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Abstract. We consider one dimensional percolation models for which the
occupation probability of a bond - Kx y ) has a slow power decay as a function
of the bond's length. For independent models - and with suitable reformu-
lations also for more general classes of models, it is shown that: i) no
percolation is possible if for short bonds Kx y<*p<\ and if for long bonds
Kxy S β/|x—yl2 with β^ί, regardless of how close p is to 1, ii) in models for
which the above asymptotic bound holds with some /?<oo, there is a
discontinuity in the percolation density M (=P^) at the percolation threshold,
iii) assuming also translation invariance, in the nonpercolative regime, the
mean cluster size is finite and the two-point connectivity function decays there
as fast as C(β,p)/\x —y\2. The first two statements are consequences of a
criterion which states that if the percolation density M does not vanish then
βM2^ί. This dichotomy resembles one for the magnetization in l/|x — y\2

Ising models which was first proposed by Thouless and further supported by
the renormalization group flow equations of Anderson, Yuval, and Hamann.
The proofs of the above percolation phenomena involve (rigorous) renormali-
zation type arguments of a different sort.

1. Introduction

The percolation phenomenon is of considerable interest both because it offers an
instructive example of a phase transition, and because of the key role which it plays
in various situations. The critical behavior which is associated with percolation is
nontrivial even in models with noninteracting (i.e. independent) variables. One
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often finds that the analysis of the phase transition in such systems is further
rewarded by the insights which it lends to the understanding of the physics and the
mathematics of phase transitions in various other models of statistical mechanics.

In this work we shall focus on a new percolation effect, which can be viewed as a
natural extension of an Ising spin system phenomenon which was suggested by
Thouless [1] and further discussed in the work of Anderson, Yuval and Hamann
[2]. The paper has a dual purpose - in line with the above comments on the
general subject. One of its goals is to present a self contained contribution to the
theory of the percolation transition. At the same time, the general results derived
here will form a basis for the rigorous proof of the existence of the Thouless-
Anderson-Yuval-Hamann effect in the analogous Ising-spin models. That appli-
cation of this work is not discussed here, and can be found in the companion
paper [3] (co-authored jointly with J.T. Chayes and L. Chayes).

Let us now introduce the models we consider and briefly describe some of our
main results.

i) The Setup

We consider here bond percolation models on the one dimensional lattice Z. With
any pair of sites (x, y e Έ) there is associated a bond (b = {x, y}), and a random
variable nb (or nXty) whose value indicates whether the bond is "occupied" (nb = 1)
or not (nb = 0). The system's configuration is given by a set of values of these
variables, or equivalently, by the set of the occupied bonds. A model is
characterized by the joint distribution of the occupation variables {nh}.

For each configuration we regard the occupied bonds as connecting, and
decompose the lattice TL into its connected clusters. In particular, one may ask
whether a given site - say the origin 0 e Z, belongs to an infinite connected cluster.
The probability of this event is the percolation density (often referred to as ?«,). We
shall denote it here by the symbol M.

The main object of our discussion is the dependence of the percolation density
M on the model's parameters, and in particular the nature of the phase transition
at the percolation threshold. The most striking effects are found within the class of
models with a "const/pc—y\2 law" for the asymptotic behavior of the bond
occupation probability.

In our guiding examples the bonds are occupied independently of each other,
with translation invariant probabilities:

Prob(nx,, = l) = KJC_y. (1.1)

We shall usually assume that Kx < 1 for all x. In the discussion of general models,
where we include systems which are neither independent, nor translation
invariant, we shall assume that K+ < 1 for all x, where K+ is the function defined
by (3.1), below. Such models will be refered to as regular.

There is in fact considerable interest in the so-called correlated percolation
models, for which the occupation variables are dependent. Examples of that sort
appear in the percolation representations of spin systems (see [3] and the
references discussed there). Each of our results is in fact formulated for a larger
class than that of the independent models. For some, the necessary restriction is
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just a bound on the strength of the dependence, whereas for the strongest result we
also need a correlation inequality restriction on the nature of the dependence. To
keep this introduction simple, we shall discuss here only the independent case.
Further details on dependent models can be found in the relevant sections.

ii) Some Background

It is well known that in one dimension there is no percolation in finite range,
(independent) translation invariant regular models. It is not difficult to extend this
statement to models of unbounded range [4] for which

Σ Σ*,-,s Σ*κ.«χ>. (1.2)
JC<0 y^O z>0

For long range models with an asymptotic power law falloff, Kx&μ/\x\~s, the
above criterion shows the absence of percolation if s > 2 (regardless of μ and the
short range behavior of Kx). In a recent paper, Newman and Schulman [5] showed
that for all the other powers, i.e. s ̂  2, percolation may in fact occur. This, for 5 > 1,
is a non-trivial result - whose borderline case s = 2 requires particular attention.
(In [3] its relation to the result of Frόhlich and Spencer [6], concerning the
analogous Ising model problem, is analysed.) Before focusing on this case, let us
make two other general remarks.

When considering long range percolation, one should be also aware of the
possibility that M = l without any of the bond densities being 1. In fact, for
independent models that occurs if and only if

ΣKx=π. (1.3)
X

This is so because (1.3) implies that with probability one, for any site x there are
infinitely many sites y with nxy = \. The above considerations show that the
interesting regime for the power in the asymptotic falloff is 2 ̂  s > 1 (M = 0 for s > 2,
and M = l for s = l). Furthermore, the general "mean-field" (or Bethe lattice-)
bound for independent models [4, 7] shows that if

ΣKx<i, (1.4)

then M = 0. It follows that if one systematically (and thoroughly) "weakens" any of
the models in the above class, for which there is percolation but (1.3) is not satisfied,
one would definitely reach a transition from the percolating phase to the non-
percolative regime.

One of our main results is that within the "borderline" class of models, with
5=2, the above phase transition always exhibits a discontinuity in M (i.e. P^)!

Hi) Main Results for Independent Models

Our key result for independent models is the following proposition:

Proposition 1.1. // in an independent, translation invariant and regular, one
dimensional bond percolation model the percolation density M does not vanish, then

l, (1.5)
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where β is defined by

β=limsup(Kx\x\2). (1.6)
x-+<x>

The above lower bound reminds one of the inequality proposed by Thouless
for the spontaneous magnetization in ί/\x—y\2 Ising spin systems. The original
argument of Thouless is based on rather beautiful "energy versus entropy"
considerations (see also [8]) which, however, are not fully conclusive even at
the physical level, since they leave an "escape clause" (concerning the possible
existence of an intermediate phase just below the critical temperature) which
appears now to be operative [9,10]. The validity of such a bound for Ising systems
received further support in the work of Anderson et al. [2], which is remarkable in
its early use of "renormalization group" arguments. (Other work on this and
related problems will be discussed in [3].)

Our derivation of the dichotomy: "M = 0 or βM2 ^ 1" is done in two steps, the
second of which is based on rigorous renormalization type arguments. In that
sense, and in the picture which emerges, our work is close in its spirit to that of
Anderson et al. [2]. As has already been indicated, our results are valid for more
general (i.e. not only independent) percolation models. In fact, they provide a key
ingredient for the rigorous proof of an improved Thouless inequality and the
resulting discontinuity in the spontaneous magnetization for Ising systems [3].

Proposition 1.1 has two important implications. The first is essentially the
statement which is derived as the first step in the proof (see Propositions 2.1 and
3.1 below), that M = 0 in any regular model for which β^ί (regardless of the
short range values of Kx). For example, in a model where Kx = 1 — exp(—JJT)
with x2Jx tending to zero as x-»αo (no matter how slowly), M remains zero no
matter how small the temperature parameter T.

It is interesting to note that this implication complements the result of
Newman and Schulman [5] which we shall state below. Together, the two
establish the asymptotic falloff Kx& ί/\x\2 as the critical rate for the possibility of
percolation.
• The other implication of Proposition 1.1 is, of course, the discontinuity in the

percolation density at that part of the critical manifold (in the parameter space) for
which j?<oo.

To make these points clear, and to demonstrate another application, let us
consider here the following family of models with just two continuous parameters

l-exp(-/J/M2) for |x

p for M

where L is some fixed integer. (Note that Kx&β/\x\2.)
The result of Newman and Schulman [5] about the above system is that as long

as β>\ there is a critical value, pc(β)<ί, such that the above models exhibit
percolation for p >pc. [That critical value pc(β) is strictly positive only as long as β
is less than some βL. However, by (1.4), βL can be made arbitrarily large by a choice
of sufficiently large L.]

To this rather strong result we may now add the following information on the
phase structure (see Fig. 1), and the nature of the phase transition.
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M2/3-1/2

Fig. 1. The phase diagram of the independent percolation model described by (1.7)

a) The value β = 1 is critical in the sense that the system exhibits a percolation
transition with pc(β)<ί only when β>ί.

b) The percolation density changes discontinuously across the critical line
{(β,pc(β)) 11 <β<βL} The magnitude of the jump is at least β~112.

c) pc(0)->l, as

Remark, While the above statements are direct implications of the main
proposition, for the proof of c) one also uses the simple observation that if M->1
while β^const, then necessarily p->l. A similar argument is employed in proving
the absence of percolation for β = 1.

We shall present here also the following bounds on the asymptotic behaviour
of the connectivity function -φc, y) = Prob(x and y are connected), one of which
applies to all of the nonpercolative regime in one dimensional μ/\x—y\s models,
and the other to such models (with s^2) at their critical points βc (defined as the
threshold for M to be positive).

Proposition 1.2. In any translation invariant, independent, percolation model for
which Kx^const/|x|s with some s>ί:

i) for every β<βc, the connectivity function obeys the bound

τ(x,y)^C/\x-y\s

with some C< oo depending on β9

ii) atβ=βc,fo

limsupr(0,x)M2- s>0.

(1.8)

(1.9)

Remarks, i) An opposite bound to (1.8) is provided by the obvious inequality
τ(x,y)^Kx_y. Thus, if Kx is given by (1.7) with the power 2 replaced by s (> 1),
then for all β<β lim -lnτ(0,x)/ln|x| = 5. Note that βc = oo for s>2.

χ-κχ>

ii) For s = 2 the lower bound (1.9) can be strengthened to: τ(0, x) ̂  M2 for all x,
provided the model is irreducible - in the sense that the lattice cannot be
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decomposed into two, or more, uncoupled sublattices. This statement uses the
recent result of [11].

iii) The proof of (1.8) has two ingredients. One is the Simon inequality
technique [12] (adapted to long range models [13]), and the other is the recent
result on the finiteness of the expected cluster size below βc [14]. The latter
statement is given here an alternative proof for 5_2 which is based on the
renormalization type arguments developed below. This alternative proof applies
also to certain models with dependent bond variables.

iv) Our result of [7] is also applicable here, showing that χ diverges (with a
critical exponent y = l), and hence also C->oo, as the percolation threshold is
approached, e.g. when p-+pc(β)—0 in the model described by (1.7). Thus, when
5=2 the discontinuity of the order parameter M does not correspond to an
ordinary first order phase transition.

