let {w;} be anet in '(A) convergent to a functional
wo € (A*); in the weak-* topology. For every a,b € A, we have

wo(ab) = lifn wi(ab) = lilm wi(a)w;(b) = lilm wi(a) li}(n w;i(b) = wo(a)wo(b).

This shows that €'(A) is closed in weak-* topology. On the other hand, by
the Banach-Alaoglu’s theorem, see Theorem .04 A*; is compact in weak-
*topology. Hence (¥ (A) is compact, and consequently 2(A) is a locally com-
pact subset of A*;.

If A is unital, then w(1) =1 for all w € Q(A). Hence 0 is an isolated point in
Y (A), which means 2(A) is compact.

O

Remark 3.1.13. (i) In the above proof, we actually proved that if X C Q(A) is
closed and 0 does not belong to its boundary in the weak-*topology of A*,
then X is compact.

(ii) One also notes that weak-* topology on A* is a locally convex topology defined
by a separating set of functionals, and so it is Hausdorff, see Theorem 3.10 of
[41]. Therefore Q(A) is always Hausdorff.

Definition 3.1.14. Let X be a locally compact Hausdorff topological space. Con-
sider a point outside of X and denote it by co. Set X*° := X U{oo}. To topologize
X, we define the collection of all open subsets of X to be all sets of the following

types:

(i) U, where U is an open subset of X
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(i) O C X, where X*° — O is a compact subspace of X.

Then the topological space X is compact and is called the one-point (or Alexan-

drov) compactification of X. The point co is usually called the point at infinity
of X.

For example, one easily observes that T = {z € C;|z| = 1} is homeomorphic
to the one point compactification of R. More generally, S™ = {z € R*"™; ||z| = 1} is
homeomorphic to the one-point compactification of R”. When X is already compact,
one notes that X is nothing but the disjoint union of X with the one point set
{o0}, (discuss both the unital and non-unital cases).

Exercise 3.1.15. Let A be a commutative Banach algebra and let ('(A) be as the
proof of Proposition Show that €'(A) is the one-point compactification of
Q(A).

The following propositions illustrates the relationship of one-point compactifi-
cation of a topological space X and unitization of the commutative Banach algebra

Co(X).

Proposition 3.1.16. Let X be a locally compact and Hausdorff topological space.
There is a canonical isomorphism between Cy(X); and C(X>°).

Proof. We extend every f € Cy(X) to X by defining f(co) = 0 and denote it
again by f. Let e € C'(X*) be the constant function 1. Define ¢ : Cy(X);—C(X>)
by (f,A\) — f + AXe for all (f,\) € Cy(X);. It is an easy exercise to check that ¢ is
an algebraic isomorphism. For (f, \) € Cy(X);, we have

[e(fs Mllswp = sup [ f(x) +A| < ilelglf(éf)l + AL =AM

reX ™

This shows that ¢ is continuous. On the other hand, for every x € X we have
|f ()] < A+ |f(x) + Al. Thus we get

21 = sup 7@+
sup |f(x) + Al + 2|

reX>®

sup [f(z) + Al +2[f(c0) + Al

reX >

3 sup |f(x)+ Al

reX®

B[1e(fs M llsup-

This proves that the inverse of ¢ is continuous as well. O

VAN VAN VAN



62 CHAPTER 3. THE GELFAND DUALITY

We note that ¢ is not an isometry, but its restriction to Cy(X) is. The reason
for this phenomenon is that the norm on Cy(X); is not a C*-norm, but the norm
on C(X®°) is. We shall come back to this issue in Exercise B.2.14

Definition 3.1.17. Let A be a commutative Banach algebra.

(i) The topological space ©2(A) is called the spectrum of A and its elements are
called characters of A.

(ii) For every a € A, we define a € Q(A) by a(w) := w(a) for all w € Q(A). The
mapping G : A—Cy(Q2(A)) sending a to a is called the Gelfand transform.

Theorem 3.1.18. Let A be a commutative Banach algebra and let a € A.

(i) The Gelfand transform is an algebraic homomorphism.
(ii) If A is unital, then o(a) = a(2(A)), otherwise o(a) = a(Q2(A)) U {0}.

(1) r(a) = [|allsup-

(iv) The Gelfand transform is continuous. In fact, ||al|swp < ||a]| for all a € A.

Proof. (i) Since the weak-* topology on A* is defined by functionals {a;a € A}, all
functionals, and consequently their restrictions to Q(A), are continuous in this
topology. On the other hand, for a real number M > 0 and for a € A, the set
{w € Q(A);|a(w)| > M} is closed in the weak-* topology. Thus it is compact,
because it does not contains the zero functional. Therefore a € Cy(2(A)), for
all a € A, in other words, G is well-defined. It is straightforward to see that G
is linear and multiplicative.

(ii) Let A be unital and let a € A. If A € o(a), then a — A is not invertible. Thus
there is a maximal ideal, say m, containing a — A. This means wy(a — A) = 0.
In other words, a(wn) = wn(a) = A. Conversely, if A\ = w(a) = a(w) for some
w € Q(A), then a — A belongs to the maximal ideal m,. Hence it is not an
invertible element, that is A € o(a). The case that A is non-unital follows
from the above case.

(iii) It is clear from part (ii) and the definition of the norm || — [| -

(iii) It is clear from part (iii) and Proposition [Z3.0.
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Assume A is a commutative Banach algebra. To every ¢ € Q(A), we associate
() == @1 € Q(A;) by defining ;(a, A) := p(a) + A for all (a,\) € A;. Clearly,
1 is a non-zero homomorphism. But there is still one non-zero homomorphism in
(A7) that is not obtained in this way. It is the homomorphism ¢, : A;—C defined
by peola, A) == .

Exercise 3.1.19. Show that Q(A;) = 7(Q2(A)) U {v}-

Lemma 3.1.20. With the above notation, the inclusion j: Q(A)—Q(A;) is a home-
omorphism onto its image.

Proof. Let (¢;) be a net in Q(A) convergent to ¢ in weak-*topology. Then for
every (a,\) € A, we have p;1(a, \) = ¢;(a) + A which is obviously convergent to
w(a) + A = ¢1(a, A). Thus ¢;;—¢; in weak-*topology, and so 7 is continuous. A
similar argument works for the continuity of the converse map. O

Exercise 3.1.21. With the above notation, show that if A is not unital, then
2(A;) is the one point compactification of j(€2(A)). Describe what happens when
A is unital.

Lemma 3.1.22. Let ¢ : A—B be an algebraic homomorphism between two com-
mutative Banach algebras such that ¥*(p) := o # 0 for all ¢ € Q(B). Then
P* Q(B)—Q(A) is continuous. Moreover, 1* is a homeomorphism whenever it is
bijective.

Proof. If (p;) is a convergent net in the weak-*topology of Q(B), then (p;01)) is a
convergent net in the weak-*topology of €(A) too. Hence 1* is continuous. Now,
assume ¢* is bijective. When B is unital, Q(B) is compact and consequently, 1*
is a homeomorphism. When B is not unital, we consider the canonical extension
Wy A= By of ¢ defined by 11 (a, A) := (¢(a), A). Then ¢;* : Q(B;)—(A;) defined
by 11*(¢1) = p10t is bijective and continuous and consequently a homeomorphism.
Using the above exercise and the fact that ¢* is the restriction of ¢1* to 2(B), one
concludes that ¢* is a homeomorphism. O

Definition 3.1.23. Assume A is a commutative Banach algebra. The kernel of the
Gelfand transform G is called the radical of A. If it is {0}, then A is called a
semi-simple commutative Banach algebra.

Remark 3.1.24. Let a be an element of the radical of a commutative Banach algebra
A. Then o4(a) = {0} by Theorem B.I.I8 Since Cy(€2(A)) is a C*-algebra, the
converse is also true, see Problem In other words, the radical of a commutative
Banach algebra A consists of all elements a € A such that g4(a) = {0}.



64 CHAPTER 3. THE GELFAND DUALITY

The Gelfand transform is especially useful for semi-simple commutative Ba-
nach algebras. Assume A is such an algebra. The Gelfand transform gives rise to a
faithful representation of A as a subalgebra of Cy(€2(A)). If we require also that the
image of the Gelfand transform of A, i.e. A := {a;a € A}, to be dense in Cy(Q(A)),
we need to impose another condition. A Banach algebra equipped with this extra
condition is called symmetric. Fortunately, every commutative C*-algebra is both
symmetric and semi-simple.

Definition 3.1.25. An involutive and commutative Banach algebra A is called
symmetric if p(a*) = ¢(a) for all p € Q(A) and a € A.

Proposition 3.1.26. Let A be a symmetric Banach algebra. Then A is dense in
Co(2(A)).

Proof. Since A is symmetric, A is closed under complex conjugation. Also, A sep-
arates the points of (2(A), because, for every p; # ¢ € Q(A), there exists some
a € A such that ¢1(a) # ¢2(a) and so a(p1) # a(ps2). Finally, we note that since
every ¢ € (A) is non-zero, there is some a € A such that a(¢) = ¢(a) # 0. Now,
the Stone-Weierstrass theorem implies that A is dense in Co(Q(A)), see Theorem
A.10.1 of 3. O

To show every C*-algebra is symmetric, we need some more definitions.

Definition 3.1.27. Let A be an involutive Banach algebra.

(i) An element a € A is called self-adjoint (or hermitian) if a = a*. The set of
all self adjoint elements of A is denoted by Aj.

(ii) An element a € A is called normal if aa* = a*a.

(iii) An element a € A is called unitary if aa* = a*a = 1. The set of all unitary
elements of A is a subgroup of A* and is called the unitary group of A and
is denoted by A,.

(iv) An element a € A is called idempotent if a®> = a. The set of all idempotent
elements of A is denoted by Idem(A).

*

(v) An element a € A is called projection if a*> = a = a*. The set of all
projections of A is denoted by Proj(A).

(vi) Let A be a C*-algebra. An element a € A is called positive if a = a* and
oa(a) C [0,00[. This is denoted by a > 0 and the set of all positive elements
of A is denoted by A, .
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(vii) A subset X of A is called self adjoint if it is closed under the involution of
A.

Most parts of the above definition are still well defined in more general settings.
For example, Parts (i) make sense in every involutive algebra or Part (iv) is the
definition of idempotent elements in any ring. The normal elements play a very
important role in continuous functional calculus in the next section. The following
remark shows how every element of an involutive algebra can be written as a linear
combination of two self adjoint elements.

Remark 3.1.28. Let A be a C*-algebra or more generally an involutive Banach alge-
bra. For given a € A, define a; = Re(a) := 2= and as = Im(a) := “5%. Then it is

easy to see that both a; and ay are self-adjoint and a = a; +ias. The elements Re(a)
and Im(a) are called the real part and the imaginary part of a, respectively.

This decomposition of an arbitrary element to a linear combination of two
self-adjoint elements is particularly useful when we need to reduce the argument to
self-adjoint elements. It is also used directly to state and prove some statements.
For example, consider the following easy exercise:

Exercise 3.1.29. With the notation of Remark B.1.28 show that a € A is normal
if and only if its real and imaginary parts commute, i.e. ajas = asa,.

Lemma 3.1.30. Let A be an involutive and commutative Banach algebra. Then the
following statements are equivalent:

(i) A is symmetric.
(i) a* = a for all a € A.
(iii) o(a) € R for all p € Q(A) and a € Ay,.
Proof. We only show that (iii) implies (i). The rest of the statements are clear. Let

a € A and let a = ay +ias be the decomposition of a as discussed in Remark [3.1.28]
For every ¢ € 2(A), we have

p(a) = plar) +ip(az) = plar) —ip(az) = p(ar — iaz) = p(a*).

Proposition 3.1.31. Every commutative C*-algebra is symmetric.
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Proof. Assume A is a unital commutative C*-algebra. Let ¢ € Q(A) and a € Ay,.
Consider x,y € R such that p(a) = =+ iy and define a; := a+ it for all t € R. Then
we have a;*a; = a® 4+ t* and ¢(a;) = x = i(y +t). Now, we have

2*+ (y+1)° =lo(a)l” < llal® = llacae]| = [la® + ]| < [|a]]* + ¢

Hence 2% + 9% + 1yt < ||a]|? for all t € R. This is possible only if y = 0. Therefore
¢(a) is a real number. When A is non-unital, the assertion follows from the above
case by passing to A, the C*-unitization of A. O

Proposition 3.1.32. Let A be a C*-algebra and let a € A be a normal element.
Then r(a) = ||a]|.

Proof. For every self-adjoint element x € A, we have ||2?| = ||z*z|| = ||z||*>. Hence
we compute
la*|I* = ll(a®)"a*[| = ll(a*a)’|| = [la*a]|* = |la]".
Therefore by induction, we get ||a*"|| = ||a]|*", and consequently, we have
rla) = lim a7 = Y [l 2" = oL

]
Corollary 3.1.33. Let A be a C*-algebra and let a € A. Then |la| = r(a*a)'/?.

This shows the norm of a C*-algebra is completely determined by its algebraic
structure. Therefore every C*-algebra has only one C*-norm. One can deduce this
property also from Corollary B.2.13

Theorem 3.1.34. Let A be a commutative C*-algebra. The Gelfand transform is
an isometric x-isomorphism from A onto Cy(Q(A)).

Proof. Since A is commutative all elements of A are normal. Hence for all a € A, we
have ||a|| = r(a) = ||@||sup- This shows that the Gelfand transform is an isometry and
A is semi-simple. It follows easily from Proposition B.1.31] and Lemma that
the Gelfand transform is a x-homomorphism. Finally, we note that A is closed and
dense subalgebra of Cy(2(A)), because G is isometry and because of Propositions
and B.I.3T Hence the Gelfand transform must be onto. O

In the above discussion, we first associated a locally compact Hausdorff topo-
logical space, i.e. Q2(A), to every commutative Banach algebra A, in particular every
commutative C*-algebra A. Then using the Gelfand transform, we proved that the
C*-algebra Cy(€2(A)) is isometrically isomorphic to A. There is also a reverse pro-
cedure starting from a locally compact and Hausdorff topological space which is
explained in the following proposition.
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Proposition 3.1.35. Let X be a locally compact and Hausdorff topological space.
Then the map F : X—Q(Cy(X)) defined as follows is an onto homeomorphism:

r—z, z(f) = f(x), Ve € X and f € Cy(X).

Proof. Clearly, z is a multiplicative homomorphism from Cy(X ) into C for all z € X.
Since X is a normal topological space, see Theorems 2.4 and 3.1 of [31], for every
x € X, there exists f € Cy(X) such that f(x) # 0. Hence  # 0 for all z € X. This
shows that F is well-defined.

If z; and x5 are two points in X such that z1(f) = Z2(f) for every f € Cy(X),
then f(z1) = f(xy) for all f € Cy(X). Again, using the fact that X is normal
and using the Urysohn lemma, it is only possible when x; = x5. Therefore F is
one-to-one.

Let w be an element of Q(Cy(X)). It is easy to see that w(f) > 0 for every
non-negative function f € Cy(X). Hence by the Riesz representation theorem, see

Theorem .50 there exists a positive Radon measure p on X such that w(f) =
I f(@)dp(x) for all f e Cy(X). Thus we have

0= (=2t ~ ) = [ 1) =) Pdua)

This means that, for every f € Cy(X), f equals to the constant function w(f) u-
almost everywhere. Regarding Remark [3.1.36] there is a point zy € X such that

w(f) = flzo) for all f € Cy(X). In other words, w = 7z and this shows that F is
onto.

Let (x;) be a net in X convergent to a point zy € X. Then for all f € Cy(X),
we have f(z;)—f(xo), which implies that 7;—Zy in the weak x-topology. This
means JF is continuous. One easily extends F to a continuous and bijective map
from X* onto '(Cy(X)), see Exercise Since X is compact, this extension
is a homeomorphism and so is F. O

Let X be a set and consider P(X), the power set of X, as the o-algebra over
X. For a given point xg € X, the Dirac measure or point mass at x; is the
measure 0,, defined by 6,,(F) :=1if xy € E and d,,(E) := 0 otherwise. The same
names are also applied for smaller o-algebras than P(X).

Remark 3.1.36. Let X be a locally compact and Hausdorff topological space and let
1 be a positive Radon measure on X. We say z € X is a concentration point of
w if every open set containing x has non-zero measure. We say pu is concentrated
at a point xg € X if z( is the only concentration point of p. It is easy to see that
if p is concentrated at a point zy € X, then u is equal to a positive multiple of
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the Dirac measure or point mass at the point z5. Now, if for every f € Cy(X), f
is constant p-almost everywhere, 1 must be concentrated at a point Xy € X. The
reason is that if p has two concentration points, say xo # x1, then using the fact
that X is normal and using the Urysohn lemma, there exist a function f € Cy(X)
such that f takes two different values over disjoint neighborhoods of xy and x; and
this contradicts with our assumption. Also, a similar argument excludes the case
that p has no concentration point. Finally, we note that if p is concentrated at x,
then [, f(z)du(z) = f(zo) for all f € Cy(X).

Remark 3.1.37. Let v : X—Y be a continuous map between two compact topo-
logical spaces. Define ¢* : C(Y)—=C(X) by ©*(f) = foy. It is shown that it
is an x-homomorphism. It is worthwhile to note that not every x-homomorphism
C(Y)—C(X) comes from a continuous map from X into Y. For example, the
zero homomorphism cannot be obtained in this way. Because, for every y in the
image of 1, one can define a continuous function f : Y—C such that f(y) = 1.
Then ¢*(f) # 0. One also notes that the compactness of X is important here. To
see this, consider the exponential map e : R—T, t — e>™. It is continuous, but
e* : C(T)—Cy(R) is not well defined. Because it sends the constant function 1t
to the constant function 1z which belongs to Cy(R) not Cy(R). The zero homo-
morphism ¢ : A— B between two commutative C*-algebras cause another problem.
Because p*(w) = we = 0 for every w € Q(B), so ¢* = 0. Hence ¢* is not even
a well defined map from Q(B) into (A). Therefore in order to obtain a bijective
correspondence between continuous functions from a locally compact and Hausdorff
space X into another locally compact and Hausdorff space Y and x-homomorphism
from Cy(Y) into Cy(X), we have to impose some restrictions both on continuous
maps and on x-homomorphisms.

Definition 3.1.38. (i) Let A be a C*-algebra. A net (h)) in A is called an
approximate unit for A if every h, is positive and (h,) is an approximate
unit for A as a Banach algebra, namely ||h,|| < 1 for all A\ and both nets (ah))
and (hya) converge to a for all a € A, see also Definition L.2.1]

(ii) A s-homomorphism ¢ : A— B between two C*-algebras is called proper if the
image of every approximate unit in A under ¢ is an approximate unit in B.

(iii) A continuous map v : X —Y between two topological spaces is called proper
if the preimage of every compact subset of Y is compact in X.

Example 3.1.39. Let Y be the collection of all compact subsets of a locally compact
and Hausdorff space X. X is a directed set with respect to inclusion. For K € X,
pick a continuous fr : X—0,1] vanishing at infinity such that fx(z) = 1 for all
x € K. The reader easily verifies that the net (fx)xex is an approximate unit for
Co(X). One notes that since X is a normal topological space, the elements of this
net can be chosen from compact support function if needed.
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Proposition 3.1.40. Let ¢ : X—Y be a proper continuous map between two locally
compact and Hausdorff topological spaces. The map ¥* : Co(Y)—=Co(X) defined by
V*(f) = fou is a proper x-homomorphism. When 1 is a homeomorphism, ¥* is an
1sometric isomorphism.

Proof. For given f € Cy(Y) and for every € > 0, let K be a compact subset of YV
such that |f(y)| < e for all y € Y\K. Set K’ := ¢y"*(K). Then K’ is compact
and [¢*(f)(z)] < e for all x € X\K’. This shows that ¢*(f) € Co(X). It is
straightforward to check that ¥* is a s-homomorphism. One also easily checks
that when ¢ is onto, ¥* is an isometry and when v is a homeomorphism, ¢* is an
isomorphism.

Now, Let (fa)aea be an approximate unit in Cy(Y) and let g € Cy(X). For
given € > 0, let K be a compact subset of X such that |g(z)| < e for every x €
X\K. Pick a continuous function « : Y—[0,1] vanishing at infinity such that
v (a)(z) = a(y(z)) =1 for all x € K. By definition, there is some Ay € A such
that || fra — a|sup < oo for all A > Ag. Then for A > Ao, we have

19" (/)9 = gllsup [ ()" (@)g = ¢ (@)gllsup

19" (Fx)g = " (S8 (@)gllsup + 97 (@)g = gllsup
19" (9" (@) = ™ () lsupllglsup

2sup{\9( )z e X\K}

1gllsup + 2& = 3<.

AN+ IN FIA

[19llsup ||sup

This shows that the net (1*(f))) is an approximate unit for Cy(X). Hence ¢* is
proper. ]

Exercise 3.1.41. Complete the gaps in the proof of Proposition B.1.40

Proposition 3.1.42. Let ¢y : A—B be a proper x-homomorphism between two C*-
algebras. Then * : Q(B)—Q(A) defined by w — wi is a proper continuous map.
It is a homeomorphism if 1 is an isomorphism.

Proof. Let (a;) be an approximate unit in A and let w € Q(A). Pick an element a in
A such that w(a) # 0. Then w(a) = w(lim; a;a) = lim; w(a;)w(a). This implies that
lim; w(a;) = 1. On the other hand, since 1) is proper ¢ (a;) is an approximate unit
for B, and so lim; wi(a;) = 1 for all w € Q(B). This implies that wiy # 0 for all
w € Q(B). Therefore by applying Lemma[3.1.22] we conclude that ¢)* is a continuous
map. When v is an isomorphism, 1* is bijective, and so is homeomorphism.

If A is unital, then B is unital too. It is clear that ¢* is proper in this case.
Assume A is non-unital. Extend v to a unital *-homomorphism v : A—B. Tt is
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clear that v is still a proper s-homomorphism. Therefore ¢/* : Q(B)—=Q(A) is a
proper continuous map. But 1* is the restriction of this map to (B), so it proper
too. U

We will continue the above results and discussion in Section [3.3] where we will
explain the Gelfand duality.

3.2 The continuous functional calculus

The continuous functional calculus is one of the most important tools in the theory
of C*-algebras. It is an immediate application of the Gelfand transform and inspires
many similar results in the theory of C*-algebra.

Let A be a unital C*-algebra and let a be a normal element of A. Then the
C*-algebra generated by {a, 1} is a unital commutative C*-algebra, which we denote
it by C*(a,1).

Lemma 3.2.1. Let A and a € A be as above and let B = C*(a,1). Then the map
0 : Q(B)—oa(a) defined by 6(w) := w(a) is an onto homeomorphism.

Proof. First, we show that the map 6 : Q(B)—opg(a) is an onto homeomorphism.
Let w; and wy be two elements of Q(B) such that wi(a) = wy(a). We also know
that wy(1) = wo(1) = 1. Hence w; and ws are equal over every complex polynomial
with two variables a, a*. The set of all these polynomials is dense in B. Therefore
w; = wo on B, and so # is one-to-one. It is easy to see that 6 is continuous. Since
Q(B) is compact 6 is a homeomorphism onto its image. Finally, it follows from Part
(ii) of Theorem that 6 is onto.

By Proposition B.1.40, the homeomorphism 6 : Q(B)—opg(a) gives rise to an
isometric *-isomorphism 6* : C(op(a))—C(2(B)). We define @, : C(op(a))—B by

P, =G Lob*,

where G is the Gelfand transform from B onto C'(€2(B)). For all f € C(og(a)), we
denote ®,(f) by f(a). Since the Gelfand transform is an isometry too, ®, is an
isometric *-isomorphism from C(op(a)) onto B, in particular, ||f|s,p = || f(a)| for

all f € Cog(a)).

Now, we prove 4(a) = og(a). We know from Proposition Z3 Tl that 04(a) C
op(a). Assume that there exists some A € og(a)\oca(a). Then a — Al has an inverse
in A, say b. Pick a real number s > |[|b|| and define f : C—C by the following

formula: P | /
s 1 z— AN <1/s
f(2) ::{ = i 2= A= 1s
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Using f, also define g(z) := (z — \)f(z) for all z € C. Considering f and g as
elements of C(op(a)), we have || f|lsup < s and ||g||sup < 1. We compute

1l < 5= f) < fllswp = [1f (@)l
= [Ibla = X)f(a)[l = llbg(a)]l
< [lbllllg(@)ll = NIl gllsup
< [loll
This is a contradiction, so o4(a) = og(a). O

Corollary 3.2.2. If C is a unital C*-subalgebra of a unital C*-algebra A and a € C,
then oc(a) = oa(a). If A or C are not necessarily unital, then oc(a) U {0} =
oa(a) U{0}.

Proof. First, assume A and C' are unital. When «a is normal, the statement follows
immediately from the above lemma. For general a € A, let a — A\ be invertible
in A. Then both (a — A\)*(a — A\) and (e — A\)(a — A\)* are invertible in A. Since
they are self adjoint, They are invertible in C' too. This proves that (a — A) has
right and left inverses in C, and so it is invertible in C. Therefore o¢(a) C o4(a).
The converse inclusion follows from Proposition 2.3.11l For general A and C|, the
statement follows from the above case and the definition of the spectrum in a non-
unital C*-algebra. !

An immediate corollary of the above result is given in the following:

Corollary 3.2.3. Let A be a unital C*-algebra and let a,b € A. If ab = ba, then we
have

(1) oalab) € oa(a)oa(b),

(i) oala+b) S oala) + oa(b).

Proof. Let B be the commutative C*-algebra generated by the set {a, b, 1}. Using
Corollary B.2.2] it is enough to prove these statements in B. By the Gelfand trans-
form B ~ C(QB)). Therefore there are f,g € C(Q(B)) such that @ = f and b = g.
Now, the statements follow easily from the fact that o4(z) = Z(Q(B)) for every
r € B. O

The above corollary shows how the Gelfand transform can be used to reduce
some abstract problems involving commuting elements of a C*-algebra to problems
about function algebras. This idea is the essence of the continuous functional cal-
culus and will be frequently used in some of the proofs and exercises in the future.
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Theorem 3.2.4. [The continuous functional calculus] Let A be a unital C*-algebra

and let a € A be a normal element. There exists a unique isometric * -homomorphism
P, : Coala))—=C*(a,1) C A such that ®4(1,,)) = 1a and Pu(id,,(q) = a.

Proof. We already defined ®, in Lemma B2l Since 6*(1,,)) = lam) = G(1a),
by definition, we have ®,(1,,)) = 14. Similarly, for every w € Q(B), we have
0 (1dy 5 (a)) (W) = 1y 4 (a)(0(w)) = w(a) = a(w) = G(a)(w), which means ®,(id,, () =
a.

To prove the uniqueness of ®,, we note that any other x-homomorphism with
the above properties is equal to ®, over the complex algebra of all complex polyno-
mials of two variables z and Z over g4(a). By the Stone-Weierstrass theorem, see
Theorem A.10.1 of [I3], this algebra is dense in C'(c4(a)). Now, continuity of such
a *-homomorphism implies the uniqueness of ®,,. O

Exercise 3.2.5. Using the continuous functional calculus show that the spectrum
of every self adjoint element of a C*-algebra lies in R. See also Proposition for
another proof.

Remark 3.2.6. The continuous functional calculus is consistent with the holomorphic
functional calculus. To see this, let @ be a normal element of a unital C*-algebra
A and let f be a holomorphic function on a neighborhood U containing o4(a).
Consider a smooth simple closed curve C' in U enclosing o4(a). For every A € C,
the function id — X\ is a non-zero function over C', and so it has a continuous inverse
over C. For every w € Q(B), we compute

G(f(a)(w) = fla)(w)=uw(f(a))

_ w(%/g%dk)
_ QLm I CEFEV
1

37 [~ (@) F ()

(
= f(w(a)) = fob(w)
= 0" (f)(w) = Go®y(f)(w).

