A variant of the Gleason-Kahane-Żelazko theorem

Tomasz Kochanek
University of Silesia
Institute of Mathematics
Katowice, Poland

$50^{\text {th }}$ International Symposium on Functional Equations

Hajdúszoboszló, Hungary
June 17-24, 2012

Gleason-Kahane-Żelazko theorem

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)
Let \mathscr{A} be a complex Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$ be a linear functional with $f(\mathbf{1})=1$.

Gleason-Kahane-Żelazko theorem

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)

Let \mathscr{A} be a complex Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$ be a linear functional with $f(\mathbf{1})=1$. Then f is multiplicative (i.e. $f(x y)=f(x) f(y)$ for any $x, y \in \mathscr{A}$) if and only if

$$
f(x) \in \sigma(x) \quad \text { for } x \in \mathscr{A}
$$

Gleason-Kahane-Żelazko theorem

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)

Let \mathscr{A} be a complex Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$ be a linear functional with $f(\mathbf{1})=1$. Then f is multiplicative (i.e. $f(x y)=f(x) f(y)$ for any $x, y \in \mathscr{A}$) if and only if

$$
f(x) \in \sigma(x) \quad \text { for } x \in \mathscr{A}
$$

equivalently: if and only if $f(x) \neq 0$ for every invertible $x \in \mathscr{A}$.

Gleason-Kahane-Żelazko theorem

Theorem (A.M. Gleason, J.P. Kahane, W. Zelazko, 1967-68)

Let \mathscr{A} be a complex Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$ be a linear functional with $f(\mathbf{1})=1$. Then f is multiplicative (i.e. $f(x y)=f(x) f(y)$ for any $x, y \in \mathscr{A}$) if and only if

$$
f(x) \in \sigma(x) \quad \text { for } x \in \mathscr{A}
$$

equivalently: if and only if $f(x) \neq 0$ for every invertible $x \in \mathscr{A}$.
Recall that for complex Banach algebras \mathscr{A} having a unit 1, and for each $x \in \mathscr{A}$, the spectrum of x is defined as

$$
\sigma(x)=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-x \text { is non-invertible }\} .
$$

Gleason-Kahane-Żelazko theorem

Observe that the "only if" part of the above theorem is obvious.

Gleason-Kahane-Żelazko theorem

Observe that the "only if" part of the above theorem is obvious. Indeed, if $f: \mathscr{A} \rightarrow \mathbb{C}$ is linear and multiplicative and $f(\mathbf{1})=1$, then for any $x \in \mathscr{A}$ and $\lambda \in \mathbb{C}, \lambda \notin \sigma(x)$ the element $\lambda \mathbf{1}-x$ is invertible, hence the multiplicativity of f implies $f(\lambda \mathbf{1}-x) \neq 0$,

Gleason-Kahane-Żelazko theorem

Observe that the "only if" part of the above theorem is obvious. Indeed, if $f: \mathscr{A} \rightarrow \mathbb{C}$ is linear and multiplicative and $f(\mathbf{1})=1$, then for any $x \in \mathscr{A}$ and $\lambda \in \mathbb{C}, \lambda \notin \sigma(x)$ the element $\lambda \mathbf{1}-x$ is invertible, hence the multiplicativity of f implies $f(\lambda \mathbf{1}-x) \neq 0$, that is, $\lambda \neq f(x)$. This proves $f(x) \in \sigma(x)$ for each $x \in \mathscr{A}$.

Gleason-Kahane-Żelazko theorem

Observe that the "only if" part of the above theorem is obvious. Indeed, if $f: \mathscr{A} \rightarrow \mathbb{C}$ is linear and multiplicative and $f(\mathbf{1})=1$, then for any $x \in \mathscr{A}$ and $\lambda \in \mathbb{C}, \lambda \notin \sigma(x)$ the element $\lambda \mathbf{1}-x$ is invertible, hence the multiplicativity of f implies $f(\lambda \mathbf{1}-x) \neq 0$, that is, $\lambda \neq f(x)$. This proves $f(x) \in \sigma(x)$ for each $x \in \mathscr{A}$.
On the other hand, the "if" part is a deep result.

