A variant of the Gleason-Kahane-Żelazko theorem

Tomasz Kochanek

University of Silesia Institute of Mathematics Katowice, Poland

50th International Symposium on Functional Equations

Hajdúszoboszló, Hungary June 17–24, 2012

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68),

Let \mathscr{A} be a **complex** Banach algebra with a unit element **1** and let $f: \mathscr{A} \to \mathbb{C}$ be a linear functional with $f(\mathbf{1}) = 1$.

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)

Let \mathscr{A} be a **complex** Banach algebra with a unit element **1** and let $f: \mathscr{A} \to \mathbb{C}$ be a linear functional with $f(\mathbf{1}) = 1$. Then f is multiplicative (i.e. f(xy) = f(x)f(y) for any $x, y \in \mathscr{A}$) if and only if

 $f(x) \in \sigma(x)$ for $x \in \mathscr{A}$,

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)

Let \mathscr{A} be a **complex** Banach algebra with a unit element **1** and let $f: \mathscr{A} \to \mathbb{C}$ be a linear functional with $f(\mathbf{1}) = 1$. Then f is multiplicative (i.e. f(xy) = f(x)f(y) for any $x, y \in \mathscr{A}$) if and only if

 $f(x) \in \sigma(x)$ for $x \in \mathscr{A}$,

equivalently: if and only if $f(x) \neq 0$ for every invertible $x \in \mathscr{A}$.

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)

Let \mathscr{A} be a **complex** Banach algebra with a unit element **1** and let $f: \mathscr{A} \to \mathbb{C}$ be a linear functional with $f(\mathbf{1}) = 1$. Then f is multiplicative (i.e. f(xy) = f(x)f(y) for any $x, y \in \mathscr{A}$) if and only if

 $f(x) \in \sigma(x)$ for $x \in \mathscr{A}$,

equivalently: if and only if $f(x) \neq 0$ for every invertible $x \in \mathscr{A}$.

Recall that for complex Banach algebras \mathscr{A} having a unit **1**, and for each $x \in \mathscr{A}$, the **spectrum** of x is defined as

 $\sigma(x) = \{ \lambda \in \mathbb{C} : \lambda \mathbf{1} - x \text{ is non-invertible} \}.$

イロト 不得下 イヨト イヨト 二日

Observe that the "only if" part of the above theorem is obvious.

∃ → (∃ →

Observe that the "only if" part of the above theorem is obvious. Indeed, if $f: \mathscr{A} \to \mathbb{C}$ is linear and multiplicative and $f(\mathbf{1}) = 1$, then for any $x \in \mathscr{A}$ and $\lambda \in \mathbb{C}$, $\lambda \notin \sigma(x)$ the element $\lambda \mathbf{1} - x$ is invertible, hence the multiplicativity of f implies $f(\lambda \mathbf{1} - x) \neq 0$,

On the other hand, the "if" part is a deep result.

On the other hand, the "if" part is a deep result. Another formulation:

Theorem (A.M. Gleason, J.P. Kahane, W. Zelazko, 1967-68)

Let \mathscr{A} be a **complex** Banach algebra with a unit element and let $\mathscr{M} \subset \mathscr{A}$ be a one codimensional subspace of \mathscr{A} .

On the other hand, the "if" part is a deep result. Another formulation:

Theorem (A.M. Gleason, J.P. Kahane, W. Zelazko, 1967-68)

Let \mathscr{A} be a **complex** Banach algebra with a unit element and let $\mathscr{M} \subset \mathscr{A}$ be a one codimensional subspace of \mathscr{A} . If every $x \in \mathscr{M}$ belongs to some proper ideal \mathcal{I}_x in \mathscr{A} , then \mathscr{M} is actually an ideal (of course, maximal).

イロト 不得下 イヨト イヨト 二日

Gleason-Kahane-Żelazko theorem

It is well-known that the Gleason-Kahane-Żelazko theorem **does not hold** for **real** Banach algebras.