In the above computation, € is the map defined in Lemma B. 21l Since G is an
isomorphism, one observes that ®,(f) equals the holomorphic functional calculus of

f.

The above remark and the holomorphic spectral mapping theorem, see Theo-
rem [2.5.5] suggest the following proposition:
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Proposition 3.2.7. [The continuous spectral mapping theorem/ Let a be a normal
element of a unital C*-algebra A and let f be a continuous function on c4(a). Then
f(a) is normal and c4(f(a)) = f(oa(a)). Moreover, if g is a continuous function

over a(f(a)), then g(f(a)) = gof(a).

Proof. Since C*(a, 1) is a commutative C*-algebra, all of its elements are normal.
For convenient, let us denote C(c4(a)) by C. Then it is clear that f € C'is invertible
if and only if ®,(f) = f(a) is invertible in C*(a, 1). Therefore we have

0a(f(a)) = oc(f) = floc(ids,)) = floala)).

Since @, is a x-isomorphism, the equality g(f(a)) = gof(a) is true when g is any
complex polynomial of two variable. The general case follows from the continuity of
® () and the fact that the algebra of these polynomials is dense in C'(o(f(a)). O

The following proposition illustrates some applications of the above proposi-
tion:

Proposition 3.2.8. Let A be a unital C*-algebra.

(i) If u € Ay, then o(u) C T ={\ € C;|\| =1}.
(ii) If a € Ay, then o(a) C R.

Proof. (i) We know that ||u||* = ||luu*|| = ||1|| = 1, so |A] < 1 for all A € o(u).
On the other hand, ||u*|| = 1. Hence using the continuous spectral mapping
theorem, we have |u| < 1 for all p € o(u*) = o(u™) = (o(u)) ™t ={A" 1\ €
o(u)}. Thus [A7'| <1 for all A € o(u), by . Combining these inequalities, we
get |A| =1 for all X € o(u).

(i) If a € Ay, then it is easy to see that ¢’ is a unitary element. Assume A\ = a +
i8 € o(a), where @ and f3 are real numbers and /5 # 0. Then by the continuous
spectral mapping theorem, e € o(e™®), but || = |¢?®e™#| = |e7#| # 1. This
contradicts with Part (i).

0

Proposition 3.2.9. Let ¢ : A—B be a unital x-homomorphism between two uni-
tal C*-algebra and let a € A be normal. Then for every f € C(oa(a)), we have

p(f(a)) = f(p(a)).

Proof. First, we note that ¢(a) is normal and op(p(a)) C oa(a), and so the re-
striction of f to op(a) is continuous. Define two unital *-homomorphisms &4, ®, :

C(04(a))—B by
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and
(I)Z(.f) = q)cp(a)(.ﬂag(cp(a))) = f|03(¢(a))(¢(a))'

It is easy to check that they both map 1,,,) and id, ,(4) to 15 and ¢(a), respectively.
Thus they agree on all polynomials of two variables z and Z over o4(a) and since
they are continuous, they agree on all of C'(04(a)). O

Proposition 3.2.10. Let A be a C*-algebra and let K be compact subset of C. Let
Ay denote the set of all normal elements of A whose spectrum is contained in K.
If f is a continuous function on K, then the mapping Ax—A defined by a — f(a)
18 continuous.

Proof. For given f € C'(K) and for every € > 0, by Stone-Weierstrass theorem, there
is some polynomial P of two variables z and Z such that sup, g |[P(A\, X)) — f(A)] < e.
For every a € Ak, we use the continuous functional calculus of a to conclude that
|P(a,a*) — f(a)|| < e. Set M := sup{|A|; A € K}. Then for every a,b € A, we
have |la|| < M. Using this, one can find 6 > 0 such that ||P(a,a*) — P(b,0")|| < ¢
for every a,b € Ak provided that |ja — b|| < . Hence we have

1f(a) = FO) < [[f(a) = P(a,a”)|| +[[P(a,a”) = P(b,0%)[| + [|P(b,b") = F(D)|| < 3e.
O

Proposition 3.2.11. Let ¢ : A—B be an algebraic x-homomorphism from an in-
volutive Banach algebra A into a C*-algebra B. Then it is norm decreasing, i.e.
lp(a)|| < |la|| for all a € A, and therefore ¢ is continuous.

Proof. If A is not unital, we can extend ¢ to a unital algebraic *-homomorphism
from A; into B. Therefore we can assume A is unital. If @ — A is invertible in A,
then p(a) — A is invertible in B, and therefore

op(p(a)) C oala), Va € A.

This implies that rg(¢(a)) < ra(a) for all a € A. Then we have

le(@)* = lle(a)ela)ll = lle(a*a)]
= rp(p(a’a)) <ra(a’a)
< ||a al| < lla|lllall = flal*

O

Proposition 3.2.12. Let ¢ : A— B be a one-to-one algebraic x-homomorphism from
a C*-algebra A into an involutive Banach algebra B. Then it is norm increasing,
i.e. o(a)]| > ||lal| for all a € A.
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Proof. Consider a self adjoint element a € A and set b := ¢(a). Then b is self
adjoint too. Let E denote the C*-unitization of the C*-subalgebra generated by a
in A and let F' denote the unitization of the involutive Banach subalgebra generated
by bin B. Let ¢ : E—F denote the unital x-homomorphism mapping a into b.
These algebras are both commutative and their spectrums are compact. We define
o* : QF)—=Q(F) by w — wo for all w € Q(F). We claim that ¢* is onto. If not
there exist wy € Q(F) — ¢*(QUF')). Since ¢*(2(F')) is compact, there exist two not
identically zero functions f,g € C(Q(F)) such that fg =0, f(wp) =1 and g = 1
over ¢*(Q(F)). By using the inverse of the Gelfand transform, we obtain two non-
zero elements ¢, d € E such that c¢d = 0, w(¢(d)) = 1 for all w € Q(F'). This implies
that ¢(d) does not belong to any maximal ideal of F, so it has to be invertible. But
this contradicts with the facts that ¢(c)p(d) = ¢(cd) = 0 and ¢(c) # 0. Therefore
¢ is onto. Now, we compute

le(@)ll = [loll = 7(b)
= sup{lb( )w e QF)}
= sup{|o(a)(w)|;w € QF)}

= sup{|w(o(a))|;w e QF)}
= sup{|¢*w(a)|;w € Q(F)}
= sup{|w(a)[;w € Q(E)}

= r(a) = [la].
For arbitrary a € A, we have
lall* = [la*all < [|¢(a)d(a)|| < [l¢(a)]*.
]

Corollary 3.2.13. FEvery injective x-homomorphism between two C*-algebras is an
1sometry.

Exercise 3.2.14. Let X be a locally compact and Hausdorff topological space.

(i) When X is not compact, show that the map ¢ : Cy(X)—C(X>) defined in
Proposition B.1.16] is a *-isomorphism. Thus by the above corollary, it is an
isometric isomorphism between these C*-algebras.

e~

(ii) When X is compact, find an isometric isomorphism between C'(X') and C'(X ).

There is a non-unital version of the continuous functional calculus that appears
useful for dealing with non-unital C*-algebras.
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Remark 3.2.15. Let A be C*-algebra and a € A be a normal element. If it is
necessary, we add a unit to A. First, assume that 0 belongs to the spectrum of a.
Let C be the C*-subalgebra of C(o(a)) defined as follows:

C:={f € Cla(a)); f(0) = 0}.

Consider @, : C(o(a))—A, the continuous functional calculus over a. Then the
image of the restriction of ¢, to C' is exactly the C*-algebra C*(a) generated by a
and one can directly write ®, : C—C*(a) C A without any reference to the unit
element of A or A. This is called the non-unital continuous functional calculus over
a. One notes that if A is non-unital, then we always have 0 € o(a). Now, assume A is
unital and 0 ¢ o(a). Then C' = C(o(a)) and also C*(a, 1) = C*(a). In other words,
the non-unital continuous functional calculus is the same as the original continuous
functional calculus in this case.

We conclude this section with some applications of the continuous functional
calculus.

Proposition 3.2.16. Let a be a self adjoint element of a C*-algebra A.

(i) For given an odd natural number n, there is a unique self adjoint elementb € A
such that 0" = a.

(ii) Let also a is positive. Then for given an even natural number n, there is a
unique positive element b € A such that b" = a.

n

In both cases, b is called the nth root of a and is denoted by a*/™ or /a.

Proof. (i) Since the function f(t) = t/" is continuous over the real line and so
over o(a), we can define b := f(a). Then f(¢)" = id implies that b" = a.
Assume ¢ € Aj, satisfies the same equality. Then ca = ¢(c") = (¢")c = ac,
namely ¢ and a commute. Since b is a limit of a sequence of polynomials in
a, b commutes with ¢ as well. Therefore the C*-algebra C*(b, ¢) generated by
b and ¢ is commutative and contains a. By the Gelfand transform, we arrive
to two equations of real valued functions; a = b and @ = é". These equations
imply b= ¢, and so b = c.

(ii) The proof is similar to the Item (i), except one should note that when n is
even, the function f(t) = t'/" is defined and is continuous only over [0, c0).
Therefore we had to restrict this case to positive elements of A.

O
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The following exercises are among many problems that can be easily solved by
the continuous functional calculus.

Exercise 3.2.17. Let a € A be a normal element of a C*-algebra A. Show that
a*a > 0. Define the absolute value of a by |a| := (a*a)/?. Then prove the
following statements:

(i) a is positive if and only if a = |al,

(i1) flall = 1lalll

(iii) @ is invertible if and only if |a| is invertible. In this case, ala|™! is a unitary
element in A.

In Proposition L.T.8, we shall show that the statement a*a > 0 is true for all
elements of a C*-algebra. Therefore one can extend the definition of the absolute
value to all elements of a C*-algebra.

Exercise 3.2.18. Let a be a positive element of a unital C*-algebra A. Show that
a < [|af[1.

Proposition 3.2.19. Fvery element of a unital C*-algebra A can be written as a
linear combination of four unitary elements of A.

Proof. Let b be a self adjoint element of A such that ||b]] < 1. Then b? is positive
and ||0?]] < 1. These imply that 1 — b? is positive too. Therefore we can define
w:=0b+i(1—0b%)"2 It is easy to see that u is a unitary element and b = £ This
means that every self adjoint element of A is a linear combination of two unitary
elements. Now, the desired statement follows from the fact that every element of a

C*-algebra is a linear combination of two self adjoint elements. O

More applications of the continuous functional calculus will be also discussed
in Chapter @l

3.3 The Gelfand duality

The Gelfand duality along with quantum physics and the general developments in
index theory is one of the main motivations of noncommutative geometry. Therefore
we use this theory as our guide in studying those parts of the theory of C*-algebras
which are necessary to understand noncommutative geometry. We begin this section
with briefly recalling basic definitions of category theory. Our treatment of category
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theory, here, is rather informal and we content ourselves to the minimum amount of
the theory that is going to be used in this book. The interested reader is referred to
[39, 48] for further details. Afterwards, we explain how the Gelfand transform justi-
fies the idea of considering C*-algebras as the noncommutative analogues of point-set
topological spaces. This analogy is based on the duality between locally compact and
Hausdorff topological spaces and their C*-algebras of continuous functions vanishing
at infinity. This duality is called the Gelfand duality. Besides motivating some of
the developments of noncommutative geometry, the Gelfand duality has found many
generalizations to non-commutative C*-algebras. These generalized correspondences
between topological spaces and C*-algebras are widely applied to facilitate and ex-
plain many interactions of the theory of C*-algebras with other mathematical areas
such as representations theory as well as with quantum physics. This duality also
explains how K-theory of C*-algebras generalizes topological K-theory.

In a category C, we have a class of objects, which we denote it by 0bj(C). Then
for every ordered pair of objects (A, B) € obj(C)?, there is a set of morphisms,
which we denote it by Hom¢(A, B). Moreover, for every triple (A, B, C) € 0bj(C)3?,
we have a composition law Hom¢(A, B) x Home(B, C)—Home (A, C') which we
denote it by (f,g) — gf. These ingredients are subject to the following axioms:

(i) The sets of morphisms are pairwise disjoint.

(ii) For every object A, there is a unique morphism 14 € Home(A, A) such that
fla=f=1pf forall f € Home(A, B).

(iii) The composition law is associative, namely, for given A, B,C € 0bj(C) and
for all f € Home(A,B), g € Home(B,C) and h € Home(C, D), we have
hgf)=(hg)f

A morphism f € Home(A, B) is called an isomorphism if there exists a morphism
g € Home(B, A) such that fg = 1p and gf = 14. In this case, one easily checks
that ¢ is unique and is called the inverse of f and usually is denoted by f~!. In
the following, we introduce some of the categories that we are going to deal with in
this book.

Example 3.3.1. (i) Let S be a category whose objects are sets and, for every
ordered pair (A, B) of sets , the set Homgs(A, B) of morphisms is the set of all
functions from A into B. This category is called the category of sets. The
composition law is the composition of functions.

(ii) The objects of the category of commutative C*-algebras are all commuta-
tive C*-algebras and, for every ordered pair (A, B) of commutative C*-algebras
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(iii)

(iv)

(vii)

(viii)
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the set of morphism is all proper *-homomorphisms from A into B. The com-
position law is the composition of two x-homomorphisms. We denote this
category by CCA.

The category of locally compact and Hausdorff topological spaces is
defined similarly. The objects of this category are locally compact Hausdorff
topological spaces. For two objects X and Y in this category, the set of
morphisms from X to Y consists of all proper continuous maps from X into
Y. This category is denoted by LCS.

In Part (ii), if we only consider unital C*-algebras and unital *-homomorphisms,
then we obtain a new category called the category of unital commuta-
tive (C*-algebras and is denoted by UCA. One notes that every proper
sx-homomorphism between two unital C*-algebra is automatically unital.

Similarly, in Part (iii), if we consider only compact and Hausdorff topologi-
cal spaces, then the obtained category is called the category of compact
Hausdorff topological spaces and is denoted by CS. One notes that every
continuous map from a compact topological space is automatically proper.

The objects of the category AG of abelian groups are all abelian groups.
The set of morphisms between two abelian group are all group homomorphisms
between them and the composition law is the composition of homomorphisms.
The category of groups is defined similarly and is denoted by GR.

Let X be a set and let < be a partial order on X. The set X admits the
structure of a category. Its objects are are elements of X. For z,y € X, the
set of morphisms Hom(x,y) has only one element ¢j if <y and it is empty
when © £ y. The composition law is defined using the transitivity of the
relation <, namely if x <y and y < 2, then (] = 44y

Let G be a group. It enjoys the structure of a category too. Here, we have
only one object which is usually denoted by % and the morphisms from this
object to itself are all elements of the group. The composition law is the
multiplication of the group.

Those categories whose objects are some sets with (or without) some structures

and the morphisms are functions preserving those structures and composition law
is the composition of functions underlying the morphisms are called concrete. For
instance, Items (i) to (vi) of the above examples are concrete categories. A category
whose class of objects is actually a set is called a small category. Items (vii) and
(viii) are examples of a small category. In Item (viii), one notes that every morphism
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is an isomorphism. This motivates another definition for groupoids. A groupoid is
a small category all whose morphisms are isomorphism.

A subcategory S of a category C is a category such that obj(S) C 0bj(C), for
every pair A, B € obj(S), we have Homg(A, B) C Home(A, B), the composition
law in S coincides with the composition law in C, and finally, for every A € obj(S),
the identity morphism 14 € Homs(A, A) is equal to the identity morphism 1, €
Home (A, A). The category S is called a full subcategory of S if Homs(A, B) =
Home(A, B) for all A, B € obj(S).

Exercise 3.3.2. (i) Show that the category of abelian groups is a full subcategory
of the category of groups.

(ii) Show that the category of compact topological spaces is a full subcategory of
the category of locally compact topological space.

(iii) Assume H be subgroup of a group G. Show that H is a subcategory of G and
it is full if and only if G = H.

(iv) Let n be an integer. For 1 < i,j < n, let E;; be the (i,j)-th elementary
n X n matrix, namely the matrix whose (i, j)-th entry is one and the rest of
its entries are zero. Consider a small category whose objects are the elements
of the standard basis of R", which we denote it by {ey,---,e,}. For every
pair (e;, e;), set Hom(e;,e;) := {E;;} and define the composition law by the
multiplication of matrices. Show that this a groupoid. Describe some full (and
non-full) subcategories of this category.

Similar to other mathematical structures, there are certain maps between cat-
egories named functors which preserve the structure of categories. A covariant
functor F' from a category C into a category D associates an object F'(A) € obj(D)
to every object A € 0bj(C). Moreover, F' maps every f € Home(A, B) to some
F(f) € Homp(F(A), F(B)). A covariant functor F' : C—D also satisfies the follow-
ing conditions:

(i) Forevery f € Home(A, B) and g € Home(B, C), we have F(gf) = F(g9)F(f).

(ii) For every A € obj(C), we have F/(14) = 1p(a).

A contravariant functor is defined similarly, except it reverses the arrows. In
other words, if F'is a contravariant functor from a category C into a category D,
then F(f) € Homp(F(B), F(A)) for every f € Home(A, B) and, for f and ¢ as
above, we have F(gf) = F(f)F(g). Sometimes a covariant functor is called simply
a functor while a contravariant functor is called a cofunctor.
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Example 3.3.3. (i) The most obvious example of a covariant functor is the for-

getful functor from a concrete category into the category of sets or into
another category with less structures. For instance, consider the category of
compact topological spaces. The forgetful functor assigns the underlying set
of a compact topological space to it and sends every continuous map to itself
as a map between two sets without any structure.

Let G be a finite abelian group and let T denote the unit circle in C considered
as the subgroup of the multiplicative group of C. By definition, the Pontrya-
gin dual of G is the group G of all characters of GG, which is the set of all
group homomorphism from G into T. The multiplication in G is defined by

(p7)(9) == p(9)T(g), Vp,7€G, g€ Q.

Let FAB denote the category of abelian finite groups. Then we define a
contravariant functor P : FAB—FAB as follows:

o P(GQ):=G, for all G € obj(FAB).

e For two given finite abelian groups G and H, P(y) := ¢* for all group
homomorphism ¢ : G—H, where ¢* : H—G is defined by ¢*(p) := pp
for all p e H.

One easily checks that this is a contravariant functor. This functor is defined
on the bigger category of all locally compact abelian groups and it is called the
Pontryagin duality. Using the fact that every finite abelian group is a direct
sum of cyclic finite groups, one easily observes that G and G are isomorphic,

and so we have G ~ G. This latter isomorphism still holds for the Pontryagin
duality for locally compact groups.

Now, we explain the Gelfand duality as a contravariant functor.

Definition 3.3.4. The Gelfand functor D is a contravariant functor from the
category of commutative C*-algebras into the category of locally compact topological
spaces. It sends every commutative C*-algebra A to its spectrum ©(A) and sends
every proper x-homomorphism ¢ : A—B between two commutative C*-algebras
to the proper continuous map ¢* : Q(B)—Q(A) defined by ¢*(w) := we for all
w € Q(B).

Using the details we have already presented in Sections B.1] it is easy to check

that D is a contravariant functor. As it was already explained, the Gelfand functor is
extremely useful. For instance, it represents an abstract commutative C*-algebra as
a C*-algebra of continuous functions equipped with a specific, and more importantly,
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computable C*-norm. However, the second half of the Gelfand duality, which consist
of the inverse of the Gelfand functor, completes the theory. In order to explain the
meaning of an equivalence of two category and the inverse of a functor, we need
some more definitions.

Let F,G : C—D be two covariant functors. A natural transformation 7 :
F'= G is a one parameter assignment of morphisms 7 = {na : F(A)=G(A)} 4cpj(0)
in D such that the following diagram is commutative for every morphism f : A—B

in C:
F(A) 2~ G(A)
2(f) lG(f)
F(B) =z~ G(B)

nB

If n4 is an isomorphism for every A € 0bj(C), then 7 is called a natural iso-
morphism. A natural transformation (resp. isomorphism) between two contravari-
ant functors is defined similarly. We denote the identity functor from a category C
into itself by 1c. It is clearly a covariant functor. A covariant (resp. contravariant)
functor F' : C—D between two categories is called an equivalence between C and
D if there is a covariant (resp. contravariant) functor G' : D—C such that there exist
natural isomorphisms between GF and 1¢ and between F'G and 1p. In this case, we
call two categories C and D equivalent. The functor G plays the role of an inverse
in this definition, so it is called the inverse of F. Our aim is to show that the
Gelfand functor is an equivalence between the category of commutative C*-algebras
and the category of locally compact Hausdorff spaces. Therefore we need an inverse
for the Gelfand functor. This inverse is nothing but the functor which sends every
locally compact and Hausdorff space X to its C*-algebras Cp(X) of continuous func-
tions vanishing at infinity. It also sends every proper continuous map f : X—Y to
the proper x-homomorphism f* : Cy(Y)—Cy(X), where f*(g)(z) := g(f(z)) for all
g € Co(Y), see Proposition B.1.40 We call this functor the inverse of the Gelfand
functor and denote it by F.

Theorem 3.3.5. The Gelfand transform D is an equivalence of categories with the
inverse E. Moreover, by restricting the Gelfand transform to the category of unital
commutative C*-algebras, we obtain an equivalence between this category and the
category of compact Hausdorff topological spaces.

Proof. The natural isomorphism 1lecy = ED is the Gelfand transform. To see
this, we only need to check that the following diagram commutes for every proper
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sx-homomorphism ¢ : A—B between two commutative C*-algebras:

T I Cy((A))
B —= Co(QUB))

P(Gala))w) = ¢(a)(w) = [ED(p)(a)](w)
)

= p(a)(w) = Gs(p(a))

The natural isomorphism 1,¢s = DFE at a space X € LCS is the homeomorphism
Fx : X—=Q(Co(X)) defined by = — 2, where z(f) = f(z) for all f € Cy(X). Again,
we need to check that the following diagram commutes for every proper continuous
map ¥ : X—Y between two locally compact Hausdorff spaces X and Y:

X ——T - Q(Cy(X))
wl li
Y ————=Q(Co(Y))

)
VF@)(f) = ©@)(f) = [DE)@))
=

O

Immediate corollaries of this theorem are (i) every proper s-homomorphism
¢ : A= B between two commutative C*-algebras is induced by a proper continuous
map from 2(B) into Q2(A), and similarly (ii) every proper continuous map f : X—Y
between two locally compact and Hausdorff topological spaces is induced by a proper
s-homomorphism from Cy(Y) into Cy(X). A slightly different formulation of this
fact is given in the following corollary:

Corollary 3.3.6. The Gelfand functor and its inverse are bijective maps on the sets
of morphisms. In other words,
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(i) for every two commutative C*-algebras A and B, the following map is bijective:

D : Homeea(A, B)—Homes(2(B), Q(A)),

(ii) and, for every two locally compact and Hausdorff topological spaces X and Y,
the following map is bijective:

E HOmﬁcs(X, Y)—)HOmCCA(Co(Y), CO(X))

Proof. The natural isomorphism 1¢cy = ED implies that D is one-to-one and FE is
onto. Similarly, the natural isomorphism 1,¢s = DF shows that F is one-to-one
and D is onto. O

3.4 Problems

Problem 3.1. Define a new involution on the Banach algebra ¢! (Z) by the following
formula:

f*(n) == f(n), Vfel'(Z),nel.

Show that this is an involution. Show that ¢'(Z) with this involution is not sym-
metric.

Problem 3.2. Let a be an element of a C*-algebra A. Show that o(a) = {0} if and
only if a = 0. Use this to verify Remark

Problem 3.3. Let a be a normal element of a C*-algebra A. Show that if o(a) C R,
then a is self adjoint.

Problem 3.4. Let a be a normal element of a C*-algebra A. Show that if o(a) C T,
then a is unitary.

Problem 3.5. Let a be a normal element of a C*-algebra A. Show that o(a) C
{0,1} if and only if a is a projection. Conclude that every projection is a positive
element.

Problem 3.6. Let a be a self adjoint element of a C*-algebra A.

(i) Show that if a® = a?, then a is a projection.

(ii) Assume a is positive. Show that if a” = a™ for some integers 0 < m < n, then
a is a projection.

Problem 3.7. Show that if a is a positive element of a C*-algebra A then a = bb*
for some b € A. The converse of this statement is also true, which will be proved in
Proposition LIT.8(ii).
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Problem 3.8. Let A be a unital Banach algebra. Assume x,y € A and xy = yz.
Show that

rlzy) <r(z)r(y),  r@+y) <r(@)+ry).
Problem 3.9. Assume A is a Banach algebra. Show that if e # f are two idempo-

tents in A that commute with each other, then |je— f|| > 1. (Hint: Use the previous
exercise. )

Problem 3.10. Let A be a commutative C*-algebra. Assume L : A—C be a linear
functional such that L(a*a) > 0 for all a € A. Prove that L is bounded.

Problem 3.11. Let A and B be two commutative C*-algebras and let ¢ : A—B
be a proper linear map such that ¢(ab) = p(a)p(b) for all a,b € A. Show that ¢ is
a *-homomorphism. (Hint: consider ¢* : Q(B)—€(A) defined by ¢*(w) := we.)

Problem 3.12. Find an approximate unit for Cp(R).

Problem 3.13. Let (uy)xea be an approximate unit for Cy(R). Show that there
exists a countable subnet (uy,)nen such that it is an approximate unit for Cy(R)
too.

Problem 3.14. Let A be a C*-algebra, a,b € A, and ¢,d € A. Show that if
a”™ = cb™d for all n € N, then a'/? = ¢b'/2d.

Problem 3.15. Let A be a commutative unital Banach algebra. Show that the
Gelfand transform G : A—Cy(2(A)) is an isometry if and only if ||a]|? = ||a?| for all
ac A

Problem 3.16. Let u be a unitary element of a unital C*-algebra A.
(i) Show that if |1 — u|| < 2, then o(u) # T.

(ii) Show that if o(u) # T, then there exists a self adjoint element a € A such
that u = e'.
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Chapter 4

Basics of the theory of C'*-algebras

Positive elements of a C*-algebra and their properties are the special feature of the
theory of abstract C*-algebras among other topological algebras. This notion plays
a key role in the realization of abstract C*-algebras as subalgebras of algebras of
bounded operators on Hilbert spaces. Positivity also facilitate many applications
of the theory of C*-algebras in quantum physics. Therefore we study positivity in
C*-algebras as the first step towards the abstract theory of C*-algebras in Section
1. The continuous functional calculus allows us to imitate the decomposition of
every complex function to a linear combination of four non-negative real functions
and write every element of a (C*-algebra as a linear combination of four positive
elements. One will notice the application of this easy trick in many proofs in up
coming topics.

Approximate units in C*-algebras play a indispensable role in the theory of
C*-algebras too. We briefly discuss this notion in Section A2

Section [4.3] is devoted to the basic results about ideals of C*-algebras. Some
of the unique features of C*-algebras among other topological algebras appear in
their ideal structure. For instance, every closed two sided ideal of a C*-algebra is
automatically an involutive subalgebra, see Proposition [£.3.2] or the image of every
x-homomorphism between two C*-algebra is always a C*-algebra, see Corollary[4.3.5]
Afterwards, we study the close relationship between hereditary C*-subalgebras of
C*-algebras and the ideal structure of C*-algebras. For instance, we study a bijective
correspondence between the family of all closed left ideals of a C*-algebra and the
family of all its hereditary C*-subalgebras, see Theorem [.3.13] It is also shown that
every hereditary C*-subalgebra of a simple C*-algebra is simple too, see Proposition
Multiplier algebra of a C*-algebra is introduced and studied also in this
section.

In this chapter, we refer to the continuous functional calculus briefly by CFC.

87
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4.1 Positivity

In this section A is always a C*-algebra. Recall that a self adjoint element a € A is
called positive if o(a) C [0,00). We denote this by a > 0 (or equivalently 0 < a).
This gives rise to an order relation between elements of A by defining a < b if
b—a > 0. Although it is well defined among all elements of A, we usually use this
order to compare self adjoint elements of A. An important feature of this partial
order that follows from Corollary is that the relation a < b between two self
adjoint elements a, b is independent of the C*-subalgebra containing a, b. The set of
all positive elements of A is denoted by A, . This section is devoted to this set and
various properties of positive elements of a C*-algebra that will be useful in the rest
of this book.