Gleason-Kahane-Żelazko theorem

Observe that the "only if" part of the above theorem is obvious. Indeed, if $f: \mathscr{A} \rightarrow \mathbb{C}$ is linear and multiplicative and $f(\mathbf{1})=1$, then for any $x \in \mathscr{A}$ and $\lambda \in \mathbb{C}, \lambda \notin \sigma(x)$ the element $\lambda \mathbf{1}-x$ is invertible, hence the multiplicativity of f implies $f(\lambda \mathbf{1}-x) \neq 0$, that is, $\lambda \neq f(x)$. This proves $f(x) \in \sigma(x)$ for each $x \in \mathscr{A}$.
On the other hand, the "if" part is a deep result.

Another formulation:

Theorem (A.M. Gleason, J.P. Kahane, W. Zelazko, 1967-68)
Let \mathscr{A} be a complex Banach algebra with a unit element and let $\mathscr{M} \subset \mathscr{A}$ be a one codimensional subspace of \mathscr{A}.

Gleason-Kahane-Żelazko theorem

Observe that the "only if" part of the above theorem is obvious. Indeed, if $f: \mathscr{A} \rightarrow \mathbb{C}$ is linear and multiplicative and $f(\mathbf{1})=1$, then for any $x \in \mathscr{A}$ and $\lambda \in \mathbb{C}, \lambda \notin \sigma(x)$ the element $\lambda \mathbf{1}-x$ is invertible, hence the multiplicativity of f implies $f(\lambda \mathbf{1}-x) \neq 0$, that is, $\lambda \neq f(x)$. This proves $f(x) \in \sigma(x)$ for each $x \in \mathscr{A}$.
On the other hand, the "if" part is a deep result.

Another formulation:

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)
Let \mathscr{A} be a complex Banach algebra with a unit element and let $\mathscr{M} \subset \mathscr{A}$ be a one codimensional subspace of \mathscr{A}. If every $x \in \mathscr{M}$ belongs to some proper ideal \mathcal{I}_{x} in \mathscr{A}, then \mathscr{M} is actually an ideal (of course, maximal).

Gleason-Kahane-Żelazko theorem

It is well-known that the Gleason-Kahane-Żelazko theorem does not hold for real Banach algebras.

Gleason-Kahane-Żelazko theorem

It is well-known that the Gleason-Kahane-Żelazko theorem does not hold for real Banach algebras. Indeed, consider the Banach algebra $\mathscr{A}=C_{\mathbb{R}}[0,1]$ and the linear functional on \mathscr{A} defined by

$$
C_{\mathbb{R}}[0,1] \ni f \mapsto \varphi(f)=\int_{0}^{1} f(t) \mathrm{d} t
$$

Gleason-Kahane-Żelazko theorem

It is well-known that the Gleason-Kahane-Żelazko theorem does not hold for real Banach algebras. Indeed, consider the Banach algebra $\mathscr{A}=C_{\mathbb{R}}[0,1]$ and the linear functional on \mathscr{A} defined by

$$
C_{\mathbb{R}}[0,1] \ni f \mapsto \varphi(f)=\int_{0}^{1} f(t) \mathrm{d} t
$$

Despite the fact that for each $f \in \mathscr{A}$ we have $\varphi(f) \in \sigma(f)=f([0,1])$ (the spectrum of f is just the range of f), the functional φ fails to be multiplicative.

