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1. INTRODUCTION
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set of “canducting’
latiice. Fyen it the basic foca
independently
density para
phasc,

As sith other phase ransiions,one expec
mosily affecied by the dimension of
(for fnite-range systems) 1
above which the phase transition oceurs at & regular value of p (that is, |
p # . Furthermore, it is cxpected that there is also an upper criical &
dimension, sbove which the critical behavior takes a very simple form. The =

1. Frthlich.® whose work!” provides a somewhat parallel analysis to Ref..
1. Some of our results are reviewed in Ref. 4.

) (= 7,), which are defined (in Secions 2 and 4) a8
s that the  sites are all connected. The sum

the probabi
x=Er05)
C(0), of sites whid

s the expested value of the sze of the clusier,

5, in Refs 5 and 13). We present
beaavior of x, and discuss the critical exponent y defined by

as pop

{in some appropriate sense),

Troe Graph Inequaities ™

 carrelation length €) which hold for genesal homogeacous latices. Some
satisfied as equalites for Bethe lattice

Some heuristic geometric ideas and a rigorous dingras
convergencs crierion for the upper citcal dimension. Above this dimen
sion the critical behavior of both x and the functions 7, simplifies consider-
ably; y =1 and we conjecture that he structure of r, is actaally well
described by the bounds mentioned above (up to corrections by fuctors
which sre regular at p,).

Most of the resul
nvariant) percolatio

22) provides, quite gener
(which was known) but also for the critic

exporeat y. Specifical

83 BM (orp,  p* for models with a single densityp) (13)

and
L (=) a4
Both statements follow from a single upper bound on (d/ a8 8)"'|

107 [(d/dp)x( )" |, where approprintel, which by intcsration yields upper
a7 lower bounds on x (Section 3. For example.for the standard model on

anly the neares ity .
¢ bounds are
(2d(p, )
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[For a relaied quantity £ (< x) one can replace (24) in (1.5) by (2d -

which is assaciated with a slightly betier Belhe attice approximation.]
3. Upper bounds for the connectivity functions , in terms of func-

tions of lower order (Scetion 4). ‘The ultimaie reduction stales that i

the irce disgrams having x.,
he intermal vertices. The staples such

external vertices, and valence 3
hound is

7l 02 0) S S e )T ) 6

(Gorany indepesdent bond peccolaion e
4. General exponentinl bounds on e cluser sice diser
any B B, (of p < ). Speclically

for k> x* (S constan
improve previous resu Moreover the bound
even for long-renge percolation models, including those for
does nor deeny cxponentally.

5. Exponcntial hounds for
models, in which the connecting buncs are of hounded length, Fer the
standard nearest-neighbor made!

e

() 2 (1 = x )T e a3
I
For the proof of (18) we decive an analog of the Sion inequaliy
wvernent). The validity of tis incqulit for percoltio
ed by o mumbr of poplc—ses Sevion 52 Tlow:
ver o bound (15 epresnts gt mprovemes appl

for the upper-ritcal dimension. An explict formula
e e the cuical behavior of  sim
considerably in d [

models the critical exponent  atains the Beth
£}
in the suoay sense that x(p) i bounded both sbove and elow by |
cxpressions of the form const g, ~ pl3. As a concrete critrio

i Section 6) that in fnite-range mode's (19)

v=1

Tree Graph Ineauites m

iangle disgrar”™

X7, 9} (. 0) (110

e o1 3 o, ol it o < »
€ above eriterion is remi
differeat statement which holds for

= 7 of the bubble diags
B =3 5(0.1)5(x.0)
where S(0,3) s the spin cor-elation function

For a simple comparison of the two criteria, lel us rewrite the quantic
se of & cubie latice 24,

ties, for the. ‘erms of the Fourier t-ansform:
= ¥ fomens
e dkA(ky 113

et

Tt s known (by the “reflection pos
spin_correlation function, i
acighhor inieractions, satisties

3
forall < . Thus the shose criterion with 5 is met in dimensions d > 4.
Were the analog of (115 fo hold for #(k), our crterion would show that
7= Lin any dimension above d = b
the sbove results 4 temuous support for the notion

aa M.;,x\wm?,_fw_ - )

iy prove that 1= | in o prd
efined by: (k)= const /&= (at p = p,), satisfics:
736 @) (16

the critical expanent 1,
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7. We expect the simplification in the critical behavior, above the
upper critical dimension t0 show rot unly in the critical xponents, bul also
in the structure of the connectivity funetions 7,. For reasons me;

Section 4.1 we conjecture there that the latter reduce, asympto
inction—given by the tree diagrams, f;
some nonsingular vertex factor 0.< G < |

Other wechnically useful results not mentioned sbove, include a gensral
positiviy statement for #(k) (Scction 3.2) and the difference inqualities for
7, of Sestions 42 and 52,

I most of the paper we refer to bond percol
the analysis has a natural extension 1o sile per
reviewed in Section 7.

i models. However,
Jation, which s briefly

2. BOND PERCOLATION MODELS

21, The Model

dependeat (Beroull) bond percol

‘We consider here quite general

© is 2 countable sct of sites, denoted by |, with a zroup of
isomorphisms (transletions T:1 —1) which acts transi
o pairs of sites as bonds, b = | nd assign
variable, 1, = 0 or 1. The variables {n,} are jo
prodabilities

Peob(n, = 1) = Ky(#)

¢ parameter

which depend on
below

0.50), and have 4

() Homageneiry (schen statcd): m
Kirn(B) = KA |

(i) The funcions K, () are nondecreasin in , and ocally summable S84

in b, ie. 4

where
N_EJM K(8)

(I the homogencous case, the subscript x in &, will often be omilted.)