Exercise 4.1.1. Let a be a self adjoint element of a unital C*-algebra A. Then
prove the following statements:

(i) The relation < is a partial order in A, namely it is reflexive, anti-symmetric
and transitive.

(ii) a < |a| and —a < |al,
(iii) |a| < ||al|14, and so a < ||a||14

Example 4.1.2. Let X be a locally compact and Hausdorff space. A function
f € Co(X) is a positive element of the C*-algebra Cy(X) if and only if f(x) > 0 for
all z € X, namely it is a positive (non-negative) function on X. We can rephrase
this by saying that an element a in a commutative C*-algebra A is positive if and
only w(a) > 0 for all w € Q(A).

Continuing the idea discussed in the above example, we note that every real
valued function f can be written as the difference of two positive functions f, :=
max{f,0} and f_ = maz{—f,0}, i.e. f = fy — f_. The continuous functional
calculus allows us to use this phenomenon to find a similar decomposition for self
adjoint elements of a C*-algebra.

Proposition 4.1.3. Let a be a self adjoint element of a C*-algebra A. Then there
are two unique positive elements at and a~ in A with the property that a = ay —a_
and ara_ = a_ay = 0. Moreover, we have |a| = ay + a_.

Proof. Define a, = M% and a_ = MT_“ Then they are positive and one easily

checks that they satisfy the above equalities. To prove the uniqueness of this de-
composition, assume (x,z_) is another ordered pair of positive elements of A with
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the properties that a =z, —x_ and x,x_ = x_x, = 0. Then we have

2

a|* =a* =27 + 2% = (vy +3_)%

By uniqueness of the squared root of positive elements, see Proposition 3.2.10, we

obtain x, + z_ = |a|. If we solve the system of equations
Ty +x_ =|al
Ty —T_=a
for xy and x_, we get z, = a, and r_ =a_. !

The above decomposition of every self adjoint element a € A to the difference
of two positive elements is called the Jordan decomposition of a.

Remark 4.1.4. Let a € A be self adjoint. Using the non-unital continuous functional
calculus of a, i.e. ®,, we define

by := ®g(max{idy(,),0}), and b := ®,(max{—idy(),0}).

They possesses the properties mentioned in Proposition L. 1.3, and so we have a, =
by € C*(a) and a_ = b_ € C*(a), where a; and a_ are as Proposition .13

Corollary 4.1.5. FEvery element a of a C*-algebra A can be written as a linear
combination of four positive elements of A.

Note that the existence of a unit element is not part of the assumption in the
above corollary, in contrast with Proposition [3.2.19]

Some properties of positive elements are stated in the following proposition.
One notes that most of the proofs are based on CFC.

Proposition 4.1.6. Let A be a C*-algebra and a,b € A.

(i) If a >0 and —a > 0, then a = 0.

(ii) If a > 0, then |la|| = max{\;\ € o(a)}. More generally, If a = a*, then
|las || = max{\; A € o(a)} and ||a_|| = min{\; A € o(a)}.

(#i) If a,b > 0 and ab = ba, then ab > 0 and a +b > 0.
(iv) Let A be unital. If a = a* and ||a|| < 2, then a > 0 if and only if [ja — 1| < 1.
(v) Let A be unital. Then a+ A > 0 if and only if a = a* and X\ > |la_||.

(vi) Let A be unital and let a = a*. Then a = 0 if and only if ||[1 — 1&[| < 1.

llal
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Proof. (i) It is an immediate application of CFC.

(ii)) When o(a) € [0,00), we have r(a) = max{\;A € o(a)}. Hence the first
statement follows from Proposition To prove the general statement,
apply Remark 4.1.4

(iii) It follows from Corollary

(iv) Since a = a*, the inequality [|a|| < 2 means that o(a) C [-2,2]. If a > 0,
then we have o(a) C [0, 2], and so o(a — 1) C [—1,1]. Hence we get ||a — 1| =
r(a — 1) < 1. The converse is proved by a similar argument.

(v) One can apply the ideas discussed in Remark L.1.4l and Item (ii) to prove this
part.

(vi) If @ > 0, then a(ﬁ)g[O, 1]. Hence o(1 — ﬁ)g[o,l], and so [|[1 — ﬁ“ =
r(1— ﬁ) < 1. For the converse, a similar argument based on the continuous

spectral mapping theorem shows that o(a)C|0, 2/al|].
U

Definition 4.1.7. Let E be a vector space. A subset C' of E is called a cone in E
if it is closed under addition and scalar multiplication by R, := [0, 00). Also, it is
often assumed that C' N (—C) = {0}.

Proposition 4.1.8. (i) A, is a closed cone in A.
(ii) For every a € A, we have a*a > 0.

(i11) For every a € A and b € Ay, we have a*ba > 0.

Proof. (i) It is clear that Ry A, = A,. Using Proposition LT.6(iv), one easily
observes that

Ay 0 (A) = Ay 1 (A) N {a € 41— <1},

where (A); is the closed unit ball of A. Since all three sets appearing in the
right hand side of this equality are closed and convex, so is the set in the
left hand side. This clearly implies that A, is closed. Assume a,b € A, and
pick some r > 0 such that a/r and b/r lie in A, N (A);. Hence a/2r + b/2r €
A, N(A);. Now, the equality Ry A, = A, implies that a+b = 2r(a/2r+b/2r)
belongs to A,.
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(i)

(iii)

Let a be an arbitrary element of A. Using Proposition 2.3.4] we know that
a*a > 0 if and only if aa® > 0. On the other hand, if a = x + 1y is the
decomposition of a to the linear combination of two self adjoint elements z, v,
then we have

(4.1) a*a+aa* =2(x* +y*) >0

by (i) and Exercise B.2I7 Now, let a*a = ¢4 —c_ be the Jordan decomposition
of a*a and set b := ac_. Then —b*b = —c_a*ac_ = ¢* > 0. Hence using (&I
and (i), we conclude that bb* = (b*b + bb*) + (—b*b) > 0. Therefore b*b > 0.
By Proposition ILL6(i), we have c. = —(b*b)'/? = 0. Hence a*a > 0.

Write a*ba = (b'/%a)*(b*/?a) and apply (ii).
]

Example 4.1.9. (i) Let (H, (—, —)) be a Hilbert space. If an operator 7' € B(H)

is positive, then 7' = S*S for some S € B(H). Hence we have
(Tx,r) = (S*Sx,x) = (Sx, Sx) = ||Sz||* >0, Vze H.

This means that 7' > 0 implies that (T'z,z) > 0 for all x € H. The converse
is also true. Let T' € B(H) and let (T'z,z) > 0 for all z € H. Then for every
x € H, we have (T'x,z) = (x,Tx), because it is real. Since the adjoint operator
is unique, see Corollary [£.2.3] 7' = T*. Consider the Jordan decomposition of
T,ie. T =T, —T_. For every x € H, we have

(T_x,TT_x) = (T_2,(Ty — T )T z) = (T_x, ~T?x) = (v, -T°x).

The left hand side of the above equality is non-negative (> 0), because T is
positive and the right hand side is non-positive (< 0), because T° is positive.
Therefore (z,T3z) = 0 for all x € H. It follows from Problem that
T3 =0, and so T_ = 0. This means that T is positive. Now that we established
a new characterization of positive operators on a Hilbert space, without using
their spectrum, it is a good exercise to show (without using CFC) that if a
positive operator T is invertible, then its inverse is positive too.

Now, let H = C™ and let (—, —) be the ordinary inner product on H, namely
(:L’,y> = Zx1E7 Vo = (Ilv to 7$n>7y = (y17 ce 7yn> e C".
i=1

Then T = (t;;) € M,(C) = B(H) is self adjoint if and only if ¢;; = ¢;; for
all i,7 = 1,--- ,n, see Example (.20 Since the spectrum of a T' € M, (C)
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is exactly the set of all eigenvalues of T', T" is positive if and only if T is self
adjoint and all its eigenvalues are positive (non-negative). For example, one

checks that the operator defined by the matrix ( _21 _11 ) (in the standard
basis) is positive.
The partial order a < b between elements of a C*-algebra is clearly translation

invariant, that is a + ¢ < b + ¢ for every ¢ € A. Using Proposition L.I.8 we can
extend this property as follows:

Exercise 4.1.10. Let a, b, ¢, d be elements of a C*-algebra A.

(i) If a < b and ¢ < d, show that a + ¢ < b+ d.
(ii) If a < b, then c*ac < c*be.
(iii) If @ > 0, then c*ac < ||a]|c*c.

For every element a of a C*-algebra A, using Proposition I T.8|ii), we can
define the absolute value of a by

la| == (a*a)"?.

Of course, there is an alternative definition using aa* in stead of a*a. But we choose
the above option.

Proposition 4.1.11. Let a be a positive element of a C*-algebra A. For every
positive real number r, there is a unique positive element a” € C*(a) such that this
definition is consistent with the definition of nth-root in Proposition when
r € Q, namely, if r = m/n, then a” = (a*/™)™. Moreover,

(i) a"*° =a"a®, for all r;s > 0,
(ii) the map [0,00)—Ay defined by r — a” is continuous, and

(#ii) when A is unital and a is invertible, a” is also defined for all r < 0. In this
case the map defined in (ii) is continuous over R.

Proof. For r > 0, define g,.(t) := t". It is continuous over [0,00) and so we can
use the non-unital CFC over a to define a” := g,(a). This definition is consistent
with the definition of nth root in Proposition [3.2.16 and so the uniqueness is proved
similarly.

(i) It follows from the facts that g,.s(t) = ¢,(t)gs(t) and CFC is a *-homomorphism.



4.1. POSITIVITY 93

(ii) Due to the fact that CFC is an isometry, we only need to show that the map
[0,00)—=C(0(a)), defined by r + g,.(t) is continuous. This follows from the
continuity of exponential map and boundedness of o(a).

(iii) When r < 0, define a” := (a™')™".

Let a,b, x be elements of a C*-algebra A. A simple calculation proves the
following identities:

(i) The polarization identity:

(4.2) 4b*a = (a+b)*(a+b)—(a—b)*(a—b)+i(a+ib)* (a+ib)—i(a—ib)* (a—ib).

(ii) The generalized polarization identity:

3
(4.3) 4b*ra = Z i*(a + i*b)*x(a + i*D).

k=0

Several useful inequalities are given in the following propositions:

Proposition 4.1.12. Leta,b, ay, -+ ,a,, and by, - -+ , b, be elements of a C*-algebra
A. Then we have

(i) —(a*a +b*b) < a*b+ b*a < a*a + b*b,
(ii) (a1 + -+ ay) (a1 + -+ a,) <nlar*a; + -+ ay*ay),

fiii) if a*a; = 0 for 1 < i # j < n, then |0, aibll® < S, flasbil”

Proof. (i) It easily follows from expanding inequalities 0 < (a + b)*(a + b) and
0 < (a—"0b)*(a —b) and then regrouping them appropriately.

(ii) Let w be a primitive nth root of unity. Then Y77 w/*% = 0 for all k # I.
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Hence we compute

nzn:ak*ak = nZakak+ Z Zw](l ai*a
k=t k=177
k #1

7=1 k=1 7j=1 k‘,l -1
oy

= z": Zak*ak+ Z wI k=g, * i =g,
j=1

I
3
M-
&
<
=
L
=
el
~__
*
VR
Dngh
&
}i
|
~_
| I

J=1 L

In the last line, all terms inside the summation over j are positive. Thus the
whole summation is greater than or equal the term corresponding to j = n.
Therefore we obtain

S (50 (5

=1

<) ()]

n
= Z bi*ai*aibi
=1
n
Z 10" a;* a;bi|
i=1
n
= Z [laibi]|.
i=1

(iii) We simply compute

IN
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Lemma 4.1.13. Assume a and b are two elements of a C*-algebra A such that
0<a<b. Then |a| <]

Proof. Without loss of generality, we can assume A is unital. If ¢ and b commute,
we consider the commutative C*-algebras C*(a,b) ~ Cy(2(C*(a,b))). Then a and
b are associated to two positive functions f and g in Cy(£2(C*(a,b))), respectively,
such that f < g. Then it is clear that |[a|| = || f|lsup < [|gllsup = [1]l-

For the general case, one first notes that 0 < a < b < ||b||1. Now, the statement
follows from the above case and the fact that a and [|b]|1 commute. O

Exercise 4.1.14. Let a, b, ¢, d be four self adjoint elements in a C*-algebra A. Show
that if a <b<c¢<d,thenc—b<d-—a.

Definition 4.1.15. A linear map ¢ : A— B between two C*-algebra is called pos-
itive if ¢(a) > 0 whenever a > 0, in other words, if ¢ maps positive elements of A
to positive elements of B.

Example 4.1.16. (i) Every *-homomorphism ¢ : A— B between two C*-algebra
is positive.

(ii) Let tr : M,(C)—C be the trace map. By Example L.T.9(ii), ¢r is positive,
because the trace of every matrix 7" € M, (C) is the sum of its eigenvalues.

We use Part (i) of the above example in what follows. More specifically, we use
the fact that the Gelfand transform and the x-isomorphism defining CFC preserve
inequalities between elements of C*-algebras.

Proposition 4.1.17. Let a and b be elements of a C*-algebra A and let 0 < a < b.

(1) If A is unital and a is invertible, then b is invertible too and we have 0 < b~! <

a

(i) If 0 <r <1, thena” <10".

For given 0 < r such that 0 < a < b implies a” < b", we say that the function
t—t" is operator monotone.

Proof. (i) If a is invertible, then 0 ¢ o(a). Thus @ > 0 implies that there exists
a € > 0 such that o(a)C(e,00). Hence €1 < a, and so €1 < b. This implies
that y is invertible too. By CFC, it is clear that a=!,b~! are both positive.
Furthermore, if @ and b commute, we consider the commutative C*-algebra
C*(a,b,1). Then using the Gelfand transform, a and b are corresponded to two
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strictly positive (so invertible) functions f, g € C(Q(C*(a,b,1))), respectively,
such that f < ¢. It is clear that 0 < ¢g=! < f~!. Since the inverse of the
Gelfand transform is a s*-homomorphism, we obtain the desired inequality
from this. For the general case, we note that a < b implies that b='/2ab=1/? <
b=1/2pb=1/%2 = 1, see Exercise Since 1 commutes with every element, we
have 1 < (b='/2ab=1/2)~1 and this implies b=! < a7 '.

Without loss of generality, we assume A is unital. Define

S :={r € (0,00);t — t"is operator-monotone}.

We follow the following steps to prove (0, 1]CS:

(a)
(b)

Clearly, 1 € S and S is closed under multiplication.

The set S is a closed subset of (0,00):

Let {r,} be a sequence of elements of S convergent to some 7y € (0, 00).
Then {0 — a™} is a sequence in A convergent to b — a’, see Propo-
sition LTTTI(ii). Since Ay is closed, 0™ — a"™ > 0, and so ry € S.

A positive real number r belongs to S if and only if 0 < a < band b € A
imply a” < 0"

We assume the special case and prove the general case. If 0 < a < b, then
0<a<b+eland b+el € A* for all e > 0. Thus a” < (b+¢1)" for all
e > 0. On the other hand, (b+ £1)"—0b" as e—0. To see this, we should
look at CFC of b. Define f,(z) := (z+ 1)". Since the spectrum of b is
compact the sequence {f,}CC(o(b)) of functions is uniformly convergent
to f(z) := z". Now, since A, is a closed set of A, we conclude that
a" <b.

[fO0<a<b be A and ||b=/2a"b"/?|| < 1, then r € S:

Using Exercise ILTI0(ii), one easily observes that a” < b" if and only if
b"2a"b™/2 < 1. Also, b~"/2a"b7"/? < 1 if and only if ||b7"/2a7b7"/?|| < 1.
These latter implications follow from Lemma and the fact that
b="2a"b="/? is positive.

1/2€S:

Assume 0 < a < b and b € A%, then b=/2ab~/? < 1. Thus we have

1> ||b—1/2ab—1/2H _ ||b_1/2a1/2a1/2b_1/2]| _ ||b_1/2a1/2||2,

and so [|b~'/2a'/?|| < 1. Using the fact that r(zy) = r(yz) for all z,y in
a C*-algebra, we get
r(b_1/4a1/2b_1/4) _ r(b_1/2a1/2) < Hb—1/2a1/2H <1.

Since b~ %a/2b=1/4 is positive, this inequality implies that b= /%a/2p=1/4 <
1, and so ||b~"/*a'/2p~1/4|| < 1. Using the above step we conclude 1/2 € S.
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(f) If r,s € S, then t := = € S:
The proof of this step is similar to the previous step. Assume 0 < a <b
and b € A*. Then we have

r(b_t/2atb_t/2) _ r(b_tat) _ T(b—r/2atb—s/2)
a2 (@270
||b—r/2ar/2|| ||as/2b—s/2|| S 1.

This implies ||6="/2a'b="/?|| < 1. So, by Step (d), we have t € S.
(g) Applying the above steps, we observe that the set

IAINA

X = {Qﬁn;m,n e Nym <27}
lies in S. Since S is closed and X is dense in (0, 1], we have (0, 1]CS.

O

One notes that the proof of Part (ii) of the above proposition would be very
easy if a and b commute with each other. In fact, in this case, for all r € (0, c0),
0 < a < bimplies a” < b". The following exercise gives a counterexample for the
latter statement in general.

Exercise 4.1.18. Let a = ( 3 3 ) and b = ( g g ) Verify that 0 < a < b and
that a” £ 0" for all 7 > 1.

4.2 Approximate units

We have already seen examples of approximate units in Banach algebras, see Remark
and Lemma 2230, and in C*-algebras, see Example B.1.39 They facilitate
many proofs in the lack of unit elements. Many applications of approximate units
will be given in Section .3l We begin this section with the definition of various
types of approximate units in C*-algebras. Afterwards, we prove the existence of
each one these types.

Let (A, <) and (X,C) be two directed sets. An isotone from A into ¥ is a
map ¢ : A—X preserving the order structure, that is () C () for all A < 6 € A.
An isotone is called an isomorphism of directed sets if it is a bijective map.

Definition 4.2.1. Let A be a C*-algebra. An approximate unit for A is a net
(uy) of positive elements of A indexed by a directed set A such that ||uy]| < 1 for
all A € A and we have

(4.4) |luxa — al|—0 and |[auy — a||—0, Va € A.
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Some of the varieties of approximate units are as follows:

(i) An approximate unit (uy) is called increasing if uy < ug if A < 6.

(ii) An approximate unit (uy) is called idempotent if u, is a projection for all
A€EA.

(iii) An approximate unit (u,) is called countable if A is countable.

(iv) An approximate unit (uy) is called sequential if A is the same directed set as
N (up to isomorphism of directed sets).

(v) An approximate unit (uy) is called continuous if A is equipped with a topol-
ogy and there is a continuous isomorphism ¢ : (0, 00)—A of the directed sets.

In fact, each one of the limits in (A4]) implies the other one, by considering a*
in stead of a and using the continuity of the involution. It is also worthwhile to note
that if (uy)xea 1S an approximate unit for a unital C*-algebra A, then it eventually
consists of invertible elements in the unit ball of A converging to 14. Even when A
is not unital, we sometimes use the expressions (1 — uy)a—0 and a(1 — u,)—0 (or
(1 — up)al]|—0 and ||a(1 — uy)||—0) in lieu of limits in (@4]). One notes that they
are have the same meaning in A and since the inclusion A < A is an isometry, they
make sense even in A. An important feature of approximate units that plays a key
role in studying various properties of C*-algebras is the minimum cardinality of the
index sets of approximate units. Before proving the existence of approximate units
in general, we discuss some examples, notions and properties of approximate units.

Exercise 4.2.2. Show that every countable approximate unit (u,) for a C*-algebra
A has a subnet (u,,) which is a sequential approximate unit for A.

Definition 4.2.3. A C*-algebra A is called o-unital if it possesses a countable (or
equivalently sequential) approximate unit.

Example 4.2.4. (i) Unital C*-algebras are trivial examples of o-unital C*-algebras.

(ii) For n € N define f,, : R—C by the following formula:

1 It| <n
fut) = n—=]t|+1 n<|t|<n+1
0 lt| >n+1

One easily verifies that {f,} is an increasing sequential approximate unit for

Co(R).
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Proposition 4.2.5. Let (uy) be an approzimate unit for a C*-algebra A. Then we
have the following statements:

(i) For every a € A, we have uyauy—a.

(ii) For every a € Ay, we have a

12y5a'?=a.

(iii) For every r > 0, u} is an approzimate unit.

Proof. (i) One notes that

|urauy — a|| < ||urauy — auy|| + ||Jauy — al| < [Jura — al| + ||auy — al.
This inequality implies (i).

When a > 0, we have uya'/?—a'/? and a'/?uy—a'/?. Using the continuity of
the multiplication, (ii) follows from these limits.

Fix a € A. We note that [[uyx — zuy||—0 as A—oo for all x € A. Hence by
setting x = uya, we get

|usa — al < ||uia — urauy|| + ||usauy — al|—0.
By induction, we obtain ||u3"a — al|—0 for all n € N. For r > 0, pick n big
enough such that 2" > 2r. Inequalities

* 27

a‘uy a < a*uira < a'ula < a*a,

follow from Exercise .I.I0(ii) and the fact that u§ < 1 for all @ > 0. Regarding
this inequalities and using Lemma [LT.T3] and Exercise LT.14], we have

la*u3"a — a*ubal < ||a*u3 a — a*al|—o0,

and
la*uba — a*al| < |la*ul a — a*al|—oo.
Therefore we get
la —whal* = [[(a* = a"u})(a — uja)l|
= |la*a — 2a*uka + a*u3 all

< la*a — a*uial| + ||a*uta — a*uy al|—o0.

The following exercise is used in the next theorem:
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Exercise 4.2.6. Let I be an ideal (left, right or two sided) of a complex algebra A
and let A; be the algebraic unitization of A. Show that [ is an ideal (left, right or
two sided) of A; as well. See also Proposition

Theorem 4.2.7. Fvery dense two sided ideal I of a C*-algebra A contains an ap-
proximate unit for A. More precisely, Define

Ar={ac A NI;la] <1}

The set A; with the order structure inherited from A, is a directed set and is an
increasing approximate identity, whose index set is itself.

Proof. Let us denote the set of all positive elements of I by /. Define ¢ : Aj—1;
by u + (1 —u)~! —1. One easily sees that the map z + 1 — (14 z)~! is the inverse
of ¢. In the definition of ¢ and ¢!, we used the unit element which belongs to A in
general. So, we have to check that ¢ and ¢! are both well defined. In other words,
we must show that ¢(u) € I, for all u € A; and o~ (z) € A; forall z € I,.

For given u € A, since ||ul| < 1 we have

plu) = ",

Therefore ¢(u) € C*(u)CA. We also note that ¢(u) = u+u) - u" and so
p(u) € I. Moreover, since u™ is positive for all n € N and A, is a closed cone, we
have p(u) € A;.

Let # € I,.. One easily checks that ||~ '(2)|| < 1 and ¢~!(x) is positive. Now,
we note that ¢=1(x) = x(x + 1)7!. Consider the continuous functional calculus of
z, ie. @, : C(o4(x))—C*(z,1). Then we have o~ '(z) = ®,(f), where f(z) := g

Clearly, f(0) =0, so ¢ *(z) = ®,(f) € C*(x)CA. On the other hand, the equality
o ' (z) = z(z +1)~" implies that ¢~!(z) € I. Therefore o' (z) € A;.

It follows from Proposition TI7|(i) that ¢ preserves the order. Therefore Ay
is a directed set.

Now, we want to show that (1 — u)a—0 as u—oo for all a« € A. First, we
prove this statement for a given a € A;. Let ¢ > 0. By Proposition ELTTII(ii),
there exists n € N such that [|a*(1 — a"/™)a|| = ||a® — a* || < e. For u > a'/
in A7, we have 1 —u < 1 — /", and so a*(1 — u)a < a*(1 — a'/™)a. This implies
la*(1 —u)al| < ||a*(1 —a'/")al| < e. Hence when u—oc (in the directed set A;), we
have

I(1 = w)al* = [la*(1 = u)*al| < [la*(1 - u)al| <e.

This proves the first step. The first step clearly implies the same statement for
a € I, as well. Now, let @ € A, and let ¢ > 0. Assume {b,} is a sequence in [
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such that b,—a'/?. Then b,*b,—a, and so (1 — u)b,*b,—(1 — u)a for all u € A;.
This shows that (1 —u)a—0 as u—o0 for all @ € A,. Since every element of A is
a linear combination of four positive elements, this latter statement implies that A;
is an approximate unit for whole A. O

Definition 4.2.8. A C*-algebra A is called separable if it possesses a countable
and dense subset.

Proposition 4.2.9. (i) Every separable C*-algebra A is o-unital.

(i1) Every o-unital C*-algebra A has a continuous approzimate unit.

Proof. (i) Let {ax} be a dense sequence in A and let (uy) be an approximate
unit for A obtained in Theorem €.2.71 Choose uy, arbitrarily. For a natural
number n > 2, choose wuy, such that uy, > u,,_, and |[(1 —uy,)z|| < 1/n for
all k =1,---,n. Then by the construction, it is easy to see that the sequence
{uy, } is a sequential approximate unit for A. One notes that this sequential
approximate unit is increasing too.

(ii) Let {w;} be a sequential approximate unit in a C*-algebra A as obtained in
(i). For every n € Z and t € [n,n + 1], we define

up = (n+1—1)u, + (t —n)upys.
Then {u;}er is a continuous approximate unit for A. To see this, assume
a € A and € > 0 are given. Choose ng € N such that for all n > ng, we have

|(1 — uy)al| < e and ||(1 — upy1)al| < €. Then for all ¢ > ng, there is some
n € N such that ¢ € [n,n + 1] and we have

I =upall = [[(n+1—=)1 —un)a+ E—n)(1 = uni)all
< N+ 1 =01 —wun)al + [t = n)(1 = unia)all
< (n+l—-t)e+(t—nl=c.

O

Exercise 4.2.10. (i) Complete the proof of Part (i) of the above proposition.

(ii) In Part (ii) of the above proposition, show that if {u;} is an increasing sequen-
tial approximate unit, then {u;}4 g is increasing too.
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4.3 Ideals and homomorphisms

In this section, A is always a C*-algebra. By an ideal of A, we mean a two sided ideal
I of A which is closed under scalar multiplication, or equivalently, it is a subalgebra
of A. Left or right ideals will be specified.

Proposition 4.3.1. Let I be a closed left ideal of a C*-algebra A. Then there is a
net (uy) of positive elements of I in the unit ball of I such that limy(a — auy) = 0
for all a € I. Moreover, if I is a two sided ideal of A, then (uy) is an approximate
unit for 1.

Proof. Set J := I N I*. One notes that J is a C*-subalgebra of A. Therefore by
Theorem .2.7] there exists an approximate unit (uy) for J in the unit ball of J. For
every a € I, we have a*a € J, and consequently, lim, |[a*a(1 — uy)|| = 0. Thus we
have

I

1i§n lla(l —uy)||* = li{ﬂ (1 —uy)a*a(l — uy)||

< limfa*a(1 = )| = 0.

When [ is a two sided ideal, we use the fact that aa* € J for all a € I, and so
limy [[(1 — uy)aa®|| = 0. Then it follows from a similar argument that lim, [[(1 —
uy)al| =0 for all a € I. O

Proposition 4.3.2. Every closed ideal I of A s closed under the involution, and
so is a C*-subalgebra of A.

Proof. Let (uy) be the approximate unit for I obtained in Proposition £3.T] and let
a € I. We have a = lim) auy, so a* = limy uya*. Thus a* € I, because uya* € I for
all A and I is closed. O

Proposition 4.3.3. Let I be a closed ideal in a C*-algebra A and let J be a closed
tdeal of I. Then J is an ideal of A.