Gleason-Kahane-Żelazko theorem

It is well-known that the Gleason-Kahane-Żelazko theorem does not hold for real Banach algebras. Indeed, consider the Banach algebra $\mathscr{A}=C_{\mathbb{R}}[0,1]$ and the linear functional on \mathscr{A} defined by

$$
C_{\mathbb{R}}[0,1] \ni f \mapsto \varphi(f)=\int_{0}^{1} f(t) \mathrm{d} t
$$

Despite the fact that for each $f \in \mathscr{A}$ we have $\varphi(f) \in \sigma(f)=f([0,1])$ (the spectrum of f is just the range of f), the functional φ fails to be multiplicative.

Theorem (N. Farnum, R. Whitley, 1978)

Let K be a compact Hausdorff space. Then the Banach algebra $C_{\mathbb{R}}(K)$ satisfies the assertion of the Gleason-Kahane-Żelzako theorem if and only if K is totally disconnected.

Gleason-Kahane-Żelazko theorem

A real counterpart of the Gleason-Kahane-Żelazko theorem was given by N.H. Kulkarni:

Gleason-Kahane-Żelazko theorem

A real counterpart of the Gleason-Kahane-Żelazko theorem was given by N.H. Kulkarni:

Theorem (N.H. Kulkarni, 1984)

Let \mathscr{A} be a real Banach algebra with a unit element 1. Suppose that $f: \mathscr{A} \rightarrow \mathbb{C}$ is a linear map satisfying $f(\mathbf{1})=1$ and

$$
f(x)^{2}+f(y)^{2} \neq 0
$$

for all $x, y \in \mathscr{A}$ such that $x y=y x$ and $x^{2}+y^{2}$ is invertible.

Gleason-Kahane-Żelazko theorem

A real counterpart of the Gleason-Kahane-Żelazko theorem was given by N.H. Kulkarni:

Theorem (N.H. Kulkarni, 1984)

Let \mathscr{A} be a real Banach algebra with a unit element 1. Suppose that $f: \mathscr{A} \rightarrow \mathbb{C}$ is a linear map satisfying $f(\mathbf{1})=1$ and

$$
f(x)^{2}+f(y)^{2} \neq 0
$$

for all $x, y \in \mathscr{A}$ such that $x y=y x$ and $x^{2}+y^{2}$ is invertible. Then f is multiplicative.

Gleason-Kahane-Żelazko theorem

A real counterpart of the Gleason-Kahane-Żelazko theorem was given by N.H. Kulkarni:

Theorem (N.H. Kulkarni, 1984)

Let \mathscr{A} be a real Banach algebra with a unit element 1. Suppose that $f: \mathscr{A} \rightarrow \mathbb{C}$ is a linear map satisfying $f(\mathbf{1})=1$ and

$$
f(x)^{2}+f(y)^{2} \neq 0
$$

for all $x, y \in \mathscr{A}$ such that $x y=y x$ and $x^{2}+y^{2}$ is invertible. Then f is multiplicative.

We shall propose another variant of the Gleason-Kahane-Żelazko theorem, also valid for real Banach algebras, and inspired by the following result of S. Kowalski and Z. Słodkowski.

Kowalski-Słodkowski theorem

Theorem (S. Kowalski, Z. Słodkowski, 1980)

Let \mathscr{A} be a complex Banach algebra with a unit element 1. Suppose that $f: \mathscr{A} \rightarrow \mathbb{C}$ satisfies: $f(0)=0$ and

$$
f(x)-f(y) \in \sigma(x-y) \quad \text { for } x, y \in \mathscr{A} .
$$

Kowalski-Słodkowski theorem

Theorem (S. Kowalski, Z. Słodkowski, 1980)

Let \mathscr{A} be a complex Banach algebra with a unit element 1. Suppose that $f: \mathscr{A} \rightarrow \mathbb{C}$ satisfies: $f(0)=0$ and

$$
f(x)-f(y) \in \sigma(x-y) \quad \text { for } x, y \in \mathscr{A} .
$$

Then f is linear and multiplicative.