It is well-known that the Gleason-Kahane-Żelazko theorem **does not hold** for **real** Banach algebras. Indeed, consider the Banach algebra $\mathscr{A} = C_{\mathbb{R}}[0, 1]$ and the linear functional on \mathscr{A} defined by

$$C_{\mathbb{R}}[0,1]
i f \mapsto \varphi(f) = \int_0^1 f(t) \, \mathrm{d}t.$$

It is well-known that the Gleason-Kahane-Żelazko theorem **does not hold** for **real** Banach algebras. Indeed, consider the Banach algebra $\mathscr{A} = C_{\mathbb{R}}[0, 1]$ and the linear functional on \mathscr{A} defined by

$$C_{\mathbb{R}}[0,1]
i f \mapsto \varphi(f) = \int_0^1 f(t) \, \mathrm{d}t.$$

Despite the fact that for each $f \in \mathscr{A}$ we have $\varphi(f) \in \sigma(f) = f([0, 1])$ (the spectrum of f is just the range of f), the functional φ fails to be multiplicative.

It is well-known that the Gleason-Kahane-Żelazko theorem **does not hold** for **real** Banach algebras. Indeed, consider the Banach algebra $\mathscr{A} = C_{\mathbb{R}}[0, 1]$ and the linear functional on \mathscr{A} defined by

$$\mathcal{C}_{\mathbb{R}}[0,1]
i f \mapsto \varphi(f) = \int_0^1 f(t) \, \mathrm{d}t.$$

Despite the fact that for each $f \in \mathscr{A}$ we have $\varphi(f) \in \sigma(f) = f([0, 1])$ (the spectrum of f is just the range of f), the functional φ fails to be multiplicative.

Theorem (N. Farnum, R. Whitley, 1978)

Let K be a compact Hausdorff space. Then the Banach algebra $C_{\mathbb{R}}(K)$ satisfies the assertion of the Gleason-Kahane-Żelzako theorem if and only if K is totally disconnected.

イロト イポト イヨト イヨト

Theorem (N.H. Kulkarni, 1984)

Let \mathscr{A} be a **real** Banach algebra with a unit element **1**. Suppose that $f: \mathscr{A} \to \mathbb{C}$ is a linear map satisfying $f(\mathbf{1}) = 1$ and

$$f(x)^2 + f(y)^2 \neq 0$$

for all $x, y \in \mathscr{A}$ such that xy = yx and $x^2 + y^2$ is invertible.

Theorem (N.H. Kulkarni, 1984)

Let \mathscr{A} be a **real** Banach algebra with a unit element **1**. Suppose that $f: \mathscr{A} \to \mathbb{C}$ is a linear map satisfying $f(\mathbf{1}) = 1$ and

$$f(x)^2 + f(y)^2 \neq 0$$

for all $x, y \in \mathscr{A}$ such that xy = yx and $x^2 + y^2$ is invertible. Then f is multiplicative.

Theorem (N.H. Kulkarni, 1984)

Let \mathscr{A} be a **real** Banach algebra with a unit element **1**. Suppose that $f: \mathscr{A} \to \mathbb{C}$ is a linear map satisfying $f(\mathbf{1}) = 1$ and

$$f(x)^2 + f(y)^2 \neq 0$$

for all $x, y \in \mathscr{A}$ such that xy = yx and $x^2 + y^2$ is invertible. Then f is multiplicative.

We shall propose another variant of the Gleason-Kahane-Żelazko theorem, also valid for **real** Banach algebras, and inspired by the following result of S. Kowalski and Z. Słodkowski.

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Let \mathscr{A} be a **complex** Banach algebra with a unit element **1**. Suppose that $f: \mathscr{A} \to \mathbb{C}$ satisfies: f(0) = 0 and

$$f(x) - f(y) \in \sigma(x - y)$$
 for $x, y \in \mathscr{A}$.

Let \mathscr{A} be a **complex** Banach algebra with a unit element **1**. Suppose that $f: \mathscr{A} \to \mathbb{C}$ satisfies: f(0) = 0 and

$$f(x) - f(y) \in \sigma(x - y)$$
 for $x, y \in \mathscr{A}$.

Then f is linear and multiplicative.

Let \mathscr{A} be a **complex** Banach algebra with a unit element **1**. Suppose that $f: \mathscr{A} \to \mathbb{C}$ satisfies: f(0) = 0 and

$$f(x) - f(y) \in \sigma(x - y)$$
 for $x, y \in \mathscr{A}$.

Then f is linear and multiplicative.

Let us stress that here, in contrast to the original version of the Gleason-Kahane-Żelazko theorem, the linearity of f is a part of the assertion.