1

i) With no further loss of generality, we also assume that Ky(2)
and K, () wre differentiable functions w

Ki@)=0  forallthe boncs b )
a
Eip_ s o5
L5k H e 8
2
e
While te ollowing condition will . b used, it may alsobe ssumed
hat
sop i )|
w i K(F)
For agiven confiuraton ofvaes of (), we regerd uch bond sith

the latiice into connected

=1 as occupied, or coanceting, and partitio
components.

portant, and standard, example is €= 27 (the d-
tice) with only the nearestneighb

fx=sl=1 o
otherwise o

Kol

[(B)
ay={7
(8) o
The natursl parameter for such models i, of course, p (0.
Denoting by C(x) the {n-depeadent) connected cluster car
site x €L, we define

#(x, y) = Proby € C(x))

=PobCin=Cm]  (28)

and

x= 3 7(0.x)

e

“Thus r(x, ») is the probability that x and y are connected. Further-
more, x = X(f) is the expectation value of the cluster size;
x=<cOl>

| is the number of poins in the cluster.

@10

where |

Remark, In order 1o exphain the relation (2.10) it i useful 1o intro-
duce the indicator functions (of {n, 1)
’ (L # xeco o
eremisiy & ieom &
One gets
100 =UlxECO)]> @)
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x=Zdllxecob=

(Silx=co) =

ing those) xkibi a phase iransition,
is  nondecreasing lurction of f) diverges.

One of the main questions addzessed in this papee is the value of the
critial expanent

which x(4) (whi

logx(8)
Tog(F. 8)

which characterizes the critical behavior (¢ 6) = (. ~ B)°) in the vicine
ity of ths critical poin;

21

Bo=sun{ BIX(8) < =) (215

Remark. p, p()is py. or 7, in the nottion of Refs, 5 ane 13, It
bas not yet been rigorously proven, cxeet for d =2, that 4, is also the
percalation theesiold, where infinite clusters first appear

22, The Bethe Lattice Approximation

‘When pressed for a quick estimate of p, and the critical exponeat v,
ene is tempted to reduce the complexity of the problem and consider un

lastice. While his s 2 very simplisic treatment
eivial effect, we shall demensy

Denating by X the quat

e % u- iyt

x=(1+px"

Tive Graph nequaites s
Thus,
1+p :
)= @18
al probabilty, snd the eriial expanest
Blo@d-1),  ythel 219

On the tree used in the above approximation, the sel of liks con-
vertex is isomorphic to, and car be labeled by, the set

ore general cas
by (2.). However, a mild somplication arises from the fact thal the
along any

denote by un asers, one
(8 =[1-K(8)] (220)

which diverges ut 2, where S oKy(82) = 1. Furthermore, for 8= 8¢,

@21

\
wer=(fEel ) my

the eritial exponent v is sil |
In the next scetion we prove, by mears of a single differential inequal-
i1y, that the sbove simple calculztian leads to rigoraus hourds for both f,
and the critical exponent 7. However, since the first statement is in fact a3
older, and commonly made observation, let us present it here,
The critical point (defined by (2.15)] for the bond
satisfies

Proposition 2.1
percolation model 2.

B> 8 @22)

Furthermore, for the nearest-acighbor model on 2%

x5
) )
i el RS

Proof. 1f x €2 s connccted to 0 then ther is a selfavoiding path
slong the bonds of the lattice) which connects the two site, all of whase
‘bonds are occupied. The probability of such an event equals the probability
that the site on the tree described above, which corresponds fo the given

d there (0 the origin. The summation over such tver
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leads to the upper baunds
MB)<XPH(A) S XB) (08

which imply the corresponding inequalites among the eriical points. W
Remarks. (i) It is clzar from the ahove argument thal the bounds

2.22) (2:24) car. be improved, by a better count of (ke self-sv

An cstimate of this type was used by M. Fisher, in his deivation

E Id upper bound for the critical tmperature in Ising models. 4

i) 1t might be pointed out that the bound (2.24) does not provide us 4

with any information on the critcal expor

Nevertheles, we shall next prove that the Betb latice value of

2 lower bourd.