Kowalski-Słodkowski theorem

Theorem (S. Kowalski, Z. Słodkowski, 1980)

Let \mathscr{A} be a complex Banach algebra with a unit element 1. Suppose that $f: \mathscr{A} \rightarrow \mathbb{C}$ satisfies: $f(0)=0$ and

$$
f(x)-f(y) \in \sigma(x-y) \quad \text { for } x, y \in \mathscr{A}
$$

Then f is linear and multiplicative.
Let us stress that here, in contrast to the original version of the Gleason-Kahane-Żelazko theorem, the linearity of f is a part of the assertion.

Main result

Theorem

Let \mathscr{A} be a real Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x, y}: \mathscr{A} \rightarrow \mathbb{C}$ such that

$$
f(x)=\varphi_{x, y}(x) \quad \text { and } \quad f(y)=\varphi_{x, y}(y)
$$

Main result

Theorem

Let \mathscr{A} be a real Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x, y}: \mathscr{A} \rightarrow \mathbb{C}$ such that
(*)

$$
f(x)=\varphi_{x, y}(x) \quad \text { and } \quad f(y)=\varphi_{x, y}(y)
$$

Then f is linear and multiplicative.

Main result

Theorem

Let \mathscr{A} be a real Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x, y}: \mathscr{A} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
f(x)=\varphi_{x, y}(x) \quad \text { and } \quad f(y)=\varphi_{x, y}(y) \tag{*}
\end{equation*}
$$

Then f is linear and multiplicative.
Since all linear and multiplicative maps on $C_{\mathbb{R}}[0,1]$ are just evaluation functionals, condition $(*)$ requires that for any two functions $g, h \in C_{\mathbb{R}}[0,1]$ we would have

$$
\int_{0}^{1} g(t) \mathrm{d} t=g(a) \quad \text { and } \quad \int_{0}^{1} h(t) \mathrm{d} t=h(a)
$$

Main result

Theorem

Let \mathscr{A} be a real Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x, y}: \mathscr{A} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
f(x)=\varphi_{x, y}(x) \quad \text { and } \quad f(y)=\varphi_{x, y}(y) \tag{*}
\end{equation*}
$$

Then f is linear and multiplicative.
Since all linear and multiplicative maps on $C_{\mathbb{R}}[0,1]$ are just evaluation functionals, condition $(*)$ requires that for any two functions $g, h \in C_{\mathbb{R}}[0,1]$ we would have

$$
\int_{0}^{1} g(t) \mathrm{d} t=g(a) \quad \text { and } \quad \int_{0}^{1} h(t) \mathrm{d} t=h(a)
$$

for some point $a \in[0,1]$ (depending on g and h).

Main result

Theorem

Let \mathscr{A} be a real Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x, y}: \mathscr{A} \rightarrow \mathbb{C}$ such that

$$
f(x)=\varphi_{x, y}(x) \quad \text { and } \quad f(y)=\varphi_{x, y}(y)
$$

Then f is linear and multiplicative.
Since all linear and multiplicative maps on $C_{\mathbb{R}}[0,1]$ are just evaluation functionals, condition $(*)$ requires that for any two functions $g, h \in C_{\mathbb{R}}[0,1]$ we would have

$$
\int_{0}^{1} g(t) \mathrm{d} t=g(a) \quad \text { and } \quad \int_{0}^{1} h(t) \mathrm{d} t=h(a)
$$

for some point $a \in[0,1]$ (depending on g and h). This is however impossible in general.

Auxiliary tools

Theorem (P. Mankiewicz, 1974)

If $X: X \rightarrow \mathbb{C}$ is a Lipschitz map defined on a separable Fréchet space, then it has \mathbb{R}-linear Gateaux differentials everywhere on X except some zero set.

Auxiliary tools

Theorem (P. Mankiewicz, 1974)

If $X: X \rightarrow \mathbb{C}$ is a Lipschitz map defined on a separable Fréchet space, then it has \mathbb{R}-linear Gateaux differentials everywhere on X except some zero set.

