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Gleason-Kahane-Żelazko theorem

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)

Let A be a complex Banach algebra with a unit element 1 and let
f : A → C be a linear functional with f (1) = 1.

Then f is multiplicative
(i.e. f (xy) = f (x)f (y) for any x , y ∈ A ) if and only if

f (x) ∈ σ(x) for x ∈ A ,

equivalently: if and only if f (x) 6= 0 for every invertible x ∈ A .

Recall that for complex Banach algebras A having a unit 1, and for each
x ∈ A , the spectrum of x is defined as

σ(x) = {λ ∈ C : λ1− x is non-invertible}.
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Gleason-Kahane-Żelazko theorem

Observe that the “only if” part of the above theorem is obvious.

Indeed, if
f : A → C is linear and multiplicative and f (1) = 1, then for any x ∈ A
and λ ∈ C, λ 6∈ σ(x) the element λ1− x is invertible, hence the
multiplicativity of f implies f (λ1− x) 6= 0, that is, λ 6= f (x). This proves
f (x) ∈ σ(x) for each x ∈ A .

On the other hand, the “if” part is a deep result.
Another formulation:

Theorem (A.M. Gleason, J.P. Kahane, W. Żelazko, 1967-68)

Let A be a complex Banach algebra with a unit element and let M ⊂ A
be a one codimensional subspace of A . If every x ∈M belongs to some
proper ideal Ix in A , then M is actually an ideal (of course, maximal).
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Gleason-Kahane-Żelazko theorem

It is well-known that the Gleason-Kahane-Żelazko theorem does not hold
for real Banach algebras.

Indeed, consider the Banach algebra
A = CR[0, 1] and the linear functional on A defined by

CR[0, 1] 3 f 7→ ϕ(f ) =

∫ 1

0
f (t)dt.

Despite the fact that for each f ∈ A we have ϕ(f ) ∈ σ(f ) = f ([0, 1])
(the spectrum of f is just the range of f ), the functional ϕ fails to be
multiplicative.

Theorem (N. Farnum, R. Whitley, 1978)

Let K be a compact Hausdorff space. Then the Banach algebra CR(K )
satisfies the assertion of the Gleason-Kahane-Żelzako theorem if and only
if K is totally disconnected.
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Gleason-Kahane-Żelazko theorem

A real counterpart of the Gleason-Kahane-Żelazko theorem was given by
N.H. Kulkarni:

Theorem (N.H. Kulkarni, 1984)

Let A be a real Banach algebra with a unit element 1. Suppose that
f : A → C is a linear map satisfying f (1) = 1 and

f (x)2 + f (y)2 6= 0

for all x , y ∈ A such that xy = yx and x2 + y2 is invertible. Then f is
multiplicative.

We shall propose another variant of the Gleason-Kahane-Żelazko theorem,
also valid for real Banach algebras, and inspired by the following result of
S. Kowalski and Z. S lodkowski.
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Kowalski-S lodkowski theorem

Theorem (S. Kowalski, Z. S lodkowski, 1980)

Let A be a complex Banach algebra with a unit element 1. Suppose that
f : A → C satisfies: f (0) = 0 and

f (x)− f (y) ∈ σ(x − y) for x , y ∈ A .

Then f is linear and multiplicative.

Let us stress that here, in contrast to the original version of the
Gleason-Kahane-Żelazko theorem, the linearity of f is a part of the
assertion.
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Main result

Theorem

Let A be a real Banach algebra with a unit element 1 and let f : A → C.
Suppose that for any x , y ∈ A there exists a linear and multiplicative map
ϕx ,y : A → C such that

(∗) f (x) = ϕx ,y (x) and f (y) = ϕx ,y (y).

Then f is linear and multiplicative.

Since all linear and multiplicative maps on CR[0, 1] are just evaluation
functionals, condition (∗) requires that for any two functions
g , h ∈ CR[0, 1] we would have∫ 1

0
g(t)dt = g(a) and

∫ 1

0
h(t) dt = h(a)

for some point a ∈ [0, 1] (depending on g and h). This is however
impossible in general.
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Main result

Theorem

Let A be a real Banach algebra with a unit element 1 and let f : A → C.
Suppose that for any x , y ∈ A there exists a linear and multiplicative map
ϕx ,y : A → C such that

(∗) f (x) = ϕx ,y (x) and f (y) = ϕx ,y (y).

Then f is linear and multiplicative.

Since all linear and multiplicative maps on CR[0, 1] are just evaluation
functionals, condition (∗) requires that for any two functions
g , h ∈ CR[0, 1] we would have∫ 1

0
g(t)dt = g(a) and

∫ 1

0
h(t)dt = h(a)

for some point a ∈ [0, 1] (depending on g and h). This is however
impossible in general.