Proof. Since J is a C*-algebra, every element of J is a linear combination of four
positive elements. Therefore to prove that .J is an ideal of A, it is enough to show
that ab,ba € J for all a € A and b € J,. Let (uy) be an approximate unit for I.
Then for all a € A, b € J, and )\, we have uyb'/? € I, so au\b'/?> € I. On the other
hand, b2 € J, so au\b'/?b'/? € J for all A. Therefore ab = lim, au\b € J. Similarly,
we have a*b € J. Since J is a C*-algebra, it implies ba € J. O

Proposition 4.3.4. Let I be a closed ideal of a C*-algebra A.
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(i) The quotient norm on A/l satisfies the following identities for every approxi-

mate unit (uy) for I:

la+ 1| :li§n||a—u>\a|| :li{nHa—au,\H, Va € A.

(ii) The quotient algebra A/l equipped with the quotient norm is a C*-algebra.

Proof. Let (uy) be an approximate unit for I.

(1)

Let a € A. For given € > 0, let b be an element of I such that [|a + 0| <
|la + I|| + €/2. Pick Ay such that A > X\¢ implies |[(1 — uy)b|| < /2. Then we
have

(1 —u)all (1 —ux)(a@+ )|l + [I(1 — un)0|
@+ 0 4+ [|(1 — )bl
la+I||+e/2+¢/2

|(1 = wy)all +e.

IN A CINIA

When —0, we obtain the the first equality. The second equality is proved
similarly.

It is straightforward to check that A/I is an involutive algebra. We also
know that A/I is a Banach algebra. For every a € A, we have ||a* + I|| =
limy [[(1 —uy)a*|| = limy ||a(1—wy)|| = |la+||. Therefore A/I is an involutive
Banach algebra. Now, we prove the C*-identity for the quotient norm. Let
a € A and b € I. We note that the net (||(a*a + b)(1 — uy)||)» is bounded by
la*a + 0|, so we have

la+ 11> = lim [ (1 — uy)al® = lim [[(1 = ur)a”a(l —u)|
< li}\n |(1 —uy)(a*a+b)(1 —uy)| + li/:{n (1 — u))b(1 — wy)||
< llaa+ b +lim (1 — un)b] = [la*a+b].
Thus we have
la+11? < [la*a+I|| < [la*+ I|[la+ I|| = |la+ I||>.

The C*-identity follows from this.

0

Corollary 4.3.5. The image of every x-homomorphism ¢ : A—B between two C*-
algebras s a C*-algebra.
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Proof. Let I be the kernel of ¢. Then the induced x-homomorphism A/I—B is
an injective x-homomorphism, and so an isometry by Corollary Since A/I
is complete, p(A) is closed in B, and so is complete. This proves that p(A) is a
C*-algebra. !

The essence of the above corollary is the fact that the first isomorphism (in
algebra setting) A/I ~ p(A) is an isometry. It leads us to the second isomorphism
and its consequences.

Corollary 4.3.6. Let I be a closed ideal of a C*-algebra A and let B be a C*-
subalgebra of A. Then B + I is a C*-subalgebra of A and there is an isometric

x-150morphism
B+1 B

I — BNnI

This isometry implies
inf{||b+al|;a € I} = inf{|[b+c||;c € BN I}, Vb e B.

In particular, If J is another closed ideal of A, then I + J is also a closed ideal of
A.

Proof. Let ¢ : B—A/I be the composition of the inclusion map ¢ : B — A and
the quotient map 7 : A—A/I. Clearly, ¢ is a *-homomorphism, so its image is a
C*-subalgebra of A/I. One notes that 7=!(¢(B)) = B + I. Hence B + I is closed
in A, and so is complete. The isomorphism % ~ %, which is called the second
isomorphism in algebra, is clearly a *-isomorphism, so is an isometry by Corollary
B.213 O

Every C*-algebra A is an ideal of A. Also, Proposition 2.1.24] implies that
K(H) is an ideal of the C*-algebra B(H) of bounded operators on a Hilbert space
H. Let us characterize closed ideals of commutative C*-algebras.

Example 4.3.7. Let X be locally compact and Hausdorff topological space. A
subset /CCy(X) is an ideal of Cy(X) if and only if I = Cy(U) for some open subset
UCX. For given ideal I of Cy(X), set

C:={reX,;f(x)=0,Vfel}

Let (x;) be a net in C' converging to some point = € X. Using Proposition B.I.35]
we have f(z;) = z;(f)—=Z(f) = f(x) for all f € Cy(X) and this shows that C' is
a closed subspace of X. Now, set U := X — C. Clearly, ICCy(U). Let g ¢ I.
Then 7(g) # 0, where 7 : Cy(X)—Co(X)/I is the quotient map. Since Cy(X)/I
is a C*-algebra by Proposition [L.3.4)(ii), there exists a ¢ € Q(Cy(X)/I) such that
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©(m(g)) # 0. Assume z is the point in X such that & = 7*(¢) = pm. Then one
easily checks that x € C. But g(z) = (g) # 0. Therefore g ¢ I. This shows that
Co(U)CI, and so I = Cy(U). The other implication is easy.

Exercise 4.3.8. Let X be locally compact and Hausdorff topological space. Prove
that there is a bijective correspondence between quotients of Cy(X) and closed
subsets of X.

Let Sq,---,.5, be subsets of a C*-algebra A. The closure of the linear span of
all elements of the form s;---s,, where s; € S; for all ¢ = 1,--- ,n, is denoted by

S-S,

Proposition 4.3.9. Let I and J be closed ideals of a C*-algebra A. Then we have
INnJ=1J.

Proof. 1t is clear that IJCI N J. To prove the reverse inclusion, it is enough to
show that a € I.J for all a € (I NJ);. Since I NJ is a C*-algebra and a is positive,
a'’? € I'nJ. Thus if (uy) be an approximate unit for I, uya'/? € I for all A and
a'’? € J. Therefore a = lim, uya*/?a'/? € 1J. O

Definition 4.3.10. Let A be a C*-algebra. A C*-subalgebra B of A is called a
hereditary C*-subalgebra of A if the inequality a < b for a € A, and b € B,
implies a € B.

Let A be a C*-algebra. Any intersection of hereditary C*-subalgebras of A is
a hereditary C*-subalgebra of A as well. Therefore we can define the hereditary
C*-subalgebra generated by a subset SCA to be the smallest hereditary C*-
subalgebra of A containing S.

Example 4.3.11. Let p be a projection in a C*-algebra A, that is p* = p = p*.
It is clear that pAp = {pap;a € A} is a C*-subalgebra of A. Moreover, pAp is
a hereditary C*-subalgebra of A which is called a corner in A. To show this, let
be Ay and let b < pap for some pap € (pAp),. Then by Exercise ETI0(ii), we
have 0 < (1 —p)b(1 —p) < (1 — p)pap(1 — p) = 0. Therefore we get

0= [[(1—p)b(1 —p)|| = [|(1—p)b"*b"*(1 = p)|| = "/*(1 = p)||*,
and so b'/2 = b'/2p. Hence b = b'/2p'/2 = (b/2)*b1/2 = pb'/2b'/2p = php € pAp.

The corner (1 — p)A(1 — p) is the complementary corner of pAp, which is
defined by 1 — p, the complementary projection of p.

Exercise 4.3.12. Find an example of a C*-algebra A, a projection p € A, and
a € A such that a is not positive or even self adjoint, but pap is positive.
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Theorem 4.3.13. Let A be a C*-algebra.

(i) For every left closed ideal J of A, J N J* is a hereditary C*-subalgebra of A

(ii) The map 0 : J— JNOJ* is a bijective correspondence between the set of all left

closed ideals of A and the set of all hereditary C*-subalgebras of A. In fact,
the inverse of this correspondence is given by the map 0! : B — Jg, where

Jp :={a € A;a*a € B}.

(iii) These correspondences preserve inclusions. In other words, for every two

closed left ideals J; and Jy of A, J1CJy if and only J; N J;*CJy N Jo*.

Proof. (i) Clearly, for every closed left ideal J of A, J N J* is a C*-subalgebra of

(i)

A. Let a € Ay and 0 < a < b for some b € J N J*. Let (uy) be the net in the
open unit ball of J obtained in Proposition £.3.11 Then we have b = limy bu,.
The inequalities 0 < @ < b implies 0 < (1 —uy)a(l —uy) < (1 —uy)b(1 — uy)
for all A\. Hence we have

la'? (1 —u)[]* = [1(1 = ux)a(l —ux)|| < (1 —ur)b(L —uy)|| < [|b(1—wuy)||—0.
This shows that a'/? = limy a'/?u,. Hence a'/?> € J, and so a € J.

First, we have to show that #~! is well defined. Let B be a hereditary C*-
subalgebra of A and let x,y € Jg. Then x*z,y*y € B. Hence we have

(z+y)(r+y) < (z+y)(z+y)+(r—y)(z—y) =222+ 2"y € B,

and so x +y € Jg. Now, let a € A and b € Jg. Then we get (ab)*ab =
b*a*ab < |la||*v*b € B, so ab € Jg. Similarly, one shows that Jp is closed
under scalar multiplication. Since B is closed, one easily observes that Jp is
closed too. Therefore Jg is a closed left ideal of A.

Now, we show that the map 60~! is the same as the identity map on the set
of hereditary C*-subalgebras of A. For every b € B, we have b*b,bb* € B,
so b,b* € Jg. This shows that b € Jg N Jg*. Hence BCJg N Jg*. Let
be (JgNJg*),. Then b* € B, and since B is a C*-algebra, b € B. This shows
that (Jp N Jp*)+CBy, and so (Jg N Jp*)CB.

Finally, we prove that the map 6710 is the same as the identity map on the set
of closed left ideals of A. Let J be a closed left ideal of A and set B := JNJ*.
If z € J, then 2*x € JNJ" = B, and so x € Jg. Hence JCJg. Let x be a
positive element of Jz. Then 22 = 2*x € JNJ* = B. Since B is a C*-algebra,
we have x € BCJ. Hence (Jg)+CJ,, and consequently JpC.J.
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(iii) Let J; and Jy be two closed left ideals of A. If J;C.J,, then we have J; N
J1*CJy N Jy*. Conversely, let J; N Ji*CJo N Jo* and let a € J;. Consider an
approximate unit (uy) for J; N Ji*. One notes that

I

1i/1\rn la(l —uy)||* = li{ﬂ (1 —uy)a*a(l —uy)|| < li/l\rn la*a(l — uy)|| =0,

because a*a € J; N Ji*. So, a = limy auy. On the other hand, for every A, we
have uy € J; N J1*CJy N Jy*CJy. Hence auy € Js for all A, and consequently
a € Jy. Therefore J;CJs.

]
Corollary 4.3.14. Let I be a closed ideal of a C*-algebra A.

(i) I is a hereditary C*-subalgebra of A.
(ii) Considering I as a hereditary C*-subalgebra of A, we have I = J; = {a €
Aja*a € 1}.

(iii) For every a € A, we have a € I if and only if a*a € I if and only if aa* € I.

Proof. (i) Because I = I* = I N I*. In other words, #(I) = I with the notation
of the above theorem.

(ii) Tt follows from Part (ii) of the above theorem and (i), because 6~1(I) = I.

(iii) It follows from (i) and (ii).

Here is another characterization of hereditary C*-subalgebras:

Proposition 4.3.15. A C*-subalgebra B of a C*-algebra A is hereditary if and only
if ball € B for all b,/ € B and a € A.

Proof. Assume B is hereditary, then B = J N J* for some closed left ideal J of A.
If bt/ € B and a € A, then (ba)t' € J, because b’ € J and (bal')* = (b*a*)b* € J,
because b € J*. Therefore bal' € J N J* = B.

Conversely, assume B is a C*-subalgebra of A such that bab’ € B for all
b, e Banda€ A. Let ce A, d € B, and ¢ < d. Consider an approximate unit
(uy) for B. Then 0 < ¢ < d implies 0 < (1 —uy)e(l —uy) < (1 —uy)d(1 — uy), and
SO
21 —w) | < [d2(1 —un)ll, VA

Hence c¢'/2 = limy ¢"/?(1 — uy), because d'/? = limy d'/?(1 — uy). Since uycuy € B
for all A, this shows that ¢ = limy uycuy € B. Thus B is hereditary. O
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Exercise 4.3.16. Let B be a hereditary C*-subalgebra of a C*-algebra A and let I
be a closed ideal of A. Show that B + [ is a hereditary C*-subalgebra of A.

Corollary 4.3.17. Let a be a positive element of a C*-algebra A. Then the closure
of aAa is the hereditary C*-subalgebra of A generated by a.

Proof. Set B := aAa. By the above proposition, it is straightforward to check that
B is a hereditary C*-subalgebra of A. Let (u,) be an approximate unit for A. Then
a®? = limy auya, so a* € B. Since B is a C*-algebra, a € B as well. Again, it follows
from the above proposition that B is the smallest hereditary C*-subalgebra of A
containing a. O

All separable hereditary C*-subalgebras are of the form described in the above
proposition:
Proposition 4.3.18. Let B be a separable hereditary C*-subalgebra of a C*-algebra
A. Then there exists some a € A such that B = aAa.

Proof. Let (u,)nen be a sequential approximate unit for B and set

n=1

w|:
3|3

Clearly, a € By, and so aAaCB by the above corollary. On the other hand, for

every n € N, 32 < a, so u, € aAa. For every b € B, we have b = lim,, ;o tu,bu,.
Therefore by Proposition 1.3.15, we have b € aAa. Hence BCaAa. This completes
the proof. O

Proposition 4.3.19. Let B be a hereditary C*-subalgebra of a unital C*-algebra
A and let a € Ay . Assume for every € > 0, there exists some b € B, such that
a<b+e. Thena € B.

Proof. For given € > 0, pick b. € By such that a < b? + &2 This implies a <
b2 + % + 2eb. = (b. + )% We also note that b. + € is an invertible element in B.
Therefore (b.+¢) ta(b.+¢)~! < 1. We also observe that 1—b.(b.+¢)~1 = g(b.+¢) L.
Using these facts, we have

la?(1 = be(b +2)7']> = |a'? (b +2) 7|
= Y(be + &) ralb. + )7 < 1
Hence we have a'/2 = lim._,a'/?b.(b. + £)7', and similarly, a'/2 = lim._(b. +
£)~'b.a'/?. Since all parts of this latter limit are positive elements, by taking adjoint,

we get a = lim._,o(b. + &) 'b.ab.(b. + ¢)~!. Since B is hereditary, by Proposition
1,315, we have (b. + &) 'b.ab.(b. + ¢)~' € B, and so a € B. O
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The following theorem is a helpful tool to examine the ideal structure of C*-
algebras:

Proposition 4.3.20. Let B be a hereditary C*-subalgebra of a C*-algebra A. A
subset JCB is a closed ideal of B if and only if the exists a closed ideal I of A such
that J = BN 1.

Proof. Let J be a closed ideal of B and set I := AJA. Then I is a closed ideal of A.
Using an approximate unit for .J, one easily sees that J = J?. On the other hand,
since B is hereditary, using an approximate unit for B and by applying Proposition
4375 we have BN I = BIB. Again, we apply Proposition 319 to obtain

BNI=BIB=B(AJA)B = BAJ?ABCBJB = J.

The reverse inclusion is trivial. Also the converse implication is clear. O

To illustrate an application of the above proposition in ideal structure of C*-
algebras, we need a definition:

Definition 4.3.21. A C*-algebra A is called simple if 0 and A are its only closed
ideals.

Exercise 4.3.22. Prove that every non-zero *-homomorphism from ¢ : C—C equals
identity. Conclude that C is a simple C*-algebra.

In the above example, it is enough to assume ¢ is a non-zero algebraic homo-
morphism.

Proposition 4.3.23. For alln € N, the C*-algebra M, = M, (C) is simple.

Proof. Let n € Nis given. Using the standard basis of C", we can consider M,, as the
algebra of all n X n matrices with entries in C. Then M,, as a complex vector space
is generated by elementary matrices E;; for all 1 <4, j < n, see Exercise B.3.2(iv).
Let I # 0 be an ideal of M,. Pick 0 # T = (¢;;) € I and assume t,, # 0 for
some 1 < r;s <n. Then it is straightforward to check that E;; = iEuTEﬂ el
Similarly, one checks that

Ej;=EaEnEyy€l, Y1<ij<n,

and therefore M,, = I. O

Again, M, is simple even as an algebra. We can also rephrase the above propo-
sition by saying that every x-homomorphism (or just algebraic homomorphism) from
M,, into another C*-algebra (or just complex algebra) is either one-to-one or zero.
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Proposition 4.3.24. Hereditary C*-subalgebras of a simple C*-algebra are simple.

Proof. Assume A is a simple C*-algebra, B is a hereditary C*-subalgebra of A, and
J is a closed ideal of B. Then J = B NI for some closed ideal of A, by Proposition
4320 Since A is simple, I = A or I = 0. Therefore J = B or J = 0. O

We conclude this section with a brief discussion of multiplier algebras of C*-
algebras. In the rest of this section, A is a C*-algebra. The C*-unitization of
A studied in Section 1] is the smallest C*-algebra that contains A as an ideal.
However, we have to impose a certain condition to be able to determine the biggest
unitization for a C*-algebra. The phrase “ the biggest unitization” will be explained
shortly.

Definition 4.3.25. Let R be a ring. A two sided ideal I of R is called an essential
ideal if every other non-zero ideal of R has a non-zero intersection with I.

One easily sees that A is always an essential ideal of A. We shall show that
the ideal F'(H) of finite rank operators on a Hilbert space H is an essential ideal
of B(H), so is K(H), see Proposition In the following example, we describe
essential ideals of commutative C*-algebras.

Example 4.3.26. Let X be locally compact and Hausdorff topological space. An
ideal I of Cy(X) is essential if and only if I = Cy(U) for some open and dense
subset UCX. The correspondence between ideals of Cy(X) and open subsets of
X has already been discussed in Example [£.3.71 Assume U is an open but not
dense, subset of X, so there is an open subset OCX such that ONU = (). One
observes that Cy(O) N Cy(U) = 0. Hence Cy(U) is not an essential ideal of Cp(X).
Conversely assume U is an open and dense subset of X. If Cy(U’) is a non-zero ideal
of Cy(X), then U" must be non-empty, and so O = U NU’ # ). One observes that
0 # Co(0O) = Co(U) N Cy(U"). Therefore Cy(U) is an essential ideal of Cy(X).

Definition 4.3.27. An ordered pair (L, R) of bounded operators on A is called a
double centralizer for A if for every a,b € A, we have

L(ab) = L(a)b, R(ab) =aR(b), and R(a)b= aL(b).
The set of all double centralizers for A is denoted by M (A).

Example 4.3.28. For every ¢ € A, define L., R. € B(A) by L.(a) := ca and
R.(a) := ac. then the pair (L., R.) is a double centralizer for A and one easily
checks that ||L.|| = | Rc|| = ||¢]|-

This suggests the following proposition:
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Proposition 4.3.29. (i) If (L, R) is a double centralizer for A, then ||L|| = || R||.

(ii) If A is a unital C*-algebra, then every double centralizer for A is of the form
(L, R.) for some c € A.

(iii) M(A) is a closed subspace of B(A) ® B(A), where the norm on B(A) @ B(A)
is defined by ||(T,S)| := max{||T||, ||S||} for all (T,S) € B(A) & B(A).

Proof. (i) For every a,b € A, we have ||aL(b)|| = ||R(a)b|| < ||R||||a||]|b||. Hence

1L (b)]

sup{[laL(b)[}; [Ja]l <1}
sup{|[| B[/ l[a[ll[o[]; fla] < 1}

<
< [RIlol-

This shows that ||L|| < ||R|. The reverse inequality follows from a similar
argument.

(ii) Let A be unital and let (L, R) be a double centralizer for A. Set ¢ := L(1) =
R(1). Then for every a € A, we have L.(a) = ca = L(1)a = L(a) and similarly
R.(a) = R(a).

(iii) It follows from the fact that all three equations in Definition A.3.27 pass the
limit by continuity of product.

O

Regarding the above proposition, it makes sense to define the norm of a double
centralizer (L, R) for A by

1L, R = [IL]] = (IR

The scalar product is defined by A(L, R) := (AL, AR) for all A € C and we define
the product of two double centralizers (L, Ry), (L2, Ry) € M(A) by

(L1, R1)(La, Ry) := (L1 Ly, R Rs).
We also define an involution on M (A) by
(L,R)" := (R", L"), V(L,R) € M(A),
where L*(a) := L(a*)* and R*(a) := R(a*)* for all a € A.

Exercise 4.3.30. Prove that M(A) is an involutive Banach algebra with the above
operations.
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Proposition 4.3.31. (i) The algebra M(A) is a C*-algebra.
(ii) The double centralizer (id4,ida) is the unit element of M(A).

(iii) The map a — (L4, R,) is an injective x-homomorphism from A into M(A).

Proof. (i) We only need to check the C*-identity for M(A). Let (L, R) € M(A).
For every a € A such that |a|| <1, we have

IL@)* = [IL(a)"L(a)|| = [[L*(a") L(a)]]
= [[R(L(a"))al| < [|RL*(a”)]
< |[RL[| = [I((LE", RLY)]|

= (L, R)(R", L")[| = [[(L, R)(L, R)"||
Hence

1L, BI* = |ILI* = sup{[|L(a)l|*; llal| < 1}
< L RL, R < [I(L, R)|*

Therefore [|(L, R)|* = [|(L, R)(L, R)"]|
(ii) It is straightforward to check.

(iii) One easily checks that the map a — (L, R,) is a *-homomorphism and, by
Example 328 it is an isometry. Hence it is injective.

O

The C*-algebra M(A) is called the multiplier algebra of A. By identifying
A with its image in M(A), we often consider A as a C*-subalgebra of M (A).

Proposition 4.3.32. Fvery C*-algebra A is an essential ideal of M(A).

Proof. First, we show that A is an ideal of M(A). For given (L, R) € M(A) and
c € A set a = R(c). We claim (Lo, Ry) = (Le, R.)(L, R). For every a € A,
we compute L,(a) = R(c)a = cL(a) = L.(L(a)), so L, = L.L, or equivalently
|Lo — LL|| = 0. This implies |R, — R.R|| =0, and so R, = R.R. This proves our
claim and shows that A is a right ideal of M(A). Since A is an involutive subalgebra
of M(A), it is a left ideal of M(A) as well.

Now, let I be a non-zero ideal of M(A) and let 0 # (L, R) € I. So there is
a € A such that x := L(a) # 0. The double centralizer (L., R,~)(L, R) belongs
to both A and I, since both are ideals of M(A). On the other hand, L,-(L(a)) =
x*L(a) = x*x # 0. This shows that I N A # 0. O
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Proposition 4.3.33. Let I be a closed ideal of A. Then there is a x-homomorphism
v A=M(I) extending the inclusion I — M (I). Moreover, ¢ is one-to-one if and
only if I is essential in A. In particular, if a C*-algebra B contains A as an essential
ideal, then there is a one-to-one x-homomorphism from B into the multiplier algebra

M(A).

Proof. For every a € A, the pair (L,, R,) is a double centralizer for I. Hence we
define ¢ : a — (Lg, R,). It is clear that ¢ extends the inclusion I — M(I).

Assume ¢ is one-to-one, then A is identified with a C*-subalgebra of M ([).
Let J be a non-zero ideal of A. Since [ is contained in A, the same argument as the
proof of Proposition [£.3.32] shows that I N J # 0.

Conversely, assume that [ is essential in A. Then the kernel of ¢ is a closed
ideal in A whose intersection with [ is zero. Therefore it has to be zero. O

Since M(A) is unital, the above proposition explains our earlier statement
about M (A) being the biggest unitization of A. Of course, we have to impose the
condition that every unitization contains A as an essential ideal.

Remark 4.3.34. The above proposition proves a universal property for the multiplier
algebra of a C*-algebra. This universal property is often used to define the multiplier
algebras abstractly. Then the algebra of all double centralizers for a C*-algebras
becomes a model for the abstract multiplier algebra. There are other models for
multiplier algebras.

Example 4.3.35. Let X be a locally compact and Hausdorff topological space.
One easily observes that Cy(X) is a closed ideal of Cy(X). We claim that C,(X)
contains Cy(X) as an essential ideal. Let I be an ideal of Cy(X) and f € I be
a non-zero bounded and continuous function from X into C. Pick zy € X such
that f(z9) # 0. Hence there exists an open neighborhood U around z such that
f(z) # 0 for all z € U. Since X is a normal space, by Urysohn’s lemma, there
is a continuous function g : X—[0, 1] such that g(z¢) = 1 and supp(g)CU. Clearly,
0# gf € Co(X) N I. This proves our claim.

Therefore by Proposition [4.3.33 there is a one-to-one x-homomorphism ¢ :
Cy(X)—=M(Co(X). We prove that ¢ is onto, and so an isomorphism. To prove this
it is enough to show that, for every ¢ € M(Cy(X)),, there is g € Cy(X) such that
©(g) = c. Let (uy) be an increasing approximate unit for Cy(X). then for every
x € X, the net (cuy(z)) lies in [0, 1] and we have cuy(z) < |[cux|lsup < ||¢||sup for all
A, so this net is bounded above. Similarly, one checks that this net is increasing.
This shows that this net is convergent, and consequently we can define g : X —C by
g(z) := limy cuy(z). Clearly, g is a non-negative bounded function on X. Moreover,
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for every f € Cy(X), we have
9f(x) = limeuy(z) f(z) = climux(z) f(z) = (climu, f)(z) = cf(z).

Hence gf = cf € Cy(X).

Next, we show that it is also continuous and so a member of Cy(X). Let (z,,)
be a net in X convergent to a point xy. We choose a compact neighborhood K
around zy and assume (z,) lies in K. By Urysohn’s lemma, there is a continuous
function h € Cy(X) such that h =1 on K. Since hg = gh € Cy(X), we have

9(xo) = hg(wo) = hg(limz,) = lim hg(z,) = lim g(z,).
Therefore g € Cy(X). For every f € Cy(X), we have

o(g)f =¢(9)p(f) =¢(gf) =9f = cf,

and similarly fo(g) = fec. These two equalities show that

(4.5) (e(g) = ) Co(X) = 0 = Co(X)(p(g) — ¢).

If o(g) —c # 0, let I be the non-zero ideal of M (Cy(X)) generated by ¢(g) — c. It
follows from (4.5) that 1Cy(X) = 0. But this contradicts with the fact that Cy(X)
is an essential ideal of M (Cy(X)). Therefore ¢ = ¢(g). This shows that ¢ is onto.

As another example for multiplier algebras, we shall show that B(H) is the
multiplier algebra of the C*-algebra K (H) of compact operators on a Hilbert space
H, see Proposition B.7.7

4.4 Problems

Problem 4.1. (i) Find an ideal of the commutative C*-algebra C(R) that is not
closed.

(ii) Find an ideal of the commutative C*-algebra Cy(C) that is not self adjoint.
Problem 4.2. Let X be a locally compact and Hausdorff topological space.

(i) Show that X is o-compact, namely X can be covered by a sequence of its
compact subsets, if and only if there exists some f € Cy(X) such that f(z) > 0
for all z € X.
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(ii) Assume X is o-compact and f is a function as described in the above. Show
that {f'/"},ey is a sequential approximate unit for Cy(X). Describe a condi-
tion on f which implies that {f'/"},ey is an increasing approximate unit for

Co(X).
(iii) Show that Cy(X) is o-unital if and only if X is o-compact.

Problem 4.3. Let ¢ : A—B be an isometric linear map between two unital C*-
algebras such that ¢(a*) = ¢(a)* for all @ € A and (1) = 1. Show that ¢ is a
positive map.

Problem 4.4. Let A be a C*-algebra. A semi-norm N on A is called a C*-semi-
norm if for every a,b € A, we have

N(a) < [lall, N(ab) < N(a)N(b), N(a"a)=N(a)”.