2. Lis expected that
a stict equality y = v holds above an upper eritical dimension (d = 67),
We shall now prove that 1 s ia general a lower bound for 7, and derive 1§
ilerion for the upper critical dimension. ;

3.1, A Lower Bound for 1

vsea:a._a.r;.._‘15CE_S__::_%E%E2.5?5,
model the critical exponcat v, dfined by (2.14), salsfies

Furthermors, for £ < 6,
X(8) >[K(8)-K(p)] ™' 62
The ahove bounds are derived Irom the following differeutial inequal-
ity for x(f) ",
Lemma 3.1. The quantity x(A)™' is continuous al f, [ie, |
lilysx(B) = o0}, and satisies

) ~@xp LKD)

for f<g,

{The derivative (d/d@)x =" is interpreted here in the weak sense. The result
of Section 5.1 imply thal for the ncarest-neigkbor model on 24 () is i}
factreal analyti for p € 0, )] e

Tree Graph Insqualties

Before proving the lemma, let us present its application.
Proof of Proposition 3.1. The houndary valucs of (@) in the
terval [0, ] are

X0 '=1 and x(R)= )

“Thus. the integration of (3.3} from the two cnds of this interval (see Fig. 1)

- [P 4 Ridrax

' Aol
<0+ [P L K(syds

1=K(8) < x(®) < K(B)-K(8) 33
Notice that in zddidon to implying the clsimed (32), (3.5) includes also the
(A bound of (224) ard hence the incquality 6, > *
The hound on y in (3.1) follows from (3.2) and (2. B
For the nearcst ncighbor model on %, with K = 2dp, the bound (3.3}
shows that [dx ' /dp| < 2d. Omitting the proofs, let us remark that by

(by combining the arguments used. next with some of the idcas used in
section 4.2) that

XS (1+p)R (28]

g
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67 &

‘These bounds are quite reminiscent of (2.16)-(2.1

X(p)> R(p) [ (2~ lyip -

which is & slight improvement over (32),

To prove Lemmn 3.1 we shal firi derve the following rosultfor fin
systems —without assuming the Bomogencity conds

Lemma 3.2, Ina percolation model on a fiste s L,
P
BTN S 3 k) (K ey /B0, )

et

a9

Proof. Foru given configuration of {r,] (i, o
we say that the bond {1, o} is pivaral for the connection

£o poinis are counccted in the configuraticn which is obtsined Irom (7,)
by se

= 1. and are disconnccted in the configuration oblained hy |
8 sy = 0. By Russo’s formula (ar a simple direet argument)

7%, ¥) = Prob({ v} s pivotal for the c

ction of x with

ivhere we view (x, 3) as a function of (K,}),
We shall denote now by ¢ (= or just €(z), the cluster of sites &

m {n,}) are conneete

i5 5el 1o 0. Reexpressing the right-hand side of (3.1

700 ) = Prob(x & )y & E(e) and

ofthe above
= Prob(x & C(u), 0 C(u)
X Prob(Ci()3 y1x €, 02 C(u))

+a(uere) perma

“+a(ue> v) permutation .
where the last factor is a conditional probabily.

The firs factor in the right-hand side of (3,11) is clearly bounded by}
7(x,u). Furthermore, the second factor is bounded by (c, y)—since thé
specification that €141 (u) = A, from some A CL. does not affe {in the ' &
independent model) the distribution of the bond variables of LA, (This
poinl i made more explicit in Section 4.2,)

Tree Graph Inequallles

Ttence
@12)

and therelors

L)

4
it

4 ey ® 313
KBy iy

lerama, which dea!

We shall now use (39) o prove the m
homogeneous (infinite) systems.

Proof of Lemma 3.1, Since x =3,

19). Howeer, this azgumaent

of i B x(B)T =0

Dl i i
/7=08, = L. Denoting by +"(x, y) the probability that x =nd y are
i by the occupied bands whase both ends are in ).

K= sp 3 T(x ) B
Cleady
X(B)>0(B)> T <(0.4) 315
By the bounded comvergence theorem +0,5) 7 (0 %8
AR or
KB =y (16

Tis easy o see that the functions (), which refer to finite systems,
are piecewise differentiable in . Using (3.9) we get
2% sup L3 o,y
RIS e g 3 =)

<sp T o :.sz

i 5.17)
<| 43 KUBY %8 ¢
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An efficicnt way 1o write (3.

) is as follows:

A< gk (3.18)

18), and (116) imply both the continuity of
the weak form, for ing funetion].
[}

The results and the arguments of Section 5 show that in « large class of
ion models, for cach < 8, there is  finite correl
)= (0.0) with which

(.5) < e~hAle .19

where .x - 4| i & Tinvariant mettic on L. Proposition 3.1 has the following
important consequence.

Corollary 3.4, 1 (3.19) is sat
L, with a metric for which 3., ye”

ied, for <, on an infinite la
<0 e 0, then

Jim €)=

Aemark. The arguments inicoduced in the proof of Lemms
provide also a simple (che
‘mass-gap” (1n = € ') in Ising models, and other ferromagnetic sysicms—
for whick the analog of Lemma 3.1 holds by the Lebowitz incquality,

4.2. Discussion of the Upper-Critical Dimension

In the previous discussion we found it usefs

0 consider the guar

ity X(4)"". In parteular, the Bethe latice law, x(§) = c/(§, ~ ), cun
be simply churacterized by the nonvanishing of the quantiy (d)f)
MP) . The formula (3.11) leads to the following exact expressian

the derivative of x{( )" in ‘homogencous sysiems:
-[4&, 'dypy
[a% @] " um
b o Cmrmik.us ;\R\LEQIN )3 x, W..SSAS 3y,
i and G100) () €109 (4) w )
Sy [ S CO S PO CG =) 21
The summalion over in (321) i ffectivel restriced o stes near
Wheres th regon over which th x,  sum s gnfeant for e depmman
tor divergesas 44, Furthermore, af we saw n (1) (1191 soch e 8
the numeraor is ounded by the corresponding e . (e deneminaior A

Trea Graph Inequaliias : 12

ief contemplation of the ratio of corresponding terms, reveals that the
varishing of dx(#)"/

e above picture suggests that for suffi

ax!