As a conclusion of the introduction let us summarize the structure of the
remainder of this paper. In Sect. 2 an independent continuum model is presented
which clarifies the significance of the values 5 = 2 and μ = l in μ/\x—y\s models
(when 5 = 2, the coefficient μ is referred to as /?). The analysis of the continuum
model introduces many of the basic techniques used later in the paper including
the notions of dissociation and maximal nested sequences (of occupied bonds). In
Sect. 3 we prove in Proposition 3.1, which is the main result there, a generalized
version of what is mentioned above as the first "implication" of Proposition 1.1:
that β < 1 implies M = 0. The proof uses a continuum model result of Sect. 2, by
means of a comparison argument (Lemma 3.3). The Thouless type inequality of
Proposition 1.1, that βM2 < 1 implies M=0, is proven in Sect. 4 in a generalized
form which is applicable to a class of models which need be neither independent
nor translation invariant, but have to satisfy a certain "strong FKG" condition.
Both this result and its proof are "renormalized" versions of the analysis of Sect. 3,
obtained by studying the system's "anchored bonds," for which the quantity
βR = βM2 plays a role which is somewhat similar to that of β in the original system.
In Sect. 5 we derive the results discussed above for the 2-point connectivity
function.

2. A Continuum Model with a Phase Transition

As should be clear from the introduction, a special role is played for one
dimensional percolation by the "l/|x|2 law" for Kx. It turns out that the
significance of both the power 5 = 2 and the coefficient β = 1 (the meaning of these
parameters is explained in the introduction) can be demonstrated in the properties
of a simple continuum model, to which the lattice model on Έ is related via a
discretization procedure. The continuum model may also be viewed as a limit of
the lattice system under a natural rescaling procedure (in which a certain amount
of information is lost). We start this section by presenting this model, which was
introduced in the work of Newman and Schulman [5] (see also [2], where a
continuum Ising model is discussed).
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i) The Continuum Bond Model

In the continuum bond model, occupied bonds between points x<y on the real
line form a "gas of particles" with the "fugacity" ρ(x, y) = μ/\x — y\s. In probabilistic
language, the occupied bonds are described by an inhomogeneous Poisson process
on RQ = {(*>y)\— oo<x<y<co}, with the density ρ(x,y).

In other words: the numbers of occupied bonds in disjoint regions Vl9 V2 ... of
ΊR.Q are independent random variables. Each such variable has a Poisson
distribution with the mean j ρ(x, y)dxdy.

v

A special feature of the power 5=2 is that the continuum model is invariant
under dilations, as well as translations, of R. In particular, in that case μ is a
dimensionless quantity, and hence its value may indeed be of independent
significance. (For powers other than 2, μ would change under the scaling x ̂ Lx to
L2~sμ.) The latter point is expressed explicitly by (2.2) below.

The continuum model may be discretized by partitioning R into unit intervals
{[x,x + ί)}xeE, which are naturally associated with the sites of Έ. The discrete
model bond between x,ysZ will be regarded as occupied if there is an occupied
continuum bond linking the two corresponding intervals. The probability for such
a bond to occur is then

with (2.1)

J , _ , = f du f dv\u-v\~s.
[x,x+l) \y,y+l)

For s^2, this definition must be modified when |x — y\ = ί by only considering
continuum bonds with \u — v\>ε [and integrating over only such bonds in (2.1)],
since otherwise the divergence in the integral would yield Kt = 1. Note that (2.1)
implies

Kz« μjz« μ/\z\s as \z\ -+ oo .

When 5 = 2 this model is qualitatively the same as the model described in the
introduction [see (1.7)]. The parameter β defined by (1.6) takes here the value:

β=l oo for s<2, and any μ > 0 (2.2)

μ

00

0

for

for

for

5 = 2

5<2,

s>2,

and

and

any

any

μ>0

μ<oo

The special role of the value β = 1 (for the independent bond models), and hence
also of the power 5 = 2, is related to the following somewhat surprising fact about
the above continuum system (related to results of Mandelbrot [15]). Although the
probability that a given finite interval [α, b] has no occupied bond connecting it
with its complement vanishes for 5 = 2 and any value of /?>0, it turns out that for
β < 1 - with probability one, the entire line R is covered by such intervals. This
statement (which does not hold for β ̂  1) can be proven in a number of ways. We
shall derive it here by the method which we later apply directly to the discrete
systems. First however let us present a simple calculation which may offer
considerable insight.
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ii) The Significance of the Values s = 2 and /? = 1

Consider the event, in the discretized model defined by (2.1), that a site z in the
block {1,2,..., L} has the property that no occupied bond occurs between any x < z
and any y in {z + 1, ...,L} nor between any x in {1, ...,z —1} and any y>z. The
probability of this event is:

ΓΊ Π (l-«,-,))• (π1 Π (i-κ,-Λ (2.3)
= y = + l / \ = l L+l /

which can be seen to be independent of z and equal to

/ L-ί oo

expί — μ J dul dv\u — v\~
\ o L

-ίL~μ fθΓ S = 2

~texp{-μ[(5-l) |2-s | ]-M.Ϊ ' 2 ~ β - l|} for I < s φ 2 . * '

The expected number of such z's in {1, ...,L}, which is L times this probability,
tends therefore to zero for s < 2 and to infinity for 5 > 2, and in the borderline case of
s=2 its behavior depends on whether μ > 1, in which case the expected number still
vanishes, or μ<l , for which it diverges as L->oo. More succinctly - the behavior
depends on whether the value of the parameter β given by (2.2) is above, or
below, 1.

The above result for β>l is related to the proof in [5] of the existence of
percolation in such models. Conversely, for β<l the conclusion drawn above
suggests that in certain respects the model is like the s > 2 models satisfying (1.2). In
the following discussion we shall see that this is the case even for the continuum
model with no cutoff for small \u — v\. Henceforth we shall set s=2, and thus μ=β.

in) The Dissociation of the Line for β<ί

We turn now to the proof of the claim made at the end of the first part of this
section. Although one could pursue an argument based on the calculation (2.4) for
the case β< 1, we shall proceed by another route, presenting an argument which
forms the basis for the rest of the analysis of this paper.

Before stating the main result, let us introduce the relevant concepts. For a
given configuration of occupied bonds, we say that an interval [α, b~\ dissociates, or,
is dissociated, if there is no occupied bond linking it with its complement. It is
easily seen that the set of dissociated intervals is closed under the operation of
union. We shall also refer to the following random events (which we identify with
the sets of the continuum bond configurations for which the corresponding
conditions are satisfied):

ΛLk - there is a dissociated finite interval [£_,ξ+] with ξ+e[L,kL) and

ξ- G(—/CL, — L]. (The range of values we consider is 1 <fe^ oo.)

FLk - there is a point ξ e (L, kL\ such that the interval

[0, ξ] is not linked by an occupied bond with (ξ, oo).
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One may worry here about the question of the measurability of such events. Let
us remark therefore that the above two conditions can be generated by countable
operations, from the occupation numbers of the rational intervals (to have a
countable example). It follows that Auk and FLtk are measurable in the natural
sense. At the same time, it should be noted that for any given (deterministic)
interval the dissociation probability is zero - due to the ultraviolet singularity
in (2.1).

It is easy to see that the sequence ALtk is increasing in fc, and that its limit
AL=Au oo is decreasing in L. In fact, f] AL is the event that R is entirely covered by
finite dissociated intervals. Despite the observation made above, the following is
also true.

Proposition 2.1. In the 5 = 2 continuum model (with no cutoff), for each β<ί:

l . (2.5)

We shall derive this result here in a way which offers a blueprint for the proofs of
other assertions made in this paper. Consequently, we shall not mention the fact
that for the triple reason of translation invariance, dilation invariance, and
measurability at infinity, Prob(fj AL) is either zero or one. With or without this
observation, the main step in the proof is the derivation of a uniform lower bound,
like the one required in the next lemma.

Lemma 2.1. A sufficient condition for (2.5) is the existence of some 1 <r< oo and
g>0 such that

Prob(FL)Γ)^<7, for all L > 0 . (2.6)

The argument we choose for the proof will be used also for the dependent
models which will be considered in Sects. 3 and 4. For this reason, at some places it
is not the most "economical" argument for the special model considered here. To
avoid burdensome complications at this point of our discussion, we postpone the
presentation of the proof of Lemma 2.1 until the end of this subsection.

Let us note that in the event FLf „ there is a well defined (and measurable) lowest
value of ξ e (L, oo) for which the interval [0, ξ] is not linked with (ξ, oo). Referring
to that value as ξmia9 let us define the variables

w=itmiJL(>i) in the event FLtO0
L \oo in the complement of FL ^,

and let W= Wί. By the scale invariance of our measures, the variables WL have
identical distributions - which may be deficient (they may even be totally
concentrated at + oo). These are clearly related to the probabilities of FLk. One
has

Prob(FL>k) = Vτob{WL < k) = Pτob(W<k). (2.8)

Comparing (2.8) with (2.6), we see that the criterion formulated in Lemma 2.1
reduces to the proof that there is a positive probability for W to be finite. We shall
prove the stronger statement that for any $ < 1 , W is "almost surely" finite.



620 M. Aizenman and C. M. Newman

Lemma 2 2. For any β<ί9 and L>0, WL is finite with probability 1. Alternatively
stated:

Fτob(FLtk) = Pτob(WL<k)->l, as fc->oo, (2.9)

and, in particular - the criterion (2.6) in Lemma 2.1 is satisfied.

Our analysis of ξmin and hence of W and of the phenomenon of dissociation is
based on notions which will be used again in Sects. 3 and 4. The proof of Lemma
2.2 is given below following the introduction of these concepts and the statement
and proof of Lemma 2.3. The definitions given next are intended to apply also in
discrete situations.

For a convenient representation of WL it is useful to consider the process {Ln}
with L o =0, Lx =L, and for

supremum (actually - a.s. a maximum)
of y in (Ln, oo) such that there is an
an occupied bond between
y and some x in (Lπ_ l 5Ln] if there is such a point

otherwise.
(2.10)

Thus, Ln is the point of the "furthest direct reach" from (L n_ l 5LJ. By the
construction, for each n there is no occupied bond between [0, L J and (Lw + 1 5 oo),
and (by induction) Ln^L- WL. It follows that

lim Ln = LWL [i.e. = ξmin, in the sense of (2.7)]. (2.11)

Before we continue let us formalize the notion which is implicit in this
construction.

Definition 2.1. For a given pair of initial points y0 < yu a sequence of bonds {xu yt}
defined for i> 1 is called nested if for all wΞ> 1,

yn-i<χn+ί^yn<yn+i (2.12)

(see Fig. 2). Nested sequences are ordered lexicographically by the sequence
2̂? X2? ̂ 3? X3?.... A nested sequence of occupied bonds is called maximal for the

given initial {yo,yi}> if it is maximal in the above order among all the nested
sequences of occupied bonds with the same initial values.