The set of all C*-semi-norms on A is denoted by N(A).

(i) Equip N (A) with the point-wise convergence topology, namely a net (V;) of
C*-semi-norms is convergent to a C*-semi-norm N if and only if V;(a)—N(a)
for all @ € A. Show that N (A) is compact in this topology.

(ii) For a closed ideal I of A, define a C*-semi-norm N; by Ni(a) := |7(a)||
for all a € A, where m: A—A/I is the natural quotient map. Show that the

correspondence I ~» Ny is a bijective correspondence between the set all closed
ideals of A, which we denote it by Z(A), and N (A).

(iii) For I,J € Z(A), show that Njn; = sup{N;, N;}.

(iv) A C*-semi-norm N is called extremal if N; < N and N; < N for I, J € Z(A)
imply that either N; = N or N; = N. An ideal [ is called prime if J;.JoCI
for two ideals Ji,Jo of A implies that either J;CI or Jo,CI. Show that a
closed ideal I of A is prime if and only if the C*-semi-norm N; is non-zero and
extremal.
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Chapter 5

Bounded operators on Hilbert
spaces

Every closed involutive subalgebra of the algebra B(H) of bounded operators on
a Hilbert space H is a C*-algebra. These C*-algebras are known as concrete
C*-algebras, in contrast with abstract C*-algebras which are involutive Banach al-
gebras whose norms satisfy C*-identity. In this chapter, we present basic definitions
and results concerning concrete C*-algebras. Naturally, our discussion intersects
with the general theory of operator algebras on Hilbert spaces, but we avoid a com-
prehensive, or even a moderate, study of operator algebras here.

We begin with Hilbert spaces in Section [5.I]and cover basic notions and materi-
als about Hilbert spaces necessary for our purposes. This includes various identities
and inequalities in Hilbert spaces, orthogonality, various examples and construc-
tions of Hilbert spaces as well as weak topology in Hilbert spaces. We also discuss
orthonormal bases for Hilbert spaces. In section 5.2 we study the elementary top-
ics about bounded operators on Hilbert spaces such as sesquilinear forms, adjoint
operators, invertibility and finite rank operators. We conclude this section with
introducing the commutant of a subset of B(H) and definition of a von Neumann
algebra.

In Section (.3l we discuss three important examples of concrete C*-algebras;
the reduced group C*-algebra of a locally compact group G, the C*-algebra L> (X, 1)
acting on L?(X, i), where (X, 1) is a measure space, and the Toeplitz algebra. There
are many locally convex topologies, besides the norm topology, on the C*-algebra
B(H) which reveal different features of this C*-algebra. In Section (5.4 we study
three major topologies on B(H); the strong, weak and strong-* operator topologies.
They are compared to each other and many results concerning convergence in these
topologies are proved.

117
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The Borel functional calculus in B(H) is presented in Section[.hl Section [.0]is
devoted to projections in B(H). After presenting basic materials about projections,
we prove the polar decomposition of elements of B(H). In Section 5.7, C*-algebras
of compact operators are studied briefly. Finally, we conclude this chapter with a
short section about von Neumann algebra, which is devoted to the bicommutant
theorem.

In this chapter all vector spaces are over the field C of complex numbers.

5.1 Hilbert spaces

Hilbert spaces are characterized by the cardinality of their orthonormal bases. Our
main goal in this section is to cover enough basic materials from the theory of Hilbert
spaces to prove this statement. Along the way, many useful results, techniques and
examples are presented too. We also explain briefly the weak topology of Hilbert
spaces.

Definition 5.1.1. Let E be a vector space. A sesquilinear form on FE is a
function (—, —) : E x E—C such that, for all z,y,z € E and A € C, we have

(i) (A +y,2) = XNz, 2) + (y, 2), ((—, —) is linear in its first variable), and

(i) (y,z) = (x,y), ((—, —) is conjugate-symmetric).

It is called a pre-inner product if it is also a positive form, that is
(iii) (z,z) >0, for all z € E.

A pre-inner product is called an inner product if it is also definite, that is
(iv) (z,z) =0 if and only if x = 0.

A pre-inner product comes with many tools that are helpful in this chapter.

Proposition 5.1.2. Let (—, =) be a pre-inner product on a vector space E. Define
a function || — || : E—[0,00) by ||| := (x,2)"? for allz € E. || — || is a semi-norm
on E and it possesses the following properties, for all x,y € E:

(i) Kz, y)| < ||z|llly|l, (the Cauchy-Schwartz inequality or briefly CS in-
equality ),

(ii) llz +yl* + [lo = ylI> = 2(|=]I* + [ly|*). ( the parallelogram law),
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(iii) 4(z,y) = ||z +y||* — ||x — y||* + il|x + iy||* — i|]|z — iy||?, ( the polarization
identity ).

() If (—, =) is an inner product, then || —|| is a norm.
Moreover, we have ||z|| = sup{|{z,y)|; ||ly|]| = 1} for all x € E.

Proof. To show || — || is a semi-norm, we only prove the triangle inequality, that
is ||z + yl| < ||lz]| + ||y|| for all x,y € E. And to prove this, we have to use CS
inequality.

lz+yl* = (z+y,z+y)
= (v,7) +{y,y) + (v,y) + (y,v)

< lal® + lyl* + [z, m)| + Ky, =)
<l + llyl* + 20zl yl

= (=l + Iy ).

The rest of the properties of a semi-norm are left to the reader.

(i) By expanding the inequality (x 4+ ay,z + ay) > 0, we get

l]|* + @, y) + aly, ) + |al?[lyl* = 0.

_<"E7y>
[yl
|ly|| = 0 but ||z]| # 0, a similar arguments works. When ||y|| = ||z|| = 0, using

Parts (ii) and (iii), one can show that (z,y) = 0.

By putting o = when |[|y|| # 0, the desired inequality is obtained. When

(ii) It is proved easily by expanding the left hand side of the identity.
(iii) It is proved easily by expanding the right hand side of the identity.

(iv) It is clear.

Finally, it is clear from CS inequality that sup{|(z,v)|; [|y|| = 1} < ||z||. If ||z| = 0,
the reverse inequality is clear too. If ||z|| # 0, we have ||z| = (x, ﬁ) and ||”fc—”|| = 1.
This proves the reverse inequality. O

An immediate consequence of CS inequality is the following corollary:

Corollary 5.1.3. Let (—,—) be a pre-inner product on a vector space E. Then
(—, —) is jointly continuous.

Corollary 5.1.4. Let (—, —) be an inner product on a vector space E. If (x,y) =0
forally € E, then x = 0.
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Proof. Use the equality ||z| = sup{|[(z,y)|;||y| = 1} and the fact that || — || is a
norm. ]
Proposition 5.1.5. Let (—,—) be an inner product on a vector space H and let

x,y € H. Then the following statements are equivalent:

(1) llz +yll = llzll + 1yl
(i) {x,y) = |||yl

(iii) One of x and y is non-negative scaler multiple of the other one.

Proof. Assume (i) holds. We compute

1+ llyll* + 20zl = (2l + ly)* = ll= +y]*
(@+y.2+y) =lzI” + yl* + {z.9) + {y, )
= [l2l* + lylI* + 2Re(z, y).

Using CS inequality, we obtain
[(z, y)| < [lzllllyll = Re(z, y) < [(z, )]
This proves (ii).
Let (ii) hold. then for a,b € R, we have

lax +by|* = a®|l]* + 2abRe(z,y) + 0" ||yl
= a’|2]|* + 2abll|l[ly]| + b*[ly|l*

= (aflz|| +blly[)*.
By setting a = |ly|| and b = —||z||, we obtain ||y||z — ||z|ly = 0. If z = 0, then
x=0y. If x #0, then y = %x This shows (iii).
Assume (iii) holds, so z = ay for some a > 0, then ||z + y|| = ||(a + 1)y|| =
(@ + Dyl = llayll + llyll = [l + [ly]l. This shows (i). [

Corollary 5.1.6. Let (—,—) be an inner product on a vector space H and let x,y €
H. Then |{x,y)| = ||z||||ly|| if and only if x and y are linearly dependent.

Proof. Assume |(z,y)| = ||=||||y||, then there exits some A € C such that |A\| = 1 and
Mz, y) = ||z|||ly]|, or equivalently (Ax,y) = ||\z||||y||. By the above proposition, x
and y are linearly dependent.

Conversely, assume x = Ay for some A € C, then

[ )] = Xy, )] = Ayl = Nyl
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Definition 5.1.7. (i) A vector space H equipped with an inner product (—, —)
is called a pre-Hilbert space. If H is complete with respect to the norm
defined by (—, —), then H is called a Hilbert space. Such a Hilbert space is
often denoted by the ordered pair (H, (—, —)).

(ii) A unitary equivalence from a Hilbert space (Hy, (—, —),) into another Hilbert
space (Hs, (—,—),) is a linear isomorphism u : Hy—H, which preserves the
inner product structures, that is

(u(@), uly))y = (2,y)y, Va,y € Hy.

If there is a unitary equivalence between two Hilbert spaces (Hy, (—, —),) and
(Hs, (—, —)5), we call them unitary equivalent and denote this by Hy ~ H..
If u as above preserves the inner products but is not necessarily onto, we call
it a unitary injection.

Exercise 5.1.8. Show that a linear map ¢ : H;— H, between two Hilbert spaces is
a unitary injection if and only if it is an isometry.

Exercise 5.1.9. Show that every unitary equivalence is continuous and its inverse
is a unitary equivalence too.

Example 5.1.10. (i) Every finite dimensional pre-Hilbert space is a Hilbert space,
because every finite dimensional normed space is complete, see Theorem 1.21
od [41]. Therefore H = C" equipped with the standard inner product, that is
(r,y) =0 wy; forall o = (x1, -+ ,2n),y = (Y1, -+ ,yn) € C", is a Hilbert
space.

(ii) Let (X, u) be a measure space. Consider the vector space L*(X, 1) (or briefly
L?(X)) consisting of all square integrable functions on X with respect to
1, that is

20 = {1 X056 [ 1@ Fauto) < o0}

Define (—, —) : L*(X, u) x L*(X, u)—C by
() = /X f@)g@du(z),  Yf.g € LAX,p).

It is easy to show that (—, —) is a pre-inner product. Set

N = {f € (X, p); {f. ) = O},

Then N is a subspace of L*(X, ). For every pair (f + N, g+ N) of elements
of the quotient space L*(X,u)/N, we define (f + N, g+ N) := (f,g). It is
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straightforward to check that this function is well defined, and in fact, it is
an inner product on the quotient space. We do not change the notation and
denote the pre-Hilbert space obtained in this way by (L*(X,u), (—, —)). It
is actually shown that L?(X, u) is a Banach space with respect to the norm
defined by (—, —) and so is a Hilbert space, see Theorem 6.6 of [19] or Problem
(.2l The norm defined by this inner product is usually denoted by || — [|,, that

1S

£l = ( / |f(x)|2du(w))l/2, Vf € LX),

When g is the counting measure, N = 0 and we use the notation ¢*(X) in
lieu of L2(X, 11). In this case, we also use summation in stead of integral. For
example, the inner product of ¢*(N) is defined by

<(a17a27 o ')7 (b17b27 e )) = Zana

The Hilbert space (?(N) has a specific feature and is denoted simply by ¢? in
many books. We employ this simple notation too. One also easily observes
that whenever X = {1,---  n}, we obtain the Hilbert space introduced in Item
(i).

We can generalize this class of Hilbert spaces further by replacing C with an
arbitrary Hilbert space. Let (H,(—,—)) be a Hilbert space and let (X, i) be
a measure space as before. A map f : X—H is called weakly measurable
if the map = — (f(z),h) is measurable for all h € H. Define L*(X,u, H)
(or simply L?(X, H)) to be the vector space of all weakly measurable maps
f : X—H such that they are square integrable, that is

112 = /X (@) Pduz) < oo.

The inner product for this Hilbert space is defined as follows:
(9)i= [ (ahg@ldute)  ¥i.g € LX)
X

Of course, again, we have to consider the quotient of L?*(X,u, H) modulo
the subspace of all null functions with respect to this inner product and the
measure /.

Let A be a C*-algebra and let ¢ : A—C be a x-homomorphism. Then ¢ is
positive, and so p(aa*) > 0 for all a € A. We define (—, —)  : A x A—=C by
(a,b), = p(ab®). One checks that (—, —)  is a pre-inner product on A. Define

N, :={a € A;p(aa™) = 0}.
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Then the form (—, —)  can be defined similarly over the quotient space A/N,
and the pair (A/Ny, (—, —),) is a pre-Hilbert space. The completion of A/N,,
with respect to the norm defined by (—, —) 18 denoted by H, and the Hilbert
space (H,,(—,—),) is called the Hilbert space induced by . The Hilbert
spaces obtained in this way play the key role in GNS construction.

In the following, we explain some useful constructions on Hilbert spaces :

Example 5.1.11. (i) Let (Hy, (—, —),) and (Hz, (—, —),) be two Hilbert spaces.

We endow the vector space Hy @ Hy with the following inner product:
(11 @ w2, 1 DyY2) := (w1, Y1), + (T2, 02)y, V21 D T2, y1 Dy2 € Hy © Hy.

One easily checks that (Hy @ Hs, (—,—)) is a Hilbert space. It is called the
direct sum of H, and H,.

Now, let {(Hx, (—,—),); A € A} be a collection of Hilbert spaces index by a
set A. Let @,., H denote the set of all elements (h,) in the direct product
[1,ca H; such that

Z <h)\, h)\>)\ < OQ.

AEA

It is straightforward to check that €,_, H\ with the following inner product
is a Hilbert space:

(@), (W2)) =D (waw)y  Y(za), (1) € @D Ha

AEA AEA

This Hilbert space is called the direct sum of the family {(H),(—,—),); A €
A} of Hilbert spaces. If all the Hilbert spaces in this family are the same
Hilbert space H, then this direct sum is called the amplification of H by
the cardinality of A and it is denoted by HA. If |[A| = n (resp. A is
countably infinite), H* is denoted by H™ (resp. H*). One easily checks that
the algebraic direct sum of the vector spaces { Hy; A € A} is dense in ), Hx.

Let (Hy,(—,—),) and (Ha, (—, —),) be two Hilbert spaces. Denote the alge-
braic tensor product of H; and Hs over C by H; ® Hs. In order to define inner
product on this vector space, we have to take a closer look at its structure.

<h1 (%9 hg; hl c Hl, hg € H2>
N 7

H1®H2 =

where the subspace N is defined in a specific way to imply various properties
of the tensor product. More precisely, N is generated by the following types
of elements:
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(a) (a+b)®c—[a®@c+b®c| for all a,b € Hy and ¢ € Ho,

(b) and similar relation for the second variable; ¢ ® (¢ +d) — [a ® ¢ + a ® d|
for all a € Hy and ¢,d € H,,

(c) (M)®@c—ANa®c)forallae Hy, c€ Hyand A € C,

(d) and similar relation for the second variable; a ® (A¢) — A(a ® ¢) for all
a € Hy,ce Hy and \ € C.

Elements of the form h; ® ho, where hy € Hy and hy € H,, are called simple
tensors. We first define inner product for simple tensors, then we extend
it linearly to the vector space generated by them, and afterwards, we show
briefly that the inner product preserves the relations defining N, and so it
is well defined over tensor product. Finally, one easily checks that the inner
product obtained in this way satisfies all the axioms of an inner product. We
define
(a®c,b®d) = (a,b),(c,d),, Va,b € Hy,c,d € Hs.

Let us check the relation described in Item (a) in the above. For all a,b, hy €
H,y and ¢, hy € Hy, we compute

((a+b) @c,hy @ hs) a+b,hi),{c, ha),
a, hl) <b7 h1>1)<cv h'2>2

(
(
(@, ha)y (e, ha)y + (b, ha)y (e, ha)y
{a
(a

®C h1®h2> <b®C h1®h2>
®C+b®€ h1®h2>

One easily checks the rest of the relations as well as the fact that (—, —) is an
inner product on Hy ® Hy. The completion of H; ® H, with respect to the

norm defined by this inner product is called the tensor product of H; and
Hy and is denoted by H; ® Ho.

The reader is strongly advised to check all the details of the above examples.

There are also some exercises at the end of this chapter related to these examples
and constructions.

The key concept in Hilbert spaces is Orthogonality which determines the

geometric, analytical, and (somehow) algebraic behavior of Hilbert spaces and their
algebras of operators.

Definition 5.1.12. Let (H, (—, —)) be a Hilbert space, (or a pre-Hilbert space) and
let || — || denote the norm defined by the inner product.

(i) A subset SCH is called an orthogonal set if 0 ¢ S and (z,y) = 0 for every

pair x # y in S.
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(ii) A subset SCH is called normal if ||z|]| = 1 for all z € S. A subset SCH is
called orthonormal if it is normal and orthogonal.

(iii) Let S be a subset of H. A vector y € H is called orthogonal to S if (x,y) =0
for all x € S. This is denoted by S L y (or equivalently y 1 S). The set of
all vectors orthogonal to S is called the orthogonal complement of S and is
denoted by S+. Two subsets S and R of H are called orthogonal if (x,y) = 0
forall x € S and y € R.

For every subset SCH, one easily sees that S+ is a closed subspace of H.

Lemma 5.1.13. Let X be a closed subspace of a Hilbert space H. For every given
h € H, there is a unique vector x, € X such that

(5.1) [h—zpl < |[h—yll, VyeX
Moreover, we have

Re(xp, h — xp) > Re{y,h — xp), Yy € X.

Proof. Set d := inf{||h — y|;y € X} and let {y,} be a sequence in X such that
|h — yn||—d. For all m,n € N, using parallelogram law for h — y,, and h — y,,, we
obtain

Since #2542 € X we have 4d? < 4||h — ¥22%2(12. Thus we obtain
1y = Yl < 20110 = yull* + 1h = yu||*) — 4d”.

When min{m,n}—o0, the right hand side of the above inequality tends to zero.
This shows that {y,} is a Cauchy sequence. Since X is closed, {y,} converges to
some x, € h. It is clear that ||h — x]] = d. Assume x is another vector in X
such that ||h — z|| = d. If we replace y,, and y,, in (5.2 ) by z;, and x, then we get
|xp, — || = 0. This proves the uniqueness of xy,.

Using (5.0)), for every t € (0,1) and for all y € X, we have
1h—azpl|” < (| —ap =ty — xn)|?
= ||h — 2| — 2tRely — zp, h — 23) + 2|y — 24
Hence
2Re(y — xp, h — xp) < t|ly — thz,

for all t € (0,1). When t—0, we get the desired inequality; Re(z,h — x,) >
Re(y, h — xy) for all y € X. O
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The unique vector xj associated to h € H in the above lemma is called the

orthogonal projection of h on X.

The following notations are useful. Let E be a topological vector space and let

S be subset of E. The set of all linear combination of elements of S are denoted by
(S) and is called the span of S. The closed span of S, i.e. the closure of the span
of S, is denoted by [S]. It is the smallest closed subspace containing S. A subset S
of E is called a total set of E if £ = [5].

Corollary 5.1.14. Let (H,{(—,—)) be a Hilbert space and let X be a subset of H.

(i) If X is a closed subspace of H, then both X and X+ equipped with inner

products inherited from H are Hilbert spaces and H ~ X & X .

(i) XC(X1)t. Moreover, X is a closed subspace of H if and only if X = (X+)*.

(iii) If X is a closed subspace of H, then X = H if and only if X+ = {0}. Gener-

ally, X+ = {0} implies that (X) is dense in H.

(iv) [X] = (X*)*.

Proof. (i) Assume X is a closed subspace of H. It is straightforward to check

(i)

(iii)
(iv)

that X and X+ are Hilbert spaces and that X N X+ = (). For every h € H,
let x5, be the orthogonal projection of h on X and set y; := h — x;,. then for
every x € X, we have Re(x,y,) < Re(xp,y,). For arbitrary A € C, we replace
x with Az in the latter inequality and we get

Re Xz, yn) < Re(xp, yn), Ve e X, A e C.

Hence (z,y,) = 0 for all z € X, ie. y, € X+, Therefore the decomposition
h = x, + vy, shows that H is the direct sum of X and X*.

A simple calculation shows that X C(X*)+. Assume that X is a closed sub-
space of H and h € (X+)t. Then h = w3, + y, where 2, is the orthogonal
projection of h on X and y = h — x;, € X*. Since both h and z;, belong to
(X4, y € (X+H)t. Then we have y = 0 because X+ N (X+)+ = {0}. This
shows h = x;, € X. Therefore (X+)+CX.

It is clear from (i).

It is clear from (ii).
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Exercise 5.1.15. Let z,y be two elements of a Hilbert space H and let = L y.
Prove Pythagoras’ identity;

Iz +ylI* = [ll* + llyl*

Extend this identity for summation of n pairwise orthogonal elements of a Hilbert
space.

Exercise 5.1.16. Let X be a closed subspace of a Hilbert space H and let the map
H— X, h+— x, be the orthogonal projection on X.

(i) Show that xj, = 0 if and only if h € X*.
(ii) Show that x;, = h if and only if h € X.

A subset S of a topological vector space is called linearly independent if

every finite subset of S is linearly independent. Part (ii) of the following proposition
can be regarded as the generalization of Pythagoras’ identity for infinite sums:

Proposition 5.1.17. Let H be a Hilbert space and let B be an orthogonal subset of
H. Then

(i) B is a linearly independent set.

(ii) An infinite sum Y, , bx of elements of B is convergent in H if and only if
Y en 10l < 0o . In this case, we have

S o] = Sl

AEA AEA

Proof. (i) Let {by,---,b,} be a finite subset of B and let Y " , a;b; = 0. Then
foralli =1, ---,n, we have

ale ||2 alblab <Zazbwb >

Thus a; =0 foralli=1,---,n

(ii) The meaning of the convergence of uncountable (or unordered) infinite sums
was explained in Remark [2.2.3Tl Let F' be a finite subset of A. Using Pythago-

ras’ identity, we have
PN ED BN

AEF AEF
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This shows that the summation ) ., [|bx|| is Cauchy if and only if the summa-
tion ) ., ba is Cauchy. When these sums are convergent, the above equality
for every finite subset FCA implies the desired equality.

O

To find a basis for a Hilbert space, it is often more convenient to work with
an orthonormal set.

Proposition 5.1.18. Let X be an orthonormal subset of a Hilbert space H. Let h
be an arbitrary vector of H.

(i) Consider a function 6 : X—C. The sum ) . 0(x)x converges in H if and
only if 3., 10(2)]* < co. In this case, we have

= 3" 16(a).

zeX

Z 0(x)x

zeX

(1) Y ,ex |(h, )2 < ||h||>. This inequality is called Bessel’s inequality.

(iii) The sum ) . (h,x)x converges and we have

h — Z(h,z)z c Xt

zeX
(iv) We have

+ ) [(h, @)

zeX

I1R|J* =

h — Z (h,z)x

zeX

(v) The sum y_, . (h,z)x € X+ is exactly the orthogonal projection of h on [X].

(vi) The following conditions are equivalent:

(a) h € [X].
(b) h=73 cx (h,z)r.
(¢) IIl* = 3 pex [, 2) 2.

Proof. (i) It is an immediate corollary of Proposition B.IT7(ii).
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(ii) Let F' be an arbitrary finite subset of X and define 6(x) := (h,z). Then we
have

h=>Y (ha)z|| = <h — ) b(x)a,h - Ze(z)z>

- = (h,h) +€ F;pe(x)wz;z, z)
——2}@@@—2}@%@
= :|E|jz||2 + Z; |9(x)|2€— 2; 10()]* ~ ZF 6(2)]*
= |1 —§|<h,x>l2- . .

This implies the following inequality for every finite subset F' of X:

h — Z (h,x)x

zel

2
< ||Al>.

(5.3) > Kbz = Al ~

el

The convergence of 3 |(h, z)|* and the Bessel’s inequality follow from this.

(iii) The convergence of ) _ (h,z)x follows from Parts (i) and (ii). Using the
continuity and the linearity of the inner product, for every xy € X, we have

<h - (h, x)x,x0> = (h,zo) — Y (h,x)(w, z0)

reX zeX

= (h,x9) — (h,x9) = 0.
This show that h — Y _ (h,z)z € X+ .
(iv) This also follows from (G.3]).
(v) Tt follows from (iii) and Corollary ET.T4(i).

(vi) The equivalence between (a) and (b) is clear and the equivalence between (b)
and (c) follows from (iv).

O

Theorem 5.1.19. Let X be a an orthonormal subset of a Hilbert space H. Then
the following conditions are equivalent:

(i) H = [X].
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(ii) X+ ={0}.
(1ii) X is a mazimal orthonormal subset of H.
(iv) h=">3 cx (h,x)x for all h € H.
() B = ey [(h )2 for all b€ H.
(vi) (h, ') =3 cx (h,x)(x, W) for all h,h' € H.

Proof. The equivalence between (i) and (ii) follows from Corollary B.LT4(ii). The
equivalence between (i), (iv) and (v) follows from Proposition B.ITI8|(vi).

To show (ii) implies (iii), assume X is not a maximal orthonormal subset of
H. Then there exist h € H such that ||h|| = 1 and {h} U X is orthonormal. Thus
h L X and so X+ # {0}. Conversely, assume there is 0 # h € H such that h 1 X.
Then X U {ﬁ} is a bigger orthonormal subset of H than X.

Statement (v) follows immediately from (vi). Conversely, due to the continuity

of inner product, (v) implies (vi). O

The equation in Condition (vi) in the above theorem is called Parseval’s
equation.

Definition 5.1.20. A maximal orthonormal subset of H is called an orthonormal
basis of H.

An argument based on Zorn’s lemma proves the following proposition.
Proposition 5.1.21. Fvery Hilbert space has an orthonormal basis.

Remark 5.1.22. Let Xy denotes the cardinality of N and let m be the cardinality of
an arbitrary infinite set. We remember from basic set theory that Ngm = m.

Exercise 5.1.23. Let X be an infinite (possibly uncountable) set and let v :  — «,
be a function from X into [0,00). Show that if )  _. a, < oo, then there are at
most countably z € X such that a, > 0.

Proposition 5.1.24. Let X and Y be two orthonormal basis of a Hilbert space H
with cardinalities m and n respectively. Then m = n.

Proof. 1f one of the cardinalities is finite, one can apply elementary linear algebra
to show that m = n. So we assume both m and n are infinite and without loss of
generality, we assume m < n. If we find an onto map from X into Y, then we have
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m > n, and so the equality holds. By the above exercise, since ) . [(z,y)]* =
|z||> =1 for all z € X, the set Y,CY defined by

Y ={y eY;(z,y) # 0}

is countable and non-empty for all x € X. On the other hand,

Y =Y.

zeX

because for every y € Y, using a similar argument, there exists z € X such that

(z,y) #0.

Given x € X, since Y, is countable, there exists a countable subset X, of X
equipped with an onto map ¢, : X,—Y,. Let ¥ be the disjoint union of all X, for
r € X. Then because Y = |J,.y Yx and using onto maps ¢, for all z € X, we
obtain a map from 3 onto Y. Therefore |X| > n. But we know |X| = Rom = m.
This proves that m = n. O

Definition 5.1.25. A Hilbert space is called separable if it has a countable or-
thonormal basis.

Exercise 5.1.26. Let H be a Hilbert space. Show that H is a separable Hilbert
space if and only if H is a separable topological space.

Corollary 5.1.27. Assume X and X5 are orthonormal bases for two Hilbert spaces
(Hy,(—,—);) and (Ha, (—, —),) respectively. These Hilbert spaces are unitary equiv-
alent if and only if X1 and Xs have the same cardinality.

Proof. Assume 6 : X;— X5 be a surjective map. We extend 6 linearly to a linear
map (X;)—H,. Since it maps an orthonormal basis to an orthonormal basis it is
straightforward to check that this map preserves the inner product and so is an

isometry. Since H; = [X}], we can extend this map to a unitary equivalence from
H, onto H.