Theorem

Let \mathscr{A} be a **real** Banach algebra with a unit element **1** and let $f : \mathscr{A} \to \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x,y} : \mathscr{A} \to \mathbb{C}$ such that

(*)
$$f(x) = \varphi_{x,y}(x)$$
 and $f(y) = \varphi_{x,y}(y)$.

通 ト イ ヨ ト イ ヨ ト

Theorem

Let \mathscr{A} be a **real** Banach algebra with a unit element **1** and let $f : \mathscr{A} \to \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x,y} : \mathscr{A} \to \mathbb{C}$ such that

(*)
$$f(x) = \varphi_{x,y}(x)$$
 and $f(y) = \varphi_{x,y}(y)$.

Then f is linear and multiplicative.

通 ト イヨ ト イヨト

Theorem

Let \mathscr{A} be a **real** Banach algebra with a unit element **1** and let $f : \mathscr{A} \to \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x,y} : \mathscr{A} \to \mathbb{C}$ such that

$$(*) \qquad \qquad f(x)=\varphi_{x,y}(x) \quad \text{and} \quad f(y)=\varphi_{x,y}(y).$$

Then f is linear and multiplicative.

Since all linear and multiplicative maps on $C_{\mathbb{R}}[0,1]$ are just evaluation functionals, condition (*) requires that for any two functions $g, h \in C_{\mathbb{R}}[0,1]$ we would have

$$\int_0^1 g(t) \, \mathrm{d}t = g(a) \quad ext{and} \quad \int_0^1 h(t) \, \mathrm{d}t = h(a)$$

▲圖▶ ▲温▶ ▲国▶

Theorem

Let \mathscr{A} be a **real** Banach algebra with a unit element **1** and let $f : \mathscr{A} \to \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x,y} : \mathscr{A} \to \mathbb{C}$ such that

$$(*) \qquad \qquad f(x)=\varphi_{x,y}(x) \quad \text{and} \quad f(y)=\varphi_{x,y}(y).$$

Then f is linear and multiplicative.

Since all linear and multiplicative maps on $C_{\mathbb{R}}[0,1]$ are just evaluation functionals, condition (*) requires that for any two functions $g, h \in C_{\mathbb{R}}[0,1]$ we would have

$$\int_0^1 g(t) dt = g(a) \quad \text{and} \quad \int_0^1 h(t) dt = h(a)$$

for some point $a \in [0, 1]$ (depending on g and h).

Theorem

Let \mathscr{A} be a **real** Banach algebra with a unit element **1** and let $f : \mathscr{A} \to \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x,y} : \mathscr{A} \to \mathbb{C}$ such that

$$(*) \qquad \qquad f(x)=\varphi_{x,y}(x) \quad \text{and} \quad f(y)=\varphi_{x,y}(y).$$

Then f is linear and multiplicative.

Since all linear and multiplicative maps on $C_{\mathbb{R}}[0,1]$ are just evaluation functionals, condition (*) requires that for any two functions $g, h \in C_{\mathbb{R}}[0,1]$ we would have

$$\int_0^1 g(t) \, \mathrm{d}t = g(a) \quad ext{and} \quad \int_0^1 h(t) \, \mathrm{d}t = h(a)$$

for some point $a \in [0, 1]$ (depending on g and h). This is however impossible in general.

Theorem (P. Mankiewicz, 1974)

If $X: X \to \mathbb{C}$ is a Lipschitz map defined on a separable Fréchet space, then it has \mathbb{R} -linear Gateaux differentials everywhere on X except some **zero set**.

通 ト イ ヨ ト イ ヨ ト

Theorem (P. Mankiewicz, 1974)

If $X: X \to \mathbb{C}$ is a Lipschitz map defined on a separable Fréchet space, then it has \mathbb{R} -linear Gateaux differentials everywhere on X except some **zero set**.

Let \mathcal{Q} be the **Hilbert cube**, i.e.

$$\mathcal{Q} = \prod_{n \in \mathbb{N}} [-2^{-n}, 2^{-n}],$$

equipped with the natural product measure μ .

Theorem (P. Mankiewicz, 1974)

If $X: X \to \mathbb{C}$ is a Lipschitz map defined on a separable Fréchet space, then it has \mathbb{R} -linear Gateaux differentials everywhere on X except some **zero set**.