A (h-0)#0 52y

in which case one has a siict cq.

(323
‘The analysis of the next section leads 1o the following criterion, which is
proven in Sectior 6.

Proposition 3.2. (3.22) and (3.23) are satisfied (the former in the
sense of liminfy ) for the standard model of 2 in any dimension at which

v .M:;%i.;f.s,ux C B=f (224
(o, cquivalently, ¥ is unformiy bounded for < )

1o s intresing (o note that an analogous, yet signifisanly different
7esul holds for the Ising model, and other ferernagnet spin sysems-for
hich ihe citeion for the mag
finieness of the “bubble diagrn

B=TS@rf<w  at p=p (29

19 (Taere are also similasities in

crieria were compared, and cont-asted, in the introduction,
the help of the Fourier-transform representations (1.12)-(1.14). For
hese, and other considerations (c.g. in Section 6) it is usefal t0 note that
#(k)is porsitive, by the following general argument

Lemma 3.3. The function =(x, ) is of positive ype, in any peccola-
on medel (i not even a necessarty independent on). In particuler, for
a uans wariant model on £,

k>0 @)




For any summable fu

)= { S &y wre conaeced] i)

Proot.
PG CH

fiLsg,

(5

imcat 1t yiit th Tollowing in

(k)= X Trob(C(0) = 4)

where [4] denotes the cardinality of 4. B
‘The analogy with spin systems seems Lo siop here. The

that, in any dimension, 1 > (6 — d);3 implies y = I.

4. TREE GRAPH BOUNDS FOR THE CONNECTIVITY FUNCTIONS

4.1, Description of the Main Result
The previous discussion focussed on the behavior of the Lyo-points
inction (x, ) (= 1y(x, ) in the critical re;
that one would like to understand also the structure of the higher conne
tivity functions, which are defined as follows:
%) = Prob(x,,

connected cluster)

(%,

%, all belong 1o the sare

al the) information about
r, the moments of (0

‘The functions =, contain further (in fi
structure of the connected clusters. In partieu
given by

ceor={{

Tree Graph Insqus

s 2

The main results of this section are the “iree diagram bounds,”
iniroduced below, for which [ need not be homogeneous (nor nfinite),
First let us defia the following functions

Definition.

For any n 2 and x,,

e i

To remove the redundancy dent
poinis (whose contribatior.
sx)= 44

where the sum 3 is over al the connected tree graphs on the vertex st
£+ -5} UV such that each of the vertices, y € ¥, belongs to a¢ Jeast
three edges and cach of the vertices x, belongs o al least ane edge.

In any indepe

20%) S D7y

Proposition 4.1, ‘ent percolation model N

L e

3 Xg)7{ 263} &5

—
“TNis clear frum the proof of Lemma 4.1 that T, could be replaced, in
(46), by T (< T

Before proving the proposition let us present some heuristic ides
about the sicucture which emerges herc.

‘The bounds (45). (46) are made somewhat niuilive by considering
st the low-f limit, in which the bond occupation probabilities are very
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0 be the case abuve the
upper eritical dimension discussed in the preccding section,
. and the proof of (4),
we choase as a concrel

fead us 1o the

Yo 3 a0

= )

Conjecture. If for a percolation madel on T4, with X,
range, the ratio ¥/x* has

then, for any (nancoincident) x,,
Alehbamt) 5

o DS R 49
A TR “

n of f which diverges when 1., Tn (49) xf &
as the closest s

where ¢ can be
should be interpret

systems in which the hign dimeasionality crilerion (3.24), of Proposition &
3. 3 met, there is also a lower boun e form 7, /T, > 8° % wit §
530,

Wien (49) halds, the b

o heory. A relation beiween

decd been expected, on
of arguments (scc Ref. 15), which we find far loss compelling than even the,
above heuristc discussion,

tum 1o the proof,

42, Proct and Some Other Useul Insqualities
Inour decivations of vrious inqualites  key role
rendon bt of L sxamplof aic i C) it oty pog
anlogous 1 the consniipaing prepeny pssced by sapping e
the casicl thcory of andom walks, Markor proceues, i Paringne

128

1s have been previously employed
Iy of percolation and related problems, it s aseful 1o formalize
it goncral structure. We consequently offer the following definitions.

ition. () A

 valued function §

()L it rndom s

ns of (1]
id w be self.dotermined, I for <ach
nonrandom 4 CL (poss e event (S = 41 is determined by
40 e ) o i s s e 6 i a s
(L. {5 4] is i the o-Lield generated by the above deseribed st of hond
variables).