Conversely, assume ¢ : H;—H, be a unitary equivalence. One easily checks
that ¢(X7) is an orthonormal basis for Hy. Hence | X;| = |¢o(X1)| = | X3 O

Exercise 5.1.28. Let X be a set. For every x € X let 9, : X—C be the charac-
teristic map of the one point subset {z}CX, i.e. d,(y) := { (1) z ; i . Show that
the set {d,; 2 € X} is an orthonormal subset of ¢*(X).

Corollary 5.1.29. Fvery Hilbert space is unitary equivalent to a Hilbert space of the
form (*(X) for some set X. In particular, every separable Hilbert space is unitary
equivalent to (* = (*(N).
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We conclude this section with a discussion on the weak topology of Hilbert
spaces.

Definition 5.1.30. Let (H,(—,—)) be a Hilbert space. For every h € H, define a
semi-norm

pn() = [(z, h)|, Vo € H.

The weak topology of H is the locally convex topology defined by the semi-norms
pp for all h € H. The convergence in weak topology is called weak convergence.

Given a vector x in a Hilbert space H, the family of all sets of the form
{z € H;|{x — xo,y;)| <e,Vi=1,--- ,n},
where n € N, yy,--- ,y, € H and € > 0, is a basis of open neighborhoods of xy in
the weak topology of H.

Exercise 5.1.31. Let H be a Hilbert space. Show that a net (z,) in H is weakly
convergent to a vector xg € H if and only if (z),y)—(xo,y) for all y € H.

A map ¢ : E—F between two complex vector spaces is called conjugate-
linear if

vz +y) = M(z) +¥(y), Vr,ye€ E,\eC.

Theorem 5.1.32. (The Riesz duality) Let H be a Hilbert space. The inner product
induces an isometric conjugate-linear isomorphism from H onto its dual H* by the
following formula:

h — o, he H
(@) = (w,h), well
We call this map the Riesz duality.

Proof. Using CS inequality, for every h € H, we have
jon(@)] = [{z, )| < [lzll|A]l, Ve e X.

One also notes that the above inequality becomes equality when x = h. Hence
lenll = ||h]| and consequently ¢y, is bounded. Now, it is straightforward to check
that the Riesz duality is a conjugate-linear one-to-one map from H into H*.

It is clear that the Riesz duality maps the zero vector to the zero functional.
Let ¢ € H* be a non-zero functional. Set X := kerp. We have X+ # {0}, so we
can find a unit vector v in X*. One checks that ¢(u)h — ¢(h)u € X for all h € H.
Hence we have (p(u)h — @(h)u,u) = 0. by solving this equation for ¢(h), we get

p(h) = p(u)(h,u) = (h,p(h)u),  VheH.

Thus ¢ = ¢,, where y := ¢(u)u. This proves that the Riesz duality is onto. O
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Corollary 5.1.33. The weak-* topology on H* is consistent with the weak topology
on H under the Riesz duality. In other words, the Riesz duality is a homeomorphism
even if we consider the weak-* topology on H* and the weak topology on H. Therefore
the closed unit ball in H is weakly compact.

Proof. The first statement is clear. The second statement follows from the first and
the Banach-Alaoghlu theorem, see Theorem [2.0.4] O

Definition 5.1.34. A net (z;) in a Hilbert space H is called a weakly Cauchy
net if it is a Cauchy net with respect to every semi-norm defining the weak topology
of H, namely (x;, h) is a Cauchy net in C for all h € H.

Corollary 5.1.35. Every norm bounded weakly Cauchy net (z;) in a Hilbert space
H is weakly convergent to a unique limat.

Proof. The weak topology is Hausdorff, so if a limit exists, it has to be unique. Since
(x;) is norm bounded, it is contained in a positive multiple of the closed unit ball of
H which is weakly compact. Therefore a subnet of (z;) is weakly convergent, and
so is (x;), see Proposition 2.2.25 O

Proposition 5.1.36. Let H be a Hilbert space and let (x;) be a weakly convergent
net to some vector v € H. Then

|lz]] <liminf [z
1
Moreover, x;—x in norm if and only if ||z;||—| =]

Proof. By CS inequality, we have

|z]|? = (z,2) = lilm (x;,x) = limiinf (x;,x) < limiinf Iz ||| -
Furthermore, one notes that
= (x;, ;) — (m;, 1) — (w,2;) + (x, 7).

|z — x;

When i—o00, the right hand side goes to zero if and only if ||z;||—z|]. O

5.2 Bounded operators on Hilbert spaces

In this section H is always a Hilbert space. The C*-algebra B(H) of bounded
operators on a Hilbert space H is studied in details in this section.
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When we discussed the algebra B(H) of bounded operators on a Hilbert space
as an example of a C*-algebra in Section 2.1 we assumed the existence of adjoint
operator T* for every T' € B(H). Therefore we begin this section with proving this
statement.

Definition 5.2.1. Let H; and H, be two Hilbert spaces. A function
(—, —) Hy % HQ—)C

is called a sesquilinear form on H; x H, if it is linear in the first variable and
conjugate-linear in the second variable. The form (—, —) is called bounded if there
is some ¢ € [0, 00) such that

(@) <cllzllllyl.  Y(z,y) € Hi x H.
In this case, the norm of (—, —) is defined by

I(=, =)l == nf{e € [0,00); (2, y)| < cllz[lllyll, V(x,y) € Hy x Ha}.

The inner products of Hilbert spaces determine the general form of bounded
sesquilinear forms:

Theorem 5.2.2. Let Hy and Hy be two Hilbert spaces. For every bounded sesquilin-
ear form (—,—) on Hy X Hs, there exists a unique bounded operator T € B(H;, Hs)
such that

(x,y) = (Tz,y), V(z,y) € Hy x H,.

Moreover, [[(—, =)[l = Il

Conversely, every bounded operator T € B(Hy, Hy) gives rise to a bounded
sesquilinear form by defining (x,y) := (Tx,y) and we have ||[(—,—)| = ||T]|.
Proof. For every x € Hy, define ¢, : Hy—C by y + (z,y). This is a bounded
functional on H,. Therefore by the Riesz duality theorem, £.1.32] there exists a
unique y, € Hj such that ¢, (y) = (y.,y) for all y € Hy. Due to the uniqueness of
Yz, one easily sees that the assignment x + y, is linear. If we denote this map by
T, then for every z € Hy, we have

1Tzl = [yl = lleel
sup{|(z,y);y € Ha, |ly|| = 1}
sup{||(—, =) llz|lly|l; v € Ha, [Jy|| = 1}

(= =)l

IA
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Thus ||T|| < ||[(—, =), and so T' € B(H, Hy). On the other hand, for every (z,y) €
H, x Hy, we have

@y = leaW) = [{Ya, 9)|
= [Tz, y)| < [Tyl
< ATl yll-

This shows that [[(—, —)| < ||T"|]. The uniqueness of T follows from Problem

It is straightforward to check the converse, and so it is left to the reader. [

Corollary 5.2.3. For every bounded operator T' € B(Hy, Hy) between two Hilbert
spaces, there exists a unique adjoint operator T* € B(Hy, Hy) such that

<T{L’,y> = (x,T*y>, \V/ZL’GHl,'yEHQ.

Moreover, || T*|| = ||T|.

Proof. One checks that the form (—,—) defined by (y,z) := (Tx,y) is a bounded
sesquilinear form on Hs x H; and ||T|| = ||(—,—)||. Therefore by the above the-
orem, there exists a bounded operator T* : Hy— H; such that (T*y,z) = (Tz,y),

or equivalently, (x,T*y) = (Txz,y). Also, it follows from the above theorem that
[ T[] = [I(=, =)IIl. Hence [T = [|T. O

Proposition 5.2.4. Let H be a Hilbert space. The adjoint operator defines an
involution in B(H) and B(H) with this involution is a unital C*-algebra.

Proof. Tt is straightforward to check that 7"+~ T* is an involution on B(H). We
only check the C*-identity. For every T'€ B(H) and = € H, we have

ITz|* = (T Tx) =[x, T"Tx)]
< ellT Tl < |77 ]|

Hence ||T||*> < ||T*T||. On the other hand, We have ||[T*T| < || T*|||T| = ||T|*
Therefore ||T||* = || T*T||. O

Example 5.2.5. Consider the Hilbert space H = C" equipped with the standard
basis and the standard inner product and denote the identity operator by I. Let
us denote the vectors in H by n x 1 matrices. Given a matrix M = (my;), the
conjugate of M is the matrix M := (T;;) and the transpose of M is the matrix
M?" := (mj;). Then the inner product on H can be represented by a matrix product
as follows:

(x,y) = 217, Vr,y € H.
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Since we fixed a basis, every operator T' € B(H) can be represented by an n x n
matrix denoted by T, again. In other words, we use the realization B(H) ~ M, (C)
coming from the standard basis. Then for every z,y € H, we compute

(Tz,y) = (T2)' Ty = ' T' I = 2' [Ty = (2, Tly).
This shows that 7% = T for all T € B(H).

An immediate application of adjoint operators is seen in the following propo-
sition:

Proposition 5.2.6. Let T € B(Hy, Hy) be a bounded operator between two Hilbert
spaces. Then the following statements are true:

(i) The operator T is weakly continuous too, namely T is continuous with respect
to the weak topologies of Hy and H.

(i) The image of the closed unit ball of Hy under T is weakly compact in Hs.

Proof. (i) Let (x;) be a net in H; weakly convergent to x € Hy and let y € H,.
Then (T'(z; — x),y) = (z; — =, T*y)—0. Hence (T'(x;)) is weakly convergent
to T'(x).

(i) Tt follows from (i) and Corollary

A straightforward argument shows the following lemma:

Lemma 5.2.7. Let T € B(H, Hs) be a bounded operator between two Hilbert spaces.
Then R(T)*+ = N(T™).

The above lemma can be proved using Lemma 2Z4.T9(i) too. We only need to
interpret the relationship between adjoint operators (in Banach spaces) as described
in Section [2.4] and adjoint operators (in Hilbert spaces) as described in the present
section.

Remark 5.2.8. Let T € B(H,, Hs) be a bounded operator between two Hilbert
spaces. If we denote the Riesz duality explained in Theorem for H, and Ho,
by ¢! : Hi—Hj and ¢* : Hy—Hj, respectively, then for every z € Hy and y € Hy,
we have

y(Tx) = (T, y) = (. T"y) = o, (2).
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Now, if T* : Hy*—H,* denotes the adjoint of operator 7" regarded as an operator
between two Banach spaces, i.e. T%(p)(h) = p(Th) for all p € H,* and h € Hy, then
we have

Tﬁ(goz)(:c) = 2 (Tx), Vo € Hy,y € Hs.

Therefore Tﬁ(gOZ) = go%p*y for all y € Hy. In other words, the following diagram is
commutative:
H, . H,

i

Since the vertical arrows in the above diagram are conjugate-linear isomorphisms,
we have T* = (p')"'T%p%. This clears the relationship between these two notions
of adjoint operators. Using this realization, we can translate all results that have
already been proved for adjoint operators (in Banach spaces) in Section 24 for
adjoint operators (in Hilbert spaces). For instance, if T is a compact operator, then
T is a compact operator too. However, most of the times, it is often easier to prove
those results again using inner products and other tools of Hilbert spaces.

Exercise 5.2.9. Let H be a Hilbert space and let X be a subset of H. Describe the
relationship between X+ in Hilbert spaces and X+ as the annihilator of X. Prove
Lemma [5.2.7] using Lemma R.4.T9(i).

Let H be a Hilbert space. Definitions of self adjoint, unitary, projection and
normal elements in B(H) are the same as in C*-algebras. Positive elements in B(H)
have two equivalent definitions which were discussed in Example LT.9(i). Another
concept for elements of B(H) is isometry. A T" € B(H) is called an isometry if
|Tx|| = ||z|| for all z € H. For T" € B(H), the condition T*T" = 1 is equivalent
to being an isometry and it can be generalized for to define isometry elements in
abstract C*-algebras.

Exercise 5.2.10. Let T be as above.

(i) Prove that the above conditions on T for being an isometry are equivalent.
(Hint: use the polarization identity.)

(ii) Show that if 7" is a unitary element, then both 7" and 7™ are isometry.

)
(iii) Assume 7T is invertible or normal. Show that if 7" is isometry then 7" is unitary.
(iv) Show that if 7" is isometry, then 77T is a projection.

)

(v) Prove N(T) = N(T*T).
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Let H; and H, be two Hilbert spaces. One notes that there are similar def-
initions for unitary and isometry operators in B(Hi, Hy). In fact, an operator
T € B(Hy, H) is called unitary if 7T = 1y, and TT* = 1g,, and similarly, T
is called an isometry if 7*T = 1p,. One easily observes that unitary (resp. isome-

try) operators are the same as unitary equivalences (resp. unitary injections) defined
in Definition BI7)(ii).

Proposition 5.2.11. Let T be a bounded operator on a Hilbert space H. Then T
is normal if and only if | Tx|| = ||T*x|| for all x € H. Moreover, when T is normal,
we have N(T) = N(T*) = R(T)*.

Proof. Assume T is normal, then for every x € H, we have
|Tx||* = (Tz, Tz) = (v, T*Tz) = (v, TT*z) = (T*z, T*x) = ||T*x||*.

This also implies that N(T') = N(T™*) = R(T)*.

Conversely, let ||Tz|| = ||[T*z| for all x € H. Then using the polarization
identity, we obtain (T'z, Ty) = (T*z, T*y) for all z,y € H. By Corollary 5.1.4] this
implies that 7" is normal. O

Spectral theory of bounded operators on H is more concrete than abstract
C*-algebras, and therefore we provide more details here. By Proposition ZT.25]
T € B(H) is invertible if and only if it is one-to-one and onto. However, there is
another condition which is useful to check whether T is invertible.

When T' is not one-to-one, clearly 7' cannot be bounded below. When T is not
bounded below, for every n € N, there is 0 # x,, € H such that ||Tz,| < @ ItfT
is invertible, then

Joall = =T < [Tl < 7L e
Apparently, this is a contradiction, and so T' cannot be invertible.
Proposition 5.2.12. Let T € B(H).

(i) T is invertible if and only if R(T) is dense in H and T is bounded below.

(i) When T is normal, T is invertible if and only if T is bounded below.

Proof. (i) Assume R(T) is dense in H and 7' is bounded below, then the inverse
of T, i.e. T7': R(T)—H is bounded, because there is some ¢ > 0 such that
|T'Tz|| = ||z|| < 1/¢||Tx| for every Tx € R(T). Thus we can extend T
to H by continuity. Let us denote the extension of T~ to H by S for a
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moment. Then it is clear ST = 1y and T'S equals TT~ = 1g¢) on R(T).
But, since R(T') is dense, we have T'S = 1g. Therefore T is invertible. The
other implication follows from the above discussion.

(i) When T is normal, N(T') = N(T*) = R(T)*. If T is bounded below, then T
is one-to-one, and so R(T) is dense in H. This implies that 7" is invertible.

O

Now, we are ready to study the ideal F'(H) of finite rank operators on a Hilbert
space H.

Proposition 5.2.13. For every Hilbert space H, F(H) is an involutive subalgebra
of B(H).

One notes that F'(H) is not closed in B(H) unless H is finite dimensional.
Therefore to prove this proposition, one cannot use Proposition 4.3.2)

Proof. Let T € F(H). Since R(T)* = N(T*), the kernel of T* has a finite codi-
mension in H. Hence T* € F(H). This proves that F(H) is closed under the
involution. O

It is useful to introduce a generating set for F'(H) consisting of very simple
operators. For every =,y € H, the operator defined by h — x(h,y) = (h,y)x is
bounded and its image is one dimensional. Hence it is a finite rank operator on H.
We denote this operator by x ® y, in some books it is denoted by ©,,. The idea
of these rank one operators comes from the elementary matrices £;; in M, (C) for
1 <i,j <mn, see Exercise B.3.2(iv). One easily checks that E;; = e; ® e;.

Proposition 5.2.14. Every operator of rank one in B(H) is of the form x @y for
some x,y € H. The set {x @ y;x,y € H} of all operators of rank one in B(H)
generates F'(H).

Proof. Assume the rank of 7" € B(H) is one and pick zo € H such that ||[Tz| =
1. Set y := Txy. Since R(T) is one dimensional, for every h € R(T), we have
h = (h,y)y. Therefore 6 : R(T)—C, h — (h,y) is an isomorphism whose inverse
is A — Ay. Since 0T : H—C is a linear functional, by the Riesz duality, Theorem
B.I1.32 there is x € H such that 0Tk = (k,z) for all k € H. Then for every k € H,

we have

Tk =Tk, y)yy = (0Tk)y = (k, x)y = (y @ x)k.
Therefore T' =y ® x.
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Let T be an arbitrary finite rank operator on H and let B = {xy,--- ,z,} be
an orthonormal basis for the image of T'. The equality R(T)+ = N(T™) implies that
the rank of 7™ is n too. So we can find an orthonormal basis B’ = {y,--- ,y,} for

R(T*) = N(T)*. For every 1 <i < n, we have T'(y;) = A\ix1; + - - - + A\yir,, for some
A, o+, A € C. Using this, one easily checks that

i,j=1
U

Exercise 5.2.15. Let H be a Hilbert space. For every z,y,2/,y € H and T €
B(H), show the following statements:

(i) ey =y

(ii

)
) llz@yll = llzlllyll
(i) T(z®@y) =Tz Qy.
(iv) (z@y)T =2 T"y.
)
)

(V) (z@y)(@'@y) = (y,2)(z oY)

(vi) The operator x ® y is a projection (a rank one projection) if and only if
x =y and ||z|| = 1. Every rank one projection is of this form.

Proposition 5.2.16. Every non-zero ideal of B(H) contains F(H).
Again, by an ideal, we always mean a two sided ideal.

Proof. Assume J is a nonzero ideal of B(H) and 0 # T € J. Pick zq € H such that
|Txo|| = 1 and set yo := Txg. Then for every z,y € H, we have

(2@ yo)T (o ®@Yy) = (@ yo)(Txo @ Y) = (Yo, Yo)(z @ Y) = QY.

This shows that all operators of rank one belong to J. Therefore by Proposition

B4 F(H)CJ. O

It follows from the above proposition and Proposition that F'(H) and
K (H) are essential ideals of B(H). We conclude this section with an important con-
cept which is useful to study the rich structure of the C*-algebra B(H) of bounded
operators on a Hilbert space H.
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Definition 5.2.17. Let X be a subset of B(H). The commutant of X is the set
X':={T € B(H);TS =STVS € X}.

The bicommutant of X is X” := (X’)". Similarly, we use the notation: X" :=
(X", X" .= (X"), and so on.

Many basic properties of commutants are summarized in the following propo-
sition:

Proposition 5.2.18. Let X, X and Xy be subsets of B(H). Then the following
statements are true:

(i) X1CXy implies X5CX].
(ii) X' is a closed unital subalgebra of B(H ).
(ZZZ) XCX"=X" =... gnd X' = X" = X" = ...,

() If X is a self adjoint subset of B(H), then X' is self adjoint, and consequently
a unital C*-subalgebra of B(H).

(v) X" = B(H) if and only if X’ = C1.

Proof. (i) This immediately follows from the definition.

(ii) It immediately follows from the definition that X’ is a unital subalgebra of
B(H). The commutant X’ is closed because the multiplication in B(H) is
continuous.

(iii) The inclusion X CX"” immediately follows from the definition. Applying this
inclusion to X', we get X'CX". Using Part (i) for the inclusion XC X" we
get X"CX'. Hence X' = X"”. The rest of the equalities follow from this
equality.

(iv) Let X be self adjoint and let 7" € X’. Then T'S = ST for all S € X, or
equivalently S*T™ =T%*5* for all S € X. This is equivalent to ST = T*S for
all 5* € X. Since X is self adjoint, it is equivalent to say that ST = T*S for
all S € X. Therefore T* € X".

(v) Itisclear that X” = B(H) whenever X’ = C1. Conversely, assume there exists
T € X' such that T' ¢ C1. This amounts to the existence of a non-zero vector
x € H such that y = Tz # Az for all A € C. Clearly, y # 0. If (y,z) =0, set
p:=x®ux. Then pTx = (x ® x)y = 0 and Tpx = Tz|z|]* = y||z||* # 0, so
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Tp # pT. If (y,x) # 0, set ¢ :== x ® z, where z := y — %x We note that
z # 0 and we compute

e = (2 2)y = aly.2) = (ol = F20) #o.

because of Proposition[b.1.5 and the fact that x and y are linearly independent.
On the other hand, we compute

Tqr=T (a:((y,x) — <|TJ:;|Z|E2> (x,x))) = 0.

Hence T'q # ¢T'. This shows that X" # B(H).

0

Definition 5.2.19. Let H be a Hilbert space. An involutive subalgebra M of B(H)
is called a von Neumann algebra on H if M = M". Let S be a subset of B(H).
The von Neumann algebra generated by S is C*(S)", the bicommutant of the
C*-subalgebra generated by S, and is denoted by VN(S). If A is a C*-subalgebra
of B(H), then A” is also called the enveloping von Neumann algebra of A.

One notes that every von Neumann algebra is necessarily unital. Although we
defined von Neumann algebras on a Hilbert space H using the algebraic notion of
commutants, they have certain topological meaning in B(H) too. We shall explain
the topological viewpoint of von Neumann algebras in Section [£.8]

5.3 Concrete examples of C*-algebras

In this section, we describe some classes of examples for concrete C*-algebras,
namely C*-algebras embedded in B(H) for some Hilbert space H. We begin with
explaining the construction of reduced group C*-algebras associated to locally com-
pact groups. In what follows, for 1 < p < oo, the LP-norm is denoted by || —||,. For
1 < p < 00, the positive real number ¢ satisfying the identity % + % = 1 is called the
conjugate exponent of p. When p =1 (resp. p = 00) , it is reasonable to assume
that ¢, the conjugate exponent of p, is oo (resp. 1).

Theorem 5.3.1. [Duality in LP spaces| Let (X, ) be a measure space. For given
0 < p < o0, let q be its conjugate exponent. The following map is an isometric
isomorphism from LP(u) onto (L9(p))*:

g = ¢g Vg€ L(n)
el) = [ H@geduta), i e L
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For the proof of the above theorem see Theorem 6.15 in [19].

Proposition 5.3.2. [Minkowski’s inequality for integrals] Assume (X, M, u) and
(Y,N,v) are two o-finite measure spaces and f is a (M @ N')-measurable function
on X xY.

(i) If f(z,y) >0 for all (x,y) € X XY and 1 < p < oo, then

s (f ([ senain) ain) < [ ([ saram)” we,

(i) If 1 < p < o0, f(—,y) € LP(u) for almost every y, and the function y —

||f( )H is in L' (v ) then f(x,—) € L*(v) for almost every x, the function
ff( y)dv(y) belongs to LP(u), and

55 |/ 1 < 1wt

Proof. (i) For p = 1, (54) follows directly from the Fubini-Tonelli theorem, see
Theorem 2.37 of [I9]. For 1 < p < oo, let ¢ be the conjugate exponent of p.
For every g € L%(u), using the Fubini-Tonelli Theorem, we have

([ s@niw) sl = [ [ el aw)

- / [orc(9@D)] dv(y)
/ 1= 9)llollglld dvy)

~ lall / ( f<x,y>pdu<x>)l/pdu<y>,

where @ ) is defined in the duality between L spaces, Theorem[5.3.1l Since
this is true for every g € L9(u), again Theorem [E.3.1] implies the following

inequality:
H/f(x’y)dV(y) ) < / </ f(:v,y)”du(x))l/pdu(y).

The latter inequality is equivalent to (5.4]) because f > 0 on X x Y.

VAN

(ii) For 1 < p < o0, it follows from (i) by replacing f by |f|. For p = oo, it follows
from the monotonicity of the integral.

O
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Proposition 5.3.3. [Young’s inequality] Let G be an LCG with a Haar measure fi.
Let1 <p<oo, f€ L'Yu), and g € LP(u). Then f * g(x) exists for almost every z,
f*g€ L? and we have

(5.6) 1F* glly < W[ Fllllgllp

Proof. One notes that Minkowski’s inequality for integrals relies on the Fubini-
Tonelli theorem and this latter theorem is valid when the measure spaces are o-
finite. However, in Remark [2.2.79) we explained why we can apply the Fubini-Tonelli
theorem and its consequences to integration on locally compact groups equipped
with a Haar measure.

Now, define F' : G x G—C by F(x,y) := f(y)g(y~'z) for all z,y € G. Then
for every y € G, F(—,y) € LP(u) because g € LP(u). On the other hand, for every
y € G, we have

IE (=)l = 1f @)y~ o = IO Lyl = 1F W) gll,-

Hence for every y € G, the function y — [|[F(—,y)|, is in L*(n). By applying
Minkowski’s inequality for integrals to F'(x,y), see [B.3.2)(ii), we observe that the
function z — [, f(y)g(y~'a)du(y) = f * g(x) belongs to LP(1) and we have

If*gll, = H/f(y)g(y‘l—)du(y)

p

_ F(—,y)du(y)
< /||F Yl dialy)
_ /G F @) gllodi(y)
= 1 lllgll

O

Example 5.3.4. Let G be a LCG with a Haar measure p. The convolution product
defines a *-homomorphism \ : L'(G)—B(L*(G)) as follows:

A(f)E(g) = / (e g)duh),

forall f € LY(G), £ € L*(G), g € G. This is called the left regular representation
of G (or L'(@)). Tt follows from Young’s inequality for p = 2 that f x ¢ € L*(G).
Moreover, A(f) is a bounded operator, in fact, we have [|A(f)| < ||f]l1. Also, we
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need to show that A is a x-homomorphism. It clearly preserves the addition and
scalar multiplication. The associativity of the convolution product implies that A
preserves the multiplication, more precisely, for all f, g € L'(G) and £ € L*(G), we
compute

Afxg)(&) = (fxg)x &= [fx(gx8) = AMS)AG)(E)) = (Af)A(9))(E)-

Now, we show that A preserves the involution. Let A be the modular function on
G. Then for all f € LY(G), £ € L*(G) and g € G, we compute

mAE) = / 0 €(9)dulg)

= /Gn(g) (/GA(h‘l)mf(h‘lg)du(h))du(g)-

By using Lemma ZZT7 for the integral over h, we obtain

A = / (/ FOR)E (hg)du( ))du(g)
- / / &(hg)dp(h)du(g)

-/ ( / n(g)f(h)£(hg)du(g)) du(h).

If we substitute hg by k, then du(g) = du(hg) = du(k) for all h € G, g = h™'k, and
so we have

A9 = [ ([ - os i ) dutr

G

= A6
This completes the proof of the fact that A is a *-homomorphism.

Another crucial fact about A is that it is one-to-one. To show this, we use a
Dirac net (f;) on G. Let A(f) = 0 for some f € L'(G). Since f; € C.(G)CL*(G)
for all j, we have 0 = A(f)f; = f = f; for all j. Therefore using Lemma 2.2.30] we
have f =lim; f * f; = 0.

The above discussions show that L!'(G) can be embedded in the C*-algebra
B(L*(G)) as a *-subalgebra. But, by Proposition 22221 L!(G) is not a C*-algebra



146 CHAPTER 5. BOUNDED OPERATORS ON HILBERT SPACES

unless G is the trivial group. Therefore to obtain a C*-algebra, we consider the
closure of the image of L'(G) in B(L?*(G)). This C*-algebra is called the reduced
group C*-algebra of GG and is denoted by C,.*(G). It clearly inherits many features
of L*(@). For instance, C,.*(G) is commutative if and only if G is abelian.