In the above construction, the variables Ln form the values yn of the (unique)
maximal nested sequence of occupied bonds, with y0 = 0 and y± —L.

" 2 y\ " 3

Fig. 2. A nested sequence of bonds
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We shall learn about the limit in (2.11) by considering the increments:

Un = Ln-Ln_λ. (2.13)

Their joint distribution is given by the following lemma.

Lemma 2.3. For each L the conditional distribution of Un+ί given the previous U/s
is

. (2.14)

Proof. Let us consider the information acquired from the successive specification
of the values of Uk, or equivalently of Lk. At the nth step, the new information is
that: i) there is no occupied bond in (Ln_25Ln_1]x(Ln,oo)C]R.o> a n <3 ϋ) the
interval {Ln-29Ln-{\ is linked to arbitrarily small left-neighborhoods of Ln.

It is easy to see (e.g. inductively) that the information contained in the values of
{Ul9..., C/π}, reflects on the distribution of the occupied bonds only in the region

/ fc \

([0, Ln_ j] x R)nlRo I where Lk = Σ Uj I. Conditioned on these values, or in effect

just on Lπ_ x and Lπ, the event {Un+x ^ w} corresponds to the statement that there
is no occupied bond in {Ln-X,L^\ x (Ln + u, oo). Since these two subsets of RQ a r e

disjoint, the two sets of variables are conditionally independent - once the values of
Ln-1 and Ln are specified.

The quantity in the left-hand side of (2.14) can therefore be as easily calculated
as the one in (2.1). We get

Prob(ί/π+1^W|t/1=L,C72,...,l/n)=exp(-iff t dy J dzl/\y-z\2)

J-/J J dy]dzV\y-z\2

-ϋn U

Proof of Lemma 2.2. We learn from (2.14) that the ratios

Rd (2.15)

form a collection of i.i.d. random variables. Using them to express Un, Ln, and then
W, one gets:

OO 00

W= lim(ZJL1)=Σ(iyC71) = l + Σe]φ(-[Λ 1 + ... +RJ). (2.16)
n-+oo 1 1

We next show that for β < 1, the summands in (2.16) decrease exponentially in;
(with probability one) so that W is finite.

The distribution of the variables Rt is given by

Prob(JRl<r) = Prob(C7 ί + 1 /ϋ p

ί >0 = l-[« Γ + l ] " ^ (2.17)

For future use we note that by (2.17), each Rt can be represented as
R = log(evlβ — 1), where V has an exponential distribution (with mean 1).

The probability density of each Rt is

- o o < r < o o , (2.18)
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which has all moments finite, so that by the law of large numbers

= +frfβ(r)dr (2.19)

with probability one. Thus (2.16) will be convergent if £(JR)>0.
For /J = l, we may calculate

T r/i(r)dr = [ - l o g ( l + 0 - r / ( l + 0 ] ί S = 0 . (2.20)
- o o

By the comment below (2.17), E(R) is strictly decreasing in j8. Hence £ ( J R ) > 0 for
β < 1, and the proof is complete. D

We now complete the proof of Proposition 2.1 by presenting the part of the
argument which we have previously postponed.

Proof of Lemma 2J. i) Since the events ALk are increasing in k, Pτob(AL)

= lim Prob(ALk). For the same reason, the complementary sets obey the relation
fc—•oo

ProbOV) = Prob04L

c IALΛ

C) Prob(ALi k

c), (2.21)

where Prob( | •) denotes a conditional probability.
If it could be shown that

(2.22)

with a fc-independent constant <5>0, then all the above relations would imply:

Prob04L

c) ̂  (1 - δ ) lim ¥τob(AL k

c) = (ί-δ) Prob(AL

c), (2.23)
fc*oo '

and hence Prob(i4L

c)=0, or Prob(.4L) = l, which immediately implies (2.5). We
shall now prove that (2.22) does indeed follow from (2.6).

ii) To bound the conditional probability in (2.22) we shall make use of the
following inequalities. For sets A, B, C with 1 - Prob(C) ̂  1/2 Prob(J5), one has
Prob(BnC)^Prob(£)-Prob(C c)^ l/2Prob(£), so that

and hence

Prob(^ |5)^Prob(^ |SnC)Prob(C|S)^l/2Prob(A |5nC). (2.24)

For us A = AL, B = ALk

c, and C = CVkL is the event that for some V - to be
characterized next, there is no occupied bond between the sets [ — kL,kL] and
R\[-F;Kl(seeFig.3).

Let us note that for each N, and in particular N=kL, and V>N,

Prob (there is an occupied bond connecting [—N9N] with R\[ — V, VJ)

= l - e x p Γ - J dx J dyρ(x,y)]^ J dx J dyβ/\x-y\2

S 4βN/(V- N) > 0 . (2.25)
asF-»oo
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Λ F V - T H E SEMI- INFINITE SYSTEM IN [V,oo)
v ' r HAS A DISSOCIATION SITE IN HERE

C\/ wi "THERE IS NO OCCUPIED BOND
V i K L L I K E ,

Ί i X i

0 L kL V 2V (l + r)V

Fig. 3. The events used in the proof of Lemma 2.1

This proves that with V large enough (depending on L and k) the set CVΛL would
satisfy the condition which led to (2.24).

iii) It remains now to show that for some δ > 0,

Vτob{AL\Auk

cnCVikI)^2δ, for each L, k and large enough V. (2.26)

For the lower bound, we note that AL and in fact ALt{1+r)VJL, are implied by (i.e.
include) the intersection of the following four events, where r can be any number in
(1, oo) but we shall choose the one of (2.6):

T F f f - the configuration obtained by "shifting the origin to V"

satisfies the condition of FVr,

GVr - none of the bonds linking a site in the interval [ —(r + l)K, F]

with a site in [2F, oo) is occupied,

and their reflections (obtained by replacing x->— x) - T * F r and G* F r .
The events T F f Γ , T* F f Γ , and G F r n G * F r refer to the absence of "occupied"

bonds in three disjoint subsets of JRQ Furthermore, given that CVikL occurred,
these events are conditionally independent of ALfk, since they refer only to the set
of bonds which do not have an end point in [ — kL, kL] (all of the latter type which
reach beyond [ — V, V] are known to be unoccupied). Using the independence of
the Poisson process considered here, we get

Prob(GFt r nG* F t r I CVt

/ V oo -2V (l+r)V

=exp\-2β J dx\dy\l\x-y\2 + β f dx J dyl/\x-y\2

\ -{l+r)V 2V -(l+r)V 2V

+2β f dx ί dyί/\x-y\2) ^[8(1 +r)]" ' . (2.27)
-kL 2V /

Therefore, assuming (2.6),

?rob(AL\Cv,kLnALίk

c)^'Pτob(ALΛ1+r)y/L\CVίkLnAL<k

c)

£[Prob(T F t r I Cr,kLnALtk<)-]2 • [8(1 +r)] " '

= Prob(Fκ, r)
2 [8(1 +r)rβ^g2 [8(1 + "

which proves that (2.26), and thus (2.23), are satisfied. •
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Remarks. Lemmas 2.2 and 2.1 show that for β < 1 the line is almost surely covered
by dissociated intervals. One may use the above analysis to prove also that,
conversely - for β ̂  1 a.s. there are no such intervals (with probability one, the sum
in (2.16) diverges).

The above statements are closely related to certain results concerning one-
dimensional "Levy dust" [15], and to properties of the "Swiss cheese" in self
similar models in d^.1 dimensions [16].

Before concluding the discussion of the continuum bond model, let us extract
from the proof of Lemma 2.1, where we were just concerned with showing that
dissociation occurs with probability one, an explicit bound on its "rate of
convergence."

iy) An Explicit Bound for the Probability of Dissociation in a Finite Volume

The following result represents the bound to which the arguments used in the
proof of Lemma 2.1 lead, for the probability that a given site is not yet covered by a
dissociated interval in a large but finite volume. While at first glance the result
might not seem to be a very strong improvement over the mere statement that this
probability tends to zero, it can be used as a starting point for the derivation of the
correct power law for the connectivity function in discrete models (see Proposition
5.2 in Sect. 5).

Corollary 2.1. If, in a continuum (independent) bond model with ρ(x, y) ̂  β/\x — y\2,
where β is finite,

Prob(FL, r)^0 for all L>0 (2.29)

with some 1 <r<oo and g>0 (independent of L)9 then

Έ>rob(AL>k

c)^Cexpl-(λ\nk)ί/2] for all L>0 and k^k0, (2.30)

with some constants k0, C, and λ (which are given explicitly below in terms of β, r,
and g).

Proof, The values of the constants for which (2.30) will be proven are

' , fco = expU-1(ln[4(l+r)])2}

and (2.31)
C"=max(C,eλ), where C = 320(1+r).

We shall prove the corollary by showing that for any k ̂  k0 and L (which is
fixed in our discussion), the assumption that

Prob(i4Lt k0 ^ C exp [ - (λ lnk) 1 / 2], (2.32)

implies

(Alnk)1/2]. (2.33)

For the value of Lin the assumed (2.32), let us define f(k) = Prob(ALk

c). f(k) is
decreasing in fc, hence (2.32) implies

] if l^fe^k. (2.34)
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The analysis made in the proof of Lemma 2.1, with A in (2.24) taken as
A = ALt(1+r)V/L implies that for any choice of V such that

l/2/(fc) ^ 4βkL/(V- kL) (^ Prob(CFj kL

c)) (2.35)

the following is satisfied

f((l+r)V/L)/f(k)£l -1/202[8(1 + r ) ] ~ ^ 1 -λ^e~\ (2.36)

where the main inequality is based on (2.24) and (2.28).
We choose now

V= 2kL+16j8/cLexp [_{λ lnk)1/2]/C. (2.37)

Noting that V—kL^.V/2, and making use of (2.34), it is easy to see that the
condition in (2.35) is satisfied, provided fe^k. Furthermore, with our choice of C
and fc0, in (2.31), if k^fc0 (as we have assumed in (2.32)) then the first term in the
right-hand side of (2.37) is not larger than the second, and one has:

(1 + r)V/L^ (1 + r)32βk exp l(λ lnk)1/2]/C = k exp [(A lnk) 1 / 2]. (2.38)

Let us then substitute (2.38) in (2.36), apply the monotonicity of /( ), and
iterate. The result is the inequality:

f(k)^e-nλf(kexpl(-nλlnky'2J), (2.39)

which holds if k ̂  k, k ̂  fc0, and if n is such that the argument of/( ) in the right-
hand side is not less than 1. Using (2.39) with k = k and n = n = (the greatest integer
^(/l" 1 lnk)1/2), and the fact that /( )^1 since it is a probability, we obtain

>]. (2.40)

This is just (2.33), and hence the proof is completed. •

3. The Absence of Percolation for β< 1

We now turn our attention to discrete percolation models, like the one described in
the introduction. In this section it will be shown that systems for which the bond
occupation probability is asymptotically dominated by β/\x—y\2, with β<ί,
dissociate - in the sense introduced in our discussion of the continuum model. In
particular, under this condition there is no percolation, regardless of the short
distance behavior of Kxy (assuming, of course, that K is nowhere 1).