T the last statement we could also refer directly (o the events |
= 4], however for infinite sets 4 such stafements require  droper interpre.

ined sets is based on the fact that for indeper-
wal distribution of the oceupation variables,

Definition. W say that a sel ¥ C L is connecred in A, a subsct of L,
¥ is connected by the set tof those ccupied bonds whose end paints
ibath) fn A. The probability of such an event is denoted by 7(¥). In
PR e el ey

st
() Er ) =n(x

%)

for V=1

Proposition 4.2. 1ot 4 C 4 CL. Then for every V=
cL

1S ) -na)< % 3
;fﬁm,ﬂ

IO (1))

(4.10)

Proot. 1t suffces (o pr , and L] < 0. The
seneral cuse follows by  simple teescopic decomposiion of 1., - ryg
associated with an interpolating sequence 4 = AyC A, C A, C - -+ © 4,
with (A, \4] = 1. The resul extends to infinite I’ by & simple continuity
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st ovever i shoud b poted ot i with & proper mtoduc-
tiom, the following argument appiies also direcly 1o infiite systerss
Thus, we assume that 4 = AU {3}, Let S be the randor set of its
ad 1o 3, ImLVA. I casy 1o e that

(V)

whith are con
wal¥) =7

= ]V is connested in LAY Vis conneeted in L\A )

=LV is comnected in 1A but not in LN >

uMQS_\“?
% Zat least one of the bonds bewscer y and § is ccupied]
s comected inL\(A U S)]) (41

ing on those

il

U< (M) - a)
= ¥ dsnv=

Xy ans

S AW )

e by s roes (10). I

CpnE R e
e el

Aser

Lemma 4.1. In any independent bond percolation model
(¥ n]) S > e (WU (p])
T aewGin

)
Xe(({Xare e X AW U )

Proct, By simpls
(e n]

s connceted ]

©x) i conneetod ]
s connceted in 1€ (x,) >

“Tree Graph Inequalits 121
Substitutiog in (4.14) the bourd (4.10), we obtai

> e

Xr(({x,

d & simple grasp, of Lemma 4.1 may be
lowing scquential, self-determined, decom.
imic constractions of

arbitrary total ordering of 1
we definc for each x €1,

and s given confiuration
Gtxy = (x)

G3)=6, &) est”site i LC, - (x) which skarcs an
ecenpied bord with some site in C,_,(x)]
for | <n 5 |C(), and
G =Cax)=Cx) Lo n LQ;

I for cach
el 3 €L, and () C(a7Cen) (vl comver

A direct proof of Lemma 41 i obtained by noling that it
nnected (hen there s some | % &< 30 at
L\Cy(x). The

us fiish the proof of the resull distused in Section 4.1

Preof of Proposition 4.1. Lemma 4.1 provides a bound on ,, for
22, in terms of wriedly lower-order

3 steps) 1o an
expression which involves only 7,. The resuting sum is casily seen to be the
free diagram bound claimed in (46). B

ns from equalty in (45) and
lacement of quaniities like 7.,6(-), or
rect proof, by (-}, Implications of the ubservation

{46) arc fully traceable to the
(-)in the above
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EXPONENTIAL DECAY AND RELATED INEQUALITIES

e e e s e
nge sysiems. Some inoqualites used for the

5.1 Exponential Decay In the Cluster Size Distribution
The tree diagram bounds have the Zollowing implication.

Proposition 5.1 Suppose, in an independent percolation model

then, for every x © Lwnd & > x?,
Prob([C(x)] > ) < (e %)/ e ~+/630) &

Proot. The moment formula (4.2), a

A= B matxy
S

umaber of tree graphs appearing in T,_,. It s casy lo sc

 number of edges in the irce graphs of 7, which

) & N (53

Npwi= @u=3)= @ - /(2=
Summin (5.3 with weighis given by the correspondin
sion, we get (with no further loss)

{UCleD < x(1 = 2x)
for r < @), |C| =€)
By a variant of Tehebysher’s inceuality, 5.5) implies that

Prob(|C() > £) < inf (Cle"Dy/ (ke
<% inf(1 -2 e~
which fwith r = (2x) '~ (2k)~] yields (5.2). B
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To complement the bound (5.2) let us mention that
Prod(a: > |C(0) > A) is quslitatvely different for high
In Section 4.1 a conjecture was made about the structure of e
ove the upper criical dimension.” T
vior which corresponds to (49) is

cr 67

s interesting to notc that if ane delines & random va
(W = k) = k Prob(|C(0)| = k) /x

¢ stalement that,

ndard normal random varizble snd the limit is in the sense
o distribution.
own that (57) is satisficd in any perc

for. model on a
=1....K) wth
re. (This fact was also noted

For systcms with a finite-rnge function K,( ), (52) can be used 1o

obtain exporcatal decay of 1(x, ) io the distance | — . However

uy constant will o obiained in Section 5.3, by using the analog
Lieb inequaliy which is derived e

5.2. Inequallties of Simon-Lieb Type

We now twm our atiention back (o the two-point function x
starting with the derivation of & number of ineq
Simon—Lieb correlation

tes for percalation
modls was realized by a number of people—including B. Soulurd «nd
F Delce