Example 5.3.5. Let (X, ) be a measure space. We define a map

M:L®¥(X) — B(L*X)),
f = M;,  VfeL®X),

where
Mpé(z) = f( ¥(z)  VeEe LX),z e X.
For f € L**(X) and ¢ € L*(X), using Remark 2.T.4, we have

M2 = / (@) (@) Pdulx)

:/X\P|f() P+ [ 1@l
/X\P |f(2)&(2)Pdu(z)

/X @I Pt

< @IS

where P = {z € X;|f(x)] > |f|l}. This shows that M is well defined and
I Mflloo < ||flloo- It is straightforward to check that M is actually a one-to-one
*-homomorphism. Therefore by Corollary and Corollary 3.5, M is an iso-
metric embedding of L>(X) into B(L*(X)) and its image is a C*-subalgebra of
B(L*(X)). For every f € L*>(X), the operator M; is called the multiplication
operator of f.

Example 5.3.6. We define the unilateral shift operator S on (? = (*(N) by
setting S(0,,) := 0,41, where 6, is the characteristic function of {n}, and extending
it linearly. Since {d,;n € N} is an orthonormal basis of ¢, this operator is an
isometry, and therefore it is bounded. One also easily checks that S*, the adjoint of
S, is given by the linear extension of the following map:

* L 5n—1 n Z 2

57(0n) = { 0 n=1
It is also easy to see that S*S = 1, but SS* # 1. However, SS* is a projection,
in fact the projection on the closed subspace generated by {d,;n > 2} in ¢%. The

C*-subalgebra of B(¢{?) generated by {S,1} is called the Toeplitz algebra and is
denoted by 7.

IN
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5.4 Locally convex topologies on B(H)

In this section H is always a Hilbert space. There are many topologies on B(H)
besides the norm topology. Here, we content ourself to weak, strong, and strong-*
operator topologies. We refer the interested reader to [29] for a comprehensive list
of topologies on B(H) and various comparisons between them.

Definition 5.4.1. The strong operator topology on B(H) (or simply the strong
topology on B(H)) is the topology of pointwise norm-convergence of elements of
B(H). In other words, a net (7;) in B(H) strongly converges to 7' € B(H) if and
only if the net (T;x) converges to Tz in norm topology of H for every z € H.

For every x € H, the map p, : B(H)—C defined by p,(T') := ||Tz| for all
T € B(H) is a semi-norm. One easily observes that the strong topology on B(H) is
the locally convex and Hausdorff topology defined by semi-norms p, for all x € H.

Definition 5.4.2. The weak operator topology on B(H) (or simply the weak topol-
ogy on B(H)) is the topology of pointwise weak-convergence of elements of B(H).
In other words, a net (7;) in B(H) weakly converges to T' € B(H) if and only if the
net (T;x) converges to Tz in weak topology of H for every z € H.

For every x,y € H, the map p,, : B(H)—C defined by p,,(T) = [(Tx,y)|
for all T € B(H) is a semi-norm. One easily observes that the weak topology on
B(H) is the locally convex and Hausdorff topology defined by semi-norms p,, for
all x,y € H.

It is often useful to consider smaller families of semi-norms to define the above
topologies.

Proposition 5.4.3. Let (T;) be a norm bounded net in B(H) and let T € B(H).

(i) T,—=T strongly if and only if Tyx—Tx in norm for all x in a dense (or just a
total) subset of H.

(ii) T,—T weakly if and only if T,x—Tx in weak topology of H for all x in a dense
(or just a total) subset of H.

Proof. Let M be a positive number such that ||T|| < M and ||T;]| < M for all 1.

(i) Let E be a dense subset of H and let T;z—Tx in norm for all x € E. For given
y € H, assume {x,} is a sequence in E such that x,—y. For given € > 0, pick
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(i)
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no € N such that [|a,, —y| < 557. Then pick i such that || Tix,, —Txy,|| < /3
for all ¢ > iy5. Then for every ¢ > 7y, we have
1Ty =Tyl < Ty = Tiwng|| + | Tiwng — Tng || + | Tne — Ty

5
2M— =c.
< 3M+5/3 €

When F is a total set, it is easy to see that the convergence T;x—Tx in norm
for all z € E extends to the same convergence for all x € (F) which is dense
in H by definition of a total set.

It follows from a similar argument.

Exercise 5.4.4. Write the proof of Part (ii) of the above proposition.

The following example shows how strong and weak topology differ from norm

topology and from each other. It also gives some hints for how to compare these
topologies.

Example 5.4.5. Let S be the unilateral shift operator described in Example [£.3.01

(i)

(i)

The sequence {S™} weakly converges to zero, but it is not strongly convergent
to zero. Clearly, this sequence is norm bounded, so we can apply the above
proposition. Since {d,,;m € N} is a total set in £2, it is enough to show that
(S0, 2)—0 as n—oo for all x € (2 and m € N. In fact, {6,,;m € N} is an
orthonormal basis of £2. Hence for every x € £, we have

o0
T = E T O
m=1

where z,,, = (x, 0,,)—0 as m—o0. This implies that (S0, z) = (dn1m,x)—0
as n—oo. However, S"6,, = 0,4, does not approach to zero in norm as n—00.

Similar arguments show that the sequence {(5*)"} strongly converges to zero,
but it is not convergent to zero in norm.

Exercise 5.4.6. Prove Part (ii) of the above example.

Proposition 5.4.7. (i) The weak topology of B(H) is weaker than the strong

topology of B(H).

(ii) The strong topology of B(H) is weaker than the norm topology of B(H).
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Proof. Let (T;) be anet in B(H) and T € B(H).

(i) It amounts to show that if 7;—T strongly, then T;—T weakly. But, this follows
immediately from CS inequality as follows:

(T =Tz, y)l < (T =T)xllllyll,  Va,yeH.

(ii) Similarly, it amounts to show that if 7;,—7 in norm, then 7;—7T strongly. This
follows immediately from the following inequality:

(T = T)zl| < |7 = Tflll=ll,  VeeH

0

Exercise 5.4.8. Show that the involution in B(H) is continuous with respect to
the weak operator topology.

Example b.4.5]shows that the involution is not strongly continuous. To remedy
this situation, another locally convex topology is defined on B(H).

Definition 5.4.9. The locally convex topology defined by semi-norms of the form
T — || Tx| + ||T*z|| for all T" € B(H), where x varies in H, is called the strong-x
operator topology of B(H) (or shortly the strong-* topology).

It is clear that the strong-x operator topology is stronger than the strong
operator topology and weaker than the norm topology on B(H).

Remark 5.4.10. (i) Since these topologies are defined by families of semi-norms,
both addition and scalar multiplication are jointly continuous in weak, strong
and strong-x operator topologies.

(ii) Multiplication is separately (on each variable) continuous in all these topolo-
gies.

(iii) Multiplication is also jointly continuous in strong and strong-# topology on
bounded sets.

(iv) Multiplication is not jointly continuous in weak topology even on bounded sets.
For instance, assume S is the unilateral shift operator, then both sequences
{S™} and {S*"} are bounded and weakly convergent to zero, see Example
B30l But (5)"S™ = 1 for all n € N, and so the multiplication of these
sequences is not convergent to zero.
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(v) The separate weak (and strong) continuity of multiplication implies that S’
is weakly (and strongly) closed for all subsets SCB(H). Therefore every von
Neumann algebra is weakly (and strongly) closed.

Exercise 5.4.11. Prove Items (ii), (iii) and (v) in the above remark.

Proposition 5.4.12. The (norm) closed unit ball of B(H) is closed in strong op-
erator topology.

Proof. Assume (T;) is a net in closed unit ball of B(H) such that it is strongly
convergent to some 1" € B(H). Given z € H, for every € > 0, there is some i such
that ¢ > ig implies that ||Tz — T;z|| < e. Thus we have

[Tx|| < |Tixll + & < T[] + & < [l]| + .
Therefore ||Tx|| < ||z|| for every z € H, and so ||T]| < 1. O

Proposition 5.4.13. The (norm) closed unit ball of B(H) is compact in weak op-
erator topology.

Proof. For convenience, let B denote the closed unit ball of B(H) equipped with
the weak operator topology. For given z,y € H, let D, , be the closed disk of radius
|lz|||ly]] in C. Define

0:B — ] Duy

z,yeH

0T) = (T2,y))ey

where Hwe 17 Day 1s considered with the product topology, and so it is compact by
the Tychonoff theorem, see Theorem 1.1 in Chapter 5 of [3I]. Let X denote the
image of B under 6.

We first prove that 6 is a homeomorphism from B onto X. It is easy to see
that 6 is one-to-one. Therefore  : B—X is a bijective map. Let X be the family of
the subsets of B of the following form:

Urao o = {5 € B [(T' = S)zo, yo)| <&},

for some T € B, xg,y0 € H and ¢ > 0. Similarly, let A be the family of subsets of
X of the following form:

OT20,y0.c = {(Z:cvy) € X ;35 € B2z = (Sxo, o), |{((T = S)xo,y0)| < €},

for some T € B, xg,y0 € H and € > 0. One easily checks that # is a bijective
correspondence between Y and A. Since Y generated the weak operator topology
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in B and A generates the product topology in X, # and 6~! are both continuous.
Hence 6 is a homeomorphism.

Now, it is enough to show that X is closed in [],  cjy Duy- Let f = (fi,) be a
limit point in X. Define F' : H x H—=C by z,y — f;,. We want to show that F'is a
sesquilinear map. Assume x1,y1, T2,y € H, and A € C are given. For every ¢ > 0,
set € := min{eg, £9/|A|}. Then for every 7" in the open neighborhood U around f
defined by

2 2 2
U:= (ﬂ Uf@ml]jﬁ) ﬂ <ﬂ Uf,Ml-l-ivz,yjﬁ) m <m Uf’zi’)‘yl"'m’s) ’

ij=1 j=1 i=1

we have
‘F(xzay]) - <Tx27yj>| < €0, VZ,j = 1727

|)\F(Izay]) - )\<sz>?/]>| < €o, VZ>] - 1>2a
|F()\LL’1 + Sl?g,yj) - <T()\LL’1 + x2),yj)| < €p, V=12,
‘F(Ii, )\yl -+ yg) - <T$L’i, >\y1 + y2)| < €, Vi = 1, 2.
Hence we have

|F(Ax1 + 22, y1) — AF(21,y1) — F(22,y1)] < 3eo,

|F (21, Ayr + y2) — AF (21, 92) — F21, )| < 3e0.

Since g is arbitrary, these show that F' is sesquilinear. On the other hand, since for
every z,y € H, F(x,y) € D,,, we have

[z, y)| < llflllyll, Y,y € H,

and so F' is bounded, in fact ||F'|| < 1. Therefore by Theorem B.2.2] there exists
Ty € B(H) such that F(z,y) = (Tyx,y) for all z,y € H and ||Tf|| < 1. Hence
f=0(Ty) € X. This shows that X is closed, and consequently compact. O

Exercise 5.4.14. Let T" € B(H). Show that the sesquilinear form defined by
(x,y) — (Tx,y) is positive if and only if T is positive.

Lemma 5.4.15. Let T' € B(H) be positive and set
M := sup{(Tz, z); [lz|| = 1}.
Then for every x € H, we have

(5.7) |T2|]* < M{Tx,z) < M?||z|?.
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Proof. The sesquilinear form defined by (z,y) := (T'x,y) is positive. Therefore by
Proposition 515 the Cauchy—Schwartz inequality holds for (—, —). Hence for every
x,y € H, we have

(T, ) = |(z,9) < (x,2)(y,y)
= (Tz,2)(Ty,y) < (Tz,2) M|yl
< Myl

Setting y := Tz and dividing through by ||Tz||?, we obtain (5.7)) for every x € H. [

Proposition 5.4.16. Let (T;) be an increasing and bounded net of positive operators
in B(H). Then there exists a positive operator T' € B(H) such that T;—T strongly,

1] = sup [|73]],
and T is the least upper bound of (T;) in the directed set (B(H )4, <).

For the definition of the least upper bound of a subset in a directed set see
Definition [5.6.3]

Proof. Using CS inequality, it is clear that the net ((Tjx,z)) is increasing and
bounded in R for every x € H, so it has a limit in R. Using the polarization
identity, one observes that the limit lim; (T;x,y) exists as well for every x,y € H.
Therefore we can define a map as follows:

F:HxH — C,
(z,y) — lim(Tiz,y).

It is straightforward to check that F' is a sesquilinear form on H. Moreover, for
every x,y € H, we have

[F(a,y)| = lim (T, )] < lim [ 7] 1«1y

Hence F' is bounded too, and consequently by Theorem [£.2.2, there exists an op-
erator T € B(H) such that lim; (T;x,y) = F(x,y) = (Tz,y) for all z,y € H and
|7l < lim,; || T;]]. Since (Tyx,x) < (Tx,x) for all i and x € H, T is positive and
T; < T for all i. This also shows that ||T|| = lim; ||7;]|.

For every i, set M; := sup{{((T — T;)x, z);||x|| = 1}. Then by Lemma B.4.T15
we have

(T = T)al® < MP|]?, Vo€ H.
Since lim; M; = 0, the above inequality implies that T;—T" strongly. O
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Corollary 5.4.17. Every decreasing net (T;) of positive operators converges strongly
to a positive operator.

Proof. Pick an iy from the index set and define S; := T;, — T; for @ > 7y. The net
(S:)i>i, 1s a bounded increasing net of positive operators. Moreover, T} is an upper
bound for this net. Hence by the above proposition, it converges strongly to some
positive operator S. One checks that 7T}, — S is a positive operator and 7;—=7;, — S
strongly. O

The last part of the proof of Proposition £.4.16 worths to be considered as
well:

Proposition 5.4.18. Let (T;) be an increasing (resp. decreasing) net of self adjoint
operators. If (T;) is weakly convergent to some operator T € B(H), then T is the
least upper bound (resp. greatest lower bound) of (T;) and T;—T strongly.

Proof. One notes that T is self adjoint. Also, when (7;) is decreasing, one should
consider (—T7;) instead. O

Proposition 5.4.19. Let (T;) be a net in B(H) such that T;*T;—0 weakly. Then

(i) T;—0 strongly, and
(i) if (T;) is bounded, then T;*T;—0 strongly.

Proof. (i) For every z € H, we have || Tiz|* = (Liz, Tiz) = (T;*Tx, ) —0.

(ii) Let M > 0 be a positive number such that || T;|| < M for all i. Then for every
x € H, we have ||T;*T;x|| < M| T;z||—0.

O

Corollary 5.4.20. Let (T;) be a bounded net of positive operators in B(H) such
that T;—0 weakly. Then T;—0 strongly.
Proof. Set S; :=T, 12 and apply Part (ii) of the above proposition. O

2

Proposition 5.4.21. The weak, strong, and strong-* topologies coincide on the
group U(H) of unitary operators on H and make U(H) into a topological group.

Proof. Assume (T;) be a net of unitary operators converging weakly to a unitary
operator T'. Then for every x € H, T;x—Tx in weak topology of H. By Proposition
B.1.36, Tiz—Tx in norm if and only if ||Tix||—||Tz|. But the latter convergence
is obvious due to the fact that ||Tiz| = ||z|| = ||Tz|| for all i. Therefore T;—T
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strongly. The strong-* convergence of T;—T is proved similarly. The converses of
these implications follow from Proposition[5.4.7)(i) and definition of strong-* operator
topology. O

Theorem 5.4.22. Let ¢ : B(H)—C be a bounded linear functional. Then the
following statements are equivalent:

(Z) SD(T) = ZZ:l <Tykazk> fOT S0Me Y1, ,Yny 21, , Zn €.
(ii) ¢ is weakly continuous.

(iii) @ is strongly continuous.

Proof. Implications (i)=-(ii)=-(iii) are clear. Assume ¢ is strongly continuous, then
o '({\ € C;|\| < 1}) is open in B(H). Therefore there are hy,--- ,h, € H and
e > 0 such that (U, ... n,.c)S{N € C; || < 1}, where

Unyine =T € B(H); ||[Thy|| <e,Vk=1,--- ,n}.

Set yx := 2 for all k = 1,--- ,n. Then for every T' € B(H), if | Ty|| < 1 for all
k=1,--- n, then |p(T)| < 1. This implies that if 7" € B(H) and ||Tyx|| < 1 for all
k=1,--- n,then |o(T)| < 1. Thus

n 2
(T < max{||Tyxl,k =1, ,n} < <Z ||Tyk!|2) , VT € B(H).
k=1

Consider H" = @&}_, H and define an operator D : B(H)—B(H") by
D(T)(xy, -+ ,xy) = (Txy,--- ,Tx,), VT € B(H),(xy, - ,x,) € H".

Set y == (y1, -+ ,yn) € H*, X := {D(T)y;T € B(H)}, and K := X. Then
1+ X—C defined by ¢(D(T")y) := ¢(T') is a bounded linear functional, and therefore
it extends to a bounded linear functional on K. Since K is a Hilbert space, by
Theorem [.2.2] there exists z = (21,---,2;) € H" such that ¢(z) = (x, z) for all
x € K. Forevery T'€ B(H), put x := D(T)y = (Ty1,- -+ ,Ty,). Then we obtain

n

P(T) = $(D(T)) = (T, -+, Tya), (21, 20)) = D Ty )

k=1
This proves (i). O

Corollary 5.4.23. Let X be a conver set in B(H). Then X is strongly closed if
and only if it is weakly closed.
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Proof. Assume X is strongly closed. It is enough to show that if S € B(H) — X,
then S does not belong to the weak closure of X. Since X is convex, by Proposition
2.0.7, there exists a strongly continuous functional p € B(H)* and b € R such that
Rep(S) > b and Rep(T) < b for all T € X. By the above theorem, p is weakly
continuous too. Thus the set

C:={T € B(H); Rep(T) < b}

is weakly closed in B(H), contains X and S ¢ C. Therefore X is weakly closed.
The other implication is clear. O

5.5 The Borel functional calculus

For the Borel functional calculus, we follow Nik Weaver’s book, [46], where it was
explained more clearly. It is based on Theorem [5.5.1] see Theorem 7.17 of [19] for the
proof. In order to formulate the theorem, we need to recall the norm of a complex
measure. Let X be a locally compact and Hausdorff topological space and let M (X)
denote the space of all complex Radon measures on X. For every complex measure
won X the total variation of p is the positive measure |u| which is defined as
follows: If yu = g,dv, where v is a positive measure on X and such a decomposition
exists by Theorem 3.12 of [19], then |u| := |g,|v. It was proved in Page 93 of [19]
that |p| is well defined. Then the norm of u is defined by ||u| := |p|(X). It was
shown in Proposition 7.16 of [19] that this defines a norm on M (X).

Theorem 5.5.1. [The Riesz representation theorem] Let X be as above. For every
we M(X), we define

I“ZCO(X) — C
L) = [ f@dee). vF e G)

Then the map pn — 1, is an isometric isomorphism from M(X) onto Co(X)*.

In our discussion, X is the spectrum of a normal operator on a Hilbert space.
Thus, from now on, we assume X is compact. By Theorem 7.8 of [19], every finite
Borel measure on X is Radon. On the other hand, a complex measure never takes
an infinite value, and so a positive measure is complex if and only if it is finite, see
page 93 of [19]. So, we can drop the finiteness condition as well and say that M (X)
is the space of all complex Borel measures on X. One also notes that every complex
measure is a linear combination of four positive measures, so in many situations, we
can restrict ourself to positive measures.
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Remark 5.5.2. Now, let B(X) denote the space of all bounded Borel functions on
X, i.e. all bounded functions f : X —C such that, for every open set UCC, f~(U)
belongs to the o-algebra generated by open subsets of X. The vector space B(X)
is equipped with supremum norm. Consider the map 6 : B(X)—M (X)* defined by

Wﬂwwzéj@mmw, Vi € B(X).

Then for f € B(X), we have

[ f@dn@| < 1l [ gudvta)
be b
ST e
be
= 1l [ )
X
= || fllsup [ (X)
= [ llsup [[42l]-
Therefore 6 is bounded, and in fact, ||#]| < 1. For e > 0, pick g € X such that
| fllsup — € < |f(z0)| and let 6,, denote the Dirac measure at z5. Then [|d,,| = 1

and we have

[ fllsup =& < [f(20)

|
Aﬂmmw»
60F)(620)|
10111 e

This shows that 0 is an isometry from B(X) into M (X)* ~ C(X)**. Therefore one
can consider B(X) as a subspace of the dual space M (X)*. We equip B(X) with
the weak-*-topology on M (X)*, that is a net (f)) of elements of B(X) converges to
some f € B(X) if

IN

Lh@@@%éﬂmwﬁ Vu € M(x).

The next step is to show C(X) is weak-*dense in B(X). We use the fact that
C(X) is dense in L'(X, ) for every u € M(X), see Proposition 7.8 of [19]. Let
f € B(X). Since integration is linear, without loss of generality, we assume that
f is non-negative. Recall that a basis of neighborhoods of f in weak-* topology of
C(X)** is given by sets of the form

Ui =19 € C(X)™5 |g(ps) — f(pa)| < e, V1 < < kY



5.5. THE BOREL FUNCTIONAL CALCULUS 157

for some k € N, pq,--+ ,up, € M(X) and € > 0. So, fix pq,---,ux € M(X). For
every 1 <i <k, there exists a sequence {f;,} in C(X) such that

[ folaldua [ f@uo)

We define a new sequence {f,} by setting f, := fin, where 1 < i < k and n =
(m — 1)k + 4. Clearly, we have

/X ful@)dus(a) = /X F@)dui(z), VL<i<h

This shows that the sequence {f,,} lies in Uy, ... ,, - eventually. Therefore f belongs
to the closure of C'(X) in weak-* topology.

Theorem 5.5.3. [The Borel functional calculus] Let H be a Hilbert space. For
every normal operator T € B(H ), there ezists a unique one-to-one x-homomorphism
Ur: B(o(T))—B(H) extending the continuous functional calculus of T

Moreover, Wr is continuous with respect to the weak-* topology of B(o(T)) and
the weak operator topology of B(H).

Proof. Consider the x-isomorphism defining the continuous functional calculus of T,
i.e. &7 : C(o(T))—B(H). For convenience, let us denote the restriction of its double
adjoint ®3* : C(o(T))*—B(H)* to B(c(T)) by ©. By using Exercise ZZTT|(iv)

twice, we have
(5.8) 0] = [|Pr[| = 1.

For every z,y € H, let p,, € B(H)* be the linear functional defined by S +— (Sz,y)
for all S € B(H). One checks that

(5.9) ozl = Nz llllyll;
see Exercise 0.5.4(1). For every f € B(o(T)), we define a map

{—, —}f :H x H=C
{z,y}r = O(f)(pary)-

It is straightforward to check that {—, —} is a sesquilinear map. Also, using Equa-

tions (0.8) and (5.9]), we have

Kz, y}sl < N0 oyl < [1.f lsupll 1yl

Hence {—,—} is bounded. Therefore by Theorem [(.2.2] there exists a bounded
operator in B(H), which we denote it by Wr(f), such that {z,y}; = (¥r(f)z,y).
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The map Wy : B(o(T))—B(H) is called the Borel functional calculus of T.
Let us check that U extends the continuous functional calculus of 7. For every
feC(o(T)) and z,y € H, we have

(Wr(f)z,y) = {x,y}r = O ) (Pay) = pry(Pr(f)) = (P (f)2,y).

Therefore Wy (f) = O (f) for all f € C(a(T)). It is straightforward to check that
Ur is a linear map, see Exercise B.5.4(ii). Let (fy) be a net in B(o(T")) convergent
to f € B(o(T)) in weak-*-topology. Then for every x,y € H, we have

<\IIT(f>\)x>y> = {zay}fA
= O/ (pay) — O(f)(Pry)
= {l’,y}f: <\I]T(f)x7y>

Therefore Wr is continuous with respect to the weak-*topology of B(o (7)) and the
weak operator topology of B(H ). This also justifies our next computations, wherein
all limits are taken with respect to the weak operator topology of B(H).

For given f € B(o(T)), let (fy) be a net in C'(o(T')) such that fy—f in weak-
*topology. Then for every g € C'(o(T')), we compute
Vr(fg) = lim¥r(fag) =lim @r(frg)
= lim Or(fr)Pr(g) = lim Ur(fa)Pr(g)
= Ur(f)¥r(9).

For every f € B(o(T)) and g € B(o(T)), let (g,) be a net in C(o(T")) such that
g,—g in weak-" topology. Then using the above computation, we have

Ur(fg) = liiﬂ Ur(fgu) = ¥r(f) h}ILn Ur(gu) = Vo (f)¥r(g).

This shows that U is a multiplicative map. One notes that we had to break
the argument in two steps, because the multiplication of B(H) is only separately
continuous in the weak operator topology, see Remark B.4.T0[(ii).

We know that @7 is a s-homomorphism, so ®r(f) = Pp(f)* for all f €
C(o(T)). Let f € B(o(T)) and let (f\) be a net in C(o(7)) such that fy—f in

weak-* topology. Then fy—f and, using Exercise £.4.8, we compute

Ur(f) = lmWr(f) = lim®r(Fy)
= lim Or(fa) = lim Wr(fa)"

= (tmer(f) " = vr(s)".
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This shows that U is a *-homomorphism as well.

Finally, the uniqueness of W7 follows from the fact that C'(o(7')) is weak-* dense
in B(o(T)), see O

Similar to the continuous functional calculus, for every f € B(o(T)), Y (f) is
denoted by f(T).

Exercise 5.5.4. Assume the notations of the above proof.

(i) Verify Equation (5.9).

(ii) Check that Ur is a linear map.

5.6 Projections and the polar decomposition

In this section H is a Hilbert space. We first study elementary topics about projec-
tions in B(H). afterwards, we prove the polar decomposition of elements of B(H).

Assume X be a closed subspace of H. Define a map P : H—X by defining Px
to be the orthogonal projection of z on X. By Corollary ELT4(ii), H = X & X*.
It follows from this decomposition of H that P is a linear map. For every x € H,
assume ¥ = 1 + 9, where 71 = Px € X and 25 = v — Pz € X*. Then using
Exercise (.1.I6l we have

[Pl = [1P(x1 + zo) || = [Pa]| =[] < fl21 + 22 = [|]].

This shows that P is also bounded. It is clear that P? = P. It also follows from the
above decomposition of H that P* = P. Therefore P is a projection in B(H ). This
projection is determined completely by X and usually is denoted by Px. One also
notes that 1 — Py = Px.. For every projection P € B(H), 1 — P is a projection
again and is called the complement of P and is denoted by P+.

Conversely, let P be a projection in B(H). Then R(P) = N(1 — P), and so
X = R(P) is a closed subspace of H and P = Px. This shows that there is a
bijective correspondence between projections in B(H) and closed subspaces of H.

The proof of the following proposition is easy and is left as an exercise.

Proposition 5.6.1. Let X and Y be two closed subspaces of H. The following
statements are equivalent:

(i) Px < Py.



160 CHAPTER 5. BOUNDED OPERATORS ON HILBERT SPACES

(ii)) Px < APy for some X > 0.
(iii) XCY.
(iv) PxPy = Py Py = Py.
(v) Py — Px is a projection in B(H), (In fact, Py — Px = Pynrx1).

Two projections P, ) € B(H) are called orthogonal if PQQ = QP = 0. This is
denoted by P L @), or equivalently () L P. For example P and 1— P are orthogonal.

Exercise 5.6.2. Let P,(Q € B(H) be two projections. Show that P L @ if and
onlyif @ <1-—P.

Given projections Py, associated with closed subspaces X; for ¢« € I, where I
is an arbitrary index set, we define A;Px, := P, x, and V,;Px, = Pﬁ. Then for
every 1o € I, we have

/\iPXi S PXi()’ and PXiO S viPXi-

When I = {1,2}, A;Px, and V;Px, are denoted by Px, A Px, and Px, V Px,,
respectively. These properties are understood better using the notion of a lattice.

Definition 5.6.3. Let (S5, <) be a partially ordered set.

(i) A lower bound of a subset 7T'CS is an element [ € S such that | <t for all
t € T. The greatest lower bound (shortly, g.I.b.) of T is a lower bound ¢
of T such that | < g for every lower bound [ of T'. (The uniqueness of g.l.b.
easily follows from the definition.)