Let \mathcal{Q} be the Hilbert cube, i.e.

$$
\mathcal{Q}=\prod_{n \in \mathbb{N}}\left[-2^{-n}, 2^{-n}\right]
$$

equipped with the natural product measure μ.

Auxiliary tools

Theorem (P. Mankiewicz, 1974)

If $X: X \rightarrow \mathbb{C}$ is a Lipschitz map defined on a separable Fréchet space, then it has \mathbb{R}-linear Gateaux differentials everywhere on X except some zero set.

Let \mathcal{Q} be the Hilbert cube, i.e.

$$
\mathcal{Q}=\prod_{n \in \mathbb{N}}\left[-2^{-n}, 2^{-n}\right]
$$

equipped with the natural product measure μ. A subset $Z \subset X$ is called a zero set if for every continuous affine map $\psi: \mathcal{Q} \rightarrow X$ with linearly dense image we have

$$
\mu\left(\psi^{-1}(Z)\right)=0
$$

Auxiliary tools

Theorem (S. Kowalski, Z. Słodkowski, 1980)
Let X be a separable complex Fréchet space and let $f: U \rightarrow \mathbb{C}$ be a locally Lipschitz map defined on an open set $U \subset X$.

Auxiliary tools

Theorem (S. Kowalski, Z. Słodkowski, 1980)
Let X be a separable complex Fréchet space and let $f: U \rightarrow \mathbb{C}$ be a locally Lipschitz map defined on an open set $U \subset X$. If f has a \mathbb{C}-linear Gateaux differential at every point except some zero set, then f is holomorphic in U.

Auxiliary tools

Theorem (S. Kowalski, Z. Słodkowski, 1980)

Let X be a separable complex Fréchet space and let $f: U \rightarrow \mathbb{C}$ be a locally Lipschitz map defined on an open set $U \subset X$. If f has a \mathbb{C}-linear Gateaux differential at every point except some zero set, then f is holomorphic in U.

The method of the proof of our main result is based on the methods invented by Kowalski and Słodkowski and on the complexification process.

Theorem

Let \mathscr{A} be a real Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x, y}: \mathscr{A} \rightarrow \mathbb{C}$ such that

$$
f(x)=\varphi_{x, y}(x) \quad \text { and } \quad f(y)=\varphi_{x, y}(y)
$$

Then f is linear and multiplicative.

Sketch of the proof

- First, observe that we may assume that \mathscr{A} is a separable Banach algebra.

Sketch of the proof

- First, observe that we may assume that \mathscr{A} is a separable Banach algebra. In fact, we shall prove that for any two elements $x_{1}, x_{2} \in \mathscr{A}$ the map f is linear and multiplicative on the subalgebra $\left\langle x_{1}, x_{2}\right\rangle$ generated by x_{1} and x_{2}, which obviously is separable.

Sketch of the proof

- First, observe that we may assume that \mathscr{A} is a separable Banach algebra. In fact, we shall prove that for any two elements $x_{1}, x_{2} \in \mathscr{A}$ the map f is linear and multiplicative on the subalgebra $\left\langle x_{1}, x_{2}\right\rangle$ generated by x_{1} and x_{2}, which obviously is separable.
- Let $\mathscr{A}_{\mathbb{C}}=\mathscr{A} \times \mathscr{A}$ be the complexification of the algebra \mathscr{A}. Then $\mathscr{A}_{\mathbb{C}}$ is a complex Banach algebra with a certain norm $\|\cdot\|$ such that $x \mapsto(x, 0)$ is an isometry and

$$
\|(x, y)\| \leq\|x\|+\|y\| \leq 2 \sqrt{2}\|(x, y)\| \text { for }(x, y) \in \mathscr{A}_{\mathbb{C}}
$$