Once such a result is known for independent models, its validity can be
immediately extended to systems which these dominate in the Fortuin-Kasteleyn-
Ginibre sense [17]. However, we choose to give the proof directly for general
systems. This helps us in keeping track of the assumptions which are really relevant
for our argument. In particular, the explicit argument is essential for the
development of the "renormalized" version of the criterion for dissociation, which
is presented in the next section.

In a general bond percolation model, n{Xty} need not be independent of the other
bond variables, nor have a translation invariant distribution. Considering the
conditional occupation probabilities - conditioned in each case on completely
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specified values of all the other bonds, we denote

K+

z= sup {Prob(n{XiX+z} = ί \nh = mh for b*{x,x+z})} (3.1)
xt {mb}

a n d β+ = limsupK+

z\z\2. (3.2)
|z|-+oo

Thus, for each β*>β+ there is a uniform asymptotic upper bond on the
probability that {x, y} is occupied,

Prob(n {^ } = l|...)^/?*/|x-J>l2, if \x-y\>D(β*), (3.3)

where ... represents any conditioning which does not involve the bond {x,y}
directly, and D(β*) < oo.

M will continue to denote here the probability that the origin belongs to an
infinite cluster. The following proposition is our first criterion for the absence of
percolation. Its proof is given towards the end of this section after a number of
preliminary results.

Proposition 3.1. In a bond percolation model on Z, if:

i) sup{K+

2}EEP

+<l,

and (3.4)

then with probability one Έ is entirely covered by finite dissociated intervals. In
particular

M = 0. (3.5)

Let us note that while it is difficult to find a continuum notion of bond
percolation utilizing only point contacts, the notion of dissociation makes sense
for both the continuum and the lattice.

The proof of Proposition 3.1 will be structured along the lines of the proof of
Proposition 2.1, and will consist of the adaptation of the analysis of Sect. 2. The
main points at which the systems considered here differ from those in the preceding
section, in addition to the discreteness of the lattice, are:

i) no assumption of independence for the bond occupation variables,

and

ii) the bound (3.3) applies only asymptotically.

To facilitate the adjustment of a continuum analysis to discrete models, let us
note that if β+ < 1, then there is a finite distance, which we shall denote D+, beyond
which (3.3) can be replaced by:

dudvβ'/\u-v\2\, if \x-y\>D+

with /Γ=(l + j8+)/2, which is still less than 1.
Taking their natural extensions, we shall adopt here the notions of the

dissociation events AL and JFL>fe, of maximal nested sequences, etc., introduced in
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the preceding section. Just as over there, the main step is the derivation of the
uniform lower bound for the semi-infinite dissociation problem - which is
expressed in the following statement.

Lemma 3.1. For a random system of bonds on the semi-infinite lattice Έ+,if the two
assumptions made in Proposition 3.1 are satisfied, then for each k e (1, oo) and L> 0,

Pτob(FLΛ)^g+(k) (3.7)

with a value g+(k)>0 which depends on the measure only through the parameters β+,
D+,andp+.

For the proof of Lemma 3.1, which is given following Lemma 3.3 below, we
shall again consider a maximal nested sequence of occupied bonds and study the
random variables WL, Ln, and t/n, defined by (2.7), (2.10), and (2.13). (Although it
does not always show in our notation, all these variables depend on the parameter
L.) Our key observation (to be compared to Lemma 2.3) is

Lemma 3.2. // a measure satisfies (3.6) with some value of D+ and β'>0, then for
each L, the conditional distribution of Un+i given the previous U^s satisfies

^ , for u^D+. (3.8)

Proof. Conditioned on the values of Ul9..., Un9 the event {Un+ί^u} is that none

of the bonds in the set {(x, y)\xe (Ln_ l 5 LM], y e (Ln + u, oo)} is occupied ( where
j \ V

Lj = Σ ^ i ) The specification of the values of U t,..., Un on which the conditioning

is made amounts to some explicit information on the occupation of bonds in a
collection which is disjoint from the above set. The left-hand side of (3.8) admits a
telescopic decomposition into a product of probabilities for the bonds in the set to
be unoccupied, conditioned on successively enhanced information. Using the
definition (3.1) of K+

X_y, and (3.6), we get

du J dvί/\u-v\2) =(
i Ln + u )Ln-i )

(3.9)

Since we have tacitly assumed here that u is an integer, let us note for a future
purpose that by trivial arguments (3.8) extends now to all real values u ̂  D+. D

In our application of the above result we shall make use of a comparison
principle, which has already been derived within the context of queuing theory
[18]. We include a proof for the sake of completeness.

Lemma 3.3. Suppose Ui9 U\ are two sequences of random variables satisfying, for
each n:

(3.10)
for all u, uh
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ii) the right-hand side of (3.10) is nonincreasing in each uu

then for each n and every coordinatewise nondecreasing function on Rw, such that
f(U\,..., [/'„) has finite absolute expectation,

E(f(Uu ..., Un))ίE(f(U\,..., [/'„)). (3.11)

Proof. We proceed by induction on n. The inequality (3.11) is elementary for n = 1.
For n = N +1, we express the right-hand side of (3.11) as E(φ'(U\,..., U'N)) and the
left-hand side as E(φ(Uί9..., UN)), where

φ\u\, ...,u'N) = E(f(U\,..., U'N+ί)I U\=u'u ..., U'N = *N)9

and φ is defined similarly for Uί,..., UN. Note that since both / and the right-hand
side of (3.10) are nondecreasing in each coordinate - so is the function φ'. On the
other hand, (3.10) and the fact that the function / is nondecreasing in its last
coordinate imply that φ^φf pointwise. Thus

E(f(Uu ..., UN+ί)) = E(φ(Uu ..., UN))£E{φ'(Ul9 ..., UN))

SE(φ'(U\,..., U'N)) = E(f'(U'l9..., U'N+±))9 (3.12)

where the second inequality follows from the induction hypothesis. D

We are now ready for the proof of Lemma 3.1, which is the only place in the
analysis where the main assumption β+ < 1 plays a role. The corresponding step in
the previous section's discussion of the self similar continuum model was Lemma
2.2 (which in fact proved more than the required inequality (2.6)). Its proof will be
used in the following argument.

Proof of Lemma 3.1. Let us now assume that a given system satisfies the
assumptions listed in Proposition 3.1. Our goal is to derive the lower bound (3.7).

For a given L> 0 and k > 1, we shall consider the nondecreasing sequence Ln (of
the sites yn reached by a maximal nested sequence of occupied bonds) discussed
above, with its associated sequence of increments Un and the limit L WL. As in
(2.8), we have

(3.13)

Let JV* be the index of the first increment Un which does not exceed D+, or + oo
if there is no such n, and let L*π be the sequence obtained from Ln by stopping it at
JV*. l/*π and W*L will denote the increments and the limit of L*π. It is easy to see
that the bound (3.8) which holds for the sequence Un as long as M ^ D + , is satisfied
by U*n without that restriction. (The argument is elementary in either case, but it
depends on whether n^N* or not. That event is measurable with respect to both
{Uu...,Un}iind{U*1,...,U*n}.)

We may now use the above observation, and the comparison principle of
Lemma 3.3. (aided by simple "approximation arguments" - needed because
Lemma 3.3 directly treats only functions of finitely many variables), to compare the
sequence U*n with the process XJ'n which corresponds to the self similar continuum
model, satisfying the equality (2.14), with the value of the parameter /? set at
/Γ=(l + jS+)/2 (< 1). Since for both models the corresponding quantities W*L and
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W satisfy the first two equalities of (2.16), and hence are increasing functions of the
U*n or U'n variables, we have

Prob(W*L<fc)^Prob(W"<fc) (>0 for j? + <l), (3.14)

where the right-hand side is independent of L (and depends only on β+ and k).
It remains now only to make the observation that if W*L < oo, then JV* < oo, i.e.

the increments Un reach a smaller value than D+ +1, and that if this occurs then
there is a uniformly positive probability for the sequence Ln to stop right there, in
which case WL= W*L.

To be more specific, the latter event would certainly occur if none of the sites in
(LN*_!,£#*] is connected by an occupied bond to (LN*,co). For each site the
probability that none of its bonds which reach to the right of it is occupied,
conditioned on any information about the other bonds, is at least

δ= sup ίΠ V-K\_y)\ ^ ( 1 - p + T e x p ( - J dxβ'/x2). (3.15)
x \y>χ j V D + /

Hence,

Pτob(WL<k)^¥rob(W*L<k)δiD+ + ί). (3.16)

Combining the above results, we see that (3.7) is valid with the explicit bound:

<D+ + 1 ^ g + ( k ) , (3.17)

where gβ(k) = Prob(W< k) with W being the variable studied in Lemma 2.2, with
the given value of β. This proves Lemma 3.1. D

It remains now to show that the above result implies Proposition 3.1, which is
the main result of this section.

Proof of Proposition 3.1. Proposition 3.1 requires the extension of Lemma 3.1 in
two directions: the proof of the two sided dissociation, and the conversion of
uniformly positive probability into "probability one" statements. The arguments
which accomplish both were given in the proof of Lemma 2.1. Instead of repeating
them here, we shall just list the necessary adjustments, which address the
differences listed below the statement of Proposition 3.1.

i) In (2.25) replace the continuum expression by

Prob (there is an occupied bond connecting ί—N,N~\ with R\[ —F, VJ)

0. (3.18)
as V -» oo

ii) Make the observation that it suffices to prove (2.26) with the additional
restriction V>D+ (which would allow one to apply (3.6) in the next remark).

iii) In the last part of the argument, instead of the independence argument used
there for the Poisson process, use the decomposition

ύ Σ κ x ,^[ i+<>(i)] Σ β+/\χ-y\2

-N^xSN N^^N
yeWL\[-V,V]

Prob04L | CVtkLnALΛ

c)^T>robCFv,rnΎ\>rnGVfrnG*v>r\ Cv,kLnALfk

c)

= Prob(T F t r I CVΛLnALΛ

c). P r o b ( T y r | CVΛLnALfk

cnΎVfr)
cnΎv>rnΎ*Vfr). (3.19)



630 M. Aizenman and C. M. Newman

Each of the above factors is a conditional probability of an event which depends
only on a subset of the set of all the bonds, and the conditioning is on an event
which is determined in some other subset. In each case, the events are such that
when a bond belongs to both sets it is conditioned to be unoccupied.