Let \mathcal{Q} be the **Hilbert cube**, i.e.

$$\mathcal{Q} = \prod_{n \in \mathbb{N}} [-2^{-n}, 2^{-n}],$$

equipped with the natural product measure μ . A subset $Z \subset X$ is called a **zero set** if for every continuous affine map $\psi \colon Q \to X$ with linearly dense image we have

$$\mu(\psi^{-1}(Z))=0.$$

イロト イポト イヨト イヨト

Let X be a separable complex Fréchet space and let $f: U \to \mathbb{C}$ be a locally Lipschitz map defined on an open set $U \subset X$.

Let X be a separable complex Fréchet space and let $f: U \to \mathbb{C}$ be a locally Lipschitz map defined on an open set $U \subset X$. If f has a \mathbb{C} -linear Gateaux differential at every point except some zero set, then f is holomorphic in U.

(人間) トイヨト イヨト

Let X be a separable complex Fréchet space and let $f: U \to \mathbb{C}$ be a locally Lipschitz map defined on an open set $U \subset X$. If f has a \mathbb{C} -linear Gateaux differential at every point except some zero set, then f is holomorphic in U.

The method of the proof of our main result is based on the methods invented by Kowalski and Słodkowski and on the complexification process.

Theorem

Let \mathscr{A} be a **real** Banach algebra with a unit element **1** and let $f : \mathscr{A} \to \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x,y} : \mathscr{A} \to \mathbb{C}$ such that

(*)
$$f(x) = \varphi_{x,y}(x)$$
 and $f(y) = \varphi_{x,y}(y)$.

Then f is linear and multiplicative.

イロト イボト イヨト イヨト

Sketch of the proof

• First, observe that we may assume that \mathscr{A} is a **separable** Banach algebra.

★ Ξ ► < Ξ ►</p>

Sketch of the proof

First, observe that we may assume that *A* is a separable Banach algebra. In fact, we shall prove that for any two elements x₁, x₂ ∈ *A* the map *f* is linear and multiplicative on the subalgebra ⟨x₁, x₂⟩ generated by x₁ and x₂, which obviously is separable.

Sketch of the proof

- First, observe that we may assume that *A* is a separable Banach algebra. In fact, we shall prove that for any two elements x₁, x₂ ∈ *A* the map *f* is linear and multiplicative on the subalgebra ⟨x₁, x₂⟩ generated by x₁ and x₂, which obviously is separable.
- Let $\mathscr{A}_{\mathbb{C}} = \mathscr{A} \times \mathscr{A}$ be the complexification of the algebra \mathscr{A} . Then $\mathscr{A}_{\mathbb{C}}$ is a complex Banach algebra with a certain norm $\|\cdot\|$ such that $x \mapsto (x, 0)$ is an isometry and

 $||(x,y)|| \le ||x|| + ||y|| \le 2\sqrt{2}||(x,y)||$ for $(x,y) \in \mathscr{A}_{\mathbb{C}}$.

イロト イポト イヨト イヨト

- First, observe that we may assume that *A* is a separable Banach algebra. In fact, we shall prove that for any two elements x₁, x₂ ∈ *A* the map *f* is linear and multiplicative on the subalgebra ⟨x₁, x₂⟩ generated by x₁ and x₂, which obviously is separable.
- Let $\mathscr{A}_{\mathbb{C}} = \mathscr{A} \times \mathscr{A}$ be the complexification of the algebra \mathscr{A} . Then $\mathscr{A}_{\mathbb{C}}$ is a complex Banach algebra with a certain norm $\|\cdot\|$ such that $x \mapsto (x, 0)$ is an isometry and

$$||(x,y)|| \le ||x|| + ||y|| \le 2\sqrt{2}||(x,y)||$$
 for $(x,y) \in \mathscr{A}_{\mathbb{C}}$.