Sketch of the proof

- First, observe that we may assume that \mathscr{A} is a separable Banach algebra. In fact, we shall prove that for any two elements $x_{1}, x_{2} \in \mathscr{A}$ the map f is linear and multiplicative on the subalgebra $\left\langle x_{1}, x_{2}\right\rangle$ generated by x_{1} and x_{2}, which obviously is separable.
- Let $\mathscr{A}_{\mathbb{C}}=\mathscr{A} \times \mathscr{A}$ be the complexification of the algebra \mathscr{A}. Then $\mathscr{A}_{\mathbb{C}}$ is a complex Banach algebra with a certain norm $\|\cdot\|$ such that $x \mapsto(x, 0)$ is an isometry and

$$
\|(x, y)\| \leq\|x\|+\|y\| \leq 2 \sqrt{2}\|(x, y)\| \text { for }(x, y) \in \mathscr{A}_{\mathbb{C}}
$$

- Define $\tilde{f}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$ by

$$
\widetilde{f}(x, y)=f(x)+i f(y)
$$

Sketch of the proof

- For any $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \in \mathscr{A}_{\mathbb{C}}$ we have

$$
\begin{aligned}
|\widetilde{f}(\mathbf{x})-\widetilde{f}(\mathbf{y})| & \leq\left|f\left(x_{1}\right)-f\left(y_{1}\right)\right|+\left|f\left(x_{2}\right)-f\left(y_{2}\right)\right| \\
& =\left|\varphi_{x_{1}, y_{1}}\left(x_{1}-y_{1}\right)\right|+\left|\varphi_{x_{2}, y_{2}}\left(x_{2}-y_{2}\right)\right|
\end{aligned}
$$

Sketch of the proof

- For any $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \in \mathscr{A}_{\mathbb{C}}$ we have

$$
\begin{aligned}
|\widetilde{f}(\mathbf{x})-\widetilde{f}(\mathbf{y})| & \leq\left|f\left(x_{1}\right)-f\left(y_{1}\right)\right|+\left|f\left(x_{2}\right)-f\left(y_{2}\right)\right| \\
& =\left|\varphi_{x_{1}, y_{1}}\left(x_{1}-y_{1}\right)\right|+\left|\varphi_{x_{2}, y_{2}}\left(x_{2}-y_{2}\right)\right|
\end{aligned}
$$

- For any \mathbb{R}-linear and multiplicative $\varphi: \mathscr{A} \rightarrow \mathbb{C}$ the formula $\widetilde{\varphi}(x, y)=\varphi(x)+i \varphi(y)$ defines a \mathbb{C}-linear and multiplicative functional $\widetilde{\varphi}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$.

Sketch of the proof

- For any $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \in \mathscr{A}_{\mathbb{C}}$ we have

$$
\begin{aligned}
|\widetilde{f}(\mathbf{x})-\widetilde{f}(\mathbf{y})| & \leq\left|f\left(x_{1}\right)-f\left(y_{1}\right)\right|+\left|f\left(x_{2}\right)-f\left(y_{2}\right)\right| \\
& =\left|\varphi_{x_{1}, y_{1}}\left(x_{1}-y_{1}\right)\right|+\left|\varphi_{x_{2}, y_{2}}\left(x_{2}-y_{2}\right)\right|
\end{aligned}
$$

- For any \mathbb{R}-linear and multiplicative $\varphi: \mathscr{A} \rightarrow \mathbb{C}$ the formula $\widetilde{\varphi}(x, y)=\varphi(x)+i \varphi(y)$ defines a \mathbb{C}-linear and multiplicative functional $\widetilde{\varphi}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$. Since

$$
\varphi_{x_{i}, y_{i}}\left(x_{i}-y_{i}\right)=\widetilde{\varphi}_{x_{i}, y_{i}}\left(x_{i}-y_{i}, 0\right) \in \sigma\left(x_{i}-y_{i}, 0\right) \text { for } i=1,2
$$

we have

$$
\begin{aligned}
|\widetilde{f}(\mathbf{x})-\widetilde{f}(\mathbf{y})| & \leq\left\|\left(x_{1}-y_{1}, 0\right)\right\|+\left\|\left(x_{2}-y_{2}, 0\right)\right\| \\
& =\left\|x_{1}-y_{1}\right\|+\left\|x_{2}-y_{2}\right\| \leq 2 \sqrt{2}\|\mathbf{x}-\mathbf{y}\|
\end{aligned}
$$

Sketch of the proof

- For any $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \in \mathscr{A}_{\mathbb{C}}$ we have

$$
\begin{aligned}
|\widetilde{f}(\mathbf{x})-\widetilde{f}(\mathbf{y})| & \leq\left|f\left(x_{1}\right)-f\left(y_{1}\right)\right|+\left|f\left(x_{2}\right)-f\left(y_{2}\right)\right| \\
& =\left|\varphi_{x_{1}, y_{1}}\left(x_{1}-y_{1}\right)\right|+\left|\varphi_{x_{2}, y_{2}}\left(x_{2}-y_{2}\right)\right|
\end{aligned}
$$

- For any \mathbb{R}-linear and multiplicative $\varphi: \mathscr{A} \rightarrow \mathbb{C}$ the formula $\widetilde{\varphi}(x, y)=\varphi(x)+i \varphi(y)$ defines a \mathbb{C}-linear and multiplicative functional $\widetilde{\varphi}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$. Since

$$
\varphi_{x_{i}, y_{i}}\left(x_{i}-y_{i}\right)=\widetilde{\varphi}_{x_{i}, y_{i}}\left(x_{i}-y_{i}, 0\right) \in \sigma\left(x_{i}-y_{i}, 0\right) \text { for } i=1,2
$$

we have

$$
\begin{aligned}
|\widetilde{f}(\mathbf{x})-\widetilde{f}(\mathbf{y})| & \leq\left\|\left(x_{1}-y_{1}, 0\right)\right\|+\left\|\left(x_{2}-y_{2}, 0\right)\right\| \\
& =\left\|x_{1}-y_{1}\right\|+\left\|x_{2}-y_{2}\right\| \leq 2 \sqrt{2}\|\mathbf{x}-\mathbf{y}\|
\end{aligned}
$$

which proves that \widetilde{f} is a Lipschitz map.

Sketch of the proof

- By Mankiewicz's theorem, $\tilde{f}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$ has \mathbb{R}-linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$
\tilde{\mathrm{D}} \tilde{f}(a)(x, y)=\mathrm{D} f(a) x+i \operatorname{Df}(a) y
$$

(whenever it exists), where $\operatorname{Df}(a)$ is also \mathbb{R}-linear "almost everywhere".

Sketch of the proof

- By Mankiewicz's theorem, $\tilde{f}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$ has \mathbb{R}-linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$
\tilde{\mathrm{D}} \tilde{f}(a)(x, y)=\mathrm{D} f(a) x+i \mathrm{D} f(a) y
$$

(whenever it exists), where $\operatorname{Df}(a)$ is also \mathbb{R}-linear "almost everywhere".

- Consequently, $\mathrm{D} \widetilde{f}(a)$ exists and is \mathbb{C}-linear, thus the result of Kowalski and Słodkowski implies that \widetilde{f} is holomorphic on $\mathscr{A}_{\mathbb{C}}$.

Sketch of the proof

- By Mankiewicz's theorem, $\widetilde{f}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$ has \mathbb{R}-linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$
\tilde{\mathrm{D}}(a)(x, y)=\operatorname{Df}(a) x+i \operatorname{Df}(a) y
$$

(whenever it exists), where $\operatorname{D} f(a)$ is also \mathbb{R}-linear "almost everywhere" .

- Consequently, $\mathrm{D} \widetilde{f}(a)$ exists and is \mathbb{C}-linear, thus the result of Kowalski and Słodkowski implies that \widetilde{f} is holomorphic on $\mathscr{A}_{\mathbb{C}}$.
- The function $\widetilde{f}_{a, b}: \mathbb{C} \rightarrow \mathbb{C}$, defined for every $a, b \in \mathscr{A}_{\mathbb{C}}$ by the formula

$$
\widetilde{f}_{a, b}(z)=\widetilde{f}(a z+b) \quad(z \in \mathbb{C})
$$

is Lipschitz and entire, hence - it is affine.

Sketch of the proof

- By Mankiewicz's theorem, $\widetilde{f}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$ has \mathbb{R}-linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$
\tilde{\mathrm{D}}(a)(x, y)=\operatorname{Df}(a) x+i \operatorname{Df}(a) y
$$

(whenever it exists), where $\operatorname{D} f(a)$ is also \mathbb{R}-linear "almost everywhere" .

- Consequently, $\mathrm{D} \widetilde{f}(a)$ exists and is \mathbb{C}-linear, thus the result of Kowalski and Słodkowski implies that \widetilde{f} is holomorphic on $\mathscr{A}_{\mathbb{C}}$.
- The function $\widetilde{f}_{a, b}: \mathbb{C} \rightarrow \mathbb{C}$, defined for every $a, b \in \mathscr{A}_{\mathbb{C}}$ by the formula

$$
\widetilde{f}_{a, b}(z)=\widetilde{f}(a z+b) \quad(z \in \mathbb{C})
$$

is Lipschitz and entire, hence - it is affine.

- From this it is not difficult to derive that \widetilde{f} is \mathbb{C}-linear, thus f itself is \mathbb{R}-linear.

Sketch of the proof

- By Mankiewicz's theorem, $\widetilde{f}: \mathscr{A}_{\mathbb{C}} \rightarrow \mathbb{C}$ has \mathbb{R}-linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$
\tilde{\mathrm{D}}(a)(x, y)=\operatorname{Df}(a) x+i \operatorname{Df}(a) y
$$

(whenever it exists), where $\operatorname{D} f(a)$ is also \mathbb{R}-linear "almost everywhere" .

- Consequently, $\mathrm{D} \tilde{f}(a)$ exists and is \mathbb{C}-linear, thus the result of Kowalski and Słodkowski implies that \widetilde{f} is holomorphic on $\mathscr{A}_{\mathbb{C}}$.
- The function $\widetilde{f}_{a, b}: \mathbb{C} \rightarrow \mathbb{C}$, defined for every $a, b \in \mathscr{A}_{\mathbb{C}}$ by the formula

$$
\widetilde{f}_{a, b}(z)=\widetilde{f}(a z+b) \quad(z \in \mathbb{C})
$$

is Lipschitz and entire, hence - it is affine.

- From this it is not difficult to derive that \widetilde{f} is \mathbb{C}-linear, thus f itself is \mathbb{R}-linear.
- By the Gleason-Kahane-Żelazko theorem (we use our assumption once more), \widetilde{f} is also multiplicative, thus f itself is multiplicative as well.

A question on assumptions

The assertion of our main result is purely algebraic, as well as its main assumption (about the graph of the given function f).

Theorem

Let \mathscr{A} be a real Banach algebra with a unit element $\mathbf{1}$ and let $f: \mathscr{A} \rightarrow \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x, y}: \mathscr{A} \rightarrow \mathbb{C}$ such that

$$
f(x)=\varphi_{x, y}(x) \quad \text { and } \quad f(y)=\varphi_{x, y}(y)
$$

Then f is linear and multiplicative.

A question on assumptions

The assertion of our main result is purely algebraic, as well as its main assumption (about the graph of the given function f).

Theorem

Let \mathscr{A} be a real Banach algebra with a unit element 1 and let $f: \mathscr{A} \rightarrow \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x, y}: \mathscr{A} \rightarrow \mathbb{C}$ such that

$$
f(x)=\varphi_{x, y}(x) \quad \text { and } \quad f(y)=\varphi_{x, y}(y)
$$

Then f is linear and multiplicative.

Question

Is the Banach algebra structure essential in our Theorem?