To bound the first two factors we note that each of them refers to an event
which is determined by the bonds of a (shifted) semi-infinite lattice Z + (or Z_) with
a probability measure which is induced by conditioning on an event which is
determined in the complementary set. These measures satisfy the assumptions
required in Lemma 3.1. Thus each of the first two terms is not less than #+(r).

For the last factor we shall use a finer telescopic decomposition (into a product
in which each factor is associated with a bond), and repeatedly apply (3.6). One
obtains an integral expression - like the one in (2.27), which yields a lower
bound of [8(14-r)]-^'.

Thus we get

Prob(,4L| CVtkLnALΛ

c)^g+(r)2 [8(1 + r ) ] - ' \ (3.20)

which is used in the same way as (2.28). (For an extension which will be made in
Sect. 4, it is useful to note that in this part of the argument no independent use was
made of the main condition β+ < 1 the results of Lemma 3.1 and β+ < oo would
have sufficed.) •

To summarize, we saw here that the dissociation which we first discussed in the
context of the self similar continuum models occurs also in discrete models
(including systems which are not independent) if β+<ί. It is easy to extend one of
the remarks made at the end of the previous section, and to demonstrate that for
independent lattice models the complete dissociation does not occur if
liminf Kx_ \x—y\2>ί.

The lack of dissociation does not imply percolation since, for example,
percolation is impossible in translation invariant independent models satisfying
(1.4). However, it was demonstrated in ref. [5] that, in the independent case, if β > 1
then there is percolation if also the short range parameter p is sufficiently close to 1.

In the next section we shall see a "renormalized" version of the criterion (3.4) for
the lack of percolation.

4. Discontinuity of the Percolation Density

i) Statement 'of the Main Result

We are now ready for the derivation of the main result of this paper, which includes
as a particular case the proposition discussed in the introduction. In essence, we
shall show that the criterion derived in Sect. 3, that percolation requires β+ ^ 1 ,
can be replaced by a stronger requirement of the type - β+M2^l. For the
independent translation invariant models, that is exactly what will be proven.
However, in its simplest form this statement is not valid in complete generality. To
obtain a correct and provable criterion we shall qualify it in two ways: i)the
percolation density M will be replaced by M + , a similar quantity which
incorporates the possible long range dependence effects, and ii) the result will be
restricted to models which have a strong FKG type property.
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The Fortuin-Kasteleyn-Ginibre (FKG) condition has been formulated [17] in
terms of a partial order on the space of configurations, which we define by the
pointwise domination of the occupation variables. I.e. a bond configuration (ή) is
said to dominate another one {n^>rΐ) if its set of occupied bonds includes the
other's. This partial order induces the notions of increasing functions (for which
n^>n' => /(n)^/(n')), increasing events (those whose indicator functions are
increasing) and decreasing events.

A rather useful class of probability measures, introduced (in reliability theory)
by Esary, Proschan, and Walkup [19], consists of those for which any two
increasing functions are positively correlated. We shall refer to the latter as the
standard FKG property. It is implied by a sufficiency criterion, presented in ref.
[17], which defines a more restrictive class. The class of measures for which our
result will be proven is characterized by the condition which we introduce next as
the strong FKG property. While this class appears to fall between the previous two,
it was actually shown by van den Berg and Burton [20] to be identical to the class
satisfying the sufficiency condition of [17]. (We thank F. den Hollander for calling
our attention to this fact.)

Definition 4.1. We say that a probability measure (of a random bond system) has
the strong FKG property if for every subset A of bonds, the conditional
probabilities with respect to the corresponding σ-algebra BA satisfy
Vrob(RnR'\BA)^Έ>rob(R\BA)Prob(R'\BA) for any increasing events, R and
R'. This means that for "almost every" specification of the occupation variables for
the bonds in A, the conditional distribution of the remaining bonds has the
standard FKG property.

It is not too difficult to see that an equivalent statement of the above defined
property is that for any AcM.^, any increasing event R, and any decreasing
event JV:

Prob(K IN, BA) ^ Prob(£ | BA). (4.1)

The collection of measures which have the strong FKG property includes, of
course, the independent models discussed in the introduction. Examples of
dependent models of special interest are the percolation systems which correspond
to the Ising and Potts models, which are discussed in the companion work [3].

To introduce the quantity M+, let

MH = sup Prob(x is connected by a path of occupied bonds to

x,{m)

Έ\[x-H,x+H']\nb = mh for bonds with both ends in Έ\[x-Hyx+H']).
(4.2)

In essence, MH is the finite volume approximant of the percolation probability,
evaluated for the most favorable boundary conditions (in case there is de-
pendence). It is clearly a decreasing function of H. We define

M + = lim MH. (4.3)
H->oo

Remarks. For independent translation-invariant models M+=M (i.e. = P^). For
translation-invariant systems with the strong FKG property it can be shown that
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M + is the percolation density (P^) of the state obtained with the "wired boundary
conditions" (this concept being further discussed in [3]).

Following is the main result of this section. (Its proof is given in the last
part 4iv)).

Proposition 4.1. If a one dimensional bond percolation model satisfies the "strong
FKG" condition, is regular (K+

Z<1 for all z)9 and

β+M+

2<ί, (4.4)

then with probability one its configurations have no infinite clusters (and hence
M = 0).

Henceforth, we shall denote

βR=β+M+

2. (4.5)

The main idea of the proof is to "trim away" bonds which can belong only to
"dangling ends" of an infinite cluster. This will be done in a way which does not
destroy the existence of an infinite cluster, if there is one, but which reduces the
density of the relevant bonds. This operation "renormalizes" the effective value of
"/Γ into βR ( + ε). The resulting observation will be that if βR<ί, then the
"trimmed" system dissociates, and thus there can be no percolation in the original
model. The proof is based on the arguments developed in the previous sections,
with some modifications. These are required since our procedure does not reduce
the quantity β+, which is based on the worst case analysis, and hence we cannot
simply apply Proposition 3.1 to the "trimmed" system.

ii) Anchored Bonds

The first step is the introduction of the notion of iί-achored sites and bonds, which
will be used with H large enough so that MH is sufficiently close to M+.

Definition 4.2. We shall say that a site x is H-anchored if it is doubly connected to
R\[x—H, x + H], i.e. if there are two disjoint sequences of occupied bonds which
form connected paths linking x with the exterior of its H-neighborhood.

The pair of sites {x, y} will be said to be connected by H-anchored bond (or,
equivalently, we will simply say that there is an iϊ-anchored bond {x, y}) if the
bond {x, y} is occupied and each of the two sites is H-anchored (see Fig. 4).

Let us remark here that if there is percolation in the original random bond
system then the anchored bonds also percolate. Percolation is after all equivalent

x-H

Fig. 4. An H-anchored bond {x, y} with its left and right anchors - w and z
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to the existence of infinitely long, nonrepeating, connected paths of occupied
bonds. Except possibly for the first few, all the bonds in such a path would
automatically be anchored. Our strategy for the proof of Proposition 4.1 will be to
derive the stronger statement that under its assumptions, and with a proper choice
of H, the system of the fl-anchored bonds dissociates.

First let us present the main observation which explains why β+M+

2 may be
regarded as the renormalized value of β.

Lemma 4.1. If a bond percolation model has β+ < oo, then for each H<oo and ε > 0
there is some Dε<co (depending also on H) such that for all pairs of sites with

Prob(x and y are connected by an H-anchored bond\A)^(β+MH

2

(4.6)

where A is any event determined by the occupation variables of a collection of bonds
for which both sites are at distances greater than H from both x and y.

Proof. If the two sites x and y are connected by an H-anchored bond and
|x—y\>H then either:

i) x belongs to a connected path of occupied bonds which reaches beyond the
site's //-neighborhood without using for that purpose any of the bonds which
touch [3;—H, y+IT] the same holds for y (without using any of the bonds which
touch [x —H,x + ff]), and furthermore the bond {x,y} is occupied.

ii) {x, 3;} is occupied and there is another occupied bond {u, v} with
ue[x-H,x + H~\ and ve[y-H9y + IT].

Adding the probabilities of the above two events, computed by successive
conditioning in the above indicated order, we get the following bound for the left-
hand side of (4.6):

left-hand sids^(β+ +δ)/\x-y\2 lMH

2 + (2H+l)2(β+ +δ)/(\x-y\-2H)2-],
(4.7)

whenever \x-y\-2H^D(β++δ) (defined in (3.3)). It is now obvious that by
choosing δ = ε/(2MH

2\ and then Dε large enough so that the second term in the
sum in (4.7) is sufficiently small for |x—y\^Dε9 one arrives at (4.6). D

In view of the bound (4.6) on the density of the anchored bonds, one could be
tempted to hope that the quantity β+ for the system of anchored bonds is bounded
by J8Λ + ε (for large if), in which case our main result (that βR<ί implies
dissociation) would follow immediately by an application of Proposition 3.1. That,
however, is not true. While the anchored bonds are "sparser," they are strongly
correlated (due to the site conditions). In fact, it is easy to see that the quantity β+

for the system of anchored bonds is the same as for the original model.
Alternatively, one could try to repeat the arguments which led to Proposition 3.1,
for which the requirement β+ < 1 which is based on the "worst case" conditioning
was somewhat too strict. That is the route we shall follow, with modifications
which will be explained below.
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in) The Main Bound on the Dissociation of Anchored Bonds

We now extend to the system of anchored bonds the notions of dissociation, and
the events Auk and FLk defined in Sect. 2iii). To avoid confusion, we shall mark
with the tilde Q the symbols denoting these events for the system of anchored
bonds. As in the analysis of the previous two sections, the main technical estimate
needed for the proof of the dissociation is the following lemma.

Lemma 4.2. In any one dimensional bond percolation model which satisfies the
"strong FKG" condition, is regular and has β+<oo, we may compare the
H-anchored bond events FLk to the corresponding ordinary bond events FLk in a
related independent bond model as follows: i) Given any H<co, β'>β+MH

2 and
fe>l, there exist some R<co and ε>0 so that

L,fc) = εProb'(FL>Jfc) for all L = # . (4.8a)

Here the right-hand side probability refers to the self similar independent model with
parameter β' whose nearest neighbor bond density K1 is set to zero; the other bond
densities for this model are given by (2.1) with μ = β' and 5 = 2. Hence, ii) if
β+M+2<ί and H is chosen so that β+MH

2 < 1, then for each k> 1, there is some
g(k)>0 so that

for all L>0. (4.8b)

Remark. The proof of Lemma 4.2, which is given after the proof of Lemma 4.5,
shows that (4.8a) remains valid when the hypothesis β'>β+MH

2 is weakened by
modifying the definitions of β+ and MH as follows: replace the sup over all x in (3.1)
and (4.2) by the sup over x ^ — 2H. This implies that if B denotes the σ-algebra
generated by the occupation variables of some subset of bonds which lie entirely
within ( — oo, — 2H), then under the hypotheses of Lemma 4.2, both (4.8a) and
(4.8b) remain valid when the probabilities are conditioned on B.