• Define $\widetilde{f} : \mathscr{A}_{\mathbb{C}} \to \mathbb{C}$ by

$$\widetilde{f}(x,y)=f(x)+if(y).$$

(4 回) (4 \Pi) (4 \Pi)

• For any
$$\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2) \in \mathscr{A}_{\mathbb{C}}$$
 we have
 $|\tilde{f}(\mathbf{x}) - \tilde{f}(\mathbf{y})| \le |f(x_1) - f(y_1)| + |f(x_2) - f(y_2)|$
 $= |\varphi_{x_1, y_1}(x_1 - y_1)| + |\varphi_{x_2, y_2}(x_2 - y_2)|$

э

- 4 回 ト 4 ヨト 4 ヨト

• For any
$$\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2) \in \mathscr{A}_{\mathbb{C}}$$
 we have
 $|\tilde{f}(\mathbf{x}) - \tilde{f}(\mathbf{y})| \le |f(x_1) - f(y_1)| + |f(x_2) - f(y_2)|$
 $= |\varphi_{x_1, y_1}(x_1 - y_1)| + |\varphi_{x_2, y_2}(x_2 - y_2)|$

 For any ℝ-linear and multiplicative φ: A → C the formula *φ*(x, y) = φ(x) + iφ(y) defines a C-linear and multiplicative functional *φ* : A_C → C.

(人間) トイヨト イヨト

• For any
$$\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2) \in \mathscr{A}_{\mathbb{C}}$$
 we have
 $|\tilde{f}(\mathbf{x}) - \tilde{f}(\mathbf{y})| \le |f(x_1) - f(y_1)| + |f(x_2) - f(y_2)|$
 $= |\varphi_{x_1, y_1}(x_1 - y_1)| + |\varphi_{x_2, y_2}(x_2 - y_2)|$

 For any ℝ-linear and multiplicative φ: A → C the formula *φ*(x, y) = φ(x) + iφ(y) defines a C-linear and multiplicative functional *φ* : A_C → C. Since

$$\varphi_{x_i,y_i}(x_i - y_i) = \widetilde{\varphi}_{x_i,y_i}(x_i - y_i, 0) \in \sigma(x_i - y_i, 0)$$
 for $i = 1, 2,$

we have

$$egin{aligned} |\widetilde{f}(\mathbf{x}) - \widetilde{f}(\mathbf{y})| &\leq \|(x_1 - y_1, 0)\| + \|(x_2 - y_2, 0)\| \ &= \|x_1 - y_1\| + \|x_2 - y_2\| \leq 2\sqrt{2}\|\mathbf{x} - \mathbf{y}\|, \end{aligned}$$

(4 個 ト 4 ヨ ト 4 ヨ ト

• For any
$$\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2) \in \mathscr{A}_{\mathbb{C}}$$
 we have
 $|\tilde{f}(\mathbf{x}) - \tilde{f}(\mathbf{y})| \le |f(x_1) - f(y_1)| + |f(x_2) - f(y_2)|$
 $= |\varphi_{x_1, y_1}(x_1 - y_1)| + |\varphi_{x_2, y_2}(x_2 - y_2)|$

 For any ℝ-linear and multiplicative φ: A → C the formula *φ*(x, y) = φ(x) + iφ(y) defines a C-linear and multiplicative functional *φ* : A_C → C. Since

$$\varphi_{x_i,y_i}(x_i - y_i) = \widetilde{\varphi}_{x_i,y_i}(x_i - y_i, 0) \in \sigma(x_i - y_i, 0)$$
 for $i = 1, 2,$

we have

$$\begin{split} |\widetilde{f}(\mathbf{x}) - \widetilde{f}(\mathbf{y})| &\leq \|(x_1 - y_1, 0)\| + \|(x_2 - y_2, 0)\| \\ &= \|x_1 - y_1\| + \|x_2 - y_2\| \leq 2\sqrt{2}\|\mathbf{x} - \mathbf{y}\|, \end{split}$$

which proves that **f** is a Lipschitz map.

イロト イポト イヨト イヨト

• By Mankiewicz's theorem, $\tilde{f}: \mathscr{A}_{\mathbb{C}} \to \mathbb{C}$ has \mathbb{R} -linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$D\widetilde{f}(a)(x,y) = Df(a)x + iDf(a)y$$

(whenever it exists), where Df(a) is also \mathbb{R} -linear "almost everywhere".

• By Mankiewicz's theorem, $\tilde{f}: \mathscr{A}_{\mathbb{C}} \to \mathbb{C}$ has \mathbb{R} -linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$D\widetilde{f}(a)(x,y) = Df(a)x + iDf(a)y$$

(whenever it exists), where Df(a) is also \mathbb{R} -linear "almost everywhere".