T. Kochanek (University of Silesia) A variant of the GKŻ theorem 7 / 13
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Auxiliary tools

Theorem (P. Mankiewicz, 1974)

If X : X → C is a Lipschitz map defined on a separable Fréchet space,
then it has R-linear Gateaux differentials everywhere on X except some
zero set.

Let Q be the Hilbert cube, i.e.

Q =
∏
n∈N

[−2−n, 2−n],

equipped with the natural product measure µ. A subset Z ⊂ X is called
a zero set if for every continuous affine map ψ : Q → X with linearly
dense image we have

µ(ψ−1(Z )) = 0.
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Auxiliary tools

Theorem (S. Kowalski, Z. S lodkowski, 1980)

Let X be a separable complex Fréchet space and let f : U → C be a locally
Lipschitz map defined on an open set U ⊂ X .

If f has a C-linear Gateaux
differential at every point except some zero set, then f is holomorphic in U.

The method of the proof of our main result is based on the methods
invented by Kowalski and S lodkowski and on the complexification process.

Theorem

Let A be a real Banach algebra with a unit element 1 and let f : A → C.
Suppose that for any x , y ∈ A there exists a linear and multiplicative map
ϕx ,y : A → C such that

(∗) f (x) = ϕx ,y (x) and f (y) = ϕx ,y (y).

Then f is linear and multiplicative.
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Sketch of the proof

First, observe that we may assume that A is a separable Banach
algebra.

In fact, we shall prove that for any two elements x1, x2 ∈ A
the map f is linear and multiplicative on the subalgebra 〈x1, x2〉
generated by x1 and x2, which obviously is separable.
Let AC = A ×A be the complexification of the algebra A . Then
AC is a complex Banach algebra with a certain norm ‖ · ‖ such that
x 7→ (x , 0) is an isometry and

‖(x , y)‖ ≤ ‖x‖+ ‖y‖ ≤ 2
√

2‖(x , y)‖ for (x , y) ∈ AC.

Define f̃ : AC → C by

f̃ (x , y) = f (x) + if (y).
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Sketch of the proof

First, observe that we may assume that A is a separable Banach
algebra. In fact, we shall prove that for any two elements x1, x2 ∈ A
the map f is linear and multiplicative on the subalgebra 〈x1, x2〉
generated by x1 and x2, which obviously is separable.
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Sketch of the proof

For any x = (x1, x2), y = (y1, y2) ∈ AC we have

|f̃ (x)− f̃ (y)| ≤ |f (x1)− f (y1)|+ |f (x2)− f (y2)|
= |ϕx1,y1(x1 − y1)|+ |ϕx2,y2(x2 − y2)|

For any R-linear and multiplicative ϕ : A → C the formula
ϕ̃(x , y) = ϕ(x) + iϕ(y) defines a C-linear and multiplicative
functional ϕ̃ : AC → C. Since

ϕxi ,yi (xi − yi ) = ϕ̃xi ,yi (xi − yi , 0) ∈ σ(xi − yi , 0) for i = 1, 2,

we have

|f̃ (x)− f̃ (y)| ≤ ‖(x1 − y1, 0)‖+ ‖(x2 − y2, 0)‖
= ‖x1 − y1‖+ ‖x2 − y2‖ ≤ 2

√
2‖x− y‖,

which proves that f̃ is a Lipschitz map.
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Sketch of the proof

By Mankiewicz’s theorem, f̃ : AC → C has R-linear Gateaux
differentials “almost everywhere”. On the other hand, every such has
to be of the form

Df̃ (a)(x , y) = Df (a)x + iDf (a)y

(whenever it exists), where Df (a) is also R-linear “almost
everywhere” .

Consequently, Df̃ (a) exists and is C-linear, thus the result of Kowalski
and S lodkowski implies that f̃ is holomorphic on AC.
The function f̃a,b : C→ C, defined for every a, b ∈ AC by the formula

f̃a,b(z) = f̃ (az + b) (z ∈ C),

is Lipschitz and entire, hence – it is affine.
From this it is not difficult to derive that f̃ is C-linear, thus f itself is
R-linear.
By the Gleason-Kahane-Żelazko theorem (we use our assumption once
more), f̃ is also multiplicative, thus f itself is multiplicative as well.
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A question on assumptions

The assertion of our main result is purely algebraic, as well as its main
assumption (about the graph of the given function f ).

Theorem

Let A be a real Banach algebra with a unit element 1 and let f : A → C.
Suppose that for any x , y ∈ A there exists a linear and multiplicative map
ϕx ,y : A → C such that

(∗) f (x) = ϕx ,y (x) and f (y) = ϕx ,y (y).

Then f is linear and multiplicative.

Question

Is the Banach algebra structure essential in our Theorem?
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