For the proof of Lemma 4.2 we shall use the "maximal nested sequence"
technique developed in the earlier sections. However, the anchored bonds have the
rather inconvenient feature that the existence of one carries implications which
extend beyond the interval delineated by its endpoints. We find it therefore
necessary to apply this technique to intervals which are defined by the effective
spans of the anchored bonds. We shall now introduce this concept, present some of
its key properties, and then consider the corresponding nested sequences.

First let us denote by CH(x), where x e Z, the cluster of sites in [x—H, x + if]
which are connected to x by paths of occupied bonds lying entirely in
[x—H, x+H]. In the following definition we implicitly introduce a new parameter
J, which along with H will always be defined in the given context. We shall always
assume that J>3H (in fact J/H will be chosen very large).

Definition 4.3. i) For an anchored bond {x, y} (with x < y) we define its left and
right anchors as the maximal values of w and, correspondingly, z such that w is
directly connected (i.e. by an occupied bond) with a site in CH(x) and z is directly
connected with a site in CH(y). We denote the maximal sites in CH(x) (within the
order of Έ) to which w and z are directly connected by w' and z\ correspondingly
(see Fig. 4).
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ii) The span of an anchored bond {x, y} (with x < y) is defined as the interval
[r,s] whose left endpoint is r = x, and right endpoint is

s=[y * yX~J (4 9)
(max{y,w,z} + 2ff if y-x>J. κ ' }

The following lemma shows that the "density" of the spans is not that different
than that of the anchored bonds themselves.

Lemma 4.3. Given a bond percolation model with β+ < oo, and given some H<co
and ε > 0, then there is a choice of values of J and S for which the spans of anchored
bonds (defined with these values of H and J) satisfy the following bound. For every
site xeΈand set AcZ, with dist{x, A}Ξ>S:

Prob(there is an H-anchored bond whose span [r, s], has s in the set A and r = x)

ί Σ (β+MH

2+ε)f\y-x\2. (4.10)
d { } J

Explicit choices for the parameters are: J = 3H + (8ί/2)(2H + ί)(β+ + 1 ) V 1 , and
S=2J+Dε/2+2D(β+ +1) (the last two terms being defined next to (4.6) and (33)).

Proof. A necessary requirement for the occurrence of the event in the left-hand side
of (4.10), is that at least one of the following three conditions is satisfied (see (4.9)):

i) There is an anchored bond {x,y} with some y (>x) such that

ii) For some {y,w,w'} - such that y—x>J, \x—vvΊ^iϊ, w + 2HeA, and
w — w'>J—H, the two (regular-) bonds {x, y} and {w\ w} are occupied. (That is a
necessary condition for the existence of an anchored bond {x, y} whose span is
generated by the bond's left anchor, w, and reaches 4.)

iii) For some {y,z,z'} - with y—x>J, \y—z'\^H, z + 2HeA, and z — zf

>J — 3H, the two bonds {x, y} and {z, z'} are occupied. (Note that the cases where
A is reached through the right anchor, z, but the condition z—zr>J — 3H is
violated, are already covered by i).)

Let Pl9 P2, and P3 be the probabilities of the above events. We shall estimate
each of them by the sum of the probabilities of the relevant bond events to occur.

We obtain:

Piύ Σ (β+MH

2 + ε/2)/\y-x\\ (4.11)
y; dist{y,A}£J

where we assumed that dist{x,^4} — J ^ D ε / 2 , so that Lemma 4.1 can be applied

^ 2 ^ Σ Σ ^ K
J ' [ H

Σ Σ ^ y-χK w-w'
y;y-x>J w'e[χ-H, H

weA~2H

- x - H | 2 . (4.12)
weA-2H

In applying the bound (3.3) to K+, we used here the fact that J^D(β+ +1) and
+
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And

P3S Σ Σ Σ K\^K\_2.zeA-2H y;y-x>J z';\y-z'\^H
and z-z' > J-3H

^ Σ Σ Σ K\^(β
zeA-2H y;y-χ>J z'\ \y-z'\^U

+ Σ Σ Σ K
zeA-2H z' z-z' > J-3H y;\y-z:\SH

^2(2H + 1)[(J3+ + 1)/(J-3H)] Σ (j8+ + l) 4/|z-x-H|2, (4.13)
zeA-2H

where the second inequality is based on the observation that at least one of the
lengths |y—x\ and |z—z'\ has to be there not less than \z — x—H\/2. We also used
the fact J-3H^D(β+ + ί) and dist{x,A}-3H^2D(β+ + 1).

For J, and then S, large enough (as specified in the statement of the lemma) the
terms P 2 and P 3 are only small corrections to P l 5 together adding a term ε/2 to the
ε/2 in (4.11). Thus we obtain:

left-hand side of ( 4 . 1 0 ) ^ P 1 + P 2 + P 3 ^ Σ (β+MH

2 + ε)/\y-x\2,

(4.14)
which proves (4.10). D

A slight variation of the above proof yields the following result.

Lemma 4.4, // a bond percolation model has the (standard) FKG property, and
β+ < oo, then for each H<oo and β>0 there is a choice of J and S (specified in
Lemma 4.3) with which for any two subsets A9BC%, with dist{A, B}^S -

J*τob(there is an H-anchored bond {x,y}

whose span [r, s] has re A and seB)

xeA I
y;dist{y,B}^J J

(The relevance of the value of J here is through the definition of the span of an
anchored bond.)

Proof. The main idea is to exponentiate the bounds which led to (4.10). For this
purpose we shall focus on the probability that the sets A and B are not "linked," in
the sense seen in the left-hand side of (4.15), and use the (standard) FKG property.

For the given sets A and B we shall again distinguish between three ways in
which the span of an anchored bond may link them, as was done in the proof of
Lemma 4.2. Let us take note of the fact that the probability of such an event to
occur was bounded in (4.11)-(4.14) by the sum of the probabilities of a collection of
bond events which are all increasing - in the FKG sense. (Even though the event in
the left-hand side of (4.15) itself is not monotone, if the set B is not a semi-infinite
interval.)

By the assumed FKG property, the probability that none of the events which
were added in (4.11)-{4.14) occurs is not less than the product of the corresponding
individual probabilities. Thus, for example, the first inequality in (4.14) can now be
replaced by

left-hand side of (4.10)^1 —(1 - P x ) (1 - P 2 ) (1 - P 3 ) . (4.16)
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Similarly, for our analog of Pt we have, instead of (4.11)

xeA
y; άisφ,B}^J

~ (4-17)
xeA

y; dist {y,B}^J

^expΓ

L

where in the second step we used the inequality 1 — x^e *<1 + 2*> for 0 < x < 1/2,
and assumed that β ̂  2 and 2(β + + l)2/[dist {A, B} - J ] 2 <; β/2. The last condition is
satisfied with our choice of J and S, and the assumption made on dist{A,B}.

Equation (4.15) is proven by taking a similar approach to all the terms which
contribute to (4.14), or actually to its analog (with the sets {x} and A replaced by A
and B) which is relevant here. In fact, just as in the proof of the previous lemma, the
terms P2>Pz represent only a small perturbation to the expression seen in
(4.17). D

In Sect. 2iii) we defined the concept of a maximal nested sequences of bonds,
and used it in the proof of the analog of Lemma 4.2. It turns out that for a reason
which was mentioned above, the spans of the anchored bonds offer a better notion
for the renormalized version of that analysis than the anchored bonds themselves.
The main place where this difference is manifested is the derivation of the following
estimate, in which we implicitly refer to an obvious extension of Definition 2.1.

Lemma 4.5. Under the assumptions of Lemma 4.2, for each H and β'>β+MH

2 there
are J and R with which the following condition is satisfied: if the random variables
{rf, Si}i>2 form a maximal nested sequence of the spans of occupied anchored bonds,
for some given initial values {s0, s j , then for alln>ί and u^.R, their distribution
satisfies:

- s ^ / t t ] - ' ' , (4.18)

when the conditioning is on a set of values with s f—Sf-^l? for all 1 < i ^ n — 1 .

Proof For the given H and β' let us set ε = (β'—β+MH

2)/4, and choose the values
of J and S which are referred to in Lemmas 4.3 and 4.4. R will be chosen later, but it
will satisfy R > max {S, J}.

Let us now start the argument by describing an efficient method for keeping
track at the level of the original bond system of the information provided by
specifying that a given interval is the span of some occupied anchored bond, and
that furthermore a given sequence of such intervals is maximal.

Any given interval [r, s], of length > J + 2H, can form the span of a number of
anchored bonds {x, y} - from the same configuration of the original bond system.
Of course, x must equal r so that only y can vary. Let us therefore always choose
out of this collection of anchored bonds the bond {x, y} with the maximal value of
y. From now on, whenever we have to discuss the conditional probability -
conditioned on the existence of an anchored bond whose span is a given interval
[r,5], we shall consider the further conditioning on:

i) the values of {x, y, w, w', z, z'} for the maximal anchored bond (in the sense
described above) spanning [r, s] and
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ϋ) the occupation numbers {nb} for all the bonds which lie entirely in the
H-neighborhood of x (i.e. in [x—H,x + £Γ\) and for all the bonds lying in the
if-neighborhood of y, as well as n{Xty}9 n{WfW>}, and n{ZtZ>} (all =1).

When the conditioning is on a collection of intervals {rί5 s j being spanned, we
shall specify i) and ii) for each one of them. It is easy to see that once the information
listed above is specified, it determines that each of the intervals is indeed the span of
some anchored bond. The resulting conditional distribution of the bond variables
{nb,} is constrained in two ways: first, by the given values for the above described
collection of bonds, and secondly, by the requirement that certain sites and bonds
be the "latest" ones with the required connections. The first set of constraints will
be rather easy to incorporate explicitly. The second would not have been so, had it
not been for the fact that it is of a definitely negative nature - in the sense of FKG,
and therefore (by (4.1)) it can only lower the conditional probabilities of increasing
events.

Turning to the case in (4.18), let us note that the conditioning there is also on
the added information that the given collection of intervals forms a maximal nested
sequence of spans. That forms another addition to the complete information about
the specified collection of bonds, which however is also negative.

This refined conditioning may be used in estimating the left-hand side of (4.18)
which is certainly bounded by the supremum of the more explicitly conditioned
probabilities. Since the reader who has read the last two lemmas has already seen
the relevant expressions, we shall not repeat those here but just describe the
considerations which permit us to control the effects of the conditioning.

The event {sn^sn-1-\-u} will occur precisely if there is an anchored bond
whose span has one end in the interval J1 = [5π_2 + I,sn_1] and the other in
j 2 = [sn_ 1-i-w, oo). The indicator function of this event can be easily seen to form an
increasing function of the variables {nb} (once the values of sn_1 and sn_2 are
given). Therefore, by the above comments, and "the strong FKG" property of the
measure (used here for the first time in our argument), the negative information
coming from the various maximality conditions can be ignored in the calculation
of an upper bound. Thus, the only effect of the conditioning we need to concern
ourself with is the statement that a specified collection of bonds are all occupied.