Qs__mq 5. Tn an independeat bond percalation model
(e (R € 3 w00 10
2

for every v,z €L, 4L

ARV
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s .5 th sene hat
any conseciing path along bonds with &, = 0 intersects A ther
Aul(x:)=0 S :,
The estriction of (5.10)to such separating st yilds a diect o of he |
imon incquality (of Ref 6.
For an improvement, somew

Tetus define

(5, 3) = Prob(x and  azs conaected by a path of

‘oceupied bond, of which not more

than are touches A)
Proposition 52, For each x.2 =L and 4 <L,

"0 = (%) € 3 H 0 nns)

Proof. The proof follows the pproach used in Propos
reasons mentioned there, 1 sufices to deal with fince Systems,
Let § be e random sel

S [e el is comnccted to 5 in L

Then, as in (4.1
)= ma([%,21)

= (% and 2 are connevied in L bt nn
=ulsz

A
A shich is connected
nked 10 S

] there is some pointy &

102 in L8 and which i

by an occupied bund >

< 3 ] yis directly conneeted to Sr(r,:))

=3 Huyrinn. B

Remark. T relatc # 1o the usual connectivity function, let
Lix.A) = {u €L |there s a path Irom  to x which has
ot more than one bond touching 4]
Itis easy 10 sce that

) S aeal{xoh)
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certain siwations (5.16) is not a very wasieful inequality. Flowever, that

e 3

K a(By(e2) (A7)

(5.17) may be used for another proof of Lemma 3.2, We sl
another application of such inequalitcs.

5.3. Exponential Decay of 7(0,
For finite-range percal
1o prove the exponential cecay of
estimate of (ke exponcy
In a general pes
= (Bl Ky
o(x. ) = th

E\; the set of “relevant” hends:
ot the following mel

imal mumber of bonds in 4 needed to connect x with

e, for x £1

Tn a homogencous model we des

0.7
Wit  transaton suh that 7.0 = x|

J

= sup im

L= T2

For example, in the standard nearest-neighbor model on 24
¥l = 3

e toralll = R e

‘The general result (which may be further extended lo sonkomegenous
cases) s

Proposltion 5.3. Tn any homogencous independent bond percola-
tion model, with x < oo,
O <1 x )< et (520)
Proof. Let
&= MF =(0.9)

ny<n
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By Corol
2 x, we have

ty 5.1 with A = (yo(,%) =

L and (511) with x =g,

0N B O 521
hat p0,5) > . A
Ref. 6 shows (hay

ple itecation of this ineguali

(asin

08 € gt g0y a 5.22)
where [a] 3 & — 1 is the integral pact of a.
Lemma .1, below, implics that (5.22) can in Fuct be simplfied into

(0 (it

The necessary boand on inf g!/* i provided by Lemima 5.2 B
We referred ahove 10 the following results,

Lemma 5.1. For any homogencous independent bond percolation
wodel

7(0.) % inl £(0, 730)""*

B4 29

for any transla
=),

T, such that 7,0 = x (in the standard models: 750

Proof. Given 2 translation T,, with 7,0 = x, it is n
dox =< 110, For each integer & » 0 we have

Ok > 1({0x2x, ., ke)

al to denote

® rOx)r(e2x) (k- Dxkx) =0 (525)

where the second by the FKG inequaliy. ®

Lemma 52 For any sequence g, with g= 1, g, 0 and 37 o5
=x < %, we have =
int (g, (526) &

Proot. If inf,(g)"" > 1~

L then g, > (1= x"'Y for each’
a3 1 and thus %

.M?IMATX‘ "= x (5.27)

which contradicts the given data. B
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Let us conciude this section with 2 few remsrks about percolation
models on 2

For & nendegenerae i range model 5 norm ] used ubove
lent 10 the Euclidean norm [xf, and sa x| for some
y,the connectivty (o sorroleton) ength i it
minimal value for which

(0,) & &~ (528

the minimum s attained). Proposition 5.3 shows that for

(by Lemma 5.

YR <[l -x7Y] e x (529

2) By Simon's acgument® the Lich™ type improvement made in
Prososiion 5.2 leads o u proo that
Im&(B)= 530
lms) ©30)
However, in Sac
G0

3 we preseated &n sven simpler proof of (5.30) [there

For long-range percolation models (a5 the one studied in Ref. ?
in which §(8) = co for all 8 > 0, une may “control” r(x, y) by
the above arguments with a method used in Ref. 21—just as is dane
Rel. 6,

g

6. DERIVATION OF THE 7-CRITERION

Tn this section we derive tae crierion for the upper eritical dimension
which wes extensivcly discussed in the intra
out repeating the discussion we shall prove here Propasition 3.2, which may
be rephrased as follows.