(ii) An upper bound of a subset T'CS is an element u € S such that ¢t < u for
all t € T. The least upper bound (shortly, l.u.b.) of 7" is an upper bound
[ of T' such that [ < u for every upper bound u of T'. (The uniqueness of 1.u.b.
easily follows from the definition.)

(iii) A lattice is a partially ordered set, say (S, <), such that, for every subset
TCS with two elements, there exist the greatest lower bound and the least
upper bound of 7.

(iv) A complete lattice is a partially ordered set, say (.5, <), such that, for every
subset T'CS, there exist the greatest lower bound and the least upper bound
of T.

One can learn more about lattices in [23].
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Exercise 5.6.4. Show that the set P(H) of all projections in B(H) equipped with
partial order < is a complete lattice. Describe the greatest lower bound and the
least upper bound of a subset of P(H) in terms of the above notations.

Exercise 5.6.5. Let P and ) be two projections in B(H). If P and ) commute,
then show that PA Q = PQ and PV Q = P+ (Q — PQ. Conclude that if P | @,
then PQ and P + () are both projections.

Exercise 5.6.6. Let P and () be two projections in B(H).

(i) Show that P < Q ifand only if 1 — Q <1 — P.

)

(i) Show that 1 — (PV Q) = (1—P)A (1L - Q).

(iif) Show that 1 — (PAQ) = (1—P)V (1 - Q).
)

i

(iv) Generalize the above statements for arbitrary family of projections in B(H).

Proposition 5.6.7. (i) Assume (P;) is an increasing sequence of projections in
B(H), then Pi— V,; P; strongly.

(i) Assume (F;) is an decreasing sequence of projections in B(H), then P,— N\; P;
strongly.

Proof. For i € N, set X; = R(FP;). Then we have P, = Px,.

(i) Set

and set P := Py. Since {P;} is an increasing sequence,

i=1

For every x € X, we can write © = Y .~ x;, where a; € X;. Thus Y ' | ;=
and > "  x; € X,. Therefore for every € > 0, there exists n. € N such that
| Px,,x — x|| < e for all m > n. Now, for every h € H and € > 0, if i > n.,
then ||Ph — P;h|| = ||Ph — P,Ph|| < €, because Ph € X. This proves (i).

(ii) Tt follows from (i) and Exercise
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Proposition 5.6.8. Let P,Q), R be projections in B(H) such that P 1L Q and P <
R. Then we have

(5.10) (P+Q)ANR=PV(QAR).

Proof. Let XY, Z be closed subspaces of H associated with P, (Q, R, respectively.
Then the above assumptions are equivalent to Y CX+ and X CR and Equality (5.10)
is equivalent to (X +Y)N R =X + (Y N R), which is easy to check. O

Proposition 5.6.9. The strong, weak, and strong-* operator topologies coincide on
the set of projections in B(H).

Proof. Let P,— P weakly. Then for every x € H, we have
|Pw||* = (Piw, Px) = (P Piw,x) = (Piw, x)—(Px, ) = | Px|”.

Hence P,— P strongly. Since every projection is self adjoint, this implies that P,— P
in strong-* operator topology as well. The converses of these implications follows
from Proposition [5.4.7](i) and definition of strong-* operator topology. O

Definition 5.6.10. Let A = {P;;i € I} be a family of projections in B(H).

(i) Elements of A are called pairwise orthogonal if P,P; = 0.

(i) Let I be finite and X; = R(P), i.e. Px, = P;. Then @,/ P; := Pg,_,x, is called
the sum of A.

A family {T\; A € A} of elements of B(H) is called summable in strong (resp.
weak, strong-*) operator topology if ), , T is convergent in strong (resp. weak
and strong-*) operator topology.

Proposition 5.6.11. Every family {P;;i € I} of pairwise orthogonal projections in
B(H) is summable to the projection P := Ve P; in strong operator topology.

Moreover, we have

1/2
|Pz|| = (Z ||ax||2> . VzeH.

i€l
When P = 1, the map U : H— @5 P,(H) defined by x — (P;(z)) is a unitary

operator.

For every i € I, P;(H) is a Hilbert space and @®;c;P;(H) is the direct sum of
these Hilbert spaces, see Example BL.TTIN(i).
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Proof. Let (F, <) be the collection of all finite subsets of I directed by inclusion. For
every F' € F, Pp =), p P is a projection and the net (Pp)per is an increasing net
of projections. It follows from proposition [.6.7)(i) that the net (Pg)pecr converges
to P strongly, i.e. P =) ., P in strong topology.

Moreover, since the elements of {P;;i € I} are pairwise orthogonal projections
by applying Pythagoras’ identity, Exercise B.1.15] for every x € H and F' € F, we
have

| P|® = lim || Ppa||® = Tim Y _ [[Pall* =) |||

ieF el

One easily checks that if P =1, then U™ : ®;c;P;(H)—H is given by

N )ier = Zl"u V(i)ier € @Pi(H

el el

Hence for every (x;)ier € @ierP;(H) and = € H, we compute

(U z),0) = ) aia) =) (@i, Pa)

el i€l

= ((z:), (Piz)) = ((2:), Uz) = (U"(2;), x).
Therefore U~ = U*. O

Definition 5.6.12. Let H; and H, be two Hilbert spaces and let T' € B(H;, H»).
The orthogonal projection on the closed subspace N(T')* of H is called the right
support projection of 7" and is denoted by Pr. The orthogonal projection on
the closed subspace R(T') of H, is called the left support projection of 7" and is
denoted by Q7.

The basic properties of the left and right support projections are listed in the
following propositions:

Proposition 5.6.13. Let H, Hy, Hy be Hilbert spaces. For given A € B(H;, Hs)
and T' € B(H), the following statement hold:

(i) The left support projection of A is the right support projection of A*, i.e
Qa = Pa-.
(1)) (a) TPpr=T.
(b) For every S € B(H), if T'S =0, then PrS = 0.

Moreover, the projection Pr with these two properties is unique.

(iii) (a) QrT =T.
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(b) For every S € B(H), if ST =0, then SQr = 0.
Moreover, the projection Qr with these two properties is unique.

(iv) The right support projection of T is the smallest projection P € B(H) such
that TP =1T.

(v) If T is normal, then Pr = Q7.
(vi) Pr = Pr«r = Qr+r and Qr = Qrr- = Pry-.

Proof. (i) By LemmaE.27 N(A*) = R(A)*. Therefore the orthogonal projection
on the complement subspace of N(A*), i.e. Q-+, equals to the orthogonal
projection on R(A), i.e. P4. Similarly, Q4 = Pa-.

(ii) Conditions (a) and (b) are immediate consequences of the definition. Assume
P is a projection in B(H ) satisfying (a) and (b). Let X be the closed subspace
of H such that P = Px, i.e. X = R(P). Then 1 — P = Pyx.. Condition (a)
implies that T'(1 — P) = 0, or equivalently X*CN(T). Hence N(T)tCX.
Condition (b) means that if R(S)CN(T), then R(S)CN(P) = X*. Hence
N(T)CX*, or equivalently XCN(T)*. Therefore N(T)* = X, and so P =
Pr.

(iii) It follows from (i) and (ii).

(iv) Assume P = Py for some closed subspace X of H and TP = T. In item (ii),
we already proved that N(T)-CX. Hence Pr < Py.

(v) By Proposition B.ZI1, when T is normal, N(T)* = N(T*)*. Hence Pr =
PT* - QT

(vi) The first equality follows easily from the fact that N(7') = N(T*T). The
second equality follows from the first one and (i).

O

Proposition 5.6.14. Let T' € B(H) be a positive operator and let t €]0, 00[. Then
we have the following limits in the strong operator topology:

(i) Pr =1lim;_,oT", and therefore Pr is a strong limit of polynomials in T. This
also shows that Pr € C*(T)".

(ZZ) QT = hmt_m(T*T)t and PT = llmt_m(TT*)t
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Proof. (i) Given t > 0, the function f(z) := 2 is a limit of polynomials whose

constant terms are zero. So, by the non-unital continuous functional calculus,
if T2 =0, then T'z = 0 for all ¢ > 0. This proves T*x— Prx for all x € N(T).
Since T is positive (normal), by Proposition E211 R(T) = N(T)*. Hence

(5.11) H = N(T) & R(T).

Therefore it is enough to show that T"z— Prx for all x € R(T). Since T is
positive, by Proposition EETTI|ii), 7' —T. For given z € R(T), x = T(y)
for some y € H. Therefore we have

Ty =T" " y—Ty =2 = Qrx = Prz, Vo e R(T).

By Proposition [(.4.3|(i), this convergence holds for all z € R(T) as well.
It follows from (i) and Part (vi) of the above proposition.

Similar to (i), we use the equality (5.11]) and prove the convergence in two steps.
Since T is positive, T'+ ¢ is invertible for all ¢ €]0, oo[. On the other hand, for
every t €]0,00[, (T'+t)~' € C*(T, 1), and so it commutes with 7. This implies
that N(T)CN(T(T + t)~') for all t €]0,00[. Hence T(T +t)~'z = Prz =0
for all z € N(T). For every x € R(T'), we have

T(T+t) e =(T+t) " (T+t)x+tr =z +tz—r = Qpr = Prz, ast—0.

O

Definition 5.6.15. An element a in a C*-algebra A is called a partial isometry
if a*a is a projection in A, which is called the support projection of a. In the
context of operators, an operator T' € B(H;, Hs) between two Hilbert spaces is called
a partial isometry if 7*7 is a projection in B(H;), which is called the support
projection of 7T

One easily sees that the above notions of partial isometry coincide on B(H).

If Py is a projection in B(H), then Pp, = Qp, = Py. Therefore for every partial
isometry 7' € B(H), we have Pr = Ppr.p = T*T. This justifies the name “support
projection”.

Proposition 5.6.16. Let T' € B(H,, Hy) be a bounded operator between two Hilbert
spaces. Then the following conditions are equivalent:

(i) T is a partial isometry.

(i) TT* is a projection, (T* is a partial isometry).
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(iii) T = TT*T.
(iv) The restriction of T on N(T)* is an isometry.

Proof. Assume (i), then (TT*)* = (TT*)%. Therefore by Problem B.6, TT* is a
projection. Hence (ii) holds. Similarly, (ii) implies (i).
Assume (iii), then T*T = (T*T)3. Therefore by Problem B.6(ii), T*T is a

projection. Hence (i) holds. Conversely, in the above, we observed that (i) implies
that Pp = T*T. Therefore T'= T Pr = TT*T. Hence (iii) follows from (i).

Assume (iv). For every z € N(T)*, we compute
(Pra,z) = (z,2) = |l2|* = |T|* = (T, Tx) = (T"Tx, x).

Also, for every z € N(T'), we have (Prx,z) = 0= (T"Txz,z). Using the decomposi-
tion H = N(T)* & N(T), we obtain (Ppx,z) = (I'*Txz, z) for all x € H. Therefore
by Problem[5.19] Pr = T*T', and so (i) holds. If (i) holds, then Pr = T*T'. Therefore
for every x € N(T')*, we compute

|IT2|* = (T2, Tz) = (T"Tx,z) = (Pra, x) = (z,2) = [|=[|*.
Hence (iv) holds. O

Exercise 5.6.17. Let 7' € B(H). Prove that T is a partial isometry if and only if
Pr=T"T.

Similar to polar decomposition of elements of C, every element 1" of the algebra
B(H) has a left (resp. right) polar decomposition 7" = U|T| (resp. T = |T*|U),
where U is a partial isometries. These decompositions have many applications in
the theory of C*-algebras.

Theorem 5.6.18. [Polar decomposition] Let T € B(Hy, Hs) be a bounded op-
erator between two Hilbert spaces. Then there exists a unique partial isometry
U € B(H,, Hy) such that T = U|T|, where |T| := (T*T)"?, and N(T) = N(U).
Furthermore, U*T = |T|. This decomposition of T is called the left polar decom-
position of T

Moreover, when Hy = Hs, we have U € C*(T,T*)"CB(H,).

Proof. By Exercise B.2ZI0(v), N(T) = N(T*T). Hence the restriction of T*7T" to
N(T)* = PrH, is one-to-one. For every x € N(T)*, we have T*Tx = PrT*Tz €
N(T)*, so the map T*T : N(T)+—N(T)* is a well defined bounded operator. Also,
it follows from Lemma 527 that the image of this map is dense in N(7)*. These
facts show that |T'| = (T*T)/? : N(T)*—N(T)* is one-to-one and its image is dense
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in N(T)*. Tt also follows easily from definition that T': N(T)*—R(T) is one-to-one
and onto. One also notes that R(7') is dense in Q7 Hs.

Now, we define a map R(|T|)—R(T) by |T'|x — Tx. One easily checks that
this is a linear map. Also, by Problem (5.21] we have |||T'|z| = ||Tz| for all x € Hy,
S0 it is an isometry. It extends to an isometry U : N(T)*—QrH,. Since U is an
isometry between two Banach spaces and its image is dense, it has to be onto. In fact,
by Problem [5.20, U is a unitary operator in B(N(T)*, Q7 Hs). Hence U*Tz = |T|z
for all x € H;. We can extend U to H; by setting Uz = 0 for all x € N(T).
Then by Proposition 5.6.16(iv), U € B(H;, Hs) is a partial isometry. It is clear that
T =U|T| and N(T) = N(U). The uniqueness of U follows from these equalities.

When H; = H,, in order to prove that U € C*(T,T*)", it is enough to show
that T'(T*T +t)~"/2—U strongly as t—0 (for t €]0, 0ol), see Remark [F.ZI0(v). Since
T*T is positive, for every t > 0, the operator T*T + ¢ is invertible and positive, and
so (T*T +1)~Y2 is well defined. For z € N(T)*, we compute

T(T*T + )Y T|x = T(T*T + )" *(T*T 4+ t)x + Ttz
Tx+ TtV 2—Tr = U, (in norm) as t—0.

For z € N(T), we have T(T*T +t)~Y2|T|x = 0 = Uz. This proves the required
convergence. O

Corollary 5.6.19. Assume T is as the above theorem and T = U|T| is its left polar
decomposition. Then T = |T*|U. This decomposition of T is called the right polar
decomposition of T'.

Proof. Tt is clear that (TT*)" = U(T*T)"U* for all n € N. Therefore by Problem
BI4, we have |T*| = U|T|U*. Since U*U = Pr and |T|Pr = |T|, see Problem [5.22]
we obtain T'=U|T| = |T*|U. O

Some of the easy properties of the polar decomposition is listed in the following
exercise:

Exercise 5.6.20. Assume 7T is as the above theorem.

(i) Show that if 7*T is invertible, then U is an isometry and U = T(T*T)~/2.

(ii) Show that if 7" is invertible (or more generally, T is one-to-one and its image
is dense), then U is a unitary operator.

(iii) Show that if Hy = Hy and T™T is invertible, then U € C*(T,T™).
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5.7 Compact operators

In this section, H is a Hilbert space. By Proposition 2T.24] the algebra K(H) is
a closed two sided ideal of B(H). Therefore by Proposition 32 K(H) is closed
under involution, and so is a C*-subalgebra of B(H). It is called the C*-algebra of
compact operators on H. When H is an infinite dimensional separable Hilbert
space, or equivalently H ~ (* K(H) is briefly called the C*-algebra of compact
operators and is denoted by K. The quotient C*-algebra B(H)/K (H) is called the
Calkin algebra of H and is denoted by Q(H). When H =~ (2 it is briefly called
the Calkin algebra and is denoted by Q.

Definition 5.7.1. An operator 7' € B(H) is called diagonalisable if there exists
an orthonormal basis for H consisting of eigenvectors of 7.

Exercise 5.7.2. Show that every diagonalisable operator 7" € B(H) is normal.

The converse of the above exercise is not generally true, see the following
example:

Example 5.7.3. Define an operator S : (2(Z)—(*(Z) by S(6,) := 6,41 and extend
this rule linearly, where as usual §,, is the characteristic function of {n}. This
operator is bounded and is called the bilateral shift operator. It is a unitary
operator, and so normal. One can checks that S has no eigenvalues, and so is not
diagonalisable.

Proposition 5.7.4. Fvery normal compact operator T' € K(H) is diagonalisable.

Proof. Let E be a maximal orthonormal set of eigenvectors of T', which exists by
Zorn’s lemma. Let Hy be the closed span of E. Then H = Hy & Hy-. One observes
that the restriction of T' to Hy is a compact operator which we denote it by 7”.
T’ is compact and normal. By maximality of £, 7" has no non-zero eigenvalues.
Hence by Theorem [Z4.24(ii), o(7”) has no non-zero element. Since 7" is normal,
this implies that ||7"|| = r(T") = 0, and so T" = 0. Therefore Hy is the eigenspace of
the eigenvalue 0 of T and the union of £ with every orthonormal basis of Hy is an
orthonormal basis for H consisting of eigenvectors of T'. This contradicts with the
maximality of F unless Hy = 0. In this case, H = Hj and the proof is complete. [

In Proposition 2.1.24], for every Banach space E, we proved that the closure
of F(F) is a subalgebra of K(E). When E is a Hilbert space, we can say more as
the following proposition:

Proposition 5.7.5. The C*-algebra K(H) is the closure of F'(H).
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Proof. Let T be a compact operator. Without loss of generality, using the fact that
every element of a C*-algebra is the linear combination of four positive elements,
we can assume that 7' is positive. Therefore by Proposition B.7.4] there is an or-
thonormal basis B for H consisting of eigenvectors of T'. Using Theorem 2424 we
can arrange the set of eigenvalues of T as a decreasing sequence A\; > Ay > --- of
non-negative real numbers. For every n € N, let B,, be the subset of B consisting
of eigenvectors of A\, and define

AU u € B,
T"(“)'_{ 0 wueB-B,

and extend T, linearly to H. Clearly, T, is a finite rank operator, and sois > " _ T,
for every n € N. Using Theorem 2424 we have

T — Z Tl = Ans1—0, when n—o0.

m=1

Therefore T is the limit of the sequence (> 7

v 1 Tin)nen of finite rank operators. [

Corollary 5.7.6. The C*-algebra K(H) is simple.

Proof. Let I be a non-zero closed ideal of K(H). Then by Proposition B.2.16]
F(H)CI. Since I is closed, K(H) = F(H)CI. O

Proposition 5.7.7. M(K(H)) = B(H).

In the following proof, we use some parts of Exercise B.2.15]

Proof. By Proposition B.2.T6] K(H) is an essential ideal of B(H). Therefore by
Proposition 13.33] there is a one-to-one *-homomorphism ¢ : B(H)—M(K(H)).
To show ¢ is onto, let (L, R) € M(K(H)). Fix a unit vector u € H and define

T:H — H,
r — Llxz®u)(u), VreH.

Clearly, T is linear and we also have

[Tzl < 1Lz @u)l| < |ILlllls @[] = [[Lll=]l, vz e H.
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Hence T' € B(H). For every x,y,z € H, we compute

Lr(z®y)lz = (Trey)
= (z,y)Tx

(2, )| L(z @ u)lu
[L(z @ u)]({z, y)u)
[L(z @ u)](u®y)z
[L((z @ u)(u®y))lz
[L(z ® y)]2.

This shows that Ly = L over F(H), and since F'(H) is dense in K(H) and both L
and Ly are bounded, Ly = L over K(H). This amounts to 0 = ||[Ly—L|| = |Rr—R)|.
Hence ¢(T') = (Lr, Ry) = (L, R), and therefore ¢ is onto. O

Exercise 5.7.8. Show that when H is an infinite dimensional Hilbert space, K(H)
is not unital. Therefore K (H) is not a von Neumann algebra.

The following proposition follows from elementary properties of von Neumann
algebras:

Proposition 5.7.9. K(H)" = B(H).

Proof. Let T € B(H)—Cl1. In the proof of Proposition B.2.I8|(v), we showed that T
does not commute with some finite rank operator. Hence 7' ¢ K(H)'. This implies
K(H)" = C1, and consequently K(H)" = B(H) by Proposition G.2.18(v). O

5.8 Elements of von Neumann algebras

In this section, H is always a Hilbert space. We mainly follow Gert K. Pedersen’s [33]
book to prove the bicommutant theorem. Using this theorem, we observe that the
image of the Borel functional calculus of an operator T lies in VN(T') = C*(T,T%)",
the von Neumann algebra generated by 7.

Definition 5.8.1. We say a C*-subalgebra A of B(H) acts non-degenerately
on Hifz € H and Tx =0 for all T" € A implies z = 0.

Theorem 5.8.2. [The von Neumann bicommutant theorem] Let M be a C*-subalgebra
of B(H) acting non-degenerately on H. Then the following statements are equiva-
lent:

(i) M = M".
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(ii) M is weakly closed.

(1ii) M is strongly closed.

Proof. The implications (i) = (ii) < (iii) follow from Proposition B.4.7](i), Remark
B.4T10(v), and Corollary

Assume (iii) holds. For given xy € H, let X be the closure of the vector space
Mzxy := {Txo;T € M} and set P := Px. One checks PT'P = TP for all T € M.
Thus
TP =(PT*P) = (I"P)"=PT, VT e M,

and so P € M’'. On the other hand, for every T' € M, we have T(1 — P)xy = (1 —
P)Txy = 0. Since M acts non-degenerately on H, (1 — P)zy = 0. Hence Pxy = .
For given S € M”, we have SP = PS, so Sxg = SPxy = PSxy € PH = X. Thus
for every gy > 0, there is T' € M such that ||(S — T)xo|| < 9. Let

Usian,oame =417 € B(H); (T — S)xy|| <e,Vk=1,--- ,n}

be an arbitrary basic neighborhood in the strong operator topology of B(H) con-
taining S. We need to show that Ug,, ... , . contains an element of M.

Set © := (x1,-- ,x,) € H" and define D : B(H)—B(H") by
D(T):= (Txy,---,Tx,), VT € B(H).
Then using the isomorphism B(H") ~ M,(B(H)), we have
D(M) ={(T};) € B(H");Tj; € M'Vi,j=1,--- ,n},

see Problem (.23, Thus D(S) € D(M)”. Now, apply the first part of the proof
with D(M), D(S), z, e, and H™ in place of M, S, zy, €, and H. Then there is some
T € B(H) such that ||[(D(S) — D(T))z|| < e. Using this, for every m = 1,--- ,n,

we have

n 1/2
105 =Tl < (Z 165 = T)ka!|2> = [[(D(S) = D(T))z|| <e.

k=1
Therefore T' € Ug 4, ... 2 - O

The following corollary is an immediate consequence of the bicommutant the-
orem:

Corollary 5.8.3. Let M be a von Neumann algebra on H and Let T € M be a
normal element. Then for every Borel function f € B(o(T)), we have f(T) € M.
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5.9 Problems

Problem 5.1. Describe all inner products on C". Show that, for every natural
number n, there is only one Hilbert space of dimension n up to unitary equivalence.

Problem 5.2. Let (E, || — ||) be a normed vector space. Prove that E is a Banach
space if and only if every absolutely convergent series in E is convergent.

Problem 5.3. Let (X, ) be a measure space. Use the above exercise to show
that L?(X, uu) equipped with the norm defined by ||f||3 := [y |f(x)[*du(x) for all
f € L*(X, i) is a Banach space.

Problem 5.4. [The Gram-Schmidt orthogonalization process| Assume
X ={z,;n € N}

is a linearly independent subset of a Hilbert space H. Show that there is an or-
thonormal subset {u,;n € N} in H such that [{z1,---,2,}] = [{u1,- -+, u,}] for all
n € N.

Problem 5.5. Prove that the Hilbert space L?(R™ m) is separable for all n € N,
where m is the Lebesgue measure. More generally, let (X, ) be a measure space
such that the topology of X has a countable basis (in other words, X is second
countable) and 4 is a Borel measure. Show that L*(X, p) is separable.

Problem 5.6. Let H be an infinite dimensional Hilbert space. Show that the weak
topology on H is not first countable. (Remember; a topological space is called first
countable if each point has a countable basis of neighborhoods.)

Problem 5.7. Using the Uniform boundedness theorem, see [2.0.1], show that every
weakly convergent sequence in a Hilbert space is norm bounded. On the contrary,
find an example to show that a weakly convergent net in a Hilbert space need not
be norm bounded.

Problem 5.8. Let X be a set and let H be a Hilbert space. Show that Hilbert
spaces (2(X) ® H and HX are unitary equivalent.

Problem 5.9. Let (X, u) be a measure space and let H be a Hilbert space. Show
that Hilbert spaces L*(X) ® H and L*(X, H) are unitary equivalent.

Problem 5.10. Let H,, H, and Hj3 be Hilbert spaces. Show that
(Hy @ Hy) @ Hy ~ (H, ® Hy) & (Hy ® Hy).

Problem 5.11. Assume X = {z;;¢ € I} and Y = {y;;j € J} be orthonormal
bases for Hilbert spaces Hy and Hs, respectively. Prove that {z; ® y;;i € I, j € J}
is an orthonormal basis for H; ® Hy. Show that H; ® Hs, is unitary equivalent to
Hy ® (?(J). Also, use X and Y to find an orthonormal basis for H; & H.
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Problem 5.12. Let G be an LCG with a Haar measure pu.

(i) Using a Dirac net on G find and approximate unit for C,.*(G).
(i) If the topology of G is first countable, show that C,*(G) is o-unital.

(iii) Assume G is discrete. Show that A(d.) =1 € B(*(@)) and A(d,) is a unitary
element in C,*(G) for all g € G, where ¢, is the characteristic function of the
one point subset {g} of G.

Problem 5.13. Let B be an orthonormal basis for a Hilbert basis H and let T, S €
B(H). Show that T'= S if and only if (T'u,v) = (Su,v) for all u,v € B.

Problem 5.14. Assume H is a Hilbert space. Prove that F(H) is generated by
projections of rank one.

Problem 5.15. Let H be a Hilbert space. Show that the set B(H)j, of self adjoint
operators is weakly, and consequently strongly, closed.

Problem 5.16. Prove that the Borel functional calculus agrees with the holomor-
phic functional calculus on holomorphic functions.

Problem 5.17. Let M : L>=(X, u)—B(L*(X)) be the map defined in Example [5.3.7]
and let f e L>(X).

(i) By definition, the essential range of f is the set
{\ € C;u(f71(0)) > 0for all open subsets OCC containing A } .
Show that o(My) is exactly the essential range of f.
(ii) Show that if |f| = 1 almost every where, then M; is a unitary operator.
(iii) Show that if f =0 or f = 1 almost every where, then A} is a projection.
(iv) When is M; self adjoint or positive? Justify your answer.
(v) Let g € C(0(My)). Show that g(My) = Mgy
(vi) Let g € B(o(My)), see Remark and Theorem Show that
9(My) = Mgoy.

Problem 5.18. Let P and @) be two projections on a Hilbert space H. Show that
P <@ if and only if ||Pz| < ||Qz| for all z € H.

Problem 5.19. Let H be a Hilbert space and let 7,S € B(H). Show that if
(Tw,z) = (Sx,x) for all x € H, then T'= S.
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Problem 5.20. Let 7" € B(H,, H>) be an onto isometry between two Hilbert spaces.
Prove that T' is a unitary.

Problem 5.21. Let T' € B(H;, Hs) be a bounded operator between two Hilbert
spaces and set |T| := (T*T)"/? € B(H,). Prove that |||T|z| = ||Tz| for all z € H,.

Problem 5.22. Let H be a Hilbert space, T € B(H), and let Pr and Q7 be the
left and right support projections of T', respectively. For every S € C*(T,T*), show
that SPr =5 and QrS = S.

Problem 5.23. Let H be a Hilbert space and let H™ be the (orthogonal) direct
sum of n copies of H.

(i) Show that B(H™) ~ M, (B(H)).
(ii) Using the above isomorphism, for all 7' € B(H), define D(T') € B(H") by

D)= () ={ o 157

Show that if X is a sx-subalgebra of B(H), then we have

D(M) = {(T;;) € B(H"); T;; € M'¥1 <1i,j <n}.
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