The restriction that for i = 2,..., n — 1: st — Sj, _ x ^ R > J (and hence st—rt > J),
implies that all the bonds which in our refinement are associated with [rί5 s j are
contained in the interval (— 00,5;—IT] (see (4.9)). Therefore the specified bonds
have no site in J2, and altogether only a uniformly bounded number of sites in It.
The iϊ-neighborhoods of these sites cover not more than (12H+4) lattice points
(see item i) immediately below). The probability that the two sets It and I2 are
linked by the span of some anchored bond may now be bounded using the
arguments of Lemmas 4.1 and 4.2, with the following corrections:

i) The effect on the term Px of the bonds already specified as occupied will be
overestimated by regarding as anchored each site in It which is within the distance
2H to either xn _ x or yn _ x, or within the distance H to either wn _ x or zn _ 1. That will
convert the factors j8+MH

2 into β+MH, but only for a fraction (^(12#+ 4)/Λ) of
terms in our analog of (4.15).

ii) In the exponentiated version of (4.12) and (4.13) omit the terms for which the
bond {x,y} is one of the bonds specified to be occupied. The contribution of the
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corresponding events in the lists ii) and iii) of the proof of Lemma 4.3 will be
separately taken into account by estimating the probability that one of the
(12JΪ+4) above mentioned sites (all below s^-J has an occupied bond directly
linking it with I2 — 2H. For each such bond the conditional probability is still
bounded by the function K+.

It is easy to see that if R is chosen so that [J + H(β+ + 1)]/R ̂  Cε, with a small
enough constant C, then the above corrections will still represent only small
perturbations of Pt. Hence, under the assumptions made in the statement of the
lemma we have the following analog of (3.9):

1-left-hand side of (4.18)^expf- J dx f dy(β+MH

2 + 3ε)/\x-y\2\. (4.19)
\ II 12 )

Evaluating the integral, and noting that β+MH

2 + 3ε ̂  β\ one arrives at (4.18). D

The above result contains the main estimate needed for the proof of
Lemma 4.2.

Proof of Lemma 4.2. Let us start by choosing J and R as in Lemma 4.5. The goal is
to prove the existence of a lower bound, which is independent of L, on the
probability that there is a site ξ in (L, kL) for which there is no H-anchored bond
{x, y} with x e [0, ξ] and y e (ξ, oo).

Let us note that if the end points of an anchored bond satisfy the last two
conditions then so do the end points of its span! Therefore, to prove the first claim
made in Lemma 4.2 it suffices to prove a bound like (4.8a) for the analogous event
which refers to the spans of anchored bonds instead of the anchored bonds
themselves. The argument used for the proof of Lemma 3.1 implies, mutatis
mutandis, that such a bound follows from Lemma 4.5. The bound (4.8b) follows
from (4.8a) by choosing β'< 1 and using Lemma 3.1 (or Lemma 2.2). D

iv) Proof of the Main Result

Proof of Proposition 4.1. Given that βR<l, then by (4.3) we may choose H large
enough so that the finite volume approximant of βR also satisfies this condition,
i.e.: β+MH

2 < 1. We shall see that for such values of H, with probability one the
system of the ϋ-anchored bonds dissociates.

The key result needed for the proof of the dissociation is provided by Lemma
4.2, which was proven at the end of the preceding discussion. The technique for
that application of (4.8b) was presented in the proofs of Lemma 2.1 and
Proposition 3.1. We shall now assume that the reader is thoroughly familiar with
the arguments presented there, and just briefly review the steps which require any
adjustment.

The basic idea is to prove that for all L

Prob(lL) = l , (4.20)

by deriving a uniform lower bound on Pτob(AL\ΆLk

c). To do that, we further
condition on the event CFjfeL, whose purpose is to "contain" the "positive"
information about the bonds in [ — fcL, fcL], which is implied by the statement that
the event Auk does not occur. Because of the nature of the anchored bonds, our
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definition of CVfN (which interests us for N = kL) will deviate slightly from the
definition of CVt N found below (2.24). We take it here to be the event that there is no
pair of occupied bonds {a,b} and {c,d} with αe[—JV,iV], \b — c\^H, and
\d\ ̂  V— 2H. Note that by taking b = c = d, the occurrence of CF, N implies there is
no occupied bond {α, d} with \a\ ̂  N and |df| ̂  F— 2H. Instead of (3.18) we have the
equally useful bound (obtained by elementary arguments as in (4.13)):

a Σ d
d

( Σ w ) ( Σ
£0(N/\V-N-3H\) > 0, as V/N > oo. (4.21)

As explained in the proof of Lemma 2.1, for V large enough we have

Prob(IL I ΆLik

c)^ 1/2 Prob(l L | ΆUk

cnCVΛL). (4.22)

We evaluate the conditional probability in the right-hand side (4.22) by further
conditioning on all the occupation variables of all the regular bonds which lie
entirely in ( - V+2H, V- 2H), noting that the event ΛLtk

cnCVi kL is determined by
the bonds in that interval together with purely "negative" information from
outside that interval.

For a lower bound on the last expression in (4.22), we shall use the natural
analog of the first inequality of (3.19), and resort to the strong FKG property of the
measure in order to bound below the expression found there by the product of
three "simple" conditional probabilities. (The strong FKG property allows us here
to avoid the telescopic conditioning which was used in (3.19)).

The resulting estimate is

rob(TV>r IB) Prob(T*F j Γ | B) Prob(GF ) ΓnG*F t l. | B)],

where B denotes the σ-algebra generated by the occupation variables of the regular
bonds which lie entirely in (— V+2H, V— 2H) and the infimum is over all possible
configurations of those bonds. The event T F r i s the ίf-anchored bond analogue of
T F > r , while GVr is just the regular bond event defined following (2.26). (Similar
statements hold for the reflected events, which are denoted by asterisks.) Lemma
4.2 can be applied to the conditioned measures of the first two factors on the right-
hand side of this estimate (see the remark following Lemma 4.2), while the third
factor can be estimated as in (3.20) (or (2.28)) to yield the result that, just as in (3.20),
for every r > l :

) , ^ + + 1>. (4.23)

(Note that AL could have also been replaced here by ALΛ1+r)V/L.)
As was explained in the first part of the proof of Lemma 2.1, the inequalities

(4.22) and (4.23) imply that (4.20) is satisfied for each L.
It follows that

(4.24)

i.e. with probability one the system of //-anchored bonds dissociates (see the
discussion at the beginning of Sect. 2iii)).
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As has already been remarked, the existence of an infinite cluster implies that
for any H there is an infinite chain of bonds which are all occupied and
fl-anchored. The point is that in any infinite path of occupied bonds, after the first
few (which get one out of the //-neighborhood of the starting point) all the bonds
are anchored.

The dissociation proven above was established only for H large enough (so that
β+MH

2 < 1). However the preceding comment shows that the dissociation for any
H implies the absence of ordinary percolation in the original system of bonds. D

In the above proof we followed the lines of the proof of Lemma 2.1. Let us recall
that we have already seen how to extract from this argument a more explicit
bound. Using the technique of Corollary 2.1 (at the end of Sect. 2), we get the
following result, which will be used in the next section.

CoroDary 4.1. // a bond percolation model satisfies the assumptions of Proposition
4.1 (in particular, it has βR<l) then its two point connectivity function (defined in
the introduction) satisfies:

τ(x,y)^Cexp[-(Xln|x-);|)1/2] (4.25)

with some C< oo and X>0.

Proof. Let us first choose H such that β+MH

2 < 1, as in the proof of Proposition
4.1. The analysis given in the proof of Corollary 2.1 shows that the arguments used
above actually imply that

Prob(lL/)^£exp[-(Xln/c) 1 / 2] for all L>1 and k>\ (4.26)

with some C<oo and X>0 [because of the slight difference in the "constants"
which appear in (4.21) and in (2.25), the values of € and Jdiffer in some insignificant
details from those indicated by (2.31)].

As an aside, let us comment here that it would be most natural to introduce at
this point the modified connectivity function,

τH(x, y) = Prob(x and y are connected by a path of occupied ίί-anchored bonds).
(4.27)

Since τH(0,x)^Prob(v4lJC

c), (4.26) directly implies that the function τ obeys the
bound (4.25). It would be a mild addition to assume that there is a uniform lower
bound, δH>0, on the probability that any given site is H-anchored. In such case
τH(x,y)^δH

2τ(x9y) (by FKG) and thus (4.25) is satisfied as claimed. However,
since the assumptions made in Proposition 4.1 do not imply such a lower bound,
we shall give an argument which avoids it.

In order to bound τ(x, y) directly, let us consider the event that there is a path of
occupied (regular) bonds, which does not repeat any bond, connecting x with y
(>x). Let V be a number in the range: H< V< \y — x|—H. Any point which the
above path visits in the set Nx = [x — V, x+F]\[x —H,x + £Γ\ is automatically
anchored. The only way the path can avoid Nx is by including an occupied bond
which reaches directly from [x—H, x+H~\ to R\[x — F, x + F]. Similar consider-
ations apply, of course, to Ny. On the other hand, the existence of a pair of
connected sites aeNx and beNy, which are anchored, and hence also connected
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by a path of anchored bonds, is inconsistent with the x-translate of the event AVΛ

with k = (y—x—V)/V. Thus, for each Vin the above range:

-φc, y) ̂  Prob (there is an occupied bond

linking [x - H, x + if] with R\[x - F, x + F])

+ Prob (there is an occupied bond

linking [y - H, y + if] with R\[y - F, y + F])

+ Prob (x-translate of Av> {y _ x _ F)/Fβ)

^4(2if+l)(j?+ + l ) / ( F - i ί - l ) + ^exp(-{Iln[(3;-x-F)/F]}1/2),
(4.28)

where we also assumed that H^D(β+ +1).
For each x and y we now choose, for the above bound,

F=exp{[Jln(j;—x)]1/2}. Elementary estimates show that with this choice, (4.28)
implies (4.25) (with any £<X). D

5. The Asymptotic Behavior of the Connectivity Function

In this section we shall consider the connectivity function: τ(x, y) = Prob(x and y
are connected by a path of occupied bonds).

Taking into account the possibility that the two sites are directly connected,
one has the trivial bound,

τ{x,y)^Kx,y=Vrob(nx,y = \). (5.1)

The first part of Proposition 1.2, which will be proven below, following Lemma 5.4,
implies that for independent, translation invariant models with

Kx,yκμl\x-y\° (5.2)
there is also a converse bound,

τ(x, y) ̂  C/\x—y\s (with a β dependent constant), (5.3)

which differs from (5.1) by only a finite multiplicative constant, and holds
throughout the regime β<βc. The second part of Proposition 1.2 gives a lower
bound on the decay of τ(x, y) at the critical point.

Although Proposition 1.2 is stated for independent percolation models, much
of the analysis does not require independence. At the end of this section we present
some results for models with dependent bond variables.

A key ingredient used in obtaining Proposition 1.2 is an inequality of
Hammersley which is stated in the following proposition. Its proof may be found,
for example in refs. [21, 7],

Proposition 5.1. In an independent percolation model, for any subset of sites A, if
xeA and yφA, then:

<*,y)ύ Σ τ(x,ύ)KUtVτ(υ,y). (5.4)
ueΛ, vφΛ

The rest of the analysis of this section consists of the discussion of the
consequences of the inequality (5.4) for one dimensional models.
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Hammersley's inequality (5.4) is the percolation version of the "Simon
inequality" satisfied by Ising model correlation functions [12]. In ref. [12], this
type of inequality was shown to be very useful for the derivation of nonperturba-
tive results for finite range systems. The arguments presented here show (following
ref. [13]) how it may be applied in the case of long range models.

We shall now restrict our attention to translation invariant models, and
henceforth assume that τ(x,y) is a function which obeys (5.4), and that τ(x,y)
= τ(0,y—x). We shall also not distinguish between Kxy and Ky_x. Let us now
present two different applications of (5.4), obtained with different choices of A.

Lemma 5.1. Let a positive function τ(0, x) satisfy (5.4) with positive Kx such that

ΣKx-\x\δ<oo, for some δ>0. (5.5)
X

If there is some L< oo, such that the following quantity is less than one,

yL^ Σ τ ( 0 , W ) 2 ^ < l , (5.6)
\u\*L,\υ\>L

then for some (small enough) ε>0:

Σ<0,x)|x | e<oo, (5.7)
x

and hence also τ(0, x) S C/\x\ε, with a finite C (e.g. C = left-hand side of (5.7)J.

Proof. Let us denote d(x — y) = ln(\x — y| + l), and observe that it satisfies the
triangle inequality. (In fact it is a metric for R. Its relevance for a related problem
was pointed out by Gross [22].) As a consequence of (5.5) we have

Σ τ(0,u)eδ'd(u)Kv_ue
δd{v~u)<oo. (5.8)

\u\£L,\v\>L

Therefore, by the triangle inequality, the dominated convergence theorem, and
(5.6), for small enough ε > 0 the following quantity (for which γL(0) = γL) is also less
than one,

) = Σ τ(0,u)Kv-ue*™<l. (5.9)
| | ^ L \υ\>L

Consider now, for any finite volume cutoff M,

χε

m= max Σ τ(x,y)eε'd(y~x). (5.10)
xe[-M,Ml ye[-M,M]

For each x and y such that \y—x\ > L we shall use (5.4) with A = \x — L, x + L], and
apply the triangle inequality for d{ ). One gets

Σ τ(x,u)KUfVe
ε'd{v-χ)τ{υ,y)eε'd{y-v), (5.11)

«, v;

and thus, upon summation

or equivalently,

XsiM)ύ Σ τ(0,x)eβ ^> + χ,W.yL(8), (5.12)
\x\<L

^ Σ τ(0,xK '<*>/[l-yL(β)]. (5.13)
\x\<L
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Let us observe that the last bound is uniform in M. Taking the limit M-> oo we
obtain (5.7). D

Lemma 5.2. // in addition to the assumptions made in Lemma 5.1,

Kx^μ/\x\s for x > x 0 , (5.14)

with some s> 1, μ< oo, and x 0 < oo, then

τ(0,x)^C/|x|s (5.15)

for some finite C.

Proof, For each x>3x 0 let us now apply (5.4) with A = [ — x/6,x/6]nZ. We get

<0,x)ύ Σ τ(0,u)Ku_vτ(v,x). (5.16)
|u|^x/6
\v\>x/6

Let us denote T(x) = suρ{τ(0, j;) | |y|^x}, and χ= Σ<0>*) In (5.16) we shall
X

distinguish between terms with \v\>x/2, in which case Ku_v<μ/\xβ\s, and terms
with |ι;|^x/2, for which τ(v, x) ̂  T(x/2). Altogether, we have

τ(0,x)^χ2 μ/[x/3]s+ Σ < 0 , M ) * . . , T(x/2)

|υ|>x/6

^C7|x| s + rx/6.T(x/2). (5.17)

Let α be any number in (0,2~s). The conclusion of Lemma 5.1 implies that
under the assumptions made here yx-+0, when x-»oo. Therefore, there is some
Lo < oo such that for all x ̂  Lo, yx/6 ̂  α. Equation (5.17) implies that for all x > L
=max{L0,3x0}: T(x)^C7|xΓ + α T(x/2). (5.18)

Iterating (5.18) n times, with n the smallest integer for which x/2w ̂  L, we get for
all x > L

Γ()^CIl+2 s+ +(2s)n-1]
s . α + ... +(2 s α)n-1]/|x|s-f αT(x/2n)

2s α) + LsT(L/2)]/|xr, (5.19)

for which we used: α w ^ 2 - n s = χ-s(x/2n)s^(L/x)s, and x/2w>L/2.
Since τ(0,x)^ Γ(x)^l, (5.19) easily implies that for all x:

τ(0, x ) ^ [C7(l - 2 s α) + Ls]/|x|s? (5.20)

where (5.19) was extended to short distances by the replacement of the factor
T(L/2) by 1. This proves (5.15). D

The above results show that an upper bound like (5.3) is satisfied whenever the
quantity yL is less than 1 for some L. We shall now present two sufficiency
conditions for this to happen.

Lemma 5.3. // τ(0, x) and Kx are positive functions such that χ= Σ^(0,x)< oo
X

and \\K\\ = ̂ Kx<oo, then yL, as defined in (5.6), satisfies yL<l for all large
X

enough L.
Proof. Under the above assumptions, the sum in the right-hand side of (5.6) is
convergent even without the restrictions on u and v, being equal to χ || K \\. Since yL
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is bounded by the tail of this convergent sum, obtained by imposing the restriction
\v\>L, we see (by the dominated convergence theorem) that γL tends to zero as
L->oo. D

Lemma 5.4. If the function Kx satisfies the condition (5.14), and τ obeys:

lim τ(0, x) = 0 in case s > 2,
jc->-oo

for x>x, τ(0,x)^λ/(l+lnx) with λ<{2μ)~1 incase s = 2, ( 5 > 2 1 )

for x>x, τ(0,x)<*λ/\x\2-s with λ<{asμ)~x incase 2>s>l,

with some finite x, and the constants as given by (5.24) below, then

l imsupy L <l. (5.22)
L->oo

Proof. Let us first decompose the summation in (5.6) as follows:

7L= Σ τίO,! !)*..,
\u\ZL,\v\>L

ύ Σ τ(0,ύ)μ/\v-u\s + 2 Σ <0,u)Ku-Ό9
|W|<L-JC0, M>L L-χo^u£L, \v\>L

where x o ^ l is l a r g e enough so that (5.14) is satisfied. Summing over v we get:

yL^2μ/(s-l).L-< s-1> + 2μ/(5-l)

x J duT(u)lί/(L-u)s-ί + 1 / ( L + " Γ ' ] + 2Γ(L-x 0 ) (1 + x 0 ) ||X||.
[ 0 ' L - 1 3 (5.23)

To prove the claim for the cases s^2, one may split the domain of integration
into two parts and bound T(u) by the corresponding expression in (5.21) for
u e (D, L— 1], and by 1 for u e [0, ΰ). With these bounds the integrals can be readily
evaluated. Our choice of D, as a function of L, is: i) for s>2, D=L—R, with R
chosen so that 2μ/[(s—1) (5—2)Rs" 2 ] < 1, ii) for s = 2 (which we regard as the most
interesting case) we take D — L/lnL.

For 1 < s < 2 a direct substitution of (5.21) in (5.23) shows that (5.22) is satisfied,
if as is chosen as follows

as = 2(s-iyι J dxx-v-^Kί-xy^-v + iί+xy^-v-] (<oo). D
[ 0 ' 1 ] (5.24)

Proof of Proposition 1.2. i) For β<βc. The recent result of reference [14] shows
that χ< 00 for all translation invariant independent percolation models at β<βc

(where the critical point is defined by the onset of percolation). Therefore the
desired upper bound (1.8) for τ(x, y) follows from Proposition 5.1 and Lemmas 5.2
and 5.3.

ii) For β = βc. We first consider the case s < 2. Lemma 5.4 shows that were (1.9)
not valid, then τ(0, x) would be O(l/|x|s) and hence χ would be finite at β = βc; but
this would contradict the result of ref. [7] that χ-»oo as β-*βc(—O). Thus τ(0,x)
obeys the lower bound (1.9) for s<2.

For s = 2, we may restrict our attention to the maximal irreducible sublattice
containing the origin (see Remark ii) following Proposition 1.2) on which M > 0 at
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the critical point (by Proposition 1.1). Applying the uniqueness of the infinite
cluster proven in ref. [11], and an FKG inequality for the positive events that
0 and x belong to the infinite cluster, we conclude that τ(0,x)^M2 for any
x in the sublattice. This yields (1.9) for 5 = 2. D

We conclude this section with a proposition applicable to certain dependent
bond models.

Proposition 5.2. // a translation invariant one-dimensional bond percolation model is
regular and satisfies: i) the "strong FKG" condition, ii) the bound (5.14) on Kx, with
s^2, and iii) the Hammersley-Simon inequality (5.4), then whenever M+ = 0:

τ(0,x)^C/|x|s with some C<oo. (5.25)

Proof. The upper bound provided by Corollary 4.1 (which in itself seems to be a
very weak result) implies that the s = 2 or s > 2 case of (5.21) is valid, and hence, by
Lemma 5.4, τ(0, x) = O(l/|x|s). •

Remark. The above bound provides an extension of only one of the results proven
in Proposition 1.2 for independent models. Let us summarize what auxiliary
information would permit an immediate extension of the other results to a model
with dependent bond variables, which satisfies the assumptions of Proposition 5.2.

i) An extension of (5.25) to s < 2 would be implied by the fϊniteness of χ for all
β<βc (proven for the independent case in [14]).

ii) The lower bound (1.9), on the critical point behavior of τ(0, x) at the critical
point, would follow, for the case s < 2, from the additional information that χ = oo
at β = βc. (Such a result would be implied by a slight improvement of the inequality
(5.4), as in [23], which is in fact valid for independent percolation [7].)

iii) For s = 2, the knowledge that χ = oo at /? = βc would imply that at j5 = βc,
τ(0, x) does not decay faster than [2μ lnx] ~ *. A uniform lower bound, like the one
derived here, would be implied by the uniqueness of the infinite cluster (see [24,25,
11] for related discussions).
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