Proposition 8.1. 11, ir the nearest
on 2 the triangle dingram is finite 4t p;

cighbor bund percolation model
i

YHE 3 O 0 <n s opmp 61)

(or, equivalenty, ¥ is wnformly bounded for p < ) tien, for some § >0
|y

38 foral 62

[Z6—|7 fora p<n @

In order to simplify the presentation, et us prove separately a mich

Jess wseful zesult. which shows that (62) holds if T( 4, is not ust fnite but

less thea L
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e el e e ol e
REION
B

g

a8 1
i% -8 (63)

Proof. The summation, as
10 the following cxpression:

13). of Russo’s formula (3.10) feads

Lt
C e AL

-t [

=1 2 [dasen]

X (I {0, s pivotal for the connection of x with

where we made & simple use of the translation invariance
simplify later notation we replaced 0 with x in the more natural cxpres-

B s by €(a)= C154102) the cluster of Hites
conneeted to 2 even afier the bond {0.u) i removed, we heve
(0 I
= U[C(2) 2 O)ma gyl 11
+ a(*©> ) permutation of the above
Applying Corollary 5.1 (or Propasition 4.2) 1oy 0

Tolte2) = 7l 1) = [7.2) = sl )] i
o) = 37 € ey (69) ]
Substituting (6.6) [where €(x) C C(x)] in (6.5) one gets .

R r
sl > B[ & Kt <t 20t

- SACm 30w ] 6]

By definition, and the tree diagram bouad (4.5)

(and. of course ([C(x) 3 0 = 7(0,)).
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ircermapeed
sl The summtion i over &1 e
e ailing 10 €)

The subsiauton of (68) in (6) Jeads to the lower bound which i

descrbed in Fig. 2, ls summation s n fack quite srople, due o he
“ransiion invariance, The reult .
ap) TaRE ],

> BB Lol - i S0 mpsimarneny] (69

| 2 Sromrimaran] - (69)

The supremum in (6.9 is attained at u = 0. by Lemma 6.2. Di
(69) by x° one gets (6.3, W
n the last step we used the followi

resull,

Lemma 6.2. In « homogencous model, for every v € L

(a0 S SO0 =T (610)

lows from (3.27), o Lemma 3.3, that the quadratic form

@)= 3 r(wwyr(myr(e) (@11

. A standard argument, based on the Sehwarz inequality,

= 0(0.0)

Qv <[ Qe
where the lust step
use the Fourier tra
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of (6.3) 10 cases where V() is finite
ing lemma,

Tn order t0 extend the
but larger than 1, we shall use the fol

Lemma 6.3. In the nearest-ncighbor model on L= 2 (4 > 1), for
each finite region A > {0,

[ €03 0and s comnected 0 in 0110y

> e (€020 (©.13)

of sites

Proof. Lt the cvents E. ., and G b defineq as
T o

Fi C(x)>0and u s connceted to y in LG,
G CINA=08,C(NA£Band ¢ Ay =0,

Clearly G 5 £, F. Thus
Prob(G) > Prob(F) and Prob(E) = Prob(G Prob([ G) (6.14)

Jast factor i & conditional probabiliy.

F occurs. Therefore
Prob(£]G) > [min{ p.(1 ~ p)}]"= ¢, 19

and bence, by (6.14)
Prob(E) > ¢, Prob(F)

s cquivalent 10 (6.13). B
Propesition 6.1 will now be proven by the srgument of Lemma 6.1, 1
combined with (6.13).
Proof of Proposition 6.1. 1t clarly suffices 10 prove (62) for the

range p & (p./2 p). We know of course

iy a5 sy ondiion for 6.1

By (64), (63). and (6.13)
ax(p)
e 3
o wsatiel

T applying the bound (6.6) to (6.17) we may now restrict the summa
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over 7 to L\A. Using (68), and summing, s in the proof of Lemma 6.1,
one gets

dx(p) o
Pt et IR R wronnr| (61
with €u(p) > [min . /2,(1_ p))}** —uniformly in p =
plays it (6.18) he role of 4 2)/d]

Since V() < oo, there is some finite A I

/2. p). (24

which
2 (619)

nt that Lemma 6, jon 6.1

can be extended 1o more general syst

and thus Prop

7. INEQUALITIES FOR SITE PERCOLATION

7.1, Notation

I his section we preseat the analogs for site percolation of the resclis
derived and discussed in the previous sections for bon percolation models
Since the proofs are cssentilly the sume, we only skeich them with
cmphasis on the changes. These arc primarily in the definiions of the
relevunt self-determined sets,
percolation model on 2 latice L the sites in L
are independently occupied. with probability p, or vacant, wih probabiliy
1= p. For each site x & L there s  prior specified collecion, %) C L,
of “ncighbors.” In standard models L = 2%, and 5, » & 2/ are neighbors
1 = | = 1. Th discussion i confined here t0 modes in which the rlstion
#&N(x) (“x is @ cighbor of ") is symmetric. However, this property is
methods, which can also be adspted

oriented percolation.”
Lt will also be assumed that the following quantity s f

s =

Y= spard(N () < » an
We say that x and y are connected (resp. connected in A CL), for 2
ed canfiguration of the occupation
neighhoring sites z, = x, £,,...,5, =y

" e 1€ N
occupied (and, respectively, in A). The sct (x.

5} i said w be
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connected (or connected in 4) f each pair x, x, is connected (resp,
connected in A).