Consequently, Df(a) exists and is C-linear, thus the result of Kowalski and Słodkowski implies that f̃ is holomorphic on 𝔄_C.

• By Mankiewicz's theorem, $f: \mathscr{A}_{\mathbb{C}} \to \mathbb{C}$ has \mathbb{R} -linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$D\widetilde{f}(a)(x,y) = Df(a)x + iDf(a)y$$

(whenever it exists), where Df(a) is also \mathbb{R} -linear "almost everywhere".

- Consequently, Df(a) exists and is C-linear, thus the result of Kowalski and Słodkowski implies that f̃ is holomorphic on 𝔄_C.
- The function $\widetilde{f}_{a,b} \colon \mathbb{C} \to \mathbb{C}$, defined for every $a, b \in \mathscr{A}_{\mathbb{C}}$ by the formula

$$\widetilde{f}_{a,b}(z) = \widetilde{f}(az+b) \quad (z \in \mathbb{C}),$$

is **Lipschitz** and **entire**, hence – it is **affine**.

• By Mankiewicz's theorem, $f: \mathscr{A}_{\mathbb{C}} \to \mathbb{C}$ has \mathbb{R} -linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$D\widetilde{f}(a)(x,y) = Df(a)x + iDf(a)y$$

(whenever it exists), where Df(a) is also \mathbb{R} -linear "almost everywhere".

- Consequently, Df(a) exists and is C-linear, thus the result of Kowalski and Słodkowski implies that f̃ is holomorphic on 𝔄_C.
- The function $\widetilde{f}_{a,b} \colon \mathbb{C} \to \mathbb{C}$, defined for every $a, b \in \mathscr{A}_{\mathbb{C}}$ by the formula

$$\widetilde{f}_{a,b}(z) = \widetilde{f}(az+b) \quad (z \in \mathbb{C}),$$

is Lipschitz and entire, hence – it is affine.

• From this it is not difficult to derive that \tilde{f} is \mathbb{C} -linear, thus f itself is \mathbb{R} -linear.

• By Mankiewicz's theorem, $f: \mathscr{A}_{\mathbb{C}} \to \mathbb{C}$ has \mathbb{R} -linear Gateaux differentials "almost everywhere". On the other hand, every such has to be of the form

$$D\widetilde{f}(a)(x,y) = Df(a)x + iDf(a)y$$

(whenever it exists), where Df(a) is also \mathbb{R} -linear "almost everywhere".

- Consequently, Df(a) exists and is C-linear, thus the result of Kowalski and Słodkowski implies that f̃ is holomorphic on 𝔄_C.
- The function $\widetilde{f}_{a,b} \colon \mathbb{C} \to \mathbb{C}$, defined for every $a, b \in \mathscr{A}_{\mathbb{C}}$ by the formula

$$\widetilde{f}_{a,b}(z) = \widetilde{f}(az+b) \quad (z \in \mathbb{C}),$$

is Lipschitz and entire, hence – it is affine.

- From this it is not difficult to derive that \tilde{f} is \mathbb{C} -linear, thus f itself is \mathbb{R} -linear.
- By the Gleason-Kahane-Żelazko theorem (we use our assumption once more), *f* is also multiplicative, thus *f* itself is multiplicative as well.

The assertion of our main result is purely algebraic, as well as its main assumption (about the graph of the given function f).

Theorem

Let \mathscr{A} be a **real** Banach algebra with a unit element **1** and let $f : \mathscr{A} \to \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x,y} : \mathscr{A} \to \mathbb{C}$ such that

(*)
$$f(x) = \varphi_{x,y}(x)$$
 and $f(y) = \varphi_{x,y}(y)$.

Then f is linear and multiplicative.

The assertion of our main result is purely algebraic, as well as its main assumption (about the graph of the given function f).

Theorem

Let \mathscr{A} be a **real** Banach algebra with a unit element **1** and let $f : \mathscr{A} \to \mathbb{C}$. Suppose that for any $x, y \in \mathscr{A}$ there exists a linear and multiplicative map $\varphi_{x,y} : \mathscr{A} \to \mathbb{C}$ such that

(*)
$$f(x) = \varphi_{x,y}(x)$$
 and $f(y) = \varphi_{x,y}(y)$.

Then f is linear and multiplicative.

Question

Is the Banach algebra structure essential in our Theorem?

イロト イポト イヨト イヨト