We define C(x). the cluster of x, and #'(x),
of x, by

e “augmented” cluster
C(x) = (¥ € L|x undy are connected)

iy fx rh V] ch

ey

(72)

Thus £ i the conncted lsterof x in he configurtion obind by
ctivly functions associated with. thesc

5] is conneeted) =

2 = Brob{x, a5 € L)) = p (1)

i in their arguments. C,(x
ihe connections it A,
expected sizes for the clusters, ard augmented clusters, are

Notice that o, as well as 7, are symm

e = 3 (<)
2

GAd = 3 atx,y)

=pcre)l

We derote
x=sapICol
X=mpd£ (b =p %
and define the citcal density by
pe=sup(pE[0.1]Ix(p) < 20}
end § were inroduced her sic,  will be scen, they offr
closer analogies than C(2) and x to the bond percolation clusters.

A self-determined set for site percolaton s  random subset S of L3
such that for each nonrandom A L, the cvent (S 4) (and hence also
§'=4) is derermined entirely by the occupation,/vacancy of sites in A. 8
Nate that C(x) is not & self-determined set, but s Glosere

s r |
Cw = vyl U vo)
»eten)

s sell-determined set,

Trse Graph Insqualites 1

7.2 Bethe Lattice Bounds
For site percolution on « Bethe fatice with the coordination number
(i umber of ncighbors of cach site) M, one gcts
VIR -
- ()

o) = T = T ()

which is analogons ta (2.19),
By the argument which led 1o Proposition 2.1 we have its fol
standard analng.

Proposilion 7.1. Tn a site percolation model, with A" < 30 [N ce-
fined w (7.1,

o< R(p) @8
and, in partcular

>N

For the standard mod
Neliodly

LV may be repl

7.3. A Lower Bound for 7
on model

Proposition 7.2, In any homagensous site per

.
Tr.-
Tn particular, the critical exponcnt v, defined by
satisfies

@10

i analog of (214),

x(p)>

val 1y

‘The proof is a direct adaptation of the proof of Proposition 3.1 By

upplying Russo’s lecmma to site percolation we have (for infinite systcms
only formally)

.12

LB 3 ok o e o o

$700- 3 Pty )

LA 03 T, S i i e a5
A il G et i

= Prob(§ 3y ind L10(1) 7 5)

<o(0, o

=Ly
:

(by canditionng on ).
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Substituting (7.13) in (7.12) and summing over x we get
(7.14) &
and hence the

015 8

‘The arguments used in the proof of Proposition 3.1, show how to
extruct from this bound, whose Cerivation for infinite systems is only.
formal, an actual proof of Proposition 7.2

7.4. Inequallties for the Connectlvity Funclions

¢ resuls hold for goncral, iz, not necessarily homoge-
neous, site percoltion models. .

Proposition 7.3. For any V' = (,, .
W mma(Vis X 03 oy

Fun ey
brire

wholmdacl,
AT U () (16) |

One can prove (7.16) by a direct aday of the proof of Proposition &
42 The i e
bl g
occupied 3nd NN 7.5, 1 i comeient 1 ormulae o pot fo o
fumctons y and anly b v end abeh i st facirp b & s 00

By the argument wsd in the proot of Lemma 41 (116 s
ey

Lemma 7.1.

q <3 w

*al((

R ()
s
Let us now denote, for A ., :
84(x, y) = Brob{x and y are conneeted by a puth of
occupied, neighboring, sites which avoids
A, except possibly at one ead porni (x or ) (11
The following bound s (he analog of the Simon-Lieb-type incquaity

Tree Graph necuaities wt
Proposition 5.2 Is proof requires only a minor modification, like the one
‘mentioned ahove.
Proposltion 7.4, For cach x.c &1 and A C L
o(x3) = 0u(x2) € 3 44 (5, p)o(r.2) (.19

7.5. Tree Diagram Bounds

lierating Lemma 7.1 we obtain the falloy
site percoltion.

Proposition 7.5.

18 tree diagram bounds for

T replaced by o in both
is valid also for general
independent site percalation models. In particular,

o153, € 3 oxy,$)atx1: )0l ) .20y

7.6. Exponential Decay

ribution,
there

‘The above result implies that the bounds on the chuster size d

X(=p) s finite, then for every x €1 and & » X

Prob{|C(x)] > k) = Prob(|.£(x) > k) {e/k =)

Simi he resulss of Scction 53 on the exponential decay of the

iwa-point function apply also to s & and ¥ replacing 1
and x, and the set of bonds used in the definition of p(x, y) defined as

= (bm(xy}lye M)

With the norm || defincd by (5.18) we have the following bound
Proposition 7.7. In any independent site percolation odel, with
x=pR<=

(0x) = pa(0,x) < p(1 - % 1)
“The proof is by the argument of Propos
¢ the Simon-Licb-type inequality of Proposi

equired
i 52-for which a pefect
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site percolation analog i found in Proposition 7.4, and Lemma 5.1. The

FKG argument used in (5.25) for the proof of Lemma 5.1 applies also lo
ion o, as can be seen by employing the aspmmetric expression

bovas
Proposition 6.1,
(7.12) anc (7